TWM618569U - Circuit for gate drivers on arrays with dummy output signals - Google Patents

Circuit for gate drivers on arrays with dummy output signals Download PDF

Info

Publication number
TWM618569U
TWM618569U TW110206469U TW110206469U TWM618569U TW M618569 U TWM618569 U TW M618569U TW 110206469 U TW110206469 U TW 110206469U TW 110206469 U TW110206469 U TW 110206469U TW M618569 U TWM618569 U TW M618569U
Authority
TW
Taiwan
Prior art keywords
signal
circuit
signals
level
stage
Prior art date
Application number
TW110206469U
Other languages
Chinese (zh)
Inventor
陳辰恩
陳致豪
Original Assignee
凌巨科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凌巨科技股份有限公司 filed Critical 凌巨科技股份有限公司
Priority to TW110206469U priority Critical patent/TWM618569U/en
Publication of TWM618569U publication Critical patent/TWM618569U/en

Links

Images

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

The utility model is related to a circuit for gate drivers on arrays with dummy output signals, in which the final stage driving circuit of the gate drivers on arrays is further coupled to a plurality of last two stage output units of a last two stage driving circuit to receive a plurality of last two stage gate driving signals, and further coupled to at least one virtual circuit to receive at least one virtual signal, for controlling levels of An signals corresponding to the gate driving signals of the final stage driving circuit going up or going down. Thus, the error outputting and the VSTOP signals inputted to the final stage driving circuit are reduced.

Description

具虛擬輸出之陣列上閘極驅動電路Gate driving circuit on array with virtual output

本創作係有關一種控制電路,尤其是一種具虛擬輸出之陣列上閘極驅動電路。This creation is related to a control circuit, especially a gate drive circuit on the array with virtual output.

薄膜電晶體液晶顯示器(TFT-LCDs, Thin Film Transistor Liquid Crystal Displays)已成為現代顯示科技產品的主流,尤其應用於手機上,有輕巧、方便攜帶等特點。相對於多晶矽薄膜電晶體(Poly-Si TFT)而言,使用非晶矽薄膜電晶體(a-Si TFT)所製作的顯示器能夠降低生產成本,且能夠在低溫下製作在大面積的玻璃基板上,提高生產速率。Thin Film Transistor Liquid Crystal Displays (TFT-LCDs, Thin Film Transistor Liquid Crystal Displays) have become the mainstream of modern display technology products, especially used in mobile phones, which are lightweight and easy to carry. Compared with Poly-Si TFT, the display made of amorphous silicon thin film transistor (a-Si TFT) can reduce production cost and can be fabricated on large-area glass substrate at low temperature. , Improve production rate.

隨著系統整合式玻璃面板(SOG, System-on-Glass)的概念被陸續提出,近來許多產品將顯示器驅動電路中的閘極掃描驅動電路(Gate driver或Scan driver)整合在玻璃上,即為GOA(Gate-Driver-on-Array)電路, GOA電路具有諸多優勢,除了可以減少顯示器邊框的面積以達成薄邊框之外,更能夠減少閘極掃描驅動IC的使用,降低購買IC成本及避免玻璃與IC貼合時斷線問題,用以提升產品良率。目前在手機、筆記型電腦…等中小型顯示器中已廣泛運用,甚至大型顯示器運用GOA電路的產品也於近年來問世。As the concept of System-on-Glass (SOG, System-on-Glass) has been put forward one after another, recently many products integrate the gate driver or scan driver in the display driver circuit on the glass, which is GOA (Gate-Driver-on-Array) circuit. GOA circuit has many advantages. In addition to reducing the area of the display frame to achieve a thin frame, it can also reduce the use of gate scan driver ICs, reduce the cost of purchasing ICs, and avoid glass The problem of disconnection when bonding with IC is used to improve product yield. At present, it has been widely used in small and medium-sized displays such as mobile phones, notebook computers, etc., and even large-scale displays using GOA circuits have also come out in recent years.

因應消費者使用習慣趨勢改變,產品逐漸朝向高信賴性、可廣域操作以及窄邊框演進。傳統GOA電路可區分為訊號傳遞部、抗雜訊部、閘極脈波(Gate pulse) 輸出部,訊號傳遞部為傳遞GOA電路內部運作所需的輸入訊號,攸關GOA電路之訊號傳遞性,抗雜訊部為GOA電路內部對於維持輸出訊號穩定之電路,攸關其信賴性,閘極脈波輸出部為GOA電路輸出訊號至閘極線(gate line)。然而,以單級八輸出之GOA電路為例,單級GOA電路即重覆產生輸出訊號八次,其中訊號傳遞部、抗雜訊部佔了八輸出之GOA電路大部分面積,若能夠降低此功能電路佈局面積,即能夠達到窄邊框效果,但是最後一級GOA電路卻因共用截止訊號過多,而出現誤輸出的問題。In response to changes in consumer usage habits, products are gradually evolving toward high reliability, wide area operation, and narrow bezels. The traditional GOA circuit can be divided into a signal transmission part, an anti-noise part, and a gate pulse output part. The signal transmission part transmits the input signal required for the internal operation of the GOA circuit, which is related to the signal transmission of the GOA circuit. The anti-noise part is a circuit inside the GOA circuit that maintains the stability of the output signal, which is critical to its reliability. The gate pulse output part is the GOA circuit that outputs the signal to the gate line. However, take a single-stage eight-output GOA circuit as an example. The single-stage GOA circuit repeats the output signal eight times. The signal transmission part and the anti-noise part occupy most of the area of the eight-output GOA circuit. If this can be reduced The layout area of the functional circuit can achieve the effect of narrow frame, but the last-stage GOA circuit has too many cut-off signals, and the problem of wrong output occurs.

基於上述之問題,本創作提供一種具虛擬輸出之陣列上閘極驅動電路,其藉由虛擬電路之電路設計,而簡化陣列上閘極驅動電路之連接關係並避免合成訊號清除時間過長,以減少誤輸出與截止訊號之相關電路面積。Based on the above-mentioned problems, the present invention provides a gate drive circuit on the array with virtual output, which simplifies the connection relationship of the gate drive circuit on the array and avoids too long time for the composite signal to be cleared by the circuit design of the virtual circuit. Reduce the circuit area related to false output and cut-off signals.

本創作之主要目的,提供一種具虛擬輸出之陣列上閘極驅動電路,其藉由最後一級驅動電路耦接至少一虛擬電路,以簡化最後一級驅動電路並避免合成訊號清除時間過長,因而減少誤輸出與截止訊號至最後一級驅動電路之相關電路面積。The main purpose of this creation is to provide a gate driver circuit on the array with virtual output, which is coupled to at least one virtual circuit by the last-stage driver circuit, so as to simplify the last-stage driver circuit and avoid the synthesis signal clearing time is too long, thereby reducing Error output and cut-off signal to the relevant circuit area of the last stage of the drive circuit.

本創作揭示了一種具虛擬輸出之陣列上閘極驅動電路,其具有複數個驅動電路,其中一第一級驅動電路,耦接一外部積體電路與一第二級驅動電路與一第三級驅動電路,該些個驅動電路自該第二級驅動電路分別耦接一上一級驅動電路與一下二級驅動電路直到一倒數第三級驅動電路,以分別接收複數個上一級閘極驅動訊號與下二級閘極驅動電路之複數個下一級閘極驅動訊號與一下下一級閘極驅動訊號,該些個驅動電路直到倒數第三級分別依據該些個上一級閘極驅動訊號、該些個下一級閘極驅動訊號與該些個下下一級閘極驅動訊號,以控制與該些個閘極驅動訊號對應之合成訊號的電位上升或電位下降;該些個驅動電路之最後一級驅動電路進一步耦接該倒數第二級驅動電路並耦接至少一虛擬電路與該外部積體電路,以接收複數個倒數第二級閘極驅動訊號、該虛擬電路之至少一虛擬訊號與該外部積體電路之一截止訊號,以控制該些個驅動電路之最後一級驅動電路的複數個最後一級閘極驅動訊號對應之合成訊號之電位上升或電位下降。藉由上述之最後一級驅動電路耦接至少一虛擬電路,以減少誤輸出與截止訊號之相關電路面積。This creation discloses a gate drive circuit on an array with virtual output, which has a plurality of drive circuits, including a first-level drive circuit, coupled to an external integrated circuit, a second-level drive circuit, and a third-level drive circuit A driving circuit, the driving circuits are respectively coupled to an upper-level driving circuit and a lower-level driving circuit from the second-level driving circuit to a penultimate third-level driving circuit to respectively receive a plurality of upper-level gate driving signals and The plurality of next-stage gate drive signals of the next-stage gate drive circuit and the next-stage gate-drive signals of the next-stage gate drive circuit. The next-stage gate drive signal and the next-stage gate drive signals are used to control the potential rise or fall of the composite signal corresponding to the gate drive signals; the last-stage drive circuit of the drive circuits further Coupled to the penultimate level driving circuit and coupled to at least one virtual circuit and the external integrated circuit to receive a plurality of penultimate level gate driving signals, at least one virtual signal of the virtual circuit, and the external integrated circuit One of the cut-off signals is used to control the potential rise or fall of the composite signal corresponding to the plurality of last-stage gate drive signals of the last-stage drive circuit of the drive circuits. The above-mentioned last-stage driving circuit is coupled to at least one dummy circuit, so as to reduce the relevant circuit area of false output and cut-off signal.

為使 貴審查委員對本創作之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:In order to enable your review committee to have a better understanding and understanding of the characteristics of this creation and the effects achieved, I would like to provide examples and supporting instructions. The explanation is as follows:

有鑑於習知訊號傳遞佔了GOA電路之部分面積,若能夠降低此截止訊號之相關電路佈局面積,即能夠達到窄邊框效果,據此,本創作遂提出一種虛擬輸出之陣列上閘極驅動電路,以解決習知技術所造成之電路面積問題。In view of the fact that the conventional signal transmission occupies part of the area of the GOA circuit, if the relevant circuit layout area of the cutoff signal can be reduced, the narrow frame effect can be achieved. Based on this, the author proposes a virtual output gate drive circuit on the array , In order to solve the circuit area problem caused by the conventional technology.

以下,將進一步說明本創作揭示一種 具虛擬輸出之陣列上閘極驅動電路所包含之特性、所搭配之結構:In the following, we will further explain the characteristics and structure of a gate drive circuit on an array with virtual output disclosed in this creation:

首先,請參閱第一A至第一F圖,其為本創作之一實施例之閘極驅動電路示意圖、第一級驅動電路示意圖、單一級驅動電路示意圖、最後一級驅動電路示意圖與虛擬電路示意圖。如第一A圖所示,本創作之具虛擬輸出之陣列上閘極驅動電路1,其包含複數個驅動電路10-1至10-n以及至少一虛擬電路DUMMY,本實施例係以一虛擬電路DUMMY作為舉例說明,可依使用需求調整數量。每一個驅動電路10分別耦接複數個輸入訊號,例如:第一級驅動電路10-1耦接一外部積體電路(圖未示)以接收一起始訊號VSTART與複數個時脈訊號CLK4至CLK11,且第一級驅動電路10-1耦接下一級驅動電路與下下一級驅動電路,也就是耦接第二級驅動電路10-2與第三級驅動電路(圖未示),因而接收第二級驅動電路10-2所輸出之閘極驅動訊號G9至G16,第三級驅動電路所輸出之閘極驅動訊號G17,第一級驅動電路10-1依據外部積體電路之起始訊號VSTART與該些個時脈訊號CLK4至CLK11依序控制與第一級驅動電路10-1之複數個閘極驅動訊號G1-G8對應之合成訊號AN1-AN8的電位上升,並同時藉由第二級驅動電路10-2所輸出之閘極驅動訊號G10至G16及第三級驅動電路所輸出之閘極驅動訊號G17下拉閘極驅動訊號G1-G8對應之合成訊號AN1-AN8的電位。First of all, please refer to the first A to the first F, which are schematic diagrams of the gate drive circuit, the first-stage drive circuit, the single-stage drive circuit, the last-stage drive circuit, and the virtual circuit diagram of an embodiment of the creation. . As shown in Figure 1A, the gate driver circuit 1 on the array with virtual output of the present creation includes a plurality of driver circuits 10-1 to 10-n and at least one virtual circuit DUMMY. This embodiment uses a virtual The circuit DUMMY is taken as an example, and the quantity can be adjusted according to usage requirements. Each driving circuit 10 is respectively coupled to a plurality of input signals, for example: the first-level driving circuit 10-1 is coupled to an external integrated circuit (not shown) to receive a start signal VSTART and a plurality of clock signals CLK4 to CLK11 , And the first-level drive circuit 10-1 is coupled to the next-level drive circuit and the next-level drive circuit, that is, is coupled to the second-level drive circuit 10-2 and the third-level drive circuit (not shown), thus receiving the first The gate drive signals G9 to G16 output by the second-level drive circuit 10-2, the gate drive signals G17 output by the third-level drive circuit, and the first-level drive circuit 10-1 according to the start signal VSTART of the external integrated circuit In accordance with the clock signals CLK4 to CLK11, the potentials of the synthesized signals AN1-AN8 corresponding to the gate driving signals G1-G8 of the first-stage driving circuit 10-1 are controlled to rise in sequence, and at the same time, the second-stage The gate driving signals G10 to G16 output by the driving circuit 10-2 and the gate driving signal G17 output by the third-level driving circuit pull down the potentials of the composite signals AN1-AN8 corresponding to the gate driving signals G1-G8.

而從第二級驅動電路10-2開始,每一級驅動電路耦接上一級驅動電路與下一級驅動電路及下下一級驅動電路直到倒數第三級驅動電路(圖未示),因此第二級驅動電路10-2耦接第一級驅動電路10-1並耦接第三級驅動電路(圖未示)及第四級驅動電路(圖未示),因而接收第一級驅動電路10-1之閘極驅動訊號G1至G8以控制與第二級驅動電路10-2之閘極驅動訊號G9至G16對應之合成訊號AN9至AN16的電位上升,並接收第三級驅動電路之閘極驅動訊號G18至G24以及第四級驅動電路之閘極驅動訊號G25,以控制與第二級驅動電路10-2之閘極驅動訊號G9至G16對應之合成訊號AN9至AN16的電位下拉。直到倒數第三級驅動電路(圖未示)仍然是耦接上一級驅動電路與下一級驅動電路及下下一級驅動電路,也就是耦接倒數第四級驅動電路(圖未示)與倒數第二級驅動電路10-n-1 與最後一級驅動電路10-n,其詳細耦接方式同於第二級驅動電路,因此不再贅述。而,倒數第二級驅動電路10-n-1為耦接倒數第三級驅動電路並耦接最後一級驅動電路10-n與一虛擬電路DUMMY,以接收到倒數第三級驅動電路之閘極驅動訊號GN-23至GN-16以控制與倒數第二級驅動電路10-n-1之閘極驅動訊號GN-15至GN-8對應之合成電位ANN-15至ANN-8之電位上升,並接收最後一級驅動電路10-n之閘極驅動訊號GN-6至GN以及虛擬電路DUMMY所提供之一第一虛擬訊號D1,以控制與倒數第二級驅動電路10-n-1之閘極驅動訊號GN-15至GN-8對應之合成電位ANN-15至ANN-8之電位下拉。Starting from the second-level driving circuit 10-2, each level of driving circuit is coupled to the upper-level driving circuit, the next-level driving circuit, and the next-next-level driving circuit up to the penultimate third-level driving circuit (not shown), so the second-level The driving circuit 10-2 is coupled to the first-level driving circuit 10-1 and coupled to the third-level driving circuit (not shown) and the fourth-level driving circuit (not shown), thereby receiving the first-level driving circuit 10-1 The gate drive signals G1 to G8 of the second-level drive circuit 10-2 are used to control the potential rise of the synthesized signals AN9 to AN16 corresponding to the gate drive signals G9 to G16 of the second-level drive circuit 10-2, and receive the gate drive signals of the third-level drive circuit G18 to G24 and the gate drive signal G25 of the fourth-level drive circuit are used to control the potential pull-down of the synthesized signals AN9 to AN16 corresponding to the gate drive signals G9 to G16 of the second-level drive circuit 10-2. Until the penultimate third-level drive circuit (not shown) is still coupled to the upper-level drive circuit and the next-level drive circuit and the next-next-level drive circuit, that is, the penultimate fourth-level drive circuit (not shown) and the penultimate The detailed coupling method of the second-level driving circuit 10-n-1 and the last-level driving circuit 10-n is the same as that of the second-level driving circuit, so it will not be repeated. However, the penultimate level driving circuit 10-n-1 is coupled to the penultimate level driving circuit and coupled to the last level driving circuit 10-n and a dummy circuit DUMMY to receive the gate of the penultimate level driving circuit The driving signals GN-23 to GN-16 are used to control the potential rise of the synthesized potentials ANN-15 to ANN-8 corresponding to the gate driving signals GN-15 to GN-8 of the penultimate drive circuit 10-n-1, And receive the gate drive signals GN-6 to GN of the last-level drive circuit 10-n and a first virtual signal D1 provided by the virtual circuit DUMMY to control the gate of the penultimate drive circuit 10-n-1 The driving signals GN-15 to GN-8 correspond to the synthetic potentials ANN-15 to ANN-8 corresponding to the potential pull-down.

復參閱第一A圖,本創作之最後一級驅動電路10n為耦接該外部積體電路與虛擬電路DUMMY,以接收該外部積體電路之一截止訊號VSTOP與該虛擬電路DUMMY所提供之一第二虛擬訊號D2,且最後一級驅動電路10n耦接倒數第二級驅動電路10-n-1,以接收倒數第二級驅動電路10-n-1之閘極驅動訊號GN-15至GN-8,因此最後一級驅動電路10-n依據閘極驅動訊號GN-15至GN-8控制與最後一級驅動電路10-n之閘極驅動訊號GN-7至GN對應之合成訊號ANN-7至ANN之電位上升,並依據虛擬電路DUMMY所提供之一第二虛擬訊號D2控制與最後一級驅動電路10-n之閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7至ANN-5的電位下拉,並進一步依據截止訊號VSTOP控制與閘極驅動訊號GN-4至GN對應之合成訊號ANN-4至ANN的電位下拉,本實施例透過截止訊號VSTOP與第二虛擬訊號D2控制閘極驅動訊號GN-7至GN對應之合成訊號ANN-7至ANN的電位下拉,更可直接由第二虛擬訊號D2控制閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7至ANN-5的電位下拉,因而避免閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7至ANN-5電位下拉等待時間過長而導致誤輸出,且藉由共用截止訊號VSTOP更節省外部輸入訊號之電路面積。Referring back to Figure 1A, the last stage of the drive circuit 10n of this creation is to couple the external integrated circuit and the dummy circuit DUMMY to receive a cut-off signal VSTOP of the external integrated circuit and one of the first stages provided by the dummy circuit DUMMY. Two dummy signals D2, and the last-stage driving circuit 10n is coupled to the penultimate stage driving circuit 10-n-1 to receive the gate driving signals GN-15 to GN-8 of the penultimate stage driving circuit 10-n-1 , Therefore the last-stage drive circuit 10-n controls the synthesized signals ANN-7 to ANN corresponding to the gate drive signals GN-7 to GN of the last-stage drive circuit 10-n according to the gate drive signals GN-15 to GN-8 The potential rises, and according to a second virtual signal D2 provided by the virtual circuit DUMMY, the combined signals ANN-7 to ANN-5 corresponding to the gate drive signals GN-7 to GN-5 of the last-stage drive circuit 10-n are controlled The potential pull-down is further controlled according to the cut-off signal VSTOP and the potential pull-down of the synthesized signals ANN-4 to ANN corresponding to the gate drive signals GN-4 to GN. In this embodiment, the gate drive is controlled by the cut-off signal VSTOP and the second virtual signal D2 Signals GN-7 to GN correspond to the corresponding synthetic signals ANN-7 to ANN's potential pull-down, and the second virtual signal D2 can directly control the gate drive signals GN-7 to GN-5 corresponding to the synthetic signals ANN-7 to ANN- The potential pull-down of 5 prevents the composite signal ANN-7 to ANN-5 corresponding to the gate drive signals GN-7 to GN-5 from being pulled down for a long time and causing false output, and it saves external power by sharing the cut-off signal VSTOP The circuit area of the input signal.

如第一A圖與第一B圖所示,第一級驅動電路10-1包含複數個充放電單元20與複數個輸出單元30。第一級驅動電路10-1連接訊號傳遞部BUS,以接收訊號傳遞部BUS所傳遞之起始訊號VSTART與複數個時脈訊號CLK4-CLK11,訊號傳遞部BUS更可進一步傳送低頻交流訊號AC至第一級驅動電路10-1,以控制合成訊號AN1至AN8之預充電,由於低頻交流訊號AC控制合成訊號AN1至AN8為習知技術,因此不再贅述。其中,本實施例為以8個充放電單元20與8個輸出單元30為舉例,但本創作不限於8個,可依使用需求而將輸出單元30設計為2、4、16甚至32個輸出單元30,抑或多個輸出單元30共用,本實施例係以現階段技術而言,訊號響應較佳,且較為簡化之電路作為舉例,因此以本實施例以8個充放電單元20與8個輸出單元30作為舉例說明。As shown in the first A and the first B, the first-stage driving circuit 10-1 includes a plurality of charging and discharging units 20 and a plurality of output units 30. The first-level drive circuit 10-1 is connected to the signal transmission part BUS to receive the start signal VSTART and a plurality of clock signals CLK4-CLK11 transmitted by the signal transmission part BUS. The signal transmission part BUS can further transmit the low-frequency AC signal AC to The first-stage driving circuit 10-1 controls the pre-charging of the synthesized signals AN1 to AN8. Since the low-frequency AC signal AC controls the synthesized signals AN1 to AN8 as a conventional technology, it will not be repeated. Among them, this embodiment takes 8 charging and discharging units 20 and 8 output units 30 as examples, but this creation is not limited to 8, and the output unit 30 can be designed to have 2, 4, 16 or even 32 outputs according to the needs of use. Unit 30, or a plurality of output units 30 are shared, this embodiment is based on the current technology, the signal response is better, and a more simplified circuit as an example, so this embodiment uses 8 charging and discharging units 20 and 8 The output unit 30 is taken as an example.

接續上述,由於第一級驅動電路10-1並未有上一級驅動電路,因此,每一充放電單元20接收起始訊號VSTART,以產生對應之合成訊號AN1~AN8,而每一輸出單元30即接收對應於時脈訊號CLK4-CLK11與電路內部之合成訊號AN1~AN8,其中合成訊號AN1~AN8對應於時脈訊號CLK4-CLK11,藉此讓該些個輸出單元30分別於複數個輸出端GP1~GP8產生閘極驅動訊號G1~G8,亦即合成訊號AN1~AN8之電位對應於輸出端GP1~GP8之閘極驅動訊號G1~G8之電位,而第一級驅動電路10-1之下一級驅動電路即為第二級驅動電路10-2,下下一級驅動電路即為第三級驅動電路(圖未示),因此第一級驅動電路10-1進一步接收第二級驅動電路10-2所輸出之閘極驅動訊號G10至G16及第三級驅動電路所輸出之閘極驅動訊號G17,也就是該些個充放電單元20接收第二級驅動電路10-2所輸出之閘極驅動訊號G10至G16及第三級驅動電路所輸出之閘極驅動訊號G17,以藉此下拉閘極驅動訊號G1-G8對應之合成訊號AN1~AN8的電位,因而讓合成訊號形成次序性之電位上升與電位下拉。Following the above, since the first-level driving circuit 10-1 does not have the upper-level driving circuit, each charging and discharging unit 20 receives the start signal VSTART to generate the corresponding composite signal AN1~AN8, and each output unit 30 That is, receiving the synthesized signals AN1~AN8 corresponding to the clock signal CLK4-CLK11 and the circuit, where the synthesized signals AN1~AN8 correspond to the clock signal CLK4-CLK11, so that the output units 30 are connected to a plurality of output terminals respectively. GP1~GP8 generate gate drive signals G1~G8, that is, the potentials of the synthesized signals AN1~AN8 correspond to the potentials of the gate drive signals G1~G8 of the output terminals GP1~GP8, and the first-level drive circuit 10-1 The first-level driving circuit is the second-level driving circuit 10-2, and the next-next-level driving circuit is the third-level driving circuit (not shown), so the first-level driving circuit 10-1 further receives the second-level driving circuit 10- 2 The output gate drive signals G10 to G16 and the gate drive signal G17 output by the third-level drive circuit, that is, the charge and discharge units 20 receive the gate drive output from the second-level drive circuit 10-2 The signals G10 to G16 and the gate drive signal G17 output by the third-level drive circuit are used to pull down the potentials of the composite signals AN1~AN8 corresponding to the gate drive signals G1-G8, so that the composite signals form a sequential potential rise Pull down with potential.

一併參閱第一A圖與第一C圖所示,自第二級驅動電路10-2至倒數第三級驅動電路之該些個充放電單元20皆是耦接上一級驅動電路之複數個上一級輸出單元與下一級驅動電路之複數個下一級輸出單元及下下一級驅動電路之複數個下下一級輸出單元,因此如第一C圖所示,自第二級驅動電路10-2至倒數第三級之每一級驅動電路10皆是接收上一級驅動電路(圖未示)之複數個上一級閘極驅動訊號G-8與下一級驅動電路與下下一級驅動電路(圖未示)之複數個下二級閘極驅動訊號G+9,例如: 對閘極驅動訊號G9而言,G-8為第一級驅動電路10-1的G1,G+9為第三級驅動電路(圖未示)的G18;對閘極驅動訊號G16而言,G-8為第一級驅動電路10-1的G8,G+9為第四級驅動電路(圖未示)的閘極驅動訊號G25,不是接收起始訊號VSTART或截止訊號VSTOP,輸出單元30接收充放電單元20所產生之合成訊號AN,充放電單元20接收上一級閘極驅動訊號G-8與下二級閘極驅動訊號G+9,以產生對應之合成訊號AN,並藉由上一級閘極驅動訊號G-8使閘極驅動訊號G對應之合成訊號AN的電位上升,以及藉由下二級閘極驅動訊號G+9下拉閘極驅動訊號G對應之合成訊號AN的電位,因此,輸出單元30可分別依據對應之合成訊號AN與對應之時脈訊號CLK而產生對應之閘極驅動訊號G於訊號輸出端GP,本實施例為以單一級驅動電路10設有8個輸出端GP,並對應輸出8個閘極驅動訊號G舉例說明,驅動電路10內部之合成訊號AN對應於時脈訊號CLK,因此閘極驅動訊號G即會對應於時脈訊號CLK之時序。As shown in the first A and the first C, the charging and discharging units 20 from the second-level driving circuit 10-2 to the penultimate third-level driving circuit are all coupled to the plurality of driving circuits of the upper level A plurality of next-stage output units of the upper-level output unit and the next-stage drive circuit, and a plurality of next-stage output units of the next-next-stage drive circuit, so as shown in Figure 1C, from the second-level drive circuit 10-2 to Each drive circuit 10 of the third-to-last stage receives a plurality of previous gate drive signals G-8 from the previous drive circuit (not shown), the next drive circuit and the next next drive circuit (not shown) For the gate driving signal G9, G-8 is the G1 of the first-level driving circuit 10-1, and G+9 is the third-level driving circuit ( G18 of the gate drive signal G16; G-8 is G8 of the first-level drive circuit 10-1, and G+9 is the gate drive signal of the fourth-level drive circuit (not shown) G25, instead of receiving the start signal VSTART or the stop signal VSTOP, the output unit 30 receives the composite signal AN generated by the charging and discharging unit 20, and the charging and discharging unit 20 receives the upper-level gate drive signal G-8 and the lower-level gate drive signal G+9, to generate the corresponding composite signal AN, and increase the potential of the composite signal AN corresponding to the gate drive signal G by the upper-level gate drive signal G-8, and use the lower-level gate drive signal G +9 pulls down the potential of the synthesized signal AN corresponding to the gate drive signal G. Therefore, the output unit 30 can generate the corresponding gate drive signal G at the signal output terminal GP according to the corresponding synthesized signal AN and the corresponding clock signal CLK. In this embodiment, the single-stage driving circuit 10 is provided with 8 output terminals GP and correspondingly outputting 8 gate driving signals G. The synthetic signal AN inside the driving circuit 10 corresponds to the clock signal CLK, so the gate The driving signal G corresponds to the timing of the clock signal CLK.

請一併參閱第一A圖與第一D圖,本創作之倒數第二級驅動電路10-n-1,其具有複數個充放電單元20與複數個輸出單元30,充放電單元20分別耦接倒數第三級驅動電路,以接收對應之閘極驅動訊號GN-23至GN-16,充放電單元20更進一步耦接最後一級驅動電路10n與虛擬電路DUMMY,特別是對應於閘極驅動訊號GN-8之充放電單元20為耦接虛擬電路DUMMY,因而接收虛擬電路DUMMY之第一虛擬訊號D1,其餘充放電單元20為耦接最後一級驅動電路10-n,以接收最後一級驅動電路10-n之閘極驅動訊號GN-6至GN。其中,充放電單元20分別產生對應之合成訊號ANN-15至ANN-8,以供輸出單元30分別依據時脈訊號CLKN-15至CLKN-8及對應之合成訊號ANN-15至ANN-8產生對應之閘極驅動訊號GN-15至GN-8。Please refer to the first A and the first D, the penultimate drive circuit 10-n-1 of this creation, which has a plurality of charging and discharging units 20 and a plurality of output units 30, the charging and discharging units 20 are respectively coupled Connected to the penultimate third-level driving circuit to receive the corresponding gate driving signals GN-23 to GN-16, and the charging and discharging unit 20 is further coupled to the last-level driving circuit 10n and the dummy circuit DUMMY, especially corresponding to the gate driving signal The charging and discharging unit 20 of the GN-8 is coupled to the dummy circuit DUMMY and therefore receives the first dummy signal D1 of the dummy circuit DUMMY. The remaining charging and discharging units 20 are coupled to the last-stage driving circuit 10-n to receive the last-stage driving circuit 10 -n's gate drive signal GN-6 to GN. The charging and discharging unit 20 respectively generates corresponding synthesized signals ANN-15 to ANN-8 for the output unit 30 to generate according to the clock signals CLKN-15 to CLKN-8 and the corresponding synthesized signals ANN-15 to ANN-8, respectively Corresponding gate drive signals GN-15 to GN-8.

一併參閱第一A圖與第一E圖,本創作之最後一級驅動電路10-n為分別耦接至倒數第二級驅動電路10-n-1與虛擬電路DUMMY及外部積體電路,因而最後一級驅動電路10-n之充放電單元20接收第二虛擬訊號D2與倒數第二級驅動電路10-n-1之閘極驅動訊號GN-15至GN-8,且最後一級驅動電路10-n更接收訊號傳遞部BUS所傳送之外部積體電路所提供之時脈訊號CLKN-7至CLKN,以及更進一步接收低頻交流訊號AC,最後一級驅動電路10-n之輸出單元30接收時脈訊號CLKN-7至CLKN與合成訊號ANN-7~ANN,以於對應輸出端GPN-7至GPN輸出閘極驅動訊號GN-7至GN,其中該些個合成訊號ANN~ANN為對應於時脈訊號CLKN-7至CLKN。Referring to the first A and the first E, the last-stage driving circuit 10-n of this creation is respectively coupled to the penultimate-stage driving circuit 10-n-1 and the dummy circuit DUMMY and the external integrated circuit. The charging and discharging unit 20 of the last-stage driving circuit 10-n receives the second dummy signal D2 and the gate driving signals GN-15 to GN-8 of the penultimate second-stage driving circuit 10-n-1, and the last-stage driving circuit 10-n n It also receives the clock signals CLKN-7 to CLKN provided by the external integrated circuit transmitted by the signal transmission part BUS, and further receives the low-frequency AC signal AC, and the output unit 30 of the final drive circuit 10-n receives the clock signal CLKN-7 to CLKN and synthetic signals ANN-7~ANN to output gate drive signals GN-7 to GN corresponding to the output terminals GPN-7 to GPN, wherein the synthetic signals ANN~ANN correspond to clock signals CLKN-7 to CLKN.

再者,本創作更進一步藉由最後一級驅動電路10-n對應之充放電單元20耦接虛擬電路DUMMY以及截止訊號VSTOP,因而讓部分充放電單元20耦接第二虛擬訊號D2,並讓部分充放電單元20共用截止訊號VSTOP,對應輸出端GPN-7至GPN-5之閘極驅動訊號GN-7至GN-5之電位控制為充放電單元20依據第二虛擬訊號D2下拉合成訊號ANN-7至ANN-5的電位,使對應之閘極驅動訊號GN-7至GN-5之電位下拉,且對應輸出端GPN-4至GPN之閘極驅動訊號GN-4至GN之電位控制為充放電單元20依據截止訊號VSTOP下拉合成訊號ANN-4至ANN的電位下拉,使對應之閘極驅動訊號GN-4至GN之電位下拉,例如:本實施例為合成訊號ANN-7至ANN-5對應之充放電單元20耦接第二虛擬訊號D2,合成訊號ANN-4至ANN對應之充放電單元20耦接截止訊號VSTOP,以下拉合成訊號ANN-7至ANN的電位,因此最後一級驅動電路10-n可直接由第二虛擬訊號D2控制與閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7至ANN-5的電位下拉,因而避免閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7至ANN-5電位下拉等待時間過長,並接收單一截止訊號VSTOP即可達到合成訊號ANN-4至ANN之電位下拉功能,因而避免誤輸出閘極驅動訊號GN-7,同時縮減截止訊號VSTOP輸入至最後一級驅動電路10-n的相關電路面積。此外,該截止訊號VSTOP支援最多7個閘極驅動訊號對應之合成訊號之電位下拉。Furthermore, the present invention further utilizes the charging and discharging unit 20 corresponding to the last-level driving circuit 10-n to be coupled to the dummy circuit DUMMY and the cut-off signal VSTOP, so that some of the charging and discharging units 20 are coupled to the second dummy signal D2, and some The charging and discharging unit 20 shares the cutoff signal VSTOP, and the potential of the gate drive signals GN-7 to GN-5 corresponding to the output terminals GPN-7 to GPN-5 is controlled as the charging and discharging unit 20 pulls down to synthesize the signal ANN- according to the second virtual signal D2 The potential of 7 to ANN-5 pulls down the potential of the corresponding gate drive signal GN-7 to GN-5, and the potential of the gate drive signal GN-4 to GN corresponding to the output terminal GPN-4 to GPN is controlled to charge The discharge unit 20 pulls down the potentials of the synthesized signals ANN-4 to ANN according to the cut-off signal VSTOP, so that the corresponding gate drive signals GN-4 to GN are pulled down. For example, in this embodiment, the synthesized signals ANN-7 to ANN-5 are pulled down. The corresponding charging and discharging unit 20 is coupled to the second dummy signal D2, and the composite signal ANN-4 to ANN corresponding to the charging and discharging unit 20 is coupled to the cut-off signal VSTOP, and the potential of the composite signal ANN-7 to ANN is pulled down, so the final drive circuit 10-n can be directly controlled by the second virtual signal D2 to pull down the potential of the synthesized signals ANN-7 to ANN-5 corresponding to the gate drive signals GN-7 to GN-5, thus avoiding the gate drive signals GN-7 to GN -5 The corresponding synthetic signal ANN-7 to ANN-5 potential pull-down waiting time is too long, and receiving a single cut-off signal VSTOP can achieve the potential pull-down function of the synthetic signal ANN-4 to ANN, thus avoiding false output of the gate drive signal GN -7, while reducing the relevant circuit area of the cut-off signal VSTOP input to the last-stage drive circuit 10-n. In addition, the cut-off signal VSTOP supports the potential pull-down of the composite signal corresponding to up to 7 gate drive signals.

如第一F圖所示,虛擬電路DUMMY近似於驅動電路10,虛擬電路DUMMY包含一第一充放電單元22、一第二充放電單元24、一第一虛擬單元32與一第二虛擬單元34,第一充放電單元22分別耦接最後一級驅動電路10-n之第一輸出單元30(也就是對應於閘極驅動訊號GN-7之輸出單元30),以分別產生合成訊號AND1,以及第二充放電單元24耦接該最後一級驅動電路10-n之一第四輸出單元(也就是對應於閘極驅動訊號GN-4之輸出單元30),以分別產生合成訊號AND2,第一虛擬單元32為耦接第一充放電單元22與倒數第二級驅動電路10-n-1之一第八充放電單元(也就是合成訊號ANN-8對應之充放電單元20),並接收合成訊號AND1與時脈訊號CLKN-7,以產生第一虛擬訊號D1至合成訊號ANN-8對應之充放電單元20,第二虛擬單元34為耦接第二充放電單元24與最後一級驅動電路10-n之第一至第三充放電單元(也就是合成訊號ANN-7、ANN-6與ANN-5對應之充放電單元20),並接收合成訊號AND2與時脈訊號CLK-4,以產生第二虛擬訊號D2至合成訊號ANN-7、ANN-6與ANN-5對應之充放電單元20。As shown in the first figure F, the dummy circuit DUMMY is similar to the driving circuit 10. The dummy circuit DUMMY includes a first charging and discharging unit 22, a second charging and discharging unit 24, a first dummy unit 32 and a second dummy unit 34 , The first charging and discharging unit 22 is respectively coupled to the first output unit 30 of the last-stage drive circuit 10-n (that is, the output unit 30 corresponding to the gate drive signal GN-7) to respectively generate the composite signal AND1, and the first output unit 30 The two charging and discharging units 24 are coupled to a fourth output unit of the last-stage drive circuit 10-n (that is, the output unit 30 corresponding to the gate drive signal GN-4) to respectively generate a composite signal AND2, the first dummy unit 32 is an eighth charging and discharging unit (that is, the charging and discharging unit 20 corresponding to the composite signal ANN-8) that couples the first charge and discharge unit 22 and the penultimate drive circuit 10-n-1, and receives the composite signal AND1 The charging and discharging unit 20 corresponding to the clock signal CLKN-7 to generate the first dummy signal D1 to the synthesized signal ANN-8. The second dummy unit 34 is coupled to the second charging and discharging unit 24 and the last-stage driving circuit 10-n The first to third charging and discharging units (that is, the charging and discharging units 20 corresponding to the composite signals ANN-7, ANN-6, and ANN-5), and receive the composite signal AND2 and the clock signal CLK-4 to generate the second The charging and discharging units 20 corresponding to the virtual signal D2 to the composite signals ANN-7, ANN-6, and ANN-5.

惟,虛擬電路DUMMY並非用於驅動顯示面板(圖未示),而是輸出第一虛擬訊號D1與第二虛擬訊號D2至倒數第二級驅動電路10-n-1與最後一級驅動電路10-n,第一虛擬訊號D1僅用以下拉與閘極驅動訊號GN-8對應之合成訊號ANN-8,第二虛擬訊號D2僅用以下拉與閘極驅動訊號GN-7至GN-5對應之合成訊號ANN-7~ANN-5,因而不影響顯示效果,也就是第一虛擬訊號D1與第二虛擬訊號D2並未輸出至顯示面板之畫素之薄膜電晶體。However, the dummy circuit DUMMY is not used to drive the display panel (not shown), but to output the first dummy signal D1 and the second dummy signal D2 to the penultimate stage driving circuit 10-n-1 and the last stage driving circuit 10-- n. The first virtual signal D1 is only used to pull down the composite signal ANN-8 corresponding to the gate drive signal GN-8, and the second virtual signal D2 is only used to pull down the one corresponding to the gate drive signals GN-7 to GN-5. The composite signals ANN-7~ANN-5 do not affect the display effect, that is, the first virtual signal D1 and the second virtual signal D2 are not output to the thin film transistors of the pixels of the display panel.

其中,輸出端DP1輸出之第一虛擬訊號D1之控制為第一充放電單元22依據最後一級驅動電路10-n之閘極驅動訊號GN-7控制合成訊號AND1之電位上升,第一虛擬單元32依據合成訊號AND1與時脈訊號CLKN-6,而驅使該第一虛擬單元32之一第一虛擬訊號D1之電位上升,產生對應之第一虛擬訊號D1至倒數第二級驅動電路10-n-1,用於控制閘極驅動訊號GN-8對應之充放電單元20,使對應之合成訊號ANN-8電位下拉,而第二虛擬單元34所輸出之第二虛擬訊號D2之電位控制為第二充放電單元24依據最後一級驅動電路10-n之閘極驅動訊號GN-4控制合成訊號AND2之電位上升,第二虛擬單元34依據合成訊號AND2,而驅使該第二虛擬單元34之一第二虛擬訊號D2之電位上升,產生對應之第二虛擬訊號D2至最後一級驅動電路10-n用於控制閘極驅動訊號GN-7、GN-6、GN-5對應之充放電單元20,使對應之合成訊號ANN-7~ANN-5電位下拉。The control of the first dummy signal D1 output by the output terminal DP1 is that the first charging and discharging unit 22 controls the potential increase of the composite signal AND1 according to the gate driving signal GN-7 of the last-stage driving circuit 10-n, and the first dummy unit 32 According to the synthesized signal AND1 and the clock signal CLKN-6, the potential of the first dummy signal D1 of the first dummy unit 32 is driven to rise, and the corresponding first dummy signal D1 to the penultimate stage driving circuit 10-n- is generated. 1. It is used to control the charging and discharging unit 20 corresponding to the gate drive signal GN-8 to pull down the potential of the corresponding composite signal ANN-8, and the second virtual signal D2 output by the second virtual unit 34 is controlled to be the second The charging and discharging unit 24 controls the potential increase of the composite signal AND2 according to the gate drive signal GN-4 of the last-stage drive circuit 10-n, and the second dummy unit 34 drives one of the second dummy units 34 according to the composite signal AND2. The potential of the virtual signal D2 rises to generate the corresponding second virtual signal D2 to the last-stage drive circuit 10-n for controlling the charging and discharging units 20 corresponding to the gate drive signals GN-7, GN-6, and GN-5, so that the corresponding The combined signal ANN-7~ANN-5 has the potential to pull down.

該第一虛擬單元32與該第二虛擬單元34依據該截止訊號VSTOP控制該第一虛擬訊號D1與該第二虛擬訊號D2對應之該些合成訊號AND1、AND2之電位下拉,以驅使該第一、第二虛擬單元32、34之第一、第二虛擬訊號D1、D2之電位下拉。The first dummy unit 32 and the second dummy unit 34 control the first dummy signal D1 and the second dummy signal D2 corresponding to the first dummy signal D1 and the second dummy signal D2 to pull down the potentials of the composite signals AND1 and AND2 according to the stop signal VSTOP, so as to drive the first dummy signal , The potentials of the first and second dummy signals D1 and D2 of the second dummy cells 32 and 34 are pulled down.

因此本創作透過虛擬電路DUMMY輸出之第一虛擬訊號D1與第二虛擬訊號D2下拉閘極驅動訊號GN-8至GN-5對應之合成訊號ANN-8~ANN-5,因而避免共用截止訊號VSTOP過多而導致閘極驅動訊號GN-8至GN-5對應之合成訊號ANN-8~ANN-5之電位下拉等待時間過長,並讓單一截止訊號VSTOP可支援整個最後一級驅動電路10-n的部分閘極驅動訊號GN-4至GN對應之合成訊號ANN-4~ANN的電位下拉,藉此減少誤輸出與縮減截止訊號VSTOP輸入至最後一級驅動電路10-n的相關電路面積。此外,虛擬電路DUMMY更可依據最後一級驅動電路10-n之輸出端數量調整對應之虛擬訊號數量,因而讓最後一級驅動電路10-n無論輸出訊號多寡皆可下拉。Therefore, in this creation, the first virtual signal D1 and the second virtual signal D2 output by the virtual circuit DUMMY are synthesized signals ANN-8~ANN-5 corresponding to the pull-down gate drive signals GN-8 to GN-5, thus avoiding sharing the cut-off signal VSTOP Too much leads to too long waiting time for the potential pull-down of the synthesized signals ANN-8~ANN-5 corresponding to the gate drive signals GN-8 to GN-5, and allows a single cut-off signal VSTOP to support the entire final drive circuit 10-n Part of the gate drive signals GN-4 to GN corresponding to the synthesized signals ANN-4~ANN are pulled down to reduce false output and reduce the relevant circuit area of the cut-off signal VSTOP input to the last-stage drive circuit 10-n. In addition, the dummy circuit DUMMY can also adjust the number of corresponding dummy signals according to the number of output terminals of the last-stage driving circuit 10-n, so that the last-stage driving circuit 10-n can be pulled down regardless of the amount of output signal.

本創作本創作綜上所述,本創作之具虛擬輸出之陣列上閘極驅動電路,其透過虛擬電路耦接至倒數第二級驅動電路與最後一級驅動電路,以讓倒數第二級驅動電路與最後一級驅動電路藉由虛擬電路所提供之虛擬訊號控制閘極驅動訊號所對應之合成訊號之電位下拉與截止訊號之相對應時序,因而避免共用截止訊號VSTOP過多而導致閘極驅動訊號對應之合成訊號電位下拉等待時間過長,以減少誤輸出,且藉由共用截止訊號,更縮減輸入截止訊號至最後一級驅動電路之相關電路面積。To sum up, this creation has a virtual output gate drive circuit on the array, which is coupled to the penultimate level drive circuit and the last level drive circuit through the virtual circuit, so that the penultimate level drive circuit It corresponds to the timing of the potential pull-down and cut-off signal of the synthesized signal corresponding to the gate drive signal controlled by the virtual signal provided by the virtual circuit in the last stage of the drive circuit, so as to avoid sharing the cut-off signal VSTOP too much and cause the gate drive signal to correspond to The synthetic signal potential pull-down waiting time is too long to reduce false output, and by sharing the cut-off signal, the relevant circuit area from the input cut-off signal to the last-stage drive circuit is reduced.

故本創作實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出新型專利申請,祈  鈞局早日賜准專利,至感為禱。Therefore, this creation is really novel, progressive, and available for industrial use. It should meet the patent application requirements of my country's patent law. Undoubtedly, I file a new patent application in accordance with the law. I pray that the Bureau will grant the patent as soon as possible.

惟以上所述者,僅為本創作之較佳實施例而已,並非用來限定本創作實施之範圍,舉凡依本創作申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本創作之申請專利範圍內。However, the above are only the preferred embodiments of this creation, and are not used to limit the scope of implementation of this creation. For example, the equivalent changes and modifications of the shape, structure, characteristics and spirit described in the scope of the patent application for this creation are made. , Should be included in the scope of patent application for this creation.

1:陣列上閘極驅動電路 10-1---10-n:驅動電路 10:驅動電路 20:充放電單元 22:第一充放電單元 24:第二充放電單元 30:輸出單元 32:第一虛擬單元 34:第二虛擬單元 AC:低頻交流訊號 AN:合成訊號 AN1~ANN:合成訊號 AND:合成訊號 AND1:第一合成訊號 AND2:第二合成訊號 AC:低頻交流訊號 BUS:訊號傳遞部 D1:第一虛擬訊號 D2:第二虛擬訊號 DP1:輸出端 DP2:輸出端 DUMMY:虛擬電路 CLK4~CLKN:時脈訊號 G1~GN:閘極驅動訊號 BUS:訊號傳遞部 GAP:時間區段 GP:輸出端 GP0:輸出端 GP1:輸出端 GP2:輸出端 GP3:輸出端 GP4:輸出端 GP5:輸出端 GP6:輸出端 GP7:輸出端 GPN-7:輸出端 GPN-6:輸出端 GPN-6:輸出端 GPN-5:輸出端 GPN-4:輸出端 GPN-3:輸出端 GPN-2:輸出端 GPN-1:輸出端 GPN:輸出端 NOISE:雜訊 VSTART:起始訊號 VSTOP:截止訊號1: Gate drive circuit on the array 10-1---10-n: drive circuit 10: Drive circuit 20: charge and discharge unit 22: The first charge and discharge unit 24: The second charge and discharge unit 30: output unit 32: The first virtual unit 34: The second virtual unit AC: low frequency AC signal AN: composite signal AN1~ANN: Synthetic signal AND: composite signal AND1: the first composite signal AND2: second composite signal AC: low frequency AC signal BUS: Signal Transmission Department D1: The first virtual signal D2: The second virtual signal DP1: output DP2: output DUMMY: virtual circuit CLK4~CLKN: clock signal G1~GN: Gate drive signal BUS: Signal Transmission Department GAP: Time segment GP: output terminal GP0: output terminal GP1: output terminal GP2: output terminal GP3: output terminal GP4: output terminal GP5: output terminal GP6: output terminal GP7: output terminal GPN-7: output GPN-6: output GPN-6: output GPN-5: output GPN-4: output GPN-3: output GPN-2: output GPN-1: output GPN: output NOISE: Noise VSTART: start signal VSTOP: Stop signal

第一A圖:其為本創作之一實施例之陣列上閘極驅動電路示意圖; 第一B圖:其為本創作之一實施例之第一級驅動電路示意圖; 第一C圖:其為本創作之一實施例之單一級驅動電路示意圖; 第一D圖:其為本創作之一實施例之倒數第二級驅動電路示意圖; 第一E圖:其為本創作之一實施例之最後一級驅動電路示意圖;以及 第一F圖:其為本創作之一實施例之虛擬電路示意圖。 Figure 1 A: It is a schematic diagram of the gate drive circuit on the array according to an embodiment of the creation; Fig. 1B: It is a schematic diagram of the first-level driving circuit of an embodiment of the creation; Figure 1 C: It is a schematic diagram of a single-stage drive circuit according to an embodiment of the creation; Figure 1 D: It is a schematic diagram of the penultimate stage driving circuit of an embodiment of the creation; The first E: it is a schematic diagram of the last-stage driving circuit of an embodiment of the creation; and Figure F: It is a schematic diagram of the virtual circuit of an embodiment of the creation.

1:閘極驅動電路 1: Gate drive circuit

10-1---10-n:驅動電路 10-1---10-n: drive circuit

AN1---ANN:合成訊號 AN1---ANN: Synthetic signal

AND1:合成訊號 AND1: composite signal

AND2:合成訊號 AND2: composite signal

D1:第一虛擬訊號 D1: The first virtual signal

D2:第二虛擬訊號 D2: The second virtual signal

DUMMY:虛擬電路 DUMMY: virtual circuit

G1---GN:閘極驅動訊號 G1---GN: Gate drive signal

VSTART:起始訊號 VSTART: start signal

VSTOP:截止訊號 VSTOP: Stop signal

CLK4---CLKN:時脈訊號 CLK4---CLKN: clock signal

Claims (6)

一種具虛擬輸出之陣列上閘極驅動電路,其包含: 複數個驅動電路,其中該些個驅動電路之一第一級驅動電路耦接一外部積體電路與一第二級驅動電路與一第三級驅動電路;該些個驅動電路自該第二級驅動電路分別耦接一上一級驅動電路並耦接下二級驅動電路直到一倒數第三級驅動電路;該些個驅動電路之一倒數第二級驅動電路耦接該倒數第三級驅動電路並耦接一最後一級驅動電路與一虛擬電路;該些個驅動電路之該最後一級驅動電路耦接該倒數第二級驅動電路並耦接該虛擬電路與該外部積體電路; 其中,該第一級驅動電路依據該外部積體電路之一起始訊號控制與複數個第一閘極驅動訊號對應之複數個合成訊號的電位上升,並依據該第二級驅動電路之複數個第二閘極驅動訊號與該第三級驅動電路之一第三閘極驅動訊號控制與該些個第一閘極驅動訊號對應之該些個合成訊號的電位下拉;該些個驅動電路自該第二級驅動電路直到該倒數第三級驅動電路依據該上一級驅動電路之複數個上一級閘極驅動訊號與該下二級驅動電路之複數個下一級閘極驅動訊號與一下下一級閘極驅動訊號,以控制該些個驅動電路自該第二級驅動電路直到該倒數第三級驅動電路之複數個閘極驅動訊號對應之複數個合成訊號電位上升或電位下拉;該倒數第二級驅動電路依據該倒數第三級驅動電路之複數個倒數第三閘極驅動訊號與該最後一級驅動電路之複數個最後一級閘極驅動訊號以及該虛擬電路之一第一虛擬訊號控制複數個倒數第二級閘極驅動訊號對應之複數個合成訊號的電位上升或電位下降;該最後一級驅動電路依據該倒數第二級驅動電路之該些個倒數第二級閘極驅動訊號、該虛擬電路之一第二虛擬訊號與該外部積體電路之一截止訊號,而控制該最後一級驅動電路的該些個最後一級閘極驅動訊號對應之複數個合成訊號電位上升或電位下拉。 A gate drive circuit on an array with virtual output, which comprises: A plurality of driving circuits, one of the first-level driving circuits of the driving circuits is coupled to an external integrated circuit, a second-level driving circuit and a third-level driving circuit; the driving circuits are from the second-level The driving circuits are respectively coupled to an upper level driving circuit and a lower level driving circuit up to a penultimate level driving circuit; one of the driving circuits is coupled to the penultimate level driving circuit and Coupled to a final drive circuit and a virtual circuit; the final drive circuit of the drive circuits is coupled to the penultimate drive circuit and is coupled to the virtual circuit and the external integrated circuit; Wherein, the first-level driving circuit controls the potential rise of a plurality of composite signals corresponding to a plurality of first gate driving signals according to an initial signal of the external integrated circuit, and according to the plurality of second-level driving circuits of the second-level driving circuit. The two-gate drive signal and one of the third-level drive circuits control the potential pull-down of the composite signals corresponding to the first gate drive signals; the drive circuits are controlled from the first gate drive signals. The second-level driving circuit up to the penultimate third-level driving circuit is based on a plurality of upper-level gate driving signals of the upper-level driving circuit and a plurality of lower-level gate driving signals of the lower-level driving circuit and a lower-level gate driving Signal to control the plurality of driving circuits from the second-level driving circuit to the plurality of gate driving signals corresponding to the penultimate third-level driving circuit; Control a plurality of penultimate second stages according to the plurality of penultimate third gate drive signals of the penultimate third-stage drive circuit, the plurality of last-stage gate drive signals of the last-stage drive circuit, and a first virtual signal of the virtual circuit The potential of the plurality of composite signals corresponding to the gate drive signal rises or the potential falls; the last-stage drive circuit is based on the penultimate-stage gate drive signals of the penultimate-stage drive circuit, and one of the virtual circuits is second The virtual signal and one of the external integrated circuits turn off the signal, and the plurality of composite signals corresponding to the last-stage gate driving signals of the last-stage driving circuit are controlled to rise or pull down in potential. 如請求項1所述之陣列上閘極驅動電路,其中該些個驅動電路分別包含複數個充放電單元與複數個輸出單元,自該第二級驅動電路直到該倒數第三級驅動電路之該些個充放電單元耦接該上一級驅動電路之複數個上一級輸出單元並耦接該下二級驅動電路之複數個下一級輸出單元與一下下一級輸出單元,以產生對應之該些合成訊號至對應之該些個輸出單元,以進一步依據對應之複數個時脈訊號產生該些個閘極驅動訊號。The gate driving circuit on the array according to claim 1, wherein the driving circuits respectively include a plurality of charging and discharging units and a plurality of output units, from the second-stage driving circuit to the penultimate third-stage driving circuit. A plurality of charge and discharge units are coupled to a plurality of upper-level output units of the upper-level driving circuit and are coupled to a plurality of lower-level output units of the lower-level driving circuit and a lower-next-level output unit to generate the corresponding composite signals To the corresponding output units to further generate the gate driving signals according to the corresponding plural clock signals. 如請求項1所述之陣列上閘極驅動電路,其中該些個驅動電路進一步分別耦接複數個時脈訊號與複數個低頻交流訊號。The gate driving circuit on the array according to claim 1, wherein the driving circuits are further coupled to a plurality of clock signals and a plurality of low-frequency AC signals, respectively. 如請求項1所述之陣列上閘極驅動電路,其中該虛擬電路包含: 一第一充放電單元,耦接該最後一級驅動電路之一第一輸出單元與該截止訊號,產生一第一合成訊號; 一第一虛擬單元,耦接該第一充放電單元,產生該第一虛擬訊號; 一第二充放電單元,耦接該最後一級驅動電路之一第四輸出單元與該截止訊號,產生一第二合成訊號;以及 一第二虛擬單元,耦接該第二充放電單元,產生該第二虛擬訊號; 其中,該第一充放電單元依據該最後一級驅動電路之該第一輸出單元對應之該最後一級閘極驅動訊號控制該第一合成訊號之電位上升,以驅使該第一虛擬訊號之電位上升,該第二充放電單元依據該最後一級驅動電路之該第四輸出單元之該最後一級閘極驅動訊號控制對應之該第二合成訊號之電位上升,以驅使該第二虛擬訊號之電位上升,該第一虛擬單元與該第二虛擬單元依據該截止訊號控制該第一虛擬訊號與該第二虛擬訊號對應之該些合成訊號之電位下拉,以驅使該第一、第二虛擬單元之該第一、第二虛擬訊號之電位下拉。 The gate drive circuit on the array according to claim 1, wherein the virtual circuit includes: A first charging and discharging unit coupled to a first output unit of the last-stage drive circuit and the cut-off signal to generate a first composite signal; A first dummy unit, coupled to the first charging and discharging unit, to generate the first dummy signal; A second charging and discharging unit coupled to a fourth output unit of the last-stage drive circuit and the cut-off signal to generate a second composite signal; and A second dummy unit, coupled to the second charging and discharging unit, to generate the second dummy signal; Wherein, the first charging and discharging unit controls the potential rise of the first composite signal according to the last-stage gate drive signal corresponding to the first output unit of the last-stage drive circuit to drive the potential of the first virtual signal to rise, The second charging and discharging unit controls the corresponding increase in the potential of the second composite signal according to the last-stage gate drive signal of the fourth output unit of the last-stage drive circuit to drive the potential of the second virtual signal to rise, the The first virtual unit and the second virtual unit control the pull-down of the potentials of the composite signals corresponding to the first virtual signal and the second virtual signal according to the cut-off signal to drive the first of the first and second virtual units , The potential of the second virtual signal is pulled down. 如請求項4所述之陣列上閘極驅動電路,其中該最後一級驅動電路依據該第二虛擬訊號與該截止訊號控制與該些個最後一級閘極驅動訊號對應之合成訊號的電位下拉。The gate driving circuit on the array according to claim 4, wherein the last-stage driving circuit controls the potential pull-down of the composite signal corresponding to the last-stage gate driving signals according to the second virtual signal and the cut-off signal. 如請求項1所述之陣列上閘極驅動電路,其中該截止訊號支援最多7個閘極驅動訊號對應之合成訊號之下拉電位。The gate drive circuit on the array according to claim 1, wherein the cut-off signal supports the pull-down potential of the composite signal corresponding to a maximum of 7 gate drive signals.
TW110206469U 2021-06-04 2021-06-04 Circuit for gate drivers on arrays with dummy output signals TWM618569U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110206469U TWM618569U (en) 2021-06-04 2021-06-04 Circuit for gate drivers on arrays with dummy output signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110206469U TWM618569U (en) 2021-06-04 2021-06-04 Circuit for gate drivers on arrays with dummy output signals

Publications (1)

Publication Number Publication Date
TWM618569U true TWM618569U (en) 2021-10-21

Family

ID=79603738

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110206469U TWM618569U (en) 2021-06-04 2021-06-04 Circuit for gate drivers on arrays with dummy output signals

Country Status (1)

Country Link
TW (1) TWM618569U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767740B (en) * 2021-06-04 2022-06-11 凌巨科技股份有限公司 Circuit for gate drivers on arrays with dummy output signals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI767740B (en) * 2021-06-04 2022-06-11 凌巨科技股份有限公司 Circuit for gate drivers on arrays with dummy output signals

Similar Documents

Publication Publication Date Title
KR101641312B1 (en) Display panel
TWI406503B (en) Shift register circuit
CN102867543B (en) Shift register, gate drivers and display device
KR101143531B1 (en) A gate drive device for a liquid crystal display
TWI437823B (en) Shift register circuit
WO2019134221A1 (en) Goa circuit
KR101552408B1 (en) Scanning signal line drive circuit and scanning signal line drive method
KR101478667B1 (en) Display and driving method of the same
TWI393110B (en) Apparatus, shift register unit, liquid crystal displaying device and method for eliminating afterimage
JP5757969B2 (en) Drive module sharing a control node
WO2016000280A1 (en) Complementary goa circuit for flat panel display
WO2016070543A1 (en) Shift register unit, gate driving circuit and display device
WO2020019426A1 (en) Liquid crystal panel comprising goa circuit, and driving method therefor
KR20160078439A (en) Goa circuit structure
WO2014169626A1 (en) Shift register unit, gate drive circuit and display device
TW201301765A (en) A shift register
JP2019526824A (en) GOA circuit
KR20100075019A (en) Gate driving device and liquid crystal display comprising therein
CN102779494A (en) Gate driving circuit, method and liquid crystal display
TW201409443A (en) A driving circuit for bi-direction scanning
WO2022007147A1 (en) Goa circuit and display panel
WO2015158015A1 (en) Display panel drive circuit, display apparatus, and drive method
JP7210783B2 (en) Array substrate row driving circuit unit, its driving circuit, and liquid crystal display panel
WO2018040484A1 (en) Gate driving circuit
WO2021159586A1 (en) Goa circuit and display panel using same