TWM617230U - Vcsel apparatus - Google Patents

Vcsel apparatus Download PDF

Info

Publication number
TWM617230U
TWM617230U TW110203099U TW110203099U TWM617230U TW M617230 U TWM617230 U TW M617230U TW 110203099 U TW110203099 U TW 110203099U TW 110203099 U TW110203099 U TW 110203099U TW M617230 U TWM617230 U TW M617230U
Authority
TW
Taiwan
Prior art keywords
layer
electrode layer
laser device
emitting laser
metal compound
Prior art date
Application number
TW110203099U
Other languages
Chinese (zh)
Inventor
賴力弘
賴利溫
吳文斯
Original Assignee
華立捷科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華立捷科技股份有限公司 filed Critical 華立捷科技股份有限公司
Priority to TW110203099U priority Critical patent/TWM617230U/en
Publication of TWM617230U publication Critical patent/TWM617230U/en

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

本創作公開一種面射型雷射裝置。面射型雷射裝置用以產生一雷射光束,且包括磊晶疊層體、第一電極層以及第二電極層,第一電極層與第二電極層連接於磊晶疊層體。面射型雷射裝置包括利用雷射光對第一電極層或第二電極層局部退火處理而形成的一介面金屬化合物層,其位於第一電極層與磊晶疊層體之間或者位於第二電極層與磊晶疊層體之間,且介面金屬化合物層連接於磊晶疊層體。在進行局部退火處理時,只加熱第一或第二電極層的表面,所以面射型雷射裝置內部不會因高溫而產生應力變化造成損害,可有效提升良率。This creation discloses a surface-fired laser device. The surface-emitting laser device is used to generate a laser beam, and includes an epitaxial laminate, a first electrode layer, and a second electrode layer. The first electrode layer and the second electrode layer are connected to the epitaxial laminate. The surface-emitting laser device includes an interfacial metal compound layer formed by using laser light to locally anneal the first electrode layer or the second electrode layer, which is located between the first electrode layer and the epitaxial laminate or is located on the second electrode layer Between the electrode layer and the epitaxial laminate, and the interface metal compound layer is connected to the epitaxial laminate. During the local annealing process, only the surface of the first or second electrode layer is heated, so the inside of the surface-emitting laser device will not be damaged due to high temperature changes in stress, which can effectively improve the yield.

Description

面射型雷射裝置Surface-fired laser device

本創作涉及一種雷射裝置,特別是涉及一種面射型雷射裝置。This creation relates to a laser device, in particular to a surface-fired laser device.

相較於傳統的邊射型雷射而言,垂直共腔面射型雷射(Vertical-cavity surface emitting laser, VCSEL)具有較低的消耗功率且更易與光纖耦合等優點,而成為目前受到矚目的發光元件之一。Compared with traditional side-fired lasers, vertical-cavity surface emitting lasers (VCSELs) have the advantages of lower power consumption and easier coupling with optical fibers, and have become the focus of attention. One of the light-emitting elements.

現有的垂直共腔面射型雷射至少包括P-型電極、N-型電極、用以產生光子的活性層以及分別位於活性層兩側的上布拉格反射鏡(Distributed Bragg Reflector, DBR)與下布拉格反射鏡。通過P-型電極以及N-型電極對活性層注入電流來激發光子,並利用上、下兩個布拉格反射鏡(Distributed Bragg Reflector, DBR)來形成垂直式的共振腔,可產生由元件表面(即垂直活性層方向)出射的雷射光束。The existing vertical co-cavity surface-emitting laser includes at least a P-type electrode, an N-type electrode, an active layer for generating photons, and an upper Bragg reflector (Distributed Bragg Reflector, DBR) and a lower Bragg reflector. The P-type electrode and the N-type electrode are used to inject current into the active layer to excite photons, and the upper and lower two Bragg reflectors (Distributed Bragg Reflector, DBR) are used to form a vertical resonant cavity, which can be generated by the element surface ( That is, the laser beam emitted perpendicular to the direction of the active layer.

在現有垂直共腔面射型雷射的製造流程中,會先在半導體晶圓上的多個元件區製作多個可用以產生雷射光束的疊層結構,其包括用以產生光子的活性層以及分別位於活性層兩側的上布拉格反射鏡(Distributed Bragg Reflector, DBR)與下布拉格反射鏡。之後,由半導體晶圓的背側將半導體晶圓薄化,再於半導體晶圓的正面與背面分別形成兩個電極層。In the existing vertical co-cavity surface-emitting laser manufacturing process, a plurality of laminated structures that can be used to generate laser beams are first fabricated in a plurality of component regions on a semiconductor wafer, which include an active layer for generating photons And an upper Bragg reflector (Distributed Bragg Reflector, DBR) and a lower Bragg reflector on both sides of the active layer. After that, the semiconductor wafer is thinned from the back side of the semiconductor wafer, and two electrode layers are formed on the front and back sides of the semiconductor wafer, respectively.

然而,每當形成電極層之後,皆需要利用爐管加熱對整個半導體晶圓進行熱退火,使每一電極層可以和下布拉格反射鏡(或上布拉格反射鏡)之間形成良好的歐姆接觸。一般而言,通常需要加熱到400 oC以上,才能形成較好的歐姆接觸。然而,由於薄化後的半導體晶圓本身就容易翹曲,且半導體晶圓上已經形成多層由不同材料構成的磊晶層而具有一定的內應力。 However, every time the electrode layer is formed, the entire semiconductor wafer needs to be thermally annealed by furnace heating, so that each electrode layer can form a good ohmic contact with the lower Bragg reflector (or the upper Bragg reflector). Generally speaking, it usually needs to be heated to above 400 o C to form a good ohmic contact. However, since the thinned semiconductor wafer itself is easy to warp, and multiple epitaxial layers composed of different materials have been formed on the semiconductor wafer, it has a certain internal stress.

特別是對於製作氧化型VCSEL而言,其內部已形成用來限制電流的氧化層,而氧化層與其他半導體材料之間的熱膨脹係數差異更大。因此,在利用爐管對整個半導體晶圓進行熱退火時,很容易增加半導體晶圓內應力而導致半導體晶圓破裂,降低製程良率。與此同時,雷射元件內部也會殘留熱應力,導致元件壽命降低並影響其出光特性。故,如何避免上述問題,來提升雷射裝置的製程良率及元件壽命,仍為該項事業所欲解決的重要課題之一。Especially for the production of oxidized VCSELs, an oxide layer used to limit current has been formed inside, and the thermal expansion coefficient difference between the oxide layer and other semiconductor materials is greater. Therefore, when the furnace tube is used to thermally anneal the entire semiconductor wafer, it is easy to increase the internal stress of the semiconductor wafer and cause the semiconductor wafer to crack and reduce the process yield. At the same time, thermal stress will remain inside the laser element, which will reduce the life of the element and affect its light-emitting characteristics. Therefore, how to avoid the above-mentioned problems and improve the process yield and component life of laser devices is still one of the important issues to be solved by this business.

本創作所要解決的技術問題在於,針對現有技術的不足提供一種面射型雷射裝置,以避免在面射型雷射裝置內部的內部應力增加,而具有較佳的製程良率及元件壽命。The technical problem to be solved by this creation is to provide a surface-fired laser device for the shortcomings of the prior art, so as to avoid the increase of internal stress inside the surface-fired laser device, and have a better process yield and component life.

為了解決上述的技術問題,本創作所採用的其中一技術方案是提供一種面射型雷射裝置,其包括磊晶疊層體、第一電極層、第二電極層以及一利用局部退火處理而形成的第一介面金屬化合物層。磊晶疊層體包括基材、第一反射鏡層、主動層以及第二反射鏡層。第一反射鏡層,主動層以及第二反射鏡層位於基材上,且主動層位於第一反射鏡層與第二反射鏡層之間,以產生一雷射光束。第一電極層位於磊晶疊層體上,第二電極層位於第二反射鏡層上。第二電極層與第一電極層之間定義出一經過主動層的電流路徑,且第二電極層具有一用於定義出一發光區的孔徑。第一介面金屬化合物層位於第一電極層與磊晶疊層體之間。In order to solve the above technical problems, one of the technical solutions adopted in this creation is to provide a surface-emitting laser device, which includes an epitaxial laminate, a first electrode layer, a second electrode layer, and a local annealing process. The formed first interface metal compound layer. The epitaxial laminate includes a substrate, a first mirror layer, an active layer, and a second mirror layer. The first mirror layer, the active layer and the second mirror layer are located on the substrate, and the active layer is located between the first mirror layer and the second mirror layer to generate a laser beam. The first electrode layer is located on the epitaxial laminated body, and the second electrode layer is located on the second mirror layer. A current path through the active layer is defined between the second electrode layer and the first electrode layer, and the second electrode layer has an aperture for defining a light-emitting area. The first interface metal compound layer is located between the first electrode layer and the epitaxial laminate.

為了解決上述的技術問題,本創作所採用的另外再一技術方案是提供一種雷射裝置,其包括一磊晶疊層體、一第一電極層與一第二電極層,所述第一電極層與所述第二電極層連接於所述磊晶疊層體,其特徵在於,面射型雷射裝置還包括至少一用局部退火處理而形成的一介面金屬化合物層,其位於第一電極層與磊晶疊層體之間或者位於第二電極層與磊晶疊層體之間,且介面金屬化合物層連接於所述磊晶疊層體。In order to solve the above technical problem, another technical solution adopted in this creation is to provide a laser device, which includes an epitaxial laminate, a first electrode layer and a second electrode layer, the first electrode The layer and the second electrode layer are connected to the epitaxial laminate, wherein the surface-emitting laser device further includes at least one interfacial metal compound layer formed by a local annealing treatment, which is located on the first electrode Between the layer and the epitaxial laminate or between the second electrode layer and the epitaxial laminate, and the interfacial metal compound layer is connected to the epitaxial laminate.

本創作的其中一有益效果在於,本創作所提供的面射型雷射裝置,其能通過“至少一利用局部退火而形成的一介面金屬化合物層位於第一電極層與磊晶疊層體之間或者位於第二電極層與磊晶疊層體之間”,可在形成歐姆接觸時避免增加面射型雷射裝置的內應力,而可使面射型雷射裝置具有較長的元件壽命並具有穩定的出光特性。在進行局部退火處理時,只加熱第一或第二電極層的表層,所以面射型雷射裝置內部不會因高溫而產生應力變化造成損害,可有效提升良率。One of the beneficial effects of this creation is that the surface-emitting laser device provided by this creation can be positioned between the first electrode layer and the epitaxial laminate by "at least one interfacial metal compound layer formed by partial annealing" Or located between the second electrode layer and the epitaxial laminate", it can avoid increasing the internal stress of the surface-emitting laser device when forming ohmic contact, and can make the surface-emitting laser device have a longer component life And has stable light-emitting characteristics. During the partial annealing process, only the surface layer of the first or second electrode layer is heated, so the inside of the surface-emitting laser device will not be damaged due to high temperature changes in stress, which can effectively improve the yield.

為使能更進一步瞭解本創作的特徵及技術內容,請參閱以下有關本創作的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本創作加以限制。In order to further understand the features and technical content of this creation, please refer to the following detailed descriptions and drawings about this creation. However, the drawings provided are only for reference and explanation, and are not used to limit this creation.

以下是通過特定的具體實施例來說明本創作所公開有關“面射型雷射裝置”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。The following is a specific embodiment to illustrate the implementation of the "surface-emitting laser device" disclosed in this creation, and those skilled in the art can understand the advantages and effects of this creation from the content disclosed in this specification. This creation can be implemented or applied through other different specific embodiments, and various details in this specification can also be modified and changed based on different viewpoints and applications without departing from the concept of this creation. In addition, the drawings of this creation are merely schematic illustrations, and are not depicted in actual size, and are stated in advance. The following implementations will further describe the related technical content of this creation in detail, but the disclosed content is not intended to limit the scope of protection of this creation. In addition, the term "or" used in this document may include any one or a combination of more of the associated listed items depending on the actual situation.

[第一實施例][First Embodiment]

參閱圖1至圖2所示,本創作第一實施例提供一種面射型雷射裝置。在本實施例中,面射型雷射裝置M1為垂直腔面射雷射裝置。進一步而言,圖1的面射型雷射裝置M1為氧化型雷射裝置,但本創作並不限制。面射型雷射裝置M1包括一磊晶疊層體10、一第一電極層11、一第二電極層12以及至少一利用局部退火處理而形成的介面金屬化合物層L1(L2),其中第一電極層11與第二電極層12都位於磊晶疊層體10上。Referring to FIG. 1 to FIG. 2, the first embodiment of the invention provides a surface-fired laser device. In this embodiment, the surface-fired laser device M1 is a vertical cavity surface-fired laser device. Furthermore, the surface-fired laser device M1 in FIG. 1 is an oxidized laser device, but this creation is not limited. The surface-emitting laser device M1 includes an epitaxial laminate 10, a first electrode layer 11, a second electrode layer 12, and at least one interfacial metal compound layer L1 (L2) formed by a local annealing process. Both an electrode layer 11 and a second electrode layer 12 are located on the epitaxial laminate 10.

詳細而言,磊晶疊層體10包括一基材100、一第一反射鏡層101、一主動層102以及一第二反射鏡層103。第一反射鏡層101、主動層102以及第二反射鏡層103都位於基材100上,且主動層102位於第一反射鏡層101與第二反射鏡層103之間。In detail, the epitaxial laminate 10 includes a substrate 100, a first mirror layer 101, an active layer 102 and a second mirror layer 103. The first mirror layer 101, the active layer 102 and the second mirror layer 103 are all located on the substrate 100, and the active layer 102 is located between the first mirror layer 101 and the second mirror layer 103.

基材100可以是經過摻雜的III-V族半導體基材,例如是N型砷化鎵(GaAs)基材、N型磷化砷(InP)基材、氮化鋁(Aluminum Nitride, AIN)基材或是氮化銦(Indium Nitride, InN)基材。另外,基材100具有一頂面及一和頂面相對的底面。第一反射鏡層101、主動層102以及第二反射鏡層103是依序設置於基材100的頂面上。The substrate 100 may be a doped III-V semiconductor substrate, such as an N-type gallium arsenide (GaAs) substrate, an N-type arsenic phosphide (InP) substrate, and aluminum nitride (Aluminum Nitride, AIN). The base material or Indium Nitride (InN) base material. In addition, the substrate 100 has a top surface and a bottom surface opposite to the top surface. The first mirror layer 101, the active layer 102, and the second mirror layer 103 are sequentially disposed on the top surface of the substrate 100.

第一反射鏡層101以及第二反射鏡層103可以是由具有不同折射係數的兩種薄膜交替堆疊而形成的分佈式布拉格反射鏡(Distributed Bragg Reflector, DBR),以使具有預定波長的光束射出。The first mirror layer 101 and the second mirror layer 103 may be a distributed Bragg reflector (Distributed Bragg Reflector, DBR) formed by alternately stacking two kinds of films with different refractive coefficients, so that a light beam with a predetermined wavelength is emitted .

第一反射鏡層101與第二反射鏡層103都是由多對具有高折射係數的膜層以及具有低折射係數的膜層堆疊而形成。在一實施例中,第一反射鏡層101是n型分佈式布拉格反射鏡,而第二反射鏡層103是p型分佈式布拉格反射鏡。Both the first mirror layer 101 and the second mirror layer 103 are formed by stacking multiple pairs of film layers with high refractive index and film layers with low refractive index. In one embodiment, the first mirror layer 101 is an n-type distributed Bragg mirror, and the second mirror layer 103 is a p-type distributed Bragg mirror.

主動層102形成在第一反射鏡層101上,並包括多層用以形成多重量子井的膜層,例如是多層彼此交替堆疊且皆未經摻雜的砷化鎵層以及砷化鋁鎵(Al yGa (1-y)As)膜層。主動層102位於第一反射鏡層101與第二反射鏡層103之間,用以受電能激發而產生初始光束。主動層102所產生的初始光束通過在第一反射鏡層101與第二反射鏡層103之間來回反射共振而增益放大,最終由第二反射鏡層103出射。 The active layer 102 is formed on the first mirror layer 101 and includes multiple layers for forming multiple quantum wells. y Ga (1-y) As) film. The active layer 102 is located between the first mirror layer 101 and the second mirror layer 103 for being excited by electrical energy to generate an initial light beam. The initial light beam generated by the active layer 102 is gain-amplified by reflecting and resonating back and forth between the first mirror layer 101 and the second mirror layer 103, and is finally emitted from the second mirror layer 103.

在本創作實施例中,第二反射鏡層103與主動層102的截面寬度小於第一反射鏡層101(或基材100)的截面寬度而共同形成一平台部10a,且第一反射鏡層101與基材100共同形成一基底部10b。據此,基底部10b至少包括基材100及第一反射鏡層101,且平台部10a至少包括主動層102以及第二反射鏡層103。In this creative embodiment, the cross-sectional width of the second mirror layer 103 and the active layer 102 is smaller than the cross-sectional width of the first mirror layer 101 (or the substrate 100) to form a platform portion 10a, and the first mirror layer 101 and the substrate 100 together form a base portion 10b. Accordingly, the base portion 10b at least includes the substrate 100 and the first mirror layer 101, and the platform portion 10a at least includes the active layer 102 and the second mirror layer 103.

另外,在本實施例中,磊晶疊層體10還包括一電流侷限層104。電流侷限層104是位於第二反射鏡層103內,並具有對應於發光區A1的侷限孔104H。在第二反射鏡層103內的電流侷限層104會具有較高的電阻值,從而驅使電流繞過具有高電阻值的電流侷限層104而僅由侷限孔104H通過。據此,可增加電流注入主動層102的電流密度。在一實施例中,電流侷限層104可以通過側邊氧化製程,將第二反射鏡層103內的其中一膜層氧化而形成。In addition, in this embodiment, the epitaxial laminate 10 further includes a current confinement layer 104. The current confinement layer 104 is located in the second mirror layer 103 and has a confinement hole 104H corresponding to the light-emitting area A1. The current confinement layer 104 in the second mirror layer 103 will have a higher resistance value, thereby driving the current to bypass the current confinement layer 104 with a high resistance value and only pass through the confinement hole 104H. Accordingly, the current density of the current injected into the active layer 102 can be increased. In one embodiment, the current limiting layer 104 may be formed by oxidizing one of the layers in the second mirror layer 103 through a side oxidation process.

進一步而言,本創作實施例的磊晶疊層體10具有至少一氧化溝槽H1,且氧化溝槽H1會由第二反射鏡層103朝基材100的方向延伸。在一實施例中,氧化溝槽H1的深度會大於第二反射鏡層103的厚度。在另一實施例中,氧化溝槽H1的深度會大於或等於第二反射鏡層103與主動層102的厚度總和。也就是說,氧化溝槽H1會朝著基材100延伸至主動層102下方的第一反射鏡層101內。Furthermore, the epitaxial laminate 10 of this creative embodiment has at least one oxide trench H1, and the oxide trench H1 extends from the second mirror layer 103 toward the substrate 100. In an embodiment, the depth of the oxide trench H1 may be greater than the thickness of the second mirror layer 103. In another embodiment, the depth of the oxide trench H1 may be greater than or equal to the sum of the thickness of the second mirror layer 103 and the active layer 102. In other words, the oxide trench H1 will extend toward the substrate 100 into the first mirror layer 101 under the active layer 102.

另外,在本實施例中,氧化溝槽H1的一俯視形狀為環狀,並圍繞平台部10a。據此,氧化溝槽H1的其中一側壁即為平台部10a的側壁。在其他實施例中,氧化溝槽H1的數量為多個,並環繞設置在平台部10a周圍。In addition, in this embodiment, a top view shape of the oxidation trench H1 is ring-shaped and surrounds the platform portion 10a. Accordingly, one of the sidewalls of the oxide trench H1 is the sidewall of the terrace portion 10a. In other embodiments, the number of the oxidation trenches H1 is multiple, and they are arranged around the terrace portion 10a.

在本實施例中,前述電流侷限層104是通過執行一氧化製程而形成。具體而言,在第二反射鏡層103的多個膜層中,至少有一層高含鋁層。因此,在執行氧化製程時,高含鋁層很容易由裸露在氧化溝槽H1的側壁的部分開始被氧化,進而形成電流侷限層104。據此,電流侷限層104是由氧化溝槽H1的側壁徑向地延伸至第二電極層12下方,進而定義出侷限孔104H。然而,在其他實施例中,電流侷限層104也可以是通過高能量氫離子植入法在第二反射鏡層103內形成的氫離子佈植層。In this embodiment, the aforementioned current limiting layer 104 is formed by performing an oxidation process. Specifically, among the multiple film layers of the second mirror layer 103, there is at least one layer with high aluminum content. Therefore, when the oxidation process is performed, the high aluminum content layer is easily oxidized from the portion exposed on the sidewall of the oxidation trench H1 to form the current limiting layer 104. Accordingly, the current confinement layer 104 extends radially from the sidewall of the oxide trench H1 to below the second electrode layer 12, thereby defining a confinement hole 104H. However, in other embodiments, the current confinement layer 104 may also be a hydrogen ion implanted layer formed in the second mirror layer 103 by a high-energy hydrogen ion implantation method.

請繼續參照圖1,第一電極層11與第二電極層12都位於磊晶疊層體10上,且在第一電極層11與第二電極層12之間定義出一經過主動層102的電流路徑。Please continue to refer to FIG. 1, the first electrode layer 11 and the second electrode layer 12 are both located on the epitaxial laminate 10, and between the first electrode layer 11 and the second electrode layer 12 is defined an active layer 102 Current path.

在本實施例中,第一電極層11與第二電極層12是分別位於基材100的相反側。進一步而言,第一電極層11是位於基材100的底面,而第二電極層12是位於第二反射鏡層103上。也就是說,第二電極層12是位於島狀平台部10a上,而第一電極層11是位於基底部10b。第一電極層11與第二電極層12可以是單一金屬層、合金層或者是由不同金屬材料所構成的疊層。第一電極層11及第二電極層12的至少其中一者具有利用局部退火處理而形成的一介面金屬化合物層 (intermetallic compound, IMC)。In this embodiment, the first electrode layer 11 and the second electrode layer 12 are respectively located on opposite sides of the substrate 100. Furthermore, the first electrode layer 11 is located on the bottom surface of the substrate 100, and the second electrode layer 12 is located on the second mirror layer 103. That is, the second electrode layer 12 is located on the island-shaped terrace portion 10a, and the first electrode layer 11 is located on the base portion 10b. The first electrode layer 11 and the second electrode layer 12 may be a single metal layer, an alloy layer, or a stacked layer composed of different metal materials. At least one of the first electrode layer 11 and the second electrode layer 12 has an intermetallic compound (IMC) layer formed by a local annealing process.

請參照圖1,第一介面金屬化合物層L1是位於第一電極層11與磊晶疊層體10之間。Please refer to FIG. 1, the first interfacial metal compound layer L1 is located between the first electrode layer 11 and the epitaxial laminate 10.

請參照圖2,詳細而言,本實施例的第一電極層11包括與第一介面金屬化合物層L1連接的第一金屬層110a、第二金屬層110b以及第三金屬層110c,且第二金屬層110b是位於第一金屬層110a與第三金屬層110c之間。也就是說,在本創作實施例中,第一電極層11為三層金屬層所形成的疊層結構。第一金屬層110a的材料例如是鍺金,第二金屬層110b與第三金屬層110c的材料例如是金、銅、鈀、鈦、鍺、鎢或其任意組合。在另一實施例中,第一電極層11也可以只包括兩層金屬層,只要可以和磊晶疊層體10之間形成歐姆接觸,本創作並未限制第一電極層11的材料與結構。2, in detail, the first electrode layer 11 of this embodiment includes a first metal layer 110a, a second metal layer 110b, and a third metal layer 110c connected to the first interface metal compound layer L1, and the second The metal layer 110b is located between the first metal layer 110a and the third metal layer 110c. That is to say, in this creative embodiment, the first electrode layer 11 is a laminated structure formed by three metal layers. The material of the first metal layer 110a is, for example, germanium gold, and the material of the second metal layer 110b and the third metal layer 110c is, for example, gold, copper, palladium, titanium, germanium, tungsten, or any combination thereof. In another embodiment, the first electrode layer 11 may also include only two metal layers, as long as it can form an ohmic contact with the epitaxial laminate 10, the present invention does not limit the material and structure of the first electrode layer 11 .

值得一提的是,在本創作實施例中,是在將第一電極層11形成在基材100的底面之後,再對第一電極層11與基材100局部退火,促使第一電極層11與基材100發生反應,而在第一電極層11與基材100的之間形成第一介面金屬化合物層L1。據此,第一介面金屬化合物層L1包含至少兩種原子,其中一種原子與第一金屬層110a的原子的種類相同。第一介面金屬化合物層L1所包含的另一種原子會與基材100的原子的種類相同。It is worth mentioning that in this creative embodiment, after the first electrode layer 11 is formed on the bottom surface of the substrate 100, the first electrode layer 11 and the substrate 100 are then locally annealed to promote the first electrode layer 11 It reacts with the substrate 100 to form a first interfacial metal compound layer L1 between the first electrode layer 11 and the substrate 100. Accordingly, the first interface metal compound layer L1 includes at least two types of atoms, one of which is the same type of atoms as the first metal layer 110a. The other type of atoms contained in the first interface metal compound layer L1 may be the same type as that of the base material 100.

舉例而言,若第一金屬層110a的材料為鍺,而基材100的材料為砷化鎵,則第一介面金屬化合物層L1會包含鍺原子、砷原子以及鎵原子。但本創作並不以此例為限。For example, if the material of the first metal layer 110a is germanium and the material of the substrate 100 is gallium arsenide, the first interface metal compound layer L1 will contain germanium atoms, arsenic atoms, and gallium atoms. But this creation is not limited to this example.

此外,在本創作實施例中,是利用雷射對第一電極層11與基材100局部退火,以在形成良好的歐姆接觸同時形成第一介面金屬化合物層L1。磊晶疊層體10的其他部分,包括第一反射鏡層101、第二反射鏡層103與主動層102的溫度並不會在前述加熱過程中一併升溫,因此可以避免增加磊晶疊層體10的內應力。如此,可避免磊晶疊層體10因為受熱導致內應力過高,而影響面射型雷射裝置M1的壽命或出光特性。除此之外,若是磊晶疊層體10的內應力過高,也可能影響面射型雷射裝置M1抵抗靜電放電(ESD)的能力,因此,降低磊晶疊層體10的內應力也可以增加面射型雷射裝置M1抵抗靜電放電的能力。In addition, in this creative embodiment, a laser is used to locally anneal the first electrode layer 11 and the substrate 100 to form a good ohmic contact while forming the first interface metal compound layer L1. The temperature of the other parts of the epitaxial stack 10, including the first mirror layer 101, the second mirror layer 103, and the active layer 102, will not be raised during the aforementioned heating process, so the increase in the epitaxial stack can be avoided. The internal stress of the body 10. In this way, it can be avoided that the internal stress of the epitaxial laminated body 10 is too high due to heating, which affects the lifetime or light emission characteristics of the surface-emitting laser device M1. In addition, if the internal stress of the epitaxial laminate 10 is too high, it may also affect the ability of the surface-emitting laser device M1 to resist electrostatic discharge (ESD). Therefore, it is also possible to reduce the internal stress of the epitaxial laminate 10 Increase the ability of surface-fired laser device M1 to resist electrostatic discharge.

第一電極層的厚度是介於4000Å至10000Å,而第一介面金屬化合物層L1的厚度是是介於200Å至300Å。另外,第一電極層11的表面粗糙度是介於0.2μm至1.0μm。The thickness of the first electrode layer is between 4000 Å and 10000 Å, and the thickness of the first interface metal compound layer L1 is between 200 Å and 300 Å. In addition, the surface roughness of the first electrode layer 11 is between 0.2 μm and 1.0 μm.

在一實施例中,在執行局部退火處理之前,第一電極層11的表面粗糙度約0.5μm至1μm。在執行局部退火處理之後,第一電極層11的表面粗糙度約0.2μm至0.5μm,且第一介面金屬化合物層L1的表面粗糙度也是介於0.2μm至0.5μm。也就是說,在執行局部退火處理之後,可以降低第一電極層11的表面粗糙度。在另一實施例中,若第一電極層11本身已具有相對較低的表面粗糙度(約0.2μm至0.5μm),在執行局部退火處理之後第一電極層11的表面粗糙度並不會有太大變化。In one embodiment, before performing the local annealing treatment, the surface roughness of the first electrode layer 11 is about 0.5 μm to 1 μm. After the partial annealing process is performed, the surface roughness of the first electrode layer 11 is approximately 0.2 μm to 0.5 μm, and the surface roughness of the first interface metal compound layer L1 is also between 0.2 μm and 0.5 μm. That is, after the partial annealing treatment is performed, the surface roughness of the first electrode layer 11 can be reduced. In another embodiment, if the first electrode layer 11 itself already has a relatively low surface roughness (about 0.2 μm to 0.5 μm), the surface roughness of the first electrode layer 11 will not be There are too many changes.

請先參照圖3,圖3為本創作實施例在電極層與磊晶疊層體的電子顯微鏡照片。圖3的掃描式電子顯微鏡照片顯示本創作實施例在基材100與第一電極層11的其中一截面。本創作實施例的第一介面金屬化合物層L1在局部區域具有起伏較大的表面形貌。Please refer to FIG. 3 first, which is an electron micrograph of the electrode layer and the epitaxial laminate of the creative embodiment. The scanning electron microscope photograph of FIG. 3 shows one of the cross-sections of the substrate 100 and the first electrode layer 11 in this creative embodiment. The first interface metal compound layer L1 of the creative embodiment has a relatively large surface morphology in a local area.

除此之外,若要使基材100與第一電極層11形成較佳的歐姆接觸,加熱溫度至少400 oC,甚至需要更高的溫度。然而,在現有技術中,以爐管加熱整個磊晶疊層體時,需受制於磊晶疊層體10的耐受溫度,而只能加熱到400 oC。 In addition, the substrate 100 to form an ohmic contact with the preferred first electrode layer 11, the heating temperature of at least 400 o C, or even higher temperatures. However, in the prior art, to the entire heating furnace tube epitaxial laminate for an epitaxial laminate subject to withstand temperatures of 10, but only heated to 400 o C.

然而,在本創作實施例中,利用雷射來局部加熱時,只有在基材100與第一電極層11接面區域的溫度會升高至400 oC以上,而不會使磊晶疊層體10的其他部分(如:第一及第二反射鏡層101, 103以及主動層102) 同步地被加熱過高的溫度。因此,在第一電極層11與基材100之間不僅可形成阻抗較低的歐姆接觸,又可避免磊晶疊層體10的內應力增加。在一實施例中,第一電極層11與磊晶疊層體10之間未經熱退火製程形成歐姆接觸時,為了驅動面射型雷射所要施加之電壓Vf是介於5.0V(Volt)至7.0V(Volt)。在經熱退火製程形成歐姆接觸後,為了驅動面射型雷射所要施加之電壓(Vf)可被降低,約介於1.5V(Volt) 至2.5V(Volt)。 However, in this creative embodiment, when the laser is used for local heating, only the temperature at the interface between the substrate 100 and the first electrode layer 11 will rise above 400 o C, without causing the epitaxial stack The other parts of the body 10 (such as the first and second mirror layers 101, 103 and the active layer 102) are simultaneously heated to an excessively high temperature. Therefore, not only can an ohmic contact with lower impedance be formed between the first electrode layer 11 and the substrate 100, but also an increase in the internal stress of the epitaxial laminate 10 can be avoided. In one embodiment, when the ohmic contact is formed between the first electrode layer 11 and the epitaxial laminate 10 without the thermal annealing process, the voltage Vf to be applied to drive the surface-emitting laser is between 5.0V (Volt) To 7.0V (Volt). After the ohmic contact is formed through the thermal annealing process, the voltage (Vf) to be applied to drive the surface-emitting laser can be reduced, and is approximately 1.5V (Volt) to 2.5V (Volt).

請再參照圖1,在圖1的實施例中,第二電極層12具有一用以定義出一發光區A1的孔徑(未標號),且孔徑會對應前述電流侷限層104的侷限孔104H,以使主動層102所產生的雷射光束可由孔徑出射。在一實施例中,第二電極層12具有環形部分。Please refer to FIG. 1 again. In the embodiment of FIG. 1, the second electrode layer 12 has an aperture (not numbered) for defining a light-emitting area A1, and the aperture corresponds to the confined hole 104H of the aforementioned current confinement layer 104. In this way, the laser beam generated by the active layer 102 can be emitted from the aperture. In an embodiment, the second electrode layer 12 has a ring-shaped portion.

在圖1的實施例中,面射型雷射裝置M1還包括利用局部退火處理而形成的第二介面金屬化合物層L2。第二介面金屬化合物層L2是位於第二電極層12與第二反射鏡層103之間。第二電極層12的材料可以是金、鎢、鍺、鈀、鈦或其任意組合。在另一實施例中,第二電極層12具有與第一電極層11相似的疊層結構,也就是包括至少兩層金屬層,本創作並不限制。In the embodiment of FIG. 1, the surface-emitting laser device M1 further includes a second interface metal compound layer L2 formed by a local annealing process. The second interface metal compound layer L2 is located between the second electrode layer 12 and the second mirror layer 103. The material of the second electrode layer 12 may be gold, tungsten, germanium, palladium, titanium or any combination thereof. In another embodiment, the second electrode layer 12 has a laminated structure similar to that of the first electrode layer 11, that is, includes at least two metal layers, which is not limited in the present creation.

另外,與第一介面金屬化合物層L1相似,第二介面金屬化合物層L2是利用雷射對第二電極層12與第二反射鏡層103局部加熱而形成。據此,第二介面金屬化合物層L2包含至少兩種原子,其中一種原子與第二電極層12的原子的種類相同。第二介面金屬化合物層L2所包含的另一種原子會與第二反射鏡層103的原子的種類相同。In addition, similar to the first interfacial metal compound layer L1, the second interfacial metal compound layer L2 is formed by locally heating the second electrode layer 12 and the second mirror layer 103 by a laser. Accordingly, the second interface metal compound layer L2 contains at least two kinds of atoms, one of which is the same type of atoms as the second electrode layer 12. The other type of atoms contained in the second interface metal compound layer L2 may be the same type as the type of atoms in the second mirror layer 103.

舉例而言,若第二電極層12的材料為鍺金合金,且第二反射鏡層103的最頂層的材料為砷化鋁鎵,則第二介面金屬化合物層L2可包含金原子、鍺原子、砷原子、鋁原子與鎵原子,但本創作並不以此為限。For example, if the material of the second electrode layer 12 is a germanium-gold alloy, and the material of the topmost layer of the second mirror layer 103 is aluminum gallium arsenide, the second interface metal compound layer L2 may include gold atoms, germanium atoms , Arsenic, aluminum and gallium atoms, but this creation is not limited to this.

另外,既然第二電極層12包括一環形部分,在第二反射鏡層103與第二電極層12之間所形成的第二介面金屬化合物層L2,也會呈環狀並圍繞發光區A1。In addition, since the second electrode layer 12 includes a ring portion, the second interfacial metal compound layer L2 formed between the second mirror layer 103 and the second electrode layer 12 will also have a ring shape and surround the light-emitting area A1.

請繼續參照圖1。本創作實施例的面射型雷射裝置M1還包括電流散佈層13,其位於第二反射鏡層103上,並電性連接第二電極層12。在一實施例中,構成電流散佈層13的材料為導電材料,以使由第二反射鏡層103注入主動層102的電流均勻分布。此外,構成電流散佈層13的材料是雷射光束可穿透的材料,以避免過於犧牲面射型雷射裝置M1的發光效率。舉例而言,當雷射光束的波長為850 nm時,構成電流散佈層13的材料可以是經摻雜的半導體材料,例如是重摻雜的砷化鎵。Please continue to refer to Figure 1. The surface-emitting laser device M1 of this creative embodiment further includes a current spreading layer 13 which is located on the second mirror layer 103 and is electrically connected to the second electrode layer 12. In an embodiment, the material constituting the current spreading layer 13 is a conductive material, so that the current injected into the active layer 102 from the second mirror layer 103 is uniformly distributed. In addition, the material constituting the current spreading layer 13 is a material that can be penetrated by the laser beam, so as to avoid overly sacrificing the luminous efficiency of the surface-emitting laser device M1. For example, when the wavelength of the laser beam is 850 nm, the material constituting the current spreading layer 13 may be a doped semiconductor material, such as heavily doped gallium arsenide.

另外,本創作實施例的面射型雷射裝置M1還進一步包括一保護層14與一平坦層PL。保護層14會覆蓋發光區A1並順形地覆蓋氧化溝槽H1的內壁面,以避免水氣入侵磊晶疊層體10內部而影響面射型雷射裝置M1的出光特性或是壽命。在一實施例中,保護層14可以選擇抗水氣的材料,例如是氮化矽、氧化鋁或其組合,本創作並不限制。In addition, the surface-emitting laser device M1 of this creative embodiment further includes a protective layer 14 and a flat layer PL. The protective layer 14 covers the light-emitting area A1 and conformally covers the inner wall surface of the oxide trench H1 to prevent water vapor from invading the inside of the epitaxial stack 10 and affecting the light-emitting characteristics or life of the surface-emitting laser device M1. In one embodiment, the protective layer 14 can be made of moisture-resistant material, such as silicon nitride, aluminum oxide, or a combination thereof, which is not limited in the present invention.

平坦層PL則會填入氧化溝槽H1內。在一實施例中,平坦層PL的頂面會與磊晶疊層體10的頂面大致齊平。平坦層PL的材料為高分子材料,例如是聚醯亞胺(polyimide, PI)、苯環丁烯(Benzocyclobutene, BCB)或者其他適合材料,但本創作並不限制。The flat layer PL is filled in the oxide trench H1. In an embodiment, the top surface of the flat layer PL is substantially flush with the top surface of the epitaxial laminate 10. The material of the flat layer PL is a polymer material, such as polyimide (PI), Benzocyclobutene (BCB) or other suitable materials, but this creation is not limited.

須說明的是,在圖1的實施例中,第一電極層11與第二電極層12是分別位於基材100的不同側,然而,在其他實施例中,第一電極層11與第二電極層12可以都位於基材100的相同側。It should be noted that in the embodiment of FIG. 1, the first electrode layer 11 and the second electrode layer 12 are respectively located on different sides of the substrate 100. However, in other embodiments, the first electrode layer 11 and the second electrode layer 11 The electrode layers 12 may all be located on the same side of the substrate 100.

請參照圖4,其為本創作第二實施例的雷射裝置的剖面示意圖。本實施例的面射型雷射裝置M2與第一實施例的面射型雷射裝置M1相同的元件具有相同的標號,且相同的部分不再贅述。Please refer to FIG. 4, which is a schematic cross-sectional view of the laser device according to the second embodiment of the creation. The same components of the surface-emitting laser device M2 of this embodiment and the surface-emitting laser device M1 of the first embodiment have the same reference numerals, and the same parts will not be repeated.

如圖4所示,第一電極層11和平台部10a都位於基底部10b上,因此第一電極層11與第二電極層12是位在基材100的相同側。在這個實施例中,第一電極層11是環繞平台部10a周圍,並設置在第一反射鏡層101的頂面。另外,第一介面金屬化合物層L1是位於第一反射鏡層101與第一電極層11之間。據此,在本實施例中,第一介面金屬化合物層L1會環繞平台部10a而呈環狀。As shown in FIG. 4, the first electrode layer 11 and the terrace portion 10a are both located on the base portion 10b, so the first electrode layer 11 and the second electrode layer 12 are located on the same side of the substrate 100. In this embodiment, the first electrode layer 11 surrounds the mesa portion 10a and is disposed on the top surface of the first mirror layer 101. In addition, the first interface metal compound layer L1 is located between the first mirror layer 101 and the first electrode layer 11. Accordingly, in this embodiment, the first interface metal compound layer L1 will surround the platform portion 10a in a ring shape.

因此,只要能夠在第一電極層11與第二電極層12之間產生通過主動層102的電流路徑,本創作並未限制第一電極層11與第二電極層12設置的位置。另外,在本創作實施例中,可以利用雷射對位於同側的第一電極層11與第二電極層12進行局部退火,而在同一流程中使第一電極層11與第一反射鏡層101之間以及使第二電極層12與第二反射鏡層103之間形成良好的歐姆接觸,並形成第一與第二介面金屬化合物層L1, L2。Therefore, as long as a current path through the active layer 102 can be generated between the first electrode layer 11 and the second electrode layer 12, the present invention does not limit the positions where the first electrode layer 11 and the second electrode layer 12 are arranged. In addition, in this creative embodiment, a laser can be used to locally anneal the first electrode layer 11 and the second electrode layer 12 on the same side, and the first electrode layer 11 and the first mirror layer can be made in the same process. A good ohmic contact is formed between 101 and between the second electrode layer 12 and the second mirror layer 103, and the first and second interface metal compound layers L1, L2 are formed.

[實施例的有益效果][Beneficial effects of the embodiment]

本創作的其中一有益效果在於,本創作所提供的面射型雷射裝置M1,M2,其能通過“第一電極層11包括一第導電層110以及利用局部退火處理而形成的第一介面金屬化合物層L1,第一介面金屬化合物層L1位於第一電極層11與磊晶疊層體10之間”或是“第一電極層11或第二電極層12的至少其中一者具有利用局部退火處理而形成的一介面金屬化合物層L1(L2)”的技術方案,可以降低第一電極層11與磊晶疊層體10之間的阻抗及磊晶疊層體10的內應力。One of the beneficial effects of this creation is that the surface-emitting laser devices M1, M2 provided by this creation can pass through "the first electrode layer 11 includes a first conductive layer 110 and a first interface formed by partial annealing. The metal compound layer L1, the first interface metal compound layer L1 is located between the first electrode layer 11 and the epitaxial laminate 10" or "at least one of the first electrode layer 11 or the second electrode layer 12 has a local The technical solution of an interfacial metal compound layer L1 (L2) formed by annealing treatment can reduce the impedance between the first electrode layer 11 and the epitaxial laminate 10 and the internal stress of the epitaxial laminate 10.

另外,本創作是利用雷射對第一電極層11與基材100(或者對第二電極層12與第二反射鏡層103)局部加熱,以形成歐姆接觸時,一併形成第一介面金屬化合物層L1(或是第二介面金屬化合物層L2)。因此,除了被雷射加熱的特定區域之外,磊晶疊層體10的其他區域都不會被同時加熱。如此,可避免面射型雷射裝置M1,M2因內應力過大而破裂,進而提高製程良率。也就是說,在進行局部退火處理時,只加熱第一或第二電極層11, 12的表層,所以面射型雷射裝置M1,M2內部不會因高溫而產生應力變化,而造成損害,進而可有效提升良率。In addition, this creation uses a laser to locally heat the first electrode layer 11 and the substrate 100 (or the second electrode layer 12 and the second mirror layer 103) to form an ohmic contact, and the first interface metal is also formed. The compound layer L1 (or the second interface metal compound layer L2). Therefore, except for the specific area heated by the laser, other areas of the epitaxial laminate 10 are not heated at the same time. In this way, the surface-fired laser devices M1 and M2 can be prevented from being broken due to excessive internal stress, thereby improving the process yield. In other words, only the surface layers of the first or second electrode layers 11, 12 are heated during the partial annealing process, so the surface-emitting laser devices M1, M2 will not undergo stress changes due to high temperature and cause damage. In turn, the yield can be effectively improved.

另一方面,也可避免磊晶疊層體10因內應力過高,而影響面射型雷射裝置M1, M2的壽命或出光特性。除此之外,降低磊晶疊層體10的內應力也可以增加面射型雷射裝置M1, M2抵抗靜電放電的能力。On the other hand, it can also avoid that the internal stress of the epitaxial laminate 10 is too high, which will affect the lifetime or light-emitting characteristics of the surface-emitting laser devices M1, M2. In addition, reducing the internal stress of the epitaxial laminate 10 can also increase the resistance of the surface-emitting laser devices M1, M2 to electrostatic discharge.

特別是當雷射裝置M1, M2為氧化型垂直共腔面射型雷射裝置時,由於磊晶疊層體10內的電流侷限層104為氧化層,而氧化層與其他半導體磊晶層的熱膨脹係數差異,更容易在升溫與降溫過程累積內應力。然而,利用本創作之技術手段,即可避免上述問題。Especially when the laser devices M1 and M2 are oxidized vertical co-cavity surface-emitting laser devices, since the current confinement layer 104 in the epitaxial stack 10 is an oxide layer, the oxide layer and other semiconductor epitaxial layers The difference in thermal expansion coefficient makes it easier to accumulate internal stress during the heating and cooling process. However, the above-mentioned problems can be avoided by using the technical means of this creation.

以上所公開的內容僅為本創作的優選可行實施例,並非因此侷限本創作的申請專利範圍,所以凡是運用本創作說明書及圖式內容所做的等效技術變化,均包含於本創作的申請專利範圍內。The content disclosed above is only a preferred and feasible embodiment of this creation, and does not limit the scope of patent application for this creation. Therefore, all equivalent technical changes made using this creation specification and schematic content are included in the application for this creation. Within the scope of the patent.

M1, M2:面射型雷射裝置 10:磊晶疊層體 10a:平台部 10b:基底部 100:基材 101:第一反射鏡層 102:主動層 103:第二反射鏡層 104:電流侷限層 104H:侷限孔 11:第一電極層 110a:第一金屬層 110b:第二金屬層 110c:第三金屬層 L1:第一介面金屬化合物層 12:第二電極層 L2:第二介面金屬化合物層 13:電流散佈層 14:保護層 PL:平坦層 A1:發光區 H1:氧化溝槽 M1, M2: Surface-fired laser device 10: epitaxial laminate 10a: Platform Department 10b: base part 100: Substrate 101: first mirror layer 102: active layer 103: second mirror layer 104: Current Limitation Layer 104H: Limited hole 11: The first electrode layer 110a: the first metal layer 110b: second metal layer 110c: third metal layer L1: The first interface metal compound layer 12: The second electrode layer L2: The second interface metal compound layer 13: Current spreading layer 14: protective layer PL: Flat layer A1: Light-emitting area H1: Oxidation trench

圖1為本創作第一實施例的面射型雷射裝置的剖面示意圖。FIG. 1 is a schematic cross-sectional view of a surface-fired laser device according to the first embodiment of the creation.

圖2為圖1的II部分的放大示意圖。Fig. 2 is an enlarged schematic diagram of part II of Fig. 1.

圖3為本創作實施例在電極層與磊晶疊層體的電子顯微鏡照片。Fig. 3 is an electron micrograph of the electrode layer and the epitaxial laminated body of the creative embodiment.

圖4為本創作第二實施例的面射型雷射裝置的剖面示意圖。4 is a schematic cross-sectional view of the surface-fired laser device according to the second embodiment of the creation.

M1:面射型雷射裝置 M1: Surface-fired laser device

10:磊晶疊層體 10: epitaxial laminate

10a:平台部 10a: Platform Department

10b:基底部 10b: base part

100:基材 100: Substrate

101:第一反射鏡層 101: first mirror layer

102:主動層 102: active layer

103:第二反射鏡層 103: second mirror layer

104:電流侷限層 104: Current Limitation Layer

104H:侷限孔 104H: Limited hole

11:第一電極層 11: The first electrode layer

L1:第一介面金屬化合物層 L1: The first interface metal compound layer

12:第二電極層 12: The second electrode layer

L2:第二介面金屬化合物層 L2: The second interface metal compound layer

13:電流散佈層 13: Current spreading layer

14:保護層 14: protective layer

PL:平坦層 PL: Flat layer

A1:發光區 A1: Light-emitting area

H1:氧化溝槽 H1: Oxidation trench

Claims (15)

一種面射型雷射裝置,其包括:一磊晶疊層體,其包括一基材、一第一反射鏡層、一主動層以及一第二反射鏡層,其中,所述第一反射鏡層,所述主動層以及所述第二反射鏡層位於所述基材上,且所述主動層位於所述第一反射鏡層與所述第二反射鏡層之間,以產生一雷射光束;一第一電極層,其位於所述磊晶疊層體上;一第二電極層,其位於所述第二反射鏡層上,其中,所述第二電極層與所述第一電極層之間定義出一經過所述主動層的電流路徑,且所述第二電極層具有一用於定義出一發光區的孔徑;以及一利用局部退火處理而形成的第一介面金屬化合物層,所述第一介面金屬化合物層位於所述第一電極層與所述磊晶疊層體之間。 A surface-emitting laser device includes: an epitaxial laminate, which includes a substrate, a first mirror layer, an active layer, and a second mirror layer, wherein the first mirror Layer, the active layer and the second mirror layer are located on the substrate, and the active layer is located between the first mirror layer and the second mirror layer to generate a laser Light beam; a first electrode layer, which is located on the epitaxial laminate; a second electrode layer, which is located on the second mirror layer, wherein the second electrode layer and the first electrode A current path through the active layer is defined between the layers, and the second electrode layer has an aperture for defining a light-emitting area; and a first interface metal compound layer formed by a local annealing process, The first interfacial metal compound layer is located between the first electrode layer and the epitaxial laminate. 如請求項1所述的面射型雷射裝置,其中,所述第一介面金屬化合物層位於所述基材與所述第一電極層之間,所述第一電極層包括與所述第一介面金屬化合物層連接的一第一金屬層、一第二金屬層以及一第三金屬層,且所述第二金屬層位於所述第一金屬層與第三金屬層之間。 The surface-emitting laser device according to claim 1, wherein the first interface metal compound layer is located between the substrate and the first electrode layer, and the first electrode layer includes the first electrode layer and the first electrode layer. A first metal layer, a second metal layer, and a third metal layer are connected to an interface metal compound layer, and the second metal layer is located between the first metal layer and the third metal layer. 如請求項2所述的面射型雷射裝置,其中,所述第一介面金屬化合物層包含至少兩種原子,其中一種所述原子與所述第一金屬層的原子的種類相同,另一種所述原子與所述基材的原子的種類相同。 The surface-emitting laser device according to claim 2, wherein the first interface metal compound layer contains at least two kinds of atoms, one of which is the same as that of the first metal layer, and the other The type of the atom is the same as that of the base material. 如請求項1所述的面射型雷射裝置,其中,所述第一電極層的厚度是介於4000Å至10000Å,且所述第一電極層的表面粗糙度是介於0.2μm至0.5μm。 The surface-emitting laser device according to claim 1, wherein the thickness of the first electrode layer is between 4000 Å and 10000 Å, and the surface roughness of the first electrode layer is between 0.2 μm and 0.5 μm . 如請求項1所述的面射型雷射裝置,其中,所述第一介面金屬化合物層的厚度是介於200Å至300Å。 The surface-emitting laser device according to claim 1, wherein the thickness of the first interface metal compound layer is between 200 Å and 300 Å. 如請求項1所述的面射型雷射裝置,還進一步包括:利用局部退火處理而形成的一第二介面金屬化合物層,所述第二介面金屬化合物層是位於所述第二電極層與所述第二反射鏡層之間。 The surface-emitting laser device according to claim 1, further comprising: a second interface metal compound layer formed by partial annealing treatment, the second interface metal compound layer being located between the second electrode layer and the second electrode layer. Between the second mirror layer. 如請求項1所述的面射型雷射裝置,其中,所述第二反射鏡層與所述主動層的截面寬度小於所述第一反射鏡層的截面寬度而共同形成一平台部,且所述第一反射鏡層與所述基材共同形成一基底部。 The surface-emitting laser device according to claim 1, wherein the cross-sectional width of the second mirror layer and the active layer is smaller than the cross-sectional width of the first mirror layer to jointly form a platform portion, and The first mirror layer and the substrate together form a base. 如請求項7所述的面射型雷射裝置,其中,所述第一電極層與所述第二電極層都是位於所述基材的相同側,所述第一介面金屬化合物層是位於所述第一電極層與所述第一反射鏡層之間,並環繞所述平台部而呈環狀。 The surface-emitting laser device according to claim 7, wherein the first electrode layer and the second electrode layer are both located on the same side of the substrate, and the first interface metal compound layer is located The space between the first electrode layer and the first mirror layer and surrounding the platform portion is in a ring shape. 如請求項1所述的面射型雷射裝置,其中,所述磊晶疊層體具有一氧化溝槽,所述氧化溝槽由所述第二反射鏡層朝所述基材延伸。 The surface-emitting laser device according to claim 1, wherein the epitaxial laminate has an oxide trench, and the oxide trench extends from the second mirror layer toward the substrate. 如請求項9所述的面射型雷射裝置,其中,所述磊晶疊層體還包括一電流侷限層,所述電流侷限層由所述氧化溝槽的一側壁延伸至所述第二電極層下方,並定義出對應於所述發光區的一侷限孔。 The surface-emitting laser device according to claim 9, wherein the epitaxial laminate further includes a current confinement layer, and the current confinement layer extends from a sidewall of the oxide trench to the second Below the electrode layer, a limited hole corresponding to the light-emitting area is defined. 如請求項9所述的面射型雷射裝置,還進一步包括一平坦層,所述平坦層填入所述氧化溝槽內。 The surface-emitting laser device according to claim 9, further comprising a flat layer, and the flat layer is filled in the oxide trench. 一種面射型雷射裝置,其包括一磊晶疊層體、一第一電極層與一第二電極層,所述第一電極層與所述第二電極層連接於所述磊晶疊層體,其特徵在於,所述面射型雷射裝置還包括至少一用局部退火處理而形成的一介面金屬化合物層,其位 於所述第一電極層與所述磊晶疊層體之間或者位於所述第二電極層與所述磊晶疊層體之間,且所述介面金屬化合物層連接於所述磊晶疊層體。 A surface-emitting laser device, comprising an epitaxial laminate, a first electrode layer and a second electrode layer, the first electrode layer and the second electrode layer are connected to the epitaxial laminate Body, characterized in that, the surface-emitting laser device further includes at least one interfacial metal compound layer formed by a local annealing treatment, and its position Between the first electrode layer and the epitaxial laminate or between the second electrode layer and the epitaxial laminate, and the interfacial metal compound layer is connected to the epitaxial laminate Layer body. 如請求項12所述的面射型雷射裝置,其中,所述介面金屬化合物層位於所述第一電極層與所述磊晶疊層體之間。 The surface-emitting laser device according to claim 12, wherein the interface metal compound layer is located between the first electrode layer and the epitaxial laminate. 如請求項12所述的面射型雷射裝置,其中,所述第一電極層的厚度是介於4000Å至10000Å,且所述第一電極層的表面粗糙度是介於0.2μm至0.5μm。 The surface-emitting laser device according to claim 12, wherein the thickness of the first electrode layer is between 4000 Å and 10000 Å, and the surface roughness of the first electrode layer is between 0.2 μm and 0.5 μm . 如請求項12所述的面射型雷射裝置,所述介面金屬化合物層的厚度是介於200Å至300Å。 In the surface-emitting laser device according to claim 12, the thickness of the interface metal compound layer is between 200 Å and 300 Å.
TW110203099U 2021-03-23 2021-03-23 Vcsel apparatus TWM617230U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110203099U TWM617230U (en) 2021-03-23 2021-03-23 Vcsel apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110203099U TWM617230U (en) 2021-03-23 2021-03-23 Vcsel apparatus

Publications (1)

Publication Number Publication Date
TWM617230U true TWM617230U (en) 2021-09-21

Family

ID=78779163

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110203099U TWM617230U (en) 2021-03-23 2021-03-23 Vcsel apparatus

Country Status (1)

Country Link
TW (1) TWM617230U (en)

Similar Documents

Publication Publication Date Title
US7352788B2 (en) Nitride semiconductor vertical cavity surface emitting laser
US10153616B2 (en) Electron beam pumped vertical cavity surface emitting laser
KR20050053763A (en) Distributed bragg reflector for optoelectronic device
JP2002094180A (en) High-speed vertical cavity surface emitting laser
US11973315B2 (en) VCSEL with integrated electrodes
WO2007116659A1 (en) Surface light-emitting laser
KR20070075337A (en) Surface-emitting type semiconductor laser
JP2012505541A (en) Vertical cavity surface emitting laser with improved mode selectivity
US8085827B2 (en) Vertical cavity surface emitting laser and method of manufacturing the same
US7620089B2 (en) Surface-emitting type semiconductor laser
JP4224981B2 (en) Surface emitting semiconductor laser device and method for manufacturing the same
WO2023042675A1 (en) Vertical cavity light-emitting element
JP2007087994A (en) Surface-emitting semiconductor laser element
TWM617230U (en) Vcsel apparatus
CN215645421U (en) Surface emitting laser device
US20070153863A1 (en) Surface-emitting type semiconductor laser and method for manufacturing the same
JP2006019470A (en) Surface emitting semiconductor laser and optical module
WO2019107273A1 (en) Surface emission semiconductor laser
US6770915B2 (en) Light emitting element with multiple multi-layer reflectors and a barrier layers
JP2015028995A (en) Surface-emitting laser array and method of manufacturing the same
TWI826050B (en) Surface emitting laser apparatus and method of manufacturing the same
JP2006066681A (en) Vertical resonance type high output surface-emitting laser
TWI826049B (en) Surface emitting laser apparatus and method of manufacturing the same
CN113013725B (en) Vertical cavity surface emitting laser
JP2006210430A (en) Semiconductor laser