TWM615971U - System of identifying living body by recognizing actions of image - Google Patents

System of identifying living body by recognizing actions of image Download PDF

Info

Publication number
TWM615971U
TWM615971U TW110204143U TW110204143U TWM615971U TW M615971 U TWM615971 U TW M615971U TW 110204143 U TW110204143 U TW 110204143U TW 110204143 U TW110204143 U TW 110204143U TW M615971 U TWM615971 U TW M615971U
Authority
TW
Taiwan
Prior art keywords
image
module
living body
target
recognition
Prior art date
Application number
TW110204143U
Other languages
Chinese (zh)
Inventor
王國河
魏睿賢
郭達人
連子清
Original Assignee
臺灣網路認證股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣網路認證股份有限公司 filed Critical 臺灣網路認證股份有限公司
Priority to TW110204143U priority Critical patent/TWM615971U/en
Publication of TWM615971U publication Critical patent/TWM615971U/en

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

一種辨識影像中之動作以判斷目標是否為活體之系統,其透過決定多個包含臉部動作與手部動作之指定動作並辨識目標影像中之辨識目標是否依序完成指定動作,及依據活體辨識結果判斷辨識目標是否為活體之技術手段,可以在線上會談時確認對方是否為活體,並達成增加線上會談之安全性的技術功效。A system that recognizes the actions in the image to determine whether the target is a living body. It determines whether a plurality of designated actions including facial and hand movements are identified and whether the target in the target image completes the designated action in sequence, and recognizes according to the living body As a result, the technical means to determine whether the identification target is a living body can confirm whether the other party is a living body during an online meeting, and achieve the technical effect of increasing the security of the online meeting.

Description

辨識影像中之動作以判斷目標是否為活體之系統A system that recognizes actions in images to determine whether the target is a living body

一種活體辨識系統,特別係指一種辨識影像中之動作以判斷目標是否為活體之系統。 A living body recognition system, especially a system that recognizes actions in images to determine whether the target is a living body.

隨著網路及相關技術的進步,許多過去需要辨識目標親自辦理的服務也可以透過網路完成。但部分的服務,例如開戶與投保,仍然因為透過網路進行身分確認之方式不夠嚴謹而受到國內相關法規的限制,辨識目標並無法線上完成開戶與投保。 With the advancement of the Internet and related technologies, many services that needed to be identified and handled in person in the past can also be completed through the Internet. However, some services, such as account opening and insurance, are still restricted by relevant domestic laws and regulations due to the lack of rigorous methods of identity verification through the Internet. The identification target cannot complete the account opening and insurance online.

以開戶而言,雖然目前也可以透過網路銀行或行動銀行在線上開設數位帳戶,但相關法規規定依身分確認之方式不同,所開設的數位帳戶的等級亦有不同,也就是等級較低之數位帳戶與經過較完整身分確認而開設的數位帳戶相比有諸多限制,例如,部分交易無法執行或交易時可動用的金額較低等。若要開設具有較完整功能的數位帳戶,仍然與開設一般帳戶相同,需要臨櫃由銀行的服務人員對開戶者進行身分確認,通常也就是確認開戶者所提供的證件是否確實為開戶者所持有。 In terms of account opening, although it is currently possible to open a digital account online through online banking or mobile banking, the relevant laws and regulations require that the level of the digital account opened is different depending on the method of identity verification, that is, the lower level. Compared with a digital account opened after a more complete identity confirmation, a digital account has many restrictions, for example, some transactions cannot be executed or the amount of money that can be used during the transaction is lower. If you want to open a digital account with more complete functions, it is still the same as opening a general account. The bank’s service personnel need to confirm the identity of the account holder at the counter, which is usually to confirm whether the certificate provided by the account holder is indeed held by the account holder. Have.

另外,在投保的過程中也有的相似的情況,也就是相關法規規定投保人需要與業務員面對面,並由業務員對投保人說明保險內容且依據投保人提供的證件對投保人進行身分確認後,等待保險公司照會才能完成投保。 In addition, there are similar situations during the insurance application process, that is, the relevant laws and regulations require that the insured person must face-to-face with the salesperson, and the salesperson shall explain the insurance content to the insured person and confirm the identity of the insured person based on the documents provided by the insured person. , Wait for the note from the insurance company to complete the insurance.

事實上,在某些情況下,例如,在傳染病嚴重時,開戶者或投保人並不適合到銀行臨櫃或與保險業務員見面,而比較適合透過網路開戶或投保,為此,有部分的銀行/保險公司提供了線上面談的開戶/投保方式。雖然可以同時滿足遠距與會面兩個規則,但有心人士仍然可以在與銀行服務人員/保險業務員會談時的影像上造假,例如透過播放預錄影像等方式,導致即使透過線上面談也無法確認開戶者/投保人是否為真人。 In fact, in some cases, for example, when an infectious disease is severe, the account holder or the insured is not suitable for going to the bank counter or meeting with the insurance clerk. It is more suitable for opening an account or applying for insurance through the Internet. For this, there are some The bank/insurance company provides the account opening/insurance method discussed online. Although the two rules of remote and meeting can be met at the same time, people who are interested can still fake the images during the meeting with the bank service staff/insurance clerk, for example, by playing pre-recorded images, which makes it impossible to confirm even through the online conversation. Whether the account holder/insurant is a real person.

綜上所述,可知先前技術中長期以來一直存在線上會談時無法確認對方是否為真人的問題,因此有必要提出改進的技術手段,來解決此一問題。 In summary, it can be seen that there has been a problem in the prior art that it is impossible to confirm whether the other party is a real person during online meetings for a long time. Therefore, it is necessary to propose improved technical means to solve this problem.

有鑒於先前技術存在無法由證件上之照片判斷辨識目標是否為證件持有人的問題,本創作遂揭露一種辨識影像中之動作以判斷目標是否為活體之系統,其中:本創作所揭露之辨識影像中之動作以判斷目標是否為活體之系統,至少包含:動作選擇模組,用以決定一預定數量之指定動作;影像擷取模組,用以擷取包含一辨識目標之臉部之多個目標影像;活體辨識模組,用以由該些目標影像判斷該辨識目標是否依序完成該些指定動作並產生相對應之一活體辨識結果;結果判斷模組,用以依據該活體辨識結果判斷該辨識目標是否通過活體辨識。 In view of the problem of the prior art that it is impossible to judge whether the identification target is the document holder from the photo on the certificate, this creation discloses a system for identifying the action in the image to determine whether the target is a living body. Among them: the identification disclosed in this creation The system for judging whether the target is a living body by the action in the image at least includes: an action selection module for determining a predetermined number of specified actions; an image capturing module for capturing the number of faces that include a recognition target A target image; a living body recognition module for judging from the target images whether the recognition target has completed the specified actions in sequence and generating a corresponding living body recognition result; the result judgment module is used for the living body recognition result Determine whether the recognition target is recognized by the living body.

本新型所揭露之辨識影像中之動作以判斷目標是否為活體之系統,至少包含:客戶端與伺服器,客戶端更包含動作選擇模組,用以決定一預定數量之指定動作;影像擷取模組,用以擷取包含一辨識目標之臉部之多個目 標影像;活體辨識模組,用以由該些目標影像判斷該辨識目標是否依序完成該些指定動作並產生相對應之一活體辨識結果;結果判斷模組;伺服器提供該客戶端連接,其中更包含伺服通訊模組及影像檢測模組,伺服通訊模組用以接收客戶端所傳送之目標影像;影像檢測模組,用以判斷目標影像之影像深度及/或影像資訊,並依據影像深度及/或影像資訊產生影像判斷結果,伺服通訊模組用以將包含或表示影像判斷結果之影像檢測結果傳送至客戶端,使結果判斷模組依據活體識別結果及影像檢測結果判斷辨識目標是否通過活體辨識。 The system for identifying the action in the image to determine whether the target is a living body disclosed in the present invention at least includes: a client and a server. The client further includes an action selection module for determining a predetermined number of specified actions; image capture Module for capturing multiple items including a face of a recognition target The target image; the living body identification module is used to determine from the target images whether the identification target completes the specified actions in sequence and generates a corresponding living body identification result; the result judgment module; the server provides the client connection, It also includes a servo communication module and an image detection module. The servo communication module is used to receive the target image sent by the client; the image detection module is used to determine the image depth and/or image information of the target image, and based on the image The depth and/or image information generates the image judgment result, and the servo communication module is used to send the image detection result including or indicating the image judgment result to the client, so that the result judgment module judges whether the identification target is based on the living body recognition result and the image detection result Through living body identification.

本創作本創作所揭露之系統如上,與先前技術之間的差異在於本創作透過決定多個包含臉部動作與手部動作之指定動作並辨識目標影像中之辨識目標是否依序完成指定動作,及依據活體辨識結果判斷辨識目標是否為活體,藉以解決先前技術所存在的問題,並可以達成增加線上會談之安全性的技術功效。 The system disclosed in this creation is as above. The difference between this creation and the previous technology is that this creation determines whether multiple designated actions including facial and hand motions are determined and whether the recognition target in the target image completes the designated action in sequence. And according to the result of living body identification, it is judged whether the identification target is a living body, so as to solve the problems of the previous technology, and can achieve the technical effect of increasing the security of the online meeting.

100:客戶端 100: client

101:處理模組 101: Processing Module

110:影像擷取模組 110: Image capture module

120:動作選擇模組 120: Action selection module

130:活體辨識模組 130: Living Body Recognition Module

140:顯示模組 140: display module

150:資料取得模組 150: data acquisition module

160:特徵取得模組 160: feature acquisition module

180:結果判斷模組 180: result judgment module

190:客戶通訊模組 190: Customer Communication Module

200:伺服器 200: server

202:可信主機 202: trusted host

210:伺服通訊模組 210: Servo communication module

220:影像比對模組 220: Image comparison module

230:影像檢測模組 230: image detection module

240:結果產生模組 240: result generation module

410:顯示畫面 410: Display screen

411:指示區域 411: indicator area

412:提示區域 412: prompt area

步驟310:客戶端取得身分識別資料 Step 310: The client obtains identification data

步驟320:客戶端決定預定數量之指定動作 Step 320: The client determines a predetermined number of specified actions

步驟321:客戶端依據身分識別資料取得人體特徵 Step 321: The client obtains human body characteristics based on the identification data

步驟323:客戶端決定符合人體特徵之指定動作 Step 323: The client decides a designated action that meets the characteristics of the human body

步驟325:客戶端選擇預定數量之臉部動作與手部動作 Step 325: The client selects a predetermined number of facial movements and hand movements

步驟327:客戶端結合臉部動作與手部動作以產生指定動作 Step 327: The client combines facial and hand movements to generate a specified action

步驟330:客戶端擷取包含辨識目標之臉部之目標影像 Step 330: The client captures a target image containing the face of the recognition target

步驟331:客戶端判斷是否偵測到辨識目標之臉部 Step 331: The client determines whether the face of the recognition target is detected

步驟333:客戶端判斷臉部是否達到一定比例 Step 333: The client judges whether the face reaches a certain ratio

步驟335:客戶端擷取目標影像 Step 335: The client captures the target image

步驟337:客戶端判斷辨識目標沒有通過活體辨識 Step 337: The client judges that the identification target has not passed the living body identification

步驟340:客戶端傳送目標影像至伺服器 Step 340: The client sends the target image to the server

步驟350:客戶端由目標影像判斷辨識目標是否依序完成指定動作 Step 350: The client judges from the target image whether the identified target completes the specified action in sequence

步驟351:客戶端對目標影像進行人臉辨識及動作偵測 Step 351: The client performs face recognition and motion detection on the target image

步驟355:客戶端依據人臉辨識結果及動作偵測結果判斷目標影像中辨識目標之人臉與手勢是否分別與臉部動作及手部動作相符以產生活體辨識結果 Step 355: According to the face recognition result and the motion detection result, the client judges whether the face and gesture of the recognition target in the target image respectively match the facial motion and hand motion to generate the living body recognition result

步驟360:客戶端產生活體辨識結果 Step 360: The client generates a living body recognition result

步驟371:伺服器依據身分識別資料取得包含辨識目標之臉部之可信影像 Step 371: The server obtains a credible image containing the face of the recognition target based on the identification data

步驟373:伺服器比對可信影像與目標影像中之臉部並產生影像比對結果 Step 373: The server compares the face in the trusted image with the target image and generates an image comparison result

步驟375:伺服器判斷目標影像之影像深度及/或影像資訊並產生影像判斷結果 Step 375: The server determines the image depth and/or image information of the target image and generates an image judgment result

步驟379:伺服器產生並傳送影像檢測結果至客戶端 Step 379: The server generates and sends the image detection result to the client

步驟391:客戶端依據活體辨識結果判斷辨識目標是否通過活體辨識 Step 391: The client judges whether the identification target passes the living body identification according to the living body identification result

步驟395:客戶端依據活體辨識結果及影像檢測結果判斷辨識目標是否通過活體辨識 Step 395: The client judges whether the identification target passes the living body identification according to the living body identification result and the image detection result

第1圖為本創作所提之辨識影像中之動作以判斷目標是否為活體之系統架構圖。 The first picture is the system architecture diagram of identifying the action in the image to determine whether the target is a living body.

第2圖為本創作所提之伺服器之元件示意圖。 Figure 2 is a schematic diagram of the components of the server mentioned in the creation.

第3A圖為本創作所提之辨識影像中之動作以判斷目標是否為活體之流程圖。 Figure 3A is the flow chart of identifying the action in the image to determine whether the target is a living body.

第3B圖為本創作實施例所提之產生指定動作之流程圖。 Figure 3B is a flow chart for generating the specified action mentioned in the creation embodiment.

第3C圖為本創作實施例所提之產生辨識結果之流程圖。 Figure 3C is the flow chart of generating the identification result mentioned in the creation embodiment.

第3D圖為本創作實施例所提之擷取目標影像之流程圖。 Fig. 3D is a flow chart of capturing the target image according to the creative embodiment.

第3E圖為本創作所提之決定指定動作之附加流程圖。 Figure 3E is an additional flow chart for determining the designated action mentioned in the creation.

第3F圖為本創作所提之透過伺服器由目標影像判斷目標是否為活體之流程圖。 Figure 3F is the flow chart of the creation of the target image through the server to determine whether the target is alive.

第4圖為本創作實施例所提之擷取目標影像之使用者介面之示意圖。 Figure 4 is a schematic diagram of the user interface for capturing the target image according to the creative embodiment.

以下將配合圖式及實施例來詳細說明本創作之特徵與實施方式,內容足以使任何熟習相關技藝者能夠輕易地充分理解本創作解決技術問題所應用的技術手段並據以實施,藉此實現本創作可達成的功效。 The following will describe the features and implementation methods of this creation in detail with the drawings and embodiments. The content is sufficient to enable any person familiar with relevant skills to easily and fully understand the technical means used in this creation to solve technical problems and implement them accordingly. The achievable effect of this creation.

本創作可以請求辨識目標做出指定動作,藉以判斷辨識目標是否為活體。 This creation can request the identification target to make a specified action to determine whether the identification target is a living body.

本創作所提之指定動作可以包含臉部動作與手部動作,其中,臉部動作包含但不限於朝特定方向(如左右)轉動、抬頭、點頭、眨眼、微笑等;手部動作包含伸出的手指與手指所擺放的位置等,但本創作並不以此為限。一般而言,手指所擺放的位置通常在臉部或臉部周圍,但本創作亦不以此為限。 The specified actions mentioned in this creation can include facial movements and hand movements, where facial movements include but are not limited to turning in a specific direction (such as left and right), raising the head, nodding, blinking, smiling, etc.; hand movements include stretching out The finger and the position of the finger are placed, but this creation is not limited to this. Generally speaking, the position of the finger is usually on the face or around the face, but this creation is not limited to this.

以下先以「第1圖」本創作所提之辨識影像中之動作以判斷目標是否為活體之系統架構圖來說明本創作。如「第1圖」所示,本創作之系統應用在客戶端100中,含有處理模組101、影像擷取模組110,及可附加的顯示模組140、客戶通訊模組190。其中,客戶端100可以是計算設備。 The following first uses the "Picture 1" in this creation to identify the action in the image to determine whether the target is a living body system architecture diagram to illustrate this creation. As shown in "Figure 1", the creative system is applied to the client 100, and includes a processing module 101, an image capture module 110, and an additional display module 140 and a client communication module 190. Among them, the client 100 may be a computing device.

本創作所提之計算設備包含但不限於一個或多個處理模組、一條或多條記憶體模組、以及連接不同硬體元件(包括記憶體模組和處理模組)的 匯流排等硬體元件。透過所包含之多個硬體元件,計算設備可以載入並執行作業系統,使作業系統在計算設備上運行,也可以執行軟體或程式。另外,計算設備也包含一個外殼,上述之各個硬體元件設置於外殼內。 The computing device mentioned in this creation includes but is not limited to one or more processing modules, one or more memory modules, and connecting different hardware components (including memory modules and processing modules) Hardware components such as buses. Through the included multiple hardware components, the computing device can load and execute the operating system, make the operating system run on the computing device, and can also execute software or programs. In addition, the computing device also includes a housing, and each of the above-mentioned hardware components is arranged in the housing.

本創作所提之計算設備的匯流排可以包含一種或多個類型,例如包含資料匯流排(data bus)、位址匯流排(address bus)、控制匯流排(control bus)、擴充功能匯流排(expansion bus)、及/或局域匯流排(local bus)等類型的匯流排。計算設備的匯流排包括但不限於的工業標準架構(Industry Standard Architecture,ISA)匯流排、周邊元件互連(Peripheral Component Interconnect,PCI)匯流排、視頻電子標準協會(Video Electronics Standards Association,VESA)局域匯流排、以及串列的通用序列匯流排(Universal Serial Bus,USB)、快速周邊元件互連(PCI Express,PCI-E/PCIe)匯流排等。 The bus of the computing device mentioned in this creation can include one or more types, such as data bus, address bus, control bus, and extended function bus ( expansion bus), and/or local bus (local bus). The bus bars of computing devices include but are not limited to Industry Standard Architecture (ISA) bus, Peripheral Component Interconnect (PCI) bus, Video Electronics Standards Association (VESA) Bureau Domain bus, serial universal serial bus (Universal Serial Bus, USB), fast peripheral component interconnection (PCI Express, PCI-E/PCIe) bus, etc.

本創作所提之計算設備的處理模組與匯流排耦接。處理模組包含暫存器(Register)組或暫存器空間,暫存器組或暫存器空間可以完全的被設置在處理模組之處理晶片上,或全部或部分被設置在處理晶片外並經由專用電氣連接及/或經由匯流排耦接至處理晶片。處理模組可為中央處理器、微處理器或任何合適的處理元件。若計算設備為多處理器設備,也就是計算設備包含多個處理模組,則計算設備所包含的處理模組都相同或類似,且透過匯流排耦接與通訊。處理模組可以解釋一個計算機指令或一連串的多個計算機指令以進行特定的運算或操作,例如,數學運算、邏輯運算、資料比對、複製/移動資料等,藉以驅動計算設備中的其他硬體元件或運行作業系統或執行各種程式及/或模組。 The processing module of the computing device mentioned in this creation is coupled with the bus. The processing module includes a register group or register space. The register group or register space can be completely set on the processing chip of the processing module, or all or part of it can be set outside the processing chip It is coupled to the processing chip via a dedicated electrical connection and/or via a bus. The processing module can be a central processing unit, a microprocessor or any suitable processing element. If the computing device is a multi-processor device, that is, the computing device includes multiple processing modules, the processing modules included in the computing device are all the same or similar, and they are coupled and communicated through a bus. The processing module can interpret a computer instruction or a series of multiple computer instructions to perform specific operations or operations, such as mathematical operations, logical operations, data comparison, copy/move data, etc., to drive other hardware in the computing device Components or run operating systems or execute various programs and/or modules.

計算設備中通常也包含一個或多個晶片組(Chipset)。計算設備的處理模組可以與晶片組耦接或透過匯流排與晶片組電性連接。晶片組是由一個或多個積體電路(Integrated Circuit,IC)組成,包含記憶體控制器以及周邊輸出入(I/O)控制器等,也就是說,記憶體控制器以及周邊輸出入控制器可以包含在一個積體電路內,也可以使用兩個或更多的積體電路實現。晶片組通常提供了輸出入和記憶體管理功能、以及提供多個通用及/或專用暫存器、計時器等,其中,上述之通用及/或專用暫存器與計時器可以讓耦接或電性連接至晶片組的一個或多個處理模組存取或使用。 Computing equipment usually also contains one or more chipsets. The processing module of the computing device can be coupled to the chipset or electrically connected to the chipset through a bus. The chipset is composed of one or more integrated circuits (Integrated Circuit, IC), including memory controller and peripheral input and output (I/O) controllers, that is, memory controller and peripheral input and output control The device can be included in one integrated circuit, or it can be implemented using two or more integrated circuits. Chipsets usually provide I/O and memory management functions, as well as multiple general-purpose and/or special-purpose registers, timers, etc., among which the aforementioned general-purpose and/or special-purpose registers and timers can be coupled or One or more processing modules electrically connected to the chipset are accessed or used.

計算設備的處理模組也可以透過記憶體控制器存取安裝於計算設備上的記憶體模組和大容量儲存區中的資料。上述之記憶體模組包含任何類型的揮發性記憶體(volatile memory)及/或非揮發性(non-volatile memory,NVRAM)記憶體,例如靜態隨機存取記憶體(Static Random Access Memory,SRAM)、動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)、唯讀記憶體(Read-Only Memory,ROM)、快閃記憶體(Flash memory)等。上述之大容量儲存區可以包含任何類型的儲存裝置或儲存媒體,例如,硬碟機、光碟(optical disc)、隨身碟(flash drive)、記憶卡(memory card)、固態硬碟(Solid State Disk,SSD)、或任何其他儲存裝置等。也就是說,記憶體控制器可以存取靜態隨機存取記憶體、動態隨機存取記憶體、快閃記憶體、硬碟機、固態硬碟中的資料。 The processing module of the computing device can also access the data in the memory module and the mass storage area installed on the computing device through the memory controller. The above-mentioned memory modules include any type of volatile memory (volatile memory) and/or non-volatile (NVRAM) memory, such as Static Random Access Memory (SRAM) , Dynamic Random Access Memory (DRAM), Read-Only Memory (ROM), Flash memory, etc. The aforementioned mass storage area can include any type of storage device or storage medium, such as hard disk drives, optical discs, flash drives, memory cards, and solid state disks. ,SSD), or any other storage device, etc. In other words, the memory controller can access data in static random access memory, dynamic random access memory, flash memory, hard disk drives, and solid state drives.

計算設備的處理模組也可以透過周邊輸出入控制器經由周邊輸出入匯流排與周邊輸出裝置、周邊輸入裝置、通訊介面、及GPS接收器等周邊裝置或介面連接並通訊。周邊輸入裝置可以是任何類型的輸入裝置,例如鍵盤、 滑鼠、軌跡球、觸控板、搖桿等,周邊輸出裝置可以是任何類型的輸出裝置,例如顯示器、印表機等,周邊輸入裝置與周邊輸出裝置也可以是同一裝置,例如觸控螢幕等。通訊介面可以包含無線通訊介面及/或有線通訊介面,無線通訊介面可以包含支援無線區域網路(如Wi-Fi、Zigbee等)、藍牙、紅外線、近場通訊(Near-field communication,NFC)、3G/4G/5G等行動通訊網路(蜂巢式網路)或其他無線資料傳輸協定的介面,有線通訊介面可為乙太網路裝置、DSL數據機、纜線(Cable)數據機、非同步傳輸模式(Asynchronous Transfer Mode,ATM)裝置、或光纖通訊介面及/或元件等。處理模組可以週期性地輪詢(polling)各種周邊裝置與介面,使得計算設備能夠透過各種周邊裝置與介面進行資料的輸入與輸出,也能夠與具有上面描述之硬體元件的另一個計算設備進行通訊。 The processing module of the computing device can also connect and communicate with peripheral output devices, peripheral input devices, communication interfaces, and GPS receivers and other peripheral devices or interfaces through the peripheral I/O controller via the peripheral I/O bus. The peripheral input device can be any type of input device, such as a keyboard, Mouse, trackball, touchpad, joystick, etc. The peripheral output device can be any type of output device, such as a monitor, printer, etc. The peripheral input device and the peripheral output device can also be the same device, such as a touch screen Wait. The communication interface can include a wireless communication interface and/or a wired communication interface. The wireless communication interface can include support for wireless local area networks (such as Wi-Fi, Zigbee, etc.), Bluetooth, infrared, and Near-field communication (NFC), 3G/4G/5G and other mobile communication network (cellular network) or other wireless data transmission protocol interface, wired communication interface can be Ethernet device, DSL modem, cable modem, asynchronous transmission Mode (Asynchronous Transfer Mode, ATM) device, or optical fiber communication interface and/or components, etc. The processing module can periodically poll various peripheral devices and interfaces, so that the computing device can input and output data through various peripheral devices and interfaces, and can also interact with another computing device with the hardware components described above. To communicate.

在本創作中,客戶端100中的處理模組101可以透過匯流排載入執行儲存於記憶體模組(圖中未示)中的一個或一組計算機指令,並可以在執行計算機指令後產生動作選擇模組120、活體辨識模組130、結果判斷模組180,在部分的實施例中,處理模組101在執行計算機指令後也可以產生資料取得模組150、特徵取得模組160。 In this creation, the processing module 101 in the client 100 can load and execute one or a group of computer instructions stored in the memory module (not shown in the figure) through the bus, and can be generated after the computer instructions are executed. The action selection module 120, the living body recognition module 130, and the result judgment module 180. In some embodiments, the processing module 101 can also generate a data acquisition module 150 and a feature acquisition module 160 after executing computer instructions.

影像擷取模組110可以包含鏡頭、感光元件等元件(圖中均未示)。其中,鏡頭可以讓光線通過並讓通過的光線照射於感光元件上,感光元件可以將照射在感光元件上的光線轉換為影像訊號。 The image capturing module 110 may include elements such as a lens, a photosensitive element, etc. (none of which is shown in the figure). Among them, the lens can let light pass and let the passing light illuminate the photosensitive element, and the photosensitive element can convert the light irradiated on the photosensitive element into an image signal.

影像擷取模組110負責擷取目標影像。影像擷取模組110所擷取的目標影像包含人臉與手勢。其中,影像擷取模組110可以在被活體辨識模組130驅動或接收到活體辨識模組130所傳送的協同訊息時,持續將感光元件輸出的影像訊號做為目標影像。 The image capturing module 110 is responsible for capturing the target image. The target image captured by the image capturing module 110 includes human faces and gestures. Wherein, the image capturing module 110 can continuously use the image signal output by the photosensitive element as the target image when being driven by the living body recognition module 130 or receiving the coordination message sent by the living body recognition module 130.

影像擷取模組110也可以擷取資料影像。一般而言,影像擷取模組110所擷取的資料影像包含完整的字符串或足以辨識所表示之內容的條碼,但本創作並不以此為限。影像擷取模組110可以在被資料取得模組150驅動或接收到資料取得模組150的協同訊息時,持續將感光元件輸出的影像訊號做為資料影像。 The image capturing module 110 can also capture data images. Generally speaking, the data image captured by the image capturing module 110 contains a complete character string or a bar code sufficient to identify the indicated content, but the creation is not limited to this. The image capturing module 110 can continue to use the image signal output by the photosensitive element as a data image when it is driven by the data obtaining module 150 or receiving a cooperative message from the data obtaining module 150.

影像擷取模組110也可以判斷是否於影像擷取範圍內偵測到辨識目標之臉部判斷是否於影像擷取範圍內偵測到辨識目標之臉部,並可以判斷偵測到臉部達到影像擷取範圍之一定比例時擷取目標影像。 The image capture module 110 can also determine whether the face of the recognition target is detected within the image capture range, and determine whether the face of the recognition target is detected within the image capture range, and can determine whether the detected face reaches The target image is captured when a certain proportion of the image capturing range.

動作選擇模組120負責決定預定數量的指定動作。動作選擇模組120所決定之指定動作的數量可以是預定值或透過資料取得模組150設定,本創作沒有特別的限制。 The action selection module 120 is responsible for determining a predetermined number of specified actions. The number of designated actions determined by the action selection module 120 can be a predetermined value or set through the data acquisition module 150, and there is no special restriction on this creation.

動作選擇模組120可以由預先建立的動作資料庫(圖中未示)選擇一個臉部動作與一個手部動作,並可以結合所選出之臉部動作與手部動作以產生一個指定動作。動作選擇模組120可以重複上述產生指定動作的過程直到產生出預定數量的指定動作為止。 The action selection module 120 can select a facial movement and a hand movement from a pre-established movement database (not shown in the figure), and can combine the selected facial movement and hand movement to generate a specified movement. The action selection module 120 may repeat the above-mentioned process of generating the specified actions until a predetermined number of specified actions are generated.

活體辨識模組130負責依據動作選擇模組120所產生之指定動作進行活體辨識。活體辨識模組130所進行之活體辨識的過程例如:透過顯示模組140提示辨識目標在影像擷取模組110前方完成所產生的第一個指定動作,同時持續對影像擷取模組110所擷取到之包含完成第一個指定動作之指示影像中的人臉辨識及/或動作偵測以取得指示影像中之人臉特徵與手勢特徵,及依據指示影像中之人臉特徵及手勢特徵判斷指示影像中之辨識目標是否完成指定動作,若是,則透過顯示模組140提示辨識目標完成所產生的第二個指定動作並重複上 述比對過程,直到辨識目標正確完成所有的指定動作,藉以進行活體辨識。但本創作所提之活體辨識的方式並不以上述為限。其中,活體辨識模組130通常可以比對指示影像中之人臉特徵/手勢特徵與由動作資料庫中讀出之對應指定動作的人臉特徵/手勢特徵以判斷辨識目標是否完成指定動作,但本創作並不以此為限。 The living body recognition module 130 is responsible for performing living body recognition according to the specified action generated by the action selection module 120. The living body recognition process performed by the living body recognition module 130 is, for example, the display module 140 prompts the recognition target to complete the first specified action generated in front of the image capturing module 110, and at the same time, it continues to check the image capturing module 110. The captured face recognition and/or motion detection in the instruction image that completes the first specified action to obtain the facial features and gesture features in the instruction image, and based on the facial features and gesture features in the instruction image Determine whether the identification target in the instruction image has completed the specified action. If yes, prompt the identification target to complete the second specified action generated by the display module 140 and repeat the upload The comparison process is described, until the identification target completes all the specified actions correctly, so as to carry out the living body identification. However, the method of living body identification mentioned in this creation is not limited to the above. Among them, the living body recognition module 130 can usually compare the facial features/gesture features in the indicated image with the facial features/gesture features corresponding to the specified action read from the action database to determine whether the identification target has completed the specified action, but This creation is not limited to this.

活體辨識模組130也負責在進行之活體辨識後產生相對應的活體辨識結果。活體辨識模組130可以在所產生之指定動作都正確完成或連續正確完成指定動作之次數達到參數值時,判斷活體辨識通過並產生表示通過活體辨識的活體辨識結果;活體辨識模組130也可以在所產生之任何一個指定動作沒有正確完成或沒有正確完成之指定動作的次數達到預定值時,判斷活體辨識未通過並產生表示未通過活體辨識的活體辨識結果。 The living body identification module 130 is also responsible for generating a corresponding living body identification result after performing the living body identification. The living body recognition module 130 can determine that the living body has passed and generate a living body recognition result indicating that the living body has passed the living body recognition when the designated actions generated are completed correctly or the number of consecutively correctly completed designated actions reaches the parameter value; the living body recognition module 130 can also When any specified action generated is not completed correctly or the number of specified actions that are not completed correctly reaches a predetermined value, it is determined that the living body identification has failed and a living body identification result indicating that the living body identification has not passed is generated.

活體辨識模組130也可以在判斷活體辨識未通過時,累積未通過次數,並重新進行活體辨識。活體辨識模組130可以在累積之未通過次數達到預定值時,產生表示未通過活體辨識的活體辨識結果。 The living body identification module 130 may also accumulate the number of times that the living body identification has not passed, and perform the living body identification again. The living body identification module 130 can generate a living body identification result indicating that the living body identification has not passed when the accumulated number of failures reaches a predetermined value.

顯示模組140可以在客戶端100的顯示畫面中顯示影像擷取模組110所擷取到的資料影像、目標影像、及指示影像。顯示模組140也可以在客戶端100的顯示畫面中顯示資料取得模組150所產生的指示框與文字等提示訊息。顯示模組140也可以在客戶端100的顯示畫面中顯示結果判斷模組180所產生的判斷結果。 The display module 140 can display the data image, the target image, and the instruction image captured by the image capturing module 110 on the display screen of the client 100. The display module 140 can also display prompt messages such as an indicator box and text generated by the data acquisition module 150 on the display screen of the client 100. The display module 140 may also display the judgment result generated by the result judgment module 180 on the display screen of the client 100.

資料取得模組150可以取得身分識別資料。更詳細的,資料取得模組150可以取得辨識目標的手機號碼、數位憑證、金融卡資訊以作為身分識別資料。 The data acquisition module 150 can acquire identification data. In more detail, the data acquisition module 150 can acquire the identification target's mobile phone number, digital certificate, and financial card information as the identification data.

資料取得模組150也可以設定活體辨識模組130進行活體辨識而產生指定動作的數量,也可以設定活體辨識模組130判斷通過活體辨識所需要連續正確完成指定動作之次數(即活體辨識模組130進行判斷所使用的參數值)。 The data acquisition module 150 can also set the number of specified actions generated by the living body recognition module 130 for living body recognition, and it can also set the number of times that the living body recognition module 130 determines that the specified action needs to be continuously and correctly completed through the living body recognition (ie, the living body recognition module 130 parameter values used for judgment).

特徵取得模組160可以依據資料取得模組150所取得之身分資料取得人體特徵。特徵取得模組160所取得之人體特徵可以表示辨識目標的臉部或手部是否有殘缺。 The feature obtaining module 160 can obtain the human body feature based on the identity data obtained by the data obtaining module 150. The human body feature obtained by the feature obtaining module 160 may indicate whether the face or hand of the recognition target is defective.

結果判斷模組180負責活體辨識模組130所產生之活體辨識結果判斷辨識目標是否通過活體辨識。更詳細的,結果判斷模組180可以在活體辨識結果表示通過活體辨識時,產生表示辨識目標通過活體辨識的判斷結果;反之,結果判斷模組180可以在活體辨識結果表示沒有通過活體辨識時,產生表示辨識目標沒有通過活體辨識的判斷結果。 The result judgment module 180 is responsible for the living body identification result generated by the living body identification module 130 to judge whether the identification target passes the living body identification. In more detail, the result judgment module 180 can generate a judgment result indicating that the identification target has passed the living body identification when the living body identification result indicates that the living body identification has passed; Produce a judgment result indicating that the identification target has not passed the living body identification.

結果判斷模組180除了依據活體辨識模組130所產生之活體辨識結果判斷辨識目標是否通過活體辨識之外,在部分的實施例中,也可以合併參考客戶通訊模組190所接收到之影像檢測結果判斷辨識目標是否通過活體辨識。更詳細的,結果判斷模組180可以在活體辨識結果表示通過活體辨識且影像檢測結果表示目標影像通過檢測時,產生表示辨識目標通過活體辨識的判斷結果;反之,結果判斷模組180可以在活體辨識結果表示沒有通過活體辨識或影像檢測結果表示目標影像沒有通過檢測時,產生表示辨識目標沒有通過活體辨識的判斷結果。 The result judging module 180 determines whether the identification target passes the living body identification according to the living body identification result generated by the living body identification module 130, in some embodiments, it can also be combined with reference to the image detection received by the client communication module 190 As a result, it is judged whether the identification target passes the living body identification. In more detail, the result judgment module 180 can generate a judgment result indicating that the identification target passes the living body identification when the living body identification result indicates that the living body identification is passed and the image detection result indicates that the target image has passed the detection; The identification result indicates that the living body identification is not passed or when the image detection result indicates that the target image has not passed the detection, a judgment result indicating that the identification target has not passed the living body identification is generated.

客戶通訊模組190可以將影像擷取模組110所擷取到之目標影像傳送給伺服器200,客戶通訊模組190也可以接收伺服器200所傳送之影像檢測結 果。在部分的實施例中,客戶通訊模組190也可以將資料取得模組150所取得之身分識別資料及/或活體辨識模組130所產生的活體辨識結果傳送給伺服器200。 The client communication module 190 can send the target image captured by the image capture module 110 to the server 200, and the client communication module 190 can also receive the image detection result sent by the server 200. fruit. In some embodiments, the client communication module 190 may also send the identification data obtained by the data obtaining module 150 and/or the living body identification result generated by the living body identification module 130 to the server 200.

伺服器200可以進一步的對客戶端100所擷取到的目標影像進行活體偵測,在部分的實施例中,也可以存留客戶端100的活體辨識結果。伺服器200可以如「第2圖」之元件示意圖所示,包含伺服通訊模組210、影像比對模組220、影像檢測模組230、結果產生模組240。一般而言,伺服器200也是計算設備。 The server 200 may further perform liveness detection on the target image captured by the client 100, and in some embodiments, may also store the live body recognition result of the client 100. The server 200 may include a servo communication module 210, an image comparison module 220, an image detection module 230, and a result generation module 240 as shown in the schematic diagram of the components in “FIG. 2”. Generally speaking, the server 200 is also a computing device.

伺服通訊模組210可以接收客戶端100所傳送的目標影像,也可以將結果產生模組240所產生的影像檢測結果傳回客戶端100。在部分的實施例中,伺服通訊模組210也可以接收客戶端100所傳送的身分識別資料及/或活體辨識結果。 The server communication module 210 can receive the target image sent by the client 100, and can also send the image detection result generated by the result generation module 240 back to the client 100. In some embodiments, the server communication module 210 may also receive the identity identification data and/or the living body identification result sent by the client 100.

伺服通訊模組210也可以由可信主機202下載與所接收到之身分識別資料對應的可信影像。伺服通訊模組210所下載之可信影像包含辨識目標的臉部,例如,可信影像可以包含辨識目標的證件照等,但本創作並不以此為限,其中,可信主機202為如政府機關等可信任單位或組織所提供之伺服器,本創作亦不以此為限。 The servo communication module 210 can also download the trusted image corresponding to the received identification data from the trusted host 202. The credible image downloaded by the servo communication module 210 includes the face of the identification target. For example, the credible image may include the identification photo of the identification target, etc., but this creation is not limited to this. The trusted host 202 is as This creation is not limited to servers provided by trusted units or organizations such as government agencies.

影像比對模組220可以依據伺服通訊模組210所接收到之身分識別資料取得辨識目標的可信影像。影像比對模組220可以透過伺服通訊模組210至可信主機202下載可信影像或可以讀出預先儲存的可信影像,其中,可信影像可以是由辨識目標自行上傳或先前由可信主機202下載。 The image comparison module 220 can obtain a credible image of the identification target based on the identification data received by the servo communication module 210. The image comparison module 220 can download the credible image or read the credible image stored in advance through the server communication module 210 to the credible host 202. The credible image can be uploaded by the identification target itself or previously The host 202 downloads.

影像比對模組220也可以比對伺服通訊模組210所接收到之目標影像與所取得之可信影像中的臉部以產生影像比對結果,舉例來說,影像比對 模組220可以比對目標影像與可信影像中之臉部的相似度,並可以在判斷所產生之相似度大於或等於門檻值時,產生表示通過影像比對的影像比對結果,或可以在判斷所產生之相似度小於門檻值時,產生表示未通過影像比對的影像比對結果。 The image comparison module 220 can also compare the target image received by the servo communication module 210 with the face in the obtained credible image to generate an image comparison result, for example, image comparison The module 220 can compare the similarity between the target image and the face in the credible image, and can generate an image comparison result indicating that the image comparison is passed when the generated similarity is greater than or equal to the threshold value, or can When it is judged that the generated similarity is less than the threshold value, an image comparison result indicating that the image comparison has not passed is generated.

影像檢測模組230可以判斷伺服通訊模組210所接收到之目標影像的影像深度。影像檢測模組230所判斷出之影像深度為影像擷取模組110與目標影像中之各個物體或區域的距離,這個距離通常是概略值,但本創作並不以此為限。舉例來說,影像檢測模組230可以使用如AlexNet、GoogleNet、VGG、Residual net等卷積神經網絡(Convolutional Neural Network,CNN)來判斷目標影像中之各物體或區域的距離,但本創作亦不以此為限。 The image detection module 230 can determine the image depth of the target image received by the servo communication module 210. The image depth determined by the image detection module 230 is the distance between the image capture module 110 and each object or area in the target image. This distance is usually a rough value, but the creation is not limited to this. For example, the image detection module 230 can use Convolutional Neural Network (CNN) such as AlexNet, GoogleNet, VGG, Residual net, etc. to determine the distance of each object or region in the target image, but this creation does not Limited by this.

影像檢測模組230也可以判斷伺服通訊模組210所接收到之目標影像的影像資訊。影像檢測模組230所判斷出之影像資訊可以包含表示目標影像上是否包含摩爾紋、反光、臉部畸變的訊息,但本創作並不以此為限。 The image detection module 230 can also determine the image information of the target image received by the servo communication module 210. The image information determined by the image detection module 230 may include information indicating whether the target image contains moiré, reflection, and facial distortion, but the creation is not limited to this.

影像檢測模組230也可以依據所判斷出之影像深度及/或影像資訊產生影像判斷結果。舉例來說,影像檢測模組230可以依據目標影像中之臉部及臉部後方之區域的影像深度是否相近,當兩者相近時,影像檢測模組230可以產生未通過深度判斷的影像判斷結果,影像檢測模組230也可以在目標影像之影像資訊中存在表示目標影像中之臉部範圍上包含摩爾紋、反光、臉部畸變的訊息時,產生未通過光學判斷的影像判斷結果,影像檢測模組230也可以在目標影像中之臉部及臉部後方之區域的影像深度之差值達到一定數值且目標影像之影像資訊中不存在表示目標影像中之臉部範圍上包含摩爾紋、反光、臉部畸變的訊息時,產生通過影像判斷的影像判斷結果。 The image detection module 230 can also generate an image determination result based on the determined image depth and/or image information. For example, the image detection module 230 can determine whether the image depths of the face and the area behind the face in the target image are similar. When the two are similar, the image detection module 230 can generate an image judgment result that fails the depth judgment. The image detection module 230 can also generate an image judgment result that fails the optical judgment when there is information in the image information of the target image indicating that the face range in the target image contains moiré, reflection, and facial distortion. The module 230 can also achieve a certain value between the image depth of the face in the target image and the area behind the face and the absence of the image information of the target image indicates that the face range in the target image contains moiré and reflections. , When the facial distortion information is generated, the image judgment result judged by the image is generated.

結果產生模組240產生包含影像比對模組220所產生之影像比對結果及影像檢測模組230所產生之影像判斷結果的影像檢測結果。 The result generation module 240 generates an image detection result including the image comparison result generated by the image comparison module 220 and the image determination result generated by the image detection module 230.

接著以一個實施例來解說本創作的系統運作,並請參照「第3A圖」本創作所提之辨識影像中之動作以判斷目標是否為活體之流程圖。 Next, an example is used to explain the operation of the system of this creation, and please refer to "Figure 3A" for the flow chart of identifying the actions in the image mentioned in this creation to determine whether the target is a living body.

在辨識目標使用本創作時,客戶端100的動作選擇模組120可以先決定預定數量的指定動作(步驟320)。在本實施例中,假設預定數量為三,動作選擇模組120可以如「第3B圖」之流程所示,先選擇三個(預定數量)臉部動作與三個手部動作(步驟325),並分別結合一個臉部動作與一個手部動作三次,藉以產生三個指定動作(步驟327),例如向右轉頭、眨眼、將右手指放置在左眼下方。 When identifying the target to use this creation, the action selection module 120 of the client 100 may first determine a predetermined number of designated actions (step 320). In this embodiment, assuming that the predetermined number is three, the action selection module 120 may first select three (predetermined number) facial actions and three hand actions as shown in the flow of "Figure 3B" (step 325) , And combine a facial motion and a hand motion three times to generate three designated motions (step 327), such as turning the head to the right, blinking, and placing the right finger under the left eye.

在客戶端100的動作選擇模組120決定指定動作(步驟320)後,客戶端100的影像擷取模組110可以擷取包含辨識目標之臉部的目標影像(步驟330)。在本實施例中,假設如「第3D圖」之流程所示,影像擷取模組110可以產生提示訊息給顯示模組140,客戶端100的顯示模組140可以如「第4圖」所示,在顯示畫面410的提示區域412中提示辨識目標將手機(客戶端100)的鏡頭對準臉部正面並調整手機位置,使得辨識目標可以在將臉部正面置於顯示畫面410的指示區域411且臉部比例與指示區域411相似時按下快門以觸發影像擷取模組110擷取包含辨識目標臉部正面的目標影像(步驟333);又如,影像擷取模組110可以持續判斷所擷取到之目標影像是否包含比例足夠且正面的人臉(步驟333),當目標影像包含正面的人臉且人臉與指示區域411的比例相近(如人臉與指示區域411之高度或寬度的差異在10%內)時,影像擷取模組110可以擷取目標影像(步驟335)。在上述擷取三次目標影像的過程中,影像擷取模組110可 以判斷辨識目標的臉部是否持續在影像擷取範圍(步驟331)中,若否,則可以產生辨識目標沒有通過活體辨識的活體辨識結果(步驟337)。 After the action selection module 120 of the client 100 determines the specified action (step 320), the image capture module 110 of the client 100 can capture the target image including the face of the recognition target (step 330). In this embodiment, it is assumed that the image capturing module 110 can generate a prompt message to the display module 140 as shown in the process of "Figure 3D", and the display module 140 of the client 100 can be as shown in "Figure 4". In the prompt area 412 of the display screen 410, the recognition target is prompted to point the camera of the mobile phone (client 100) to the front of the face and adjust the position of the mobile phone, so that the recognition target can be placed on the front of the face in the indication area of the display screen 410 411 When the face ratio is similar to the indicated area 411, press the shutter to trigger the image capturing module 110 to capture the target image including the front face of the target face (step 333); for another example, the image capturing module 110 can continue to determine Whether the captured target image contains a frontal face with sufficient proportions (step 333), when the target image contains a frontal face and the ratio of the face to the indication area 411 is similar (such as the height of the face and the indication area 411 or When the width difference is within 10%), the image capturing module 110 can capture the target image (step 335). In the process of capturing the target image three times, the image capturing module 110 can To determine whether the face of the recognition target is continuously in the image capturing range (step 331), if not, a living body recognition result that the recognition target does not pass the living body recognition can be generated (step 337).

回到「第3A圖」,同樣在客戶端100的影像擷取模組110擷取目標影像(步驟330)後,客戶端100的活體辨識模組130可以判斷辨識目標是否依序完成所產生之指定動作(步驟350)以進行活體辨識,及可以在活體辨識後產生相對應的活體辨識結果(步驟360)。在本實施例中,假設活體辨識模組130可以透過顯示模組140在提示區域412提示辨識目標將客戶端100對準人臉使得人臉置於顯示畫面410的指示區域411且人臉之比例與指示區域411相近,使得辨識目標依序依據提示完成三次指定動作,如此,活體辨識模組130可以如「第3C圖」之流程所示,對目標影像進行人臉辨識與動作偵測(步驟351),並可以依據人臉辨識結果與動作偵測結果判斷辨識目標的人臉與手勢是否與指定動作的臉部動作與手部動作相符(步驟355),進而在辨識目標連續的成功完成三次指定動作時產生通過活體辨識的活體辨識結果,反之,活體辨識模組130可以產生未通過活體辨識的活體辨識結果。 Returning to "Figure 3A", also after the image capturing module 110 of the client terminal 100 captures the target image (step 330), the living body recognition module 130 of the client terminal 100 can determine whether the recognition target is completed in sequence. A designated action (step 350) is used to perform a living body identification, and a corresponding living body identification result can be generated after the living body identification (step 360). In this embodiment, it is assumed that the living body recognition module 130 can prompt the recognition target in the prompt area 412 through the display module 140 to aim the client 100 at the face so that the face is placed in the indication area 411 of the display screen 410 and the ratio of the face is It is similar to the indication area 411, so that the recognition target completes three specified actions according to the prompts in sequence. In this way, the living body recognition module 130 can perform face recognition and motion detection on the target image as shown in the process of "Figure 3C" (step 351), and can judge whether the face and gesture of the recognition target are consistent with the facial motion and hand motion of the specified action according to the result of face recognition and motion detection (step 355), and then the recognition target is successfully completed three times in succession When the designated action produces a living body identification result that passes the living body identification, on the contrary, the living body identification module 130 can generate a living body identification result that does not pass the living body identification.

更詳細的說,活體辨識模組130可以先提示辨識目標完成第一個指定動作,當辨識目標向右轉動頭部,使得影像擷取模組110擷取到包含辨識目標向右轉動頭部的指示影像後,活體辨識模組130可以對指示影像進行人臉特徵分析,藉以判斷指示影像中之人臉的轉動方向。當轉動方向與指定方向不同時,活體辨識模組130可以判斷活體辨識未通過;而當轉動方向與指定方向相同時,活體辨識模組130可以再次提示辨識目標完成第二個指定動作,當辨識目標依照提示眨眼,使得影像擷取模組110擷取到包含辨識目標眨眼的指示影像後,活體辨識模組130可以對指示影像進行人臉特徵分析,藉以判斷指示影像中之人臉是 否眨眼。若否,活體辨識模組130可以判斷活體辨識未通過;若是,則活體辨識模組130可以再次提示辨識目標完成第三個指定動作,當辨識目標依照提示將右手指放置在左眼下方,使得影像擷取模組110擷取到包含辨識目標的指示影像後,活體辨識模組130可以對指示影像進行人臉辨識及動作偵測,藉以判斷指示影像中之人臉的位置及右手指是否正確的放在左眼下方。若否,活體辨識模組130可以判斷活體辨識未通過;若是,則活體辨識模組130可以判斷活體辨識通過並可以產生表示通過活體辨識的活體辨識結果。 In more detail, the living body recognition module 130 may first prompt the recognition target to complete the first specified action. When the recognition target turns its head to the right, the image capturing module 110 captures the information that includes the recognition target turning its head to the right. After indicating the image, the living body recognition module 130 can perform face feature analysis on the indicating image to determine the direction of rotation of the face in the indicating image. When the rotation direction is different from the designated direction, the living body recognition module 130 can determine that the living body recognition has not passed; and when the rotation direction is the same as the designated direction, the living body recognition module 130 can prompt the recognition target to complete the second designated action again. The target blinks according to the prompt, so that after the image capturing module 110 captures the indication image containing the blink of the recognition target, the living body recognition module 130 can perform facial feature analysis on the indication image to determine whether the face in the indication image is No blink. If not, the living body recognition module 130 can judge that the living body recognition has not passed; if so, the living body recognition module 130 can prompt the recognition target to complete the third specified action again. When the recognition target places the right finger under the left eye according to the prompts, so that After the image capturing module 110 captures the instruction image containing the recognition target, the living body recognition module 130 can perform face recognition and motion detection on the instruction image to determine whether the position of the face in the instruction image and the right finger are correct Placed under the left eye. If not, the living body identification module 130 can judge that the living body identification has failed; if so, the living body identification module 130 can judge that the living body identification has passed and can generate a living body identification result indicating that the living body identification has passed.

在上述活體辨識的過程中,若活體辨識模組130判斷活體辨識未通過,則活體辨識模組130可以累計未通過次數,並可以在未通過次數尚未達到預定值前,再次提供辨識目標進行活體辨識,也就是重新產生三個指定動作,並依序辨識目標依據提示完成三次指定動作,直到累積之未通過次數達到預定值時,活體辨識模組130可以產生表示沒有通過活體辨識的活體辨識結果。 In the above-mentioned living body identification process, if the living body identification module 130 judges that the living body identification has not passed, the living body identification module 130 can accumulate the number of failures, and can provide the identification target again before the number of failures reaches the predetermined value. Recognition, that is, regenerate three designated actions, and complete the three designated actions according to the prompts in order to identify the target. When the accumulated number of failures reaches a predetermined value, the living body identification module 130 can generate a living body identification result indicating that the living body identification has not passed .

在客戶端100的活體辨識模組130產生活體辨識結果後,客戶端100的結果判斷模組180可以依據活體辨識模組130產生之活體辨識結果判斷辨識目標是否通過活體辨識(步驟391)。在本實施例中,假設結果判斷模組180可以判斷活體辨識結果是否表示識別目標通過活體辨識,則結果判斷模組180可以判斷辨識目標通過活體辨識。 After the living body recognition module 130 of the client terminal 100 generates a living body recognition result, the result judgment module 180 of the client terminal 100 can judge whether the identification target passes the living body recognition according to the living body recognition result generated by the living body recognition module 130 (step 391). In this embodiment, the hypothesis result judgment module 180 can judge whether the living body recognition result indicates that the recognition target passes the living body recognition, and the result judgment module 180 can judge that the recognition target passes the living body recognition.

如此,透過本創作,客戶端100可以依據影像中之辨識目標是否做出指定動作而判斷辨識目標是否為活體。 In this way, through this creation, the client 100 can determine whether the recognition target is a living body according to whether the recognition target in the image performs a specified action.

在上述的實施例中,客戶端100的結果判斷模組180也可以判斷累積的失敗次數是否高於預設值,若是,則表示辨識目標沒有通過活體辨識,若否,則結果判斷模組180產生比對失敗的提示訊息並由客戶端100的顯示模組140 顯示提示訊息以提示辨識目標再次將客戶端100的鏡頭對準辨識目標的臉部正面,使得影像擷取模組110可以再次擷取辨識目標的目標影像(步驟320),且活體辨識模組130也可以判斷辨識目標是否依序完成所產生之指定動作以進行活體辨識,及可以在活體辨識後產生相對應的活體辨識結果(步驟350),結果判斷模組180可以依據活體辨識模組130產生活體辨識結果判斷辨識目標是否通過活體辨識(步驟360)。 In the above-mentioned embodiment, the result judgment module 180 of the client 100 can also judge whether the cumulative number of failures is higher than the preset value. If yes, it means that the identification target has not passed the living body identification. If not, the result judgment module 180 A prompt message indicating that the comparison fails is generated and the display module 140 of the client terminal 100 A prompt message is displayed to prompt the recognition target to point the lens of the client 100 to the front of the recognition target again, so that the image capturing module 110 can capture the target image of the recognition target again (step 320), and the living body recognition module 130 It can also be judged whether the identification target completes the specified actions in order to perform the living body identification, and the corresponding living body identification result can be generated after the living body identification (step 350), and the result judgment module 180 can generate according to the living body identification module 130 From the result of the living body identification, it is judged whether the identification target passes the living body identification (step 360).

另外,上述實施例也可以如「第3E圖」之流程所示,在客戶端100的動作選擇模組120決定指定動作(步驟320)時,客戶端100的資料取得模組150可以先取得辨識目標的身分識別資料(步驟310),客戶端100的特徵取得模組160可以依據資料取得模組150所取得之身分識別資料取得相對應的人體特徵(步驟321),客戶端100的動作選擇模組120可以決定符合特徵取得模組160索取出之人體特徵的指定動作(步驟323)。 In addition, the above-mentioned embodiment may also be as shown in the flow of "Figure 3E". When the action selection module 120 of the client 100 determines the specified action (step 320), the data acquisition module 150 of the client 100 can first obtain the identification The identity data of the target (step 310), the feature acquisition module 160 of the client 100 can acquire the corresponding human body characteristics based on the identity data acquired by the data acquisition module 150 (step 321), and the action selection model of the client 100 The group 120 can determine a designated action that matches the human body feature retrieved by the feature acquisition module 160 (step 323).

此外,上述實施例中,還可以如「第3F圖」之流程所示,在客戶端100的影像擷取模組110擷取包含辨識目標之目標影像(步驟330)後,可以客戶端100的客戶通訊模組190可以將目標影像傳送給伺服器200(步驟340)。在本實施例中,假設客戶通訊模組190可以在活體辨識模組130產生活體辨識結果(步驟360)後,將目標影像連同客戶端100之資料取得模組150所取得之身分識別資料傳送給伺服器200。 In addition, in the above-mentioned embodiment, as shown in the process of "Figure 3F", after the image capturing module 110 of the client 100 captures the target image (step 330), the client 100 can The client communication module 190 may send the target image to the server 200 (step 340). In this embodiment, it is assumed that the client communication module 190 can send the target image together with the identification data obtained by the data acquisition module 150 of the client 100 after the living body identification module 130 generates the living body identification result (step 360). Server 200.

在伺服器200的伺服通訊模組210接收到客戶端100所傳送的目標影像與身分識別資料後,伺服器200的影像比對模組220可以依據伺服通訊模組210所接收到的身分識別資料取得包含辨識目標的可信影像(步驟371)。在本實施例中,假設影像比對模組220可以透過伺服通訊模組210將身分識別資料傳 送給可信主機202,並透過伺服通訊模組210接收可信主機202所傳回的證件影像。 After the server communication module 210 of the server 200 receives the target image and the identification data sent by the client 100, the image comparison module 220 of the server 200 can use the identification data received by the server communication module 210 Obtain a credible image containing the identification target (step 371). In this embodiment, it is assumed that the image comparison module 220 can transmit the identity data through the servo communication module 210. Send to the trusted host 202, and receive the credential image returned by the trusted host 202 through the servo communication module 210.

在伺服器200的影像比對模組220取得可信影像後,可以對所取得之可信影像中的臉部及伺服通訊模組210所接收到之目標影像中的臉部進行比對,並可以在比對後產生相對應的影像比對結果(步驟373)。在本實施例中,假設影像比對模組220可以依據可信影像的證件類型由可信影像中擷取出臉部影像並計算臉部影像的影像特徵,及可以計算目標影像的影像特徵後,依據所計算出之臉部影像的影像特徵及目標影像的影像特徵判斷目標影像與可信影像的相似度,並依據相似度是否超過預定的門檻值選擇產生表示通過比對或未通過比對的影像比對結果。 After the image comparison module 220 of the server 200 obtains the credible image, the face in the obtained credible image can be compared with the face in the target image received by the servo communication module 210, and A corresponding image comparison result can be generated after the comparison (step 373). In this embodiment, it is assumed that the image comparison module 220 can extract the facial image from the trusted image according to the credible image's credential type and calculate the image characteristics of the facial image, and after it can calculate the image characteristics of the target image, Judging the similarity between the target image and the credible image based on the calculated image features of the face image and the image features of the target image, and depending on whether the similarity exceeds a predetermined threshold, it is selected to generate a pass or fail comparison Image comparison result.

在伺服器200的影像比對模組220產生影像比對結果後,伺服器200的影像檢測模組230可以判斷影像比對結果是否表示通過影像比對,若否,則影像檢測模組230可以結束執行,伺服器200的結果產生模組240可以產生包含影像比對結果的影像檢測結果。而若影像檢測模組230判斷影像比對結果表示通過影像比對,影像檢測模組230可以進一步判斷伺服器200的伺服通訊模組210所接收到之目標影像的影像深度及/或影像資訊,並可以依據所判斷出之目標影像的影像深度及/或影像資訊產生影像判斷結果(步驟375)。在本實施例中,假設影像檢測模組230可以使用卷積神經網絡判斷目標影像中辨識目標之臉部與其後方的影像深度,也可以判斷目標影像中辨識目標之臉部上是否存在摩爾紋、反光、及/或畸形或扭曲等異常的區域,並可以在辨識目標之臉部與其後方的影像深度的差值超過一定值且辨識目標之臉部上不存在摩爾紋、反光、及異常的區域時,影像檢測模組230可以產生表示通過判斷的影像判斷結果,反之,當辨 識目標之臉部與其後方的影像深度的差值低於一定值或辨識目標之臉部上存在摩爾紋、反光、或異常的區域時,影像檢測模組230可以產生表示通過判斷的影像判斷結果。 After the image comparison module 220 of the server 200 generates the image comparison result, the image detection module 230 of the server 200 can determine whether the image comparison result indicates that the image comparison is passed. If not, the image detection module 230 can After the execution is completed, the result generation module 240 of the server 200 can generate an image detection result including an image comparison result. If the image detection module 230 determines that the image comparison result indicates that the image comparison is passed, the image detection module 230 can further determine the image depth and/or image information of the target image received by the servo communication module 210 of the server 200. An image determination result can be generated based on the determined image depth and/or image information of the target image (step 375). In this embodiment, it is assumed that the image detection module 230 can use a convolutional neural network to determine the depth of the recognition target's face and its back in the target image, and can also determine whether there are moiré patterns on the recognition target's face in the target image. Abnormal areas such as reflections, and/or deformities or distortions, and the difference between the depth of the recognition target's face and the image depth behind it exceeds a certain value, and there are no moiré, reflections, and abnormal areas on the recognition target's face The image detection module 230 can generate an image judgment result indicating that the judgment is passed. On the contrary, when the judgment is When the difference between the depth of the face of the recognition target and the image behind it is lower than a certain value or there are moiré, reflection, or abnormal areas on the face of the recognition target, the image detection module 230 can generate an image judgment result indicating that the judgment is passed. .

在伺服器200的影像檢測模組230產生影像判斷結果後,伺服器200的結果產生模組240可以依據影像判斷結果產生影像檢測結果,並可以將所產生的影像檢測結果傳送給客戶端100(步驟379)。在本實施例中,假設結果產生模組240可以在影像判斷結果表示通過判斷時產生表示通過檢測的影像檢測結果,並可以在影像判斷結果表示未通過判斷時產生表示未通過檢測的影像檢測結果。 After the image detection module 230 of the server 200 generates the image determination result, the result generation module 240 of the server 200 may generate the image detection result according to the image determination result, and may transmit the generated image detection result to the client 100 ( Step 379). In this embodiment, the hypothesis result generation module 240 can generate an image detection result indicating a pass detection when the image judgment result indicates a passing judgment, and may generate an image detection result indicating a fail detection when the image judgment result indicates a failure judgment. .

在客戶端100的客戶通訊模組190接收到伺服器200所傳送的影像檢測結果後,客戶端100的結果判斷模組180可以依據客戶通訊模組190所接收到之影像檢測結果及客戶端100之活體辨識模組130所產生的活體辨識結果判斷辨識目標是否通過活體辨識(步驟395)。在本實施例中,假設結果判斷模組180可以在活體辨識結果表示辨識目標通過活體辨識且影像檢測結果表示目標影像通過影像檢測時,判斷辨識目標通過活體辨識,否則可以判斷辨識目標沒有通過活體辨識。 After the client communication module 190 of the client 100 receives the image detection result sent by the server 200, the result judgment module 180 of the client 100 can be based on the image detection result received by the client communication module 190 and the client 100 The living body identification result generated by the living body identification module 130 determines whether the identification target passes the living body identification (step 395). In this embodiment, the hypothesis result judgment module 180 can judge that the identification target has passed the living body recognition when the living body identification result indicates that the identification target passes the living body identification and the image detection result indicates that the target image has passed the image detection. Otherwise, it can judge that the identification target has not passed the living body identification. Identify.

綜上所述,可知本創作與先前技術之間的差異在於具有決定多個包含臉部動作與手部動作之指定動作並辨識目標影像中之辨識目標是否依序完成指定動作,及依據活體辨識結果判斷辨識目標是否為活體之技術手段,藉由此一技術手段可以來解決先前技術所存在線上會談時無法確認對方是否為真人的問題,進而達成增加線上會談之安全性的技術功效。 In summary, it can be seen that the difference between this creation and the prior art is that it has the ability to determine multiple specified actions including facial and hand actions and identify whether the identification target in the target image completes the specified action in sequence, and recognizes according to the living body. As a result, it is determined whether the identification target is a living body technical means. This technical means can solve the problem that the previous technology cannot confirm whether the other party is a real person during online meetings, thereby achieving the technical effect of increasing the security of online meetings.

再者,本創作之辨識影像中之動作以判斷目標是否為活體之系統中的裝置/設備,可實現於硬體或硬體與軟體之組合中,亦可在電腦系統中以集中方式實現或以不同元件散佈於若干互連之電腦系統的分散方式實現。 Furthermore, the actions in this creation to identify the image to determine whether the target is a device/equipment in a living body system can be implemented in hardware or a combination of hardware and software, and can also be implemented in a centralized manner in a computer system or It is realized in a decentralized manner in which different components are scattered in a number of interconnected computer systems.

雖然本創作所揭露之實施方式如上,惟所述之內容並非用以直接限定本創作之專利保護範圍。任何本創作所屬技術領域中具有通常知識者,在不脫離本創作所揭露之精神和範圍的前提下,對本創作之實施的形式上及細節上作些許之更動潤飾,均屬於本創作之專利保護範圍。本創作之專利保護範圍,仍須以所附之申請專利範圍所界定者為準。 Although the implementation method disclosed in this creation is as above, the content described is not used to directly limit the scope of patent protection of this creation. Any person with ordinary knowledge in the technical field to which this creation belongs, without departing from the spirit and scope of this creation, makes a little modification in the form and details of the implementation of this creation, and it belongs to the patent protection of this creation. Scope. The scope of patent protection for this creation shall still be subject to the scope of the attached patent application.

100:客戶端 100: client

101:處理模組 101: Processing Module

110:影像擷取模組 110: Image capture module

120:動作選擇模組 120: Action selection module

130:活體辨識模組 130: Living Body Recognition Module

140:顯示模組 140: display module

150:資料取得模組 150: data acquisition module

160:特徵取得模組 160: feature acquisition module

180:結果判斷模組 180: result judgment module

190:客戶通訊模組 190: Customer Communication Module

Claims (10)

一種辨識影像中之動作以判斷目標是否為活體之系統,該系統至少包含:一影像擷取模組;及一處理模組,與該影像擷取模組電性連接,用以執行至少一計算機指令,並於執行該至少一計算機指令後產生:一動作選擇模組,用以決定一預定數量之指定動作,每一該指定動作包含一臉部動作及一手部動作;一活體辨識模組,用以進行一活體辨識作業,並產生相對應之一活體辨識結果,其中,該活體辨識作業包含透過該影像擷取模組擷取包含一辨識目標之臉部之多個目標影像,及由該些目標影像判斷該辨識目標是否依序完成該動作選擇模組所決定之該些指定動作;及一結果判斷模組,用以依據該活體辨識模組所產生之該活體辨識結果判斷該辨識目標是否通過活體辨識。 A system for recognizing actions in an image to determine whether a target is a living body. The system at least includes: an image capturing module; and a processing module electrically connected to the image capturing module for executing at least one computer The instruction is generated after the execution of the at least one computer instruction: an action selection module for determining a predetermined number of specified actions, each of the specified actions includes a facial movement and a hand movement; a living body recognition module, It is used to perform a living body recognition operation and generate a corresponding living body recognition result, wherein the living body recognition operation includes capturing multiple target images including a face of a recognition target through the image capturing module, and using the The target images judge whether the recognition target completes the specified actions determined by the action selection module in sequence; and a result judgment module for judging the recognition target according to the living body recognition result generated by the living body recognition module Whether to recognize by living body. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該系統更包含一客戶通訊模組,用以傳送該些目標影像至一伺服器,該伺服器更包含一伺服通訊模組及一影像檢測模組,該伺服通訊模組用以接收該些目標影像,該影像檢測模組用以判斷該目標影像之一影像深度及/或一影像資訊並依據該影像深度及/或該影像資訊產生一影像判斷結果並由該伺服通訊模組將包含或表示該影像判斷結果之該影像檢測結果傳送至該客戶通訊模組,該結果判斷模組更用以依據該活體識別結果及該客戶通訊模組所接收到之該影像檢測結果判斷該辨識目標是否通過活體辨識。 The system for identifying the action in the image to determine whether the target is a living body as described in claim 1, wherein the system further includes a client communication module for transmitting the target images to a server, and the server further includes a Servo communication module and an image detection module, the servo communication module is used to receive the target images, the image detection module is used to determine an image depth and/or an image information of the target image and based on the image depth And/or the image information generates an image judgment result, and the servo communication module transmits the image detection result including or representing the image judgment result to the client communication module, and the result judgment module is further used to base the living body The recognition result and the image detection result received by the client communication module determine whether the recognition target passes the living body recognition. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該系統更包含一資料取得模組及一客戶通訊模組,該資料取得模組用以取得一身分識別資料,該客戶通訊模組用以傳送該些目標影像及一身分識別資料至一伺服器,該伺服器更包含一伺服通訊模組及一影像比對模組,該伺服通訊模組用以接收該些目標影像及該身分識別資料及用以依據該身分識別資料由可信伺服器下載包含該辨識目標之臉部之一可信影像,該影像比對模組用以比對該可信影像與該目標影像中之臉部以產生一影像比對結果並由該伺服通訊模組將包含或表示該影像比對結果之該影像檢測結果傳送至該客戶通訊模組,該結果判斷模組更用以依據該活體識別結果及該客戶通訊模組所接收到之該影像檢測結果判斷該辨識目標是否通過活體辨識。 The system for identifying the action in the image to determine whether the target is a living body as described in claim 1, wherein the system further includes a data acquisition module and a customer communication module, and the data acquisition module is used to obtain an identification data , The client communication module is used to send the target images and an identification data to a server, the server further includes a servo communication module and an image comparison module, the server communication module is used to receive the The target images and the identification data are used to download a credible image containing the face of the identified target from a trusted server based on the identity identification data, and the image comparison module is used to compare the credible image with The face in the target image is used to generate an image comparison result, and the servo communication module transmits the image detection result including or representing the image comparison result to the client communication module, and the result judgment module is further used Based on the living body identification result and the image detection result received by the client communication module, it is determined whether the identification target passes the living body identification. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該動作選擇模組是由動作資料庫中隨機選擇該預定數量之臉部動作與手部動作,並逐一結合一該臉部動作與一該手部動作以產生該些指定動作,且該活體辨識模組是依序對每一該目標影像進行人臉辨識及動作偵測,並依據人臉辨識結果及動作偵測結果判斷各該目標影像中該辨識目標之人臉與手勢是否分別與各該臉部動作及各該手部動作相符以產生該活體辨識結果。 The system for recognizing the action in the image to determine whether the target is a living body as described in claim 1, wherein the action selection module randomly selects the predetermined number of facial and hand actions from the action database, and combines them one by one A facial motion and a hand motion to generate the designated motions, and the living body recognition module performs face recognition and motion detection on each target image in sequence, and based on the face recognition results and motions The detection result determines whether the human face and gesture of the recognition target in each target image are respectively consistent with each of the facial motions and each of the hand motions to generate the living body recognition result. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該活體辨識模組是在該辨識目標依序完成該些指定動作時產生表示通過活體辨識之該活體辨識結果,並在該辨識目標未成功完成該些指定動作其中之一時產生表示沒有通過活體辨識之該活體辨識結果。 The system for recognizing the action in the image to determine whether the target is a living body as described in claim 1, wherein the living body recognition module generates the living body recognition result indicating that the living body is recognized when the recognizing target completes the specified actions in sequence , And when the identification target does not successfully complete one of the specified actions, the living body identification result indicating that the living body identification has not passed is generated. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該影像擷取模組是在偵測到臉部達到影像擷取範圍之一定比例時擷取該目標影像。 The system for recognizing the action in the image to determine whether the target is a living body as described in claim 1, wherein the image capturing module captures the target image when it detects that the face reaches a certain proportion of the image capturing range. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該活體辨識模組更用以判斷該活體辨識作業之過程中是否為偵測到該辨識目標之臉部,該結果判斷模組更用以於該活體辨識模組判斷該活體辨識作業之過程中未偵測到該辨識目標之臉部時判斷該辨識目標沒有通過活體辨識。 The system for recognizing the action in the image to determine whether the target is a living body as described in claim 1, wherein the living body recognition module is further used to determine whether the face of the recognition target is detected in the process of the living body recognition operation, The result judgment module is further used for judging that the recognition target has not passed the living body recognition when the living body recognition module judges that the face of the recognition target is not detected in the process of the living body recognition operation. 如請求項1所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該系統更包含一資料取得模組及一特徵取得模組,該資料取得模組用以取得一身分識別資料,該特徵取得模組用以依據該身分識別資料取得一人體特徵,該動作選擇模組更用以決定符合該人體特徵之該些指定動作。 The system for identifying the action in the image to determine whether the target is a living body as described in claim 1, wherein the system further includes a data acquisition module and a feature acquisition module, and the data acquisition module is used to obtain an identity data The feature obtaining module is used to obtain a human body feature according to the identity identification data, and the action selection module is further used to determine the designated actions that conform to the human body feature. 一種辨識影像中之動作以判斷目標是否為活體之系統,該系統至少包含:一客戶端,其中更包含:一影像擷取模組;一動作選擇模組,用以決定一預定數量之指定動作,每一該指定動作包含一臉部動作及一手部動作;一活體辨識模組,用以進行一活體辨識作業,並產生相對應之一活體辨識結果,其中,該活體辨識作業包含透過該影像擷取模組擷取包含一辨識目標之臉部之多個目標影像,及由該些目標影像判斷該辨識目標是否依序完成該些指定動作;及 一結果判斷模組;及一伺服器,提供該客戶端連接,其中更包含:一伺服通訊模組,用以接收該客戶端所傳送之該些目標影像至少其中之一;及一影像檢測模組,用以判斷該至少一目標影像之一影像深度及/或一影像資訊,並依據該影像深度及/或該影像資訊產生一影像判斷結果,該伺服通訊模組更用以將包含或表示該影像判斷結果之該影像檢測結果傳送至該客戶端,使該結果判斷模組依據該活體識別結果及該影像檢測結果判斷該辨識目標是否通過活體辨識。 A system for identifying actions in an image to determine whether a target is a living body. The system at least includes: a client, which further includes: an image capture module; an action selection module for determining a predetermined number of specified actions , Each of the specified actions includes a facial movement and a hand movement; a living body recognition module for performing a living body recognition task and generating a corresponding living body recognition result, wherein the living body recognition task includes passing through the image The capturing module captures multiple target images including the face of a recognition target, and determines from the target images whether the recognition target completes the specified actions in sequence; and A result judgment module; and a server for providing the client connection, which further includes: a server communication module for receiving at least one of the target images transmitted by the client; and an image detection module Group for determining an image depth and/or image information of the at least one target image, and generating an image determination result based on the image depth and/or the image information, and the servo communication module is further used to include or indicate The image detection result of the image judgment result is sent to the client, so that the result judgment module judges whether the identification target passes the living body identification according to the living body recognition result and the image detection result. 如請求項9所述之辨識影像中之動作以判斷目標是否為活體之系統,其中該客戶端更包含一資料取得模組,該資料取得模組用以取得一身分識別資料,該伺服器更包含一影像比對模組,且該伺服通訊模組更用以接收該身分識別資料,及用以依據該身分識別資料由可信伺服器下載包含該辨識目標之臉部之一可信影像,該影像比對模組用以比對該可信影像與該目標影像中之臉部以產生一影像比對結果,該伺服通訊模組更用以將包含或表示該影像比對結果之該影像檢測結果傳送至該客戶端,使該結果判斷模組依據該活體識別結果及該影像檢測結果判斷該辨識目標是否通過活體辨識。 For example, the system for identifying the action in the image to determine whether the target is a living body described in claim 9, wherein the client further includes a data acquisition module, the data acquisition module is used to obtain an identity data, and the server further Comprising an image comparison module, and the server communication module is further used for receiving the identity identification data, and used for downloading a credible image containing the face of the identification target from the credible server according to the identity identification data; The image comparison module is used for comparing the credible image with the face in the target image to generate an image comparison result, and the servo communication module is used for comparing the image containing or representing the image comparison result The detection result is transmitted to the client, so that the result judgment module judges whether the identification target passes the living body identification according to the living body recognition result and the image detection result.
TW110204143U 2021-04-15 2021-04-15 System of identifying living body by recognizing actions of image TWM615971U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110204143U TWM615971U (en) 2021-04-15 2021-04-15 System of identifying living body by recognizing actions of image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110204143U TWM615971U (en) 2021-04-15 2021-04-15 System of identifying living body by recognizing actions of image

Publications (1)

Publication Number Publication Date
TWM615971U true TWM615971U (en) 2021-08-21

Family

ID=78285385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110204143U TWM615971U (en) 2021-04-15 2021-04-15 System of identifying living body by recognizing actions of image

Country Status (1)

Country Link
TW (1) TWM615971U (en)

Similar Documents

Publication Publication Date Title
JP6518694B2 (en) Method and system for performing identity verification
CN111886842B (en) Remote user authentication using threshold-based matching
EP4022474A2 (en) Id verification with a mobile device
CN111665948A (en) Off-site service handling method and VR system
WO2018205468A1 (en) Biometric transaction processing method, electronic device and storage medium
Safaa El‐Din et al. Deep convolutional neural networks for face and iris presentation attack detection: Survey and case study
KR20220136960A (en) Online Test System using face contour recognition AI to prevent the cheating behaviour and method thereof
JP2024138481A (en) Program, control device, and control method
KR20230007249A (en) UBT system using face contour recognition AI to prevent the cheating behaviour and method thereof
TWM606868U (en) Device for identifying identity based on document image and living body image
KR20230017454A (en) Method, Device and Computer Program For Preventing Cheating In Non-face-to-face Evaluation
US20220343617A1 (en) Image analysis device, control method, and program
KR20220017329A (en) Online Test System using face contour recognition AI to prevent the cheating behaviour by using a front camera of examinee terminal installed audible video recording program and a auxiliary camera and method thereof
CN109995761B (en) Service processing method and device, electronic equipment and storage medium
TWI844770B (en) System for recognizing specified actions in images to determine target is alive and method thereof
TWM606869U (en) Device for recognizing identity by comparing document image and multi-state face image
KR20210136771A (en) UBT system using face contour recognition AI and method thereof
TWM615971U (en) System of identifying living body by recognizing actions of image
AU2022204469B2 (en) Large pose facial recognition based on 3D facial model
TWM610179U (en) Device for identifying identity based on chip pre-stored image and real-time in vivo image
CN115906028A (en) User identity verification method and device and self-service terminal
TWI786438B (en) System for identification based on comparing id photo and live photo and method thereof
TWI807219B (en) System for performing identification based on comparing photo stored in chip and real-time live photo and method thereof
TWI787655B (en) System for identification based on comparing id photo and live photo and method thereof
JP2022117025A (en) Method for personal identification, program, and information system