TWM613509U - Flexible touch device capable of pressure sensing - Google Patents

Flexible touch device capable of pressure sensing Download PDF

Info

Publication number
TWM613509U
TWM613509U TW110200186U TW110200186U TWM613509U TW M613509 U TWM613509 U TW M613509U TW 110200186 U TW110200186 U TW 110200186U TW 110200186 U TW110200186 U TW 110200186U TW M613509 U TWM613509 U TW M613509U
Authority
TW
Taiwan
Prior art keywords
layer
surface layer
flexible touch
pressure
device capable
Prior art date
Application number
TW110200186U
Other languages
Chinese (zh)
Inventor
盧志宏
高偉豪
Original Assignee
全台晶像股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全台晶像股份有限公司 filed Critical 全台晶像股份有限公司
Priority to TW110200186U priority Critical patent/TWM613509U/en
Publication of TWM613509U publication Critical patent/TWM613509U/en

Links

Images

Landscapes

  • Position Input By Displaying (AREA)

Abstract

一種可供感測壓力的軟性觸控裝置,包含有一表面層及一軟性觸控面板,該表面層為彈性結構;該軟性觸控面板設置於該表面層的下表面;其中,該表面層的形變造成的介電常數變化干涉該軟性觸控面板產生的電容值。藉由具彈性的該表面層及該軟性觸控面板,本新型設置於器械裝置上時能結合於非平面的表面上提供感測功能,而當該表面層與一物體接觸而產生形變時,該軟性觸控面板可感測因該表面層的介電常數變化而造成的電容量變化,以供執行壓力感測。A flexible touch device capable of sensing pressure includes a surface layer and a flexible touch panel. The surface layer is an elastic structure; the flexible touch panel is disposed on the lower surface of the surface layer; The change in the dielectric constant caused by the deformation interferes with the capacitance value generated by the flexible touch panel. With the elastic surface layer and the soft touch panel, the present invention can be combined with a non-planar surface to provide a sensing function when it is installed on a device, and when the surface layer is in contact with an object and deforms, The flexible touch panel can sense changes in capacitance caused by changes in the dielectric constant of the surface layer for pressure sensing.

Description

可供感測壓力的軟性觸控裝置Flexible touch device capable of sensing pressure

一種觸控裝置,尤指一種可供感測壓力的軟性觸控裝置。A touch device, especially a soft touch device capable of sensing pressure.

皮膚為人類以觸覺、溫度、壓力等方式感知外界環境的主要器官,而義肢輔具及機器人科技等皆是在模擬人類肢體或人體動作,以現有的義肢輔具為例,雖然義肢輔具能裝設於使用者身上,用以作為使用者的替代四肢或關節等,解決使用者肢體上的功能障礙,然而現有的義肢輔具缺乏人類皮膚對環境及安全性的感知,舉例來說,當義肢輔具碰撞到物品時,使用者雖可透過聲響或震動察覺到義肢輔具與物品間碰撞,但使用者無法透過義肢輔具感受物品的溫度高低,或判斷物品是否尖銳物,容易對使用者造成危險,為提升義肢輔具或機器人在替代或模擬人類動作的精確性、協調性與安全性,業界開始研發模擬人類皮膚感知觸覺、溫度及壓力的感測技術。Skin is the main organ for humans to perceive the external environment through touch, temperature, pressure, etc., while prosthetic assistive devices and robotics technology are all simulating human limbs or human movements. Take the existing prosthetic assistive devices as an example, although prosthetic assistive devices can It is installed on the user as a substitute for the limbs or joints of the user to solve the dysfunction of the user’s limbs. However, the existing prosthetic assistive devices lack human skin’s perception of the environment and safety. For example, when When the prosthetic assistive device collides with an object, although the user can detect the collision between the prosthetic assistive device and the object through sound or vibration, the user cannot feel the temperature of the object through the prosthetic assistive device, or judge whether the object is sharp, and it is easy to use In order to improve the accuracy, coordination and safety of prosthetic assistive devices or robots in replacing or simulating human movements, the industry has begun to develop sensing technologies that simulate human skin's sense of touch, temperature and pressure.

為模擬人類皮膚的觸覺及壓力感測能力,已有廠商於觸控裝置中增加壓力感測結構,以壓力感測技術與電容式觸控技術來感測觸碰的座標與觸碰的壓力大小。進一步參看圖4A及圖4B所示,以結合壓力感測結構的一觸控裝置100為例,該觸控裝置100包含有一觸控面板110及一壓力感測屏幕120,該觸控面板110的表面設置有複數觸控電極111,圖4A僅以單一觸控電極111為例,該壓力感測屏幕120設置於該觸控面板110的表面上,並覆蓋該複數觸控電極111,該壓力感測屏幕120與該複數觸控電極111間具有一空隙130,且該壓力感測屏幕120為可導電的軟式彈性結構。圖4A為該壓力感測屏幕120無被施壓時的示意圖,該複數觸控電極111及該壓力感測屏幕120的間隔距離為D3;圖4B則為該壓力感測屏幕120受施壓的示意圖,由於該壓力感測屏幕120受壓而形變,該壓力感測屏幕120朝該複數觸控電極111的方向凹陷,使得該複數觸控電極111與該壓力感測屏幕120間的最短間隔距離縮短為D4,其中,該複數觸控電極111可感測使用者觸控按壓時,該複數觸控電極111與使用者手指間的電容變化,再由運算單元計算出觸控座標,該複數觸控電極111及該壓力感測屏幕120則可進一步視為兩個導體,電容公式為電容

Figure 02_image001
,ε為介電常數,A為該複數觸控電極111及該壓力感測屏幕120上下重疊的面積,D為該複數觸控電極111及該壓力感測屏幕120的間隔距離,當間隔距離由D3變為D4時電容C便會產生變化,該觸控裝置100的運算單元便可根據間隔距離D造成的電容C變化來計算使用者的按壓力道,藉此達到模擬人類皮膚的觸覺及壓力感測目的。 In order to simulate the tactile and pressure sensing capabilities of human skin, manufacturers have added pressure sensing structures to touch devices, using pressure sensing technology and capacitive touch technology to sense the coordinates and pressure of a touch. . 4A and 4B, a touch device 100 combined with a pressure sensing structure as an example, the touch device 100 includes a touch panel 110 and a pressure sensing screen 120, the touch panel 110 A plurality of touch electrodes 111 are arranged on the surface. FIG. 4A only takes a single touch electrode 111 as an example. The pressure sensing screen 120 is arranged on the surface of the touch panel 110 and covers the plurality of touch electrodes 111. There is a gap 130 between the measuring screen 120 and the plurality of touch electrodes 111, and the pressure sensing screen 120 is a conductive soft elastic structure. 4A is a schematic diagram of the pressure sensing screen 120 when no pressure is applied, the distance between the plurality of touch electrodes 111 and the pressure sensing screen 120 is D3; FIG. 4B is the pressure sensing screen 120 being pressed In the schematic diagram, since the pressure sensing screen 120 is deformed under pressure, the pressure sensing screen 120 is recessed in the direction of the plurality of touch electrodes 111, so that the shortest separation distance between the plurality of touch electrodes 111 and the pressure sensing screen 120 Shortened to D4, where the plurality of touch electrodes 111 can sense the change in capacitance between the plurality of touch electrodes 111 and the user’s finger when the user touches and presses, and then the arithmetic unit calculates the touch coordinates. The control electrode 111 and the pressure sensing screen 120 can be further regarded as two conductors, and the capacitance formula is capacitance
Figure 02_image001
, Ε is the dielectric constant, A is the area where the plurality of touch electrodes 111 and the pressure sensing screen 120 overlap up and down, D is the separation distance between the plurality of touch electrodes 111 and the pressure sensing screen 120, when the separation distance is When D3 becomes D4, the capacitance C will change. The computing unit of the touch device 100 can calculate the user's pressing force based on the change in capacitance C caused by the separation distance D, thereby simulating the touch and pressure of human skin. Sensing purpose.

然而目前該觸控裝置100只由間隔距離D變化最大處造成的電容C變化計算按壓力道及觸控座標,只能感測物體的碰撞(按壓)力道大小,而無法感測物體的形狀,舉例來說,若以習知結合壓力感測結構的觸控裝置100模擬人體皮膚,該觸控裝置100無法透過物體對該壓力感測屏幕120的碰撞(按壓)力道大小來輔助使用者辨別物體形狀、大小或物體的尖銳程度,因此,結合壓力感測技術的觸控裝置勢必需要更進一步的改良。However, the current touch device 100 only calculates the pressing force and the touch coordinates from the change in capacitance C caused by the largest change in the separation distance D, and can only sense the impact (pressing) force of an object, but cannot sense the shape of the object. For example, if a conventional touch device 100 combined with a pressure sensing structure is used to simulate human skin, the touch device 100 cannot assist the user in distinguishing the object through the impact (pressing) force of the object on the pressure sensing screen 120 The shape, size, or sharpness of the object, therefore, touch devices incorporating pressure sensing technology must be further improved.

有鑑於此,本新型提供一種可供感測壓力的軟性觸控裝置,透過感測觸控裝置上形變區域內介電常數變化,計算物體對觸控裝置造成的壓力大小及物體的樣態,以期克服先前技術中結合壓力感測結構的觸控裝置無法透過物體對的碰撞(按壓)力道大小來輔助使用者辨別物體形狀、大小或物體的尖銳程度的問題。In view of this, the present invention provides a flexible touch device capable of sensing pressure. By sensing the change in the dielectric constant in the deformed area on the touch device, the pressure caused by the object on the touch device and the shape of the object are calculated. In order to overcome the problem in the prior art that the touch device combined with the pressure sensing structure cannot assist the user to distinguish the shape, size or sharpness of the object through the impact (pressing) force of the object pair.

為達成前述目的,本新型可供感測壓力的軟性觸控裝置包含有: 一表面層,該表面層為彈性結構; 一軟性觸控面板,設置於該表面層的下表面; 其中,該表面層的形變造成的介電常數變化干涉該軟性觸控面板產生的電容值。 In order to achieve the foregoing objective, the soft touch device capable of sensing pressure of the present invention includes: A surface layer, the surface layer is an elastic structure; A flexible touch panel arranged on the lower surface of the surface layer; Wherein, the change in the dielectric constant caused by the deformation of the surface layer interferes with the capacitance value generated by the flexible touch panel.

本新型可供感測壓力的軟性觸控裝置中,藉由具彈性的該表面層及該軟性觸控面板,本新型可設置於器械裝置上時能結合於非平面的表面上提供感測功能,而當該表面層與物體接觸而產生形變時,該軟性觸控面板可感測因該表面層的介電常數變化而造成的電容量變化,藉此供實施辨別物體形狀、大小或物體的尖銳程,舉例來說,若以本新型的表面層與軟性觸控面板模擬人體皮膚,即可輔助使用者辨別物體形狀、大小或物體的尖銳程度。In the flexible touch device capable of sensing pressure, the flexible surface layer and the flexible touch panel of the present invention can be combined with a non-planar surface to provide a sensing function when installed on a device. , And when the surface layer is in contact with an object and deforms, the flexible touch panel can sense the change in capacitance caused by the change in the dielectric constant of the surface layer, so that it can be used to identify the shape, size or object of the object. The sharpness process, for example, if the surface layer and the soft touch panel of the present invention are used to simulate human skin, it can assist the user to distinguish the shape, size, or sharpness of the object.

請參看圖1所示,於一實施例中,本新型可供感測壓力的軟性觸控裝置包含有一表面層10及一軟性觸控面板20,該表面層10設置於該軟性觸控面板20的上表面,且該表面層10經由一第一光學膠層11與該軟性觸控面板20連接,其中,該表面層10可為具有彈性的層狀結構,其可由矽膠等具彈性的材料所構成,該第一光學膠層11可由固態透明光學膠帶(Optically Clear Adhesive, OCA)或液態透明光學膠(Optical Clear Resin, OCR)構成。Please refer to FIG. 1. In one embodiment, the flexible touch device capable of sensing pressure of the present invention includes a surface layer 10 and a flexible touch panel 20. The surface layer 10 is disposed on the flexible touch panel 20. The surface layer 10 is connected to the flexible touch panel 20 via a first optical adhesive layer 11, wherein the surface layer 10 can be a layered structure with elasticity, which can be made of elastic materials such as silicone The first optical adhesive layer 11 can be composed of a solid transparent optical adhesive (Optically Clear Adhesive, OCA) or a liquid transparent optical adhesive (Optical Clear Resin, OCR).

該軟性觸控面板20包含有一第一薄膜層21、一第一電極層22、一第二薄膜層23及一第二電極層24,該第一電極層22設置於該第一薄膜層21的上表面,且該第一電極層22包含有複數第一軸向電極(例如X軸向),該第二薄膜層23設置於該第一電極層22的上表面,該第二電極層24設置於該第二薄膜層23的上表面,並透過該第一光學膠層11與該表面層10連接,且該第二電極層24包含有複數第二軸向電極(例如Y軸向)。該第一薄膜層21與該第二薄膜層23可由軟性材料所構成,分別做為承載該第一電極層22與該第二電極層24的軟性基板,而該複數第一軸向電極及該複數第二軸向電極可應用自電容感測技術,根據使用者的觸控操作產生相對應的感測訊號,其中,該第一電極層22與該第二薄膜層23間亦可透過一第二光學膠層25相互連接,該第二光學膠層25可由固態透明光學膠帶(Optically Clear Adhesive, OCA)或液態透明光學膠(Optical Clear Resin, OCR)構成。The flexible touch panel 20 includes a first thin film layer 21, a first electrode layer 22, a second thin film layer 23, and a second electrode layer 24. The first electrode layer 22 is disposed on the first thin film layer 21. The upper surface, and the first electrode layer 22 includes a plurality of first axial electrodes (for example, X-axis), the second film layer 23 is disposed on the upper surface of the first electrode layer 22, and the second electrode layer 24 is disposed It is on the upper surface of the second film layer 23 and is connected to the surface layer 10 through the first optical adhesive layer 11, and the second electrode layer 24 includes a plurality of second axis electrodes (for example, Y axis). The first thin film layer 21 and the second thin film layer 23 can be made of soft materials, and serve as flexible substrates for supporting the first electrode layer 22 and the second electrode layer 24, and the plurality of first axial electrodes and the The plurality of second axial electrodes can use self-capacitance sensing technology to generate corresponding sensing signals according to the user's touch operation. Among them, the first electrode layer 22 and the second film layer 23 can also pass through a first electrode layer 22 and the second thin film layer 23. The two optical adhesive layers 25 are connected to each other, and the second optical adhesive layer 25 may be composed of a solid transparent optical adhesive (Optically Clear Adhesive, OCA) or a liquid transparent optical adhesive (Optical Clear Resin, OCR).

由於本新型的該表面層10為彈性材料,且該第一電極層22及該第二電極層24分別設置於由軟性材料構成的該第一薄膜層21與該第二薄膜層23上,當本新型觸控裝置設置於非平面的物體或設備上時,該可供感測壓力的軟性觸控裝置能隨物體的表面曲線而彎曲,進而貼合物體的表面。Since the surface layer 10 of the present invention is made of an elastic material, and the first electrode layer 22 and the second electrode layer 24 are respectively disposed on the first thin film layer 21 and the second thin film layer 23 made of soft material, when When the novel touch device is installed on a non-planar object or device, the soft touch device capable of sensing pressure can bend with the surface curve of the object, and then adhere to the surface of the object.

請參看圖2所示,於本實施例中,該軟性觸控面板20電連接一觸控晶片30,該觸控晶片30電連接一運算控制器40;其中,該觸控晶片30電連接該第一電極層22中的該複數第一軸向電極及該第二電極層24中的該複數第二軸向電極,該觸控晶片30接收該複數第一軸向電極及該複數第二軸向電極所感測的電容變化,並根據該複數第一軸向電極及該複數第二軸向電極感測到的電容變化量產生一壓力訊號,該運算控制器40電連接該觸控晶片30以接收該觸控晶片30的該壓力訊號,並根據該壓力訊號進行一壓力感測演算法及一壓力位置判斷演算法的運算,計算物體對該表面層10所產生的壓力大小及該表面層10的受壓位置,並以此得知該表面層10受壓力影響的面積大小。其中,該觸控晶片30與該運算控制器40例如可為積體電路元件(IC)。Please refer to FIG. 2. In this embodiment, the flexible touch panel 20 is electrically connected to a touch chip 30, and the touch chip 30 is electrically connected to an arithmetic controller 40; wherein, the touch chip 30 is electrically connected to the The plurality of first axis electrodes in the first electrode layer 22 and the plurality of second axis electrodes in the second electrode layer 24, the touch chip 30 receives the plurality of first axis electrodes and the plurality of second axis electrodes The capacitance sensed by the direction electrode changes, and generates a pressure signal according to the capacitance change sensed by the plurality of first axial electrodes and the plurality of second axial electrodes. The arithmetic controller 40 is electrically connected to the touch chip 30 to Receive the pressure signal of the touch chip 30, and perform a pressure sensing algorithm and a pressure position judgment algorithm calculation based on the pressure signal to calculate the pressure generated by the object on the surface layer 10 and the surface layer 10 The pressure position of the surface layer 10 can be used to know the area size of the surface layer 10 affected by pressure. Wherein, the touch chip 30 and the arithmetic controller 40 may be integrated circuit devices (IC), for example.

一般而言,電容值係與介電常數(ε)有直接相關,當導體或非導體的物體與表面層10接觸造成該表面層10受壓縮或推擠而發生形變時,該表面層10形變處的介電常數(ε)便會產生改變,使得該複數第一軸向電極及該複數第二軸向電極所感測的電容C發生變化,該觸控晶片30根據該複數第一軸向電極及該複數第二軸向電極所感測的電容C變化產生一壓力訊號,再由該運算控制器40根據該壓力訊號計算物體接觸該表面層10所產生的壓力大小、該表面層10的受壓位置及該表面層10受壓力影響的面積大小,其中,由於該表面層10本身為介電材料而具有一介電常數,當該表面層10設置於該軟性觸控面板20上,意即該表面層10覆蓋於該第一電極層22與該第二電極層24的感應區域上時,該表面層10亦會對該複數第一軸向電極與該複數第二軸向電極造成電容變化,因此該觸控晶片30產生該壓力訊號時可執行一環境校正演算法,在該觸控晶片30接收該複數第一軸向電極及該複數第二軸向電極所感測的電容變化量時,藉由該環境校正演算法去除該表面層10對該複數第一軸向電極及該複數第二軸向電極所造成的電容變化量,換句話說,該觸控晶片30透過該環境校正演算法將該複數第一軸向電極及該複數第二軸向電極所感測的電容變化量校正為0,使該壓力訊號只包含導體或非導體的物體對該表面層10造成形變時所產生的電容變化資訊。Generally speaking, the capacitance value is directly related to the dielectric constant (ε). When a conductive or non-conductive object contacts the surface layer 10 and causes the surface layer 10 to be compressed or pushed and deformed, the surface layer 10 deforms. The dielectric constant (ε) will change, so that the capacitance C sensed by the plurality of first axis electrodes and the plurality of second axis electrodes will change, and the touch chip 30 will change according to the plurality of first axis electrodes. And the change in capacitance C sensed by the plurality of second axial electrodes to generate a pressure signal, and the arithmetic controller 40 calculates the pressure generated by the object contacting the surface layer 10 and the pressure of the surface layer 10 according to the pressure signal. The position and the area of the surface layer 10 affected by pressure. The surface layer 10 itself is a dielectric material and has a dielectric constant. When the surface layer 10 is disposed on the flexible touch panel 20, it means the When the surface layer 10 covers the sensing regions of the first electrode layer 22 and the second electrode layer 24, the surface layer 10 will also cause capacitance changes to the plurality of first axis electrodes and the plurality of second axis electrodes. Therefore, when the touch chip 30 generates the pressure signal, an environment correction algorithm can be executed. When the touch chip 30 receives the capacitance changes sensed by the plurality of first axis electrodes and the plurality of second axis electrodes, The environmental correction algorithm removes the capacitance change caused by the surface layer 10 to the plurality of first axis electrodes and the plurality of second axis electrodes. In other words, the touch chip 30 uses the environment correction algorithm to The capacitance change sensed by the plurality of first axial electrodes and the plurality of second axial electrodes is corrected to 0, so that the pressure signal contains only conductor or non-conductor objects that deform the surface layer 10. News.

請參看圖3所示,為一物體50與該表面層10接觸,造成該表面層10發生形變的示意圖,本實施例以該物體50為非導體的一鉛筆為例,但該物體50可為導體或非導體,不以本實施例為限。當該物體50接觸該表面層10時,該表面層10的形變區域內的介電常數即產生變化,若該表面層10的介電常數為a,該物體50的介電常數為b,而空氣的介電常數為c,該表面層10的形變區域內的介電常數由物體50未接觸之原先的a變化為b與c的結合,使得該複數第一軸向電極及該複數第二軸向電極所感測的電容值產生變化,而當該觸控晶片30根據該複數第一軸向電極及該複數第二軸向電極所感測的電容變化量產生一壓力訊號後,該運算控制器40根據該壓力訊號先進行該壓力感測演算法,計算該物體50對該表面層10造成的形變區域內各處所受的壓力大小,再進行該壓力位置判斷演算法,計算該表面層10上受壓位置的座標,並計算該表面層10受壓力影響的面積大小。Please refer to FIG. 3, which is a schematic diagram of an object 50 contacting the surface layer 10, causing the surface layer 10 to deform. In this embodiment, the object 50 is a pencil with a non-conductor as an example, but the object 50 may be Conductor or non-conductor is not limited to this embodiment. When the object 50 contacts the surface layer 10, the dielectric constant in the deformation region of the surface layer 10 changes. If the dielectric constant of the surface layer 10 is a, the dielectric constant of the object 50 is b, and The dielectric constant of air is c, and the dielectric constant in the deformation region of the surface layer 10 changes from the original a without contact of the object 50 to the combination of b and c, so that the plurality of first axial electrodes and the plurality of second axial electrodes The capacitance value sensed by the axial electrodes changes, and when the touch chip 30 generates a pressure signal according to the capacitance changes sensed by the plurality of first axial electrodes and the plurality of second axial electrodes, the computing controller 40. According to the pressure signal, the pressure sensing algorithm is first performed to calculate the pressure of the object 50 on the surface layer 10 in the deformation area, and then the pressure position judgment algorithm is performed to calculate the pressure position on the surface layer 10. The coordinates of the pressure position are calculated, and the area of the surface layer 10 affected by the pressure is calculated.

除了該物體50對該表面層10主要的受壓點,即圖3中該物體50與該表面層10的接觸位置外,該物體50對該表面層10的施壓會造成受壓點周圍的該表面層10連帶產生形變,即圖3中介電常數為c的區域,本新型的該複數第一軸向電極及該複數第二軸向電極感測該表面層10上介電常數有變化的區域,再由該運算控制器40根據該壓力訊號計算該表面層10上形變區域內各處所受的壓力大小、各個受壓位置的座標及受壓力影響的面積大小,且該運算控制器40可將計算結果輸出至後端電子裝置,供後端電子裝置根據壓力感測的計算結果執行進一步操作。與習知技術只透過導體間的間隔距離變化最大處的電容變化量,計算受壓力道大小與受壓座標相比,根據本新型所計算的該表面層10上形變區域內各處所受的壓力大小、各個受壓位置的座標及受壓力影響的面積大小,能夠輔助判斷該物體50的形狀及該物體50對該表面層10造成壓力影響的範圍大小及施力分布。Except for the main pressure point of the object 50 on the surface layer 10, that is, the contact position of the object 50 and the surface layer 10 in FIG. 3, the pressure of the object 50 on the surface layer 10 will cause pressure around the pressure point. The surface layer 10 is deformed, that is, the area with a dielectric constant of c in FIG. 3. The plurality of first axial electrodes and the plurality of second axial electrodes of the present invention sense changes in the dielectric constant of the surface layer 10 According to the pressure signal, the calculation controller 40 calculates the size of the pressure, the coordinates of each pressure position and the area affected by the pressure in the deformation area on the surface layer 10 according to the pressure signal, and the calculation controller 40 can The calculation result is output to the back-end electronic device for the back-end electronic device to perform further operations according to the pressure-sensing calculation result. Compared with the prior art technique, only the capacitance change at the point where the distance between the conductors changes the most to calculate the size of the pressure channel and the pressure coordinates. According to the present invention, the pressure on the surface layer 10 in the deformation area is calculated. The size, the coordinates of each pressure position and the size of the area affected by the pressure can assist in determining the shape of the object 50 and the size and force distribution of the pressure effect of the object 50 on the surface layer 10.

綜上所述,本新型可供感測壓力的軟性觸控裝置中,該表面層10、該第一薄膜層21、該第二薄膜層23皆由具彈性或軟性的材料所構成,使本新型可設置於器械裝置上時能結合於非平面的表面上提供感測功能,且本新型可供感測壓力的軟性觸控裝置透過該觸控晶片30根據該複數第一軸向電極及該複數第二軸向電極所感測的電容變化量產生一壓力訊號,再由該運算控制器40根據該壓力訊號計算物體接觸該表面層10所產生的壓力大小、該表面層10的受壓位置及該表面層10受壓力影響的面積大小,當本新型可供感測壓力的軟性觸控裝置結合於義肢輔具、機器人等器械裝置上時,本新型能模擬人體皮膚的感知,經由物體接觸該表面層10所產生的壓力大小、該表面層10的受壓位置及該表面層10受壓力影響的面積大小,協助器械裝置判斷物體的大小、形狀、物體對該表面層10造成壓力影響的範圍大小及施力分布,增加器械在模擬人類肢體上的協調性,並進一步以此得知物體對義肢輔具的使用者或機器人裝置是否會造成安全上的威脅等,達到提升可供感測壓力的軟性觸控裝置在模擬人類皮膚感知功能上的能力。In summary, in the soft touch device capable of sensing pressure of the present invention, the surface layer 10, the first film layer 21, and the second film layer 23 are all made of elastic or soft materials, so that the The new type can be combined on a non-planar surface to provide a sensing function when it is installed on an instrument device, and the new type of flexible touch device capable of sensing pressure is based on the touch chip 30 according to the plurality of first axial electrodes and the The capacitance change sensed by the plurality of second axial electrodes generates a pressure signal, and the calculation controller 40 calculates the pressure generated by the object contacting the surface layer 10, the pressure position of the surface layer 10, and the pressure signal according to the pressure signal. The size of the area of the surface layer 10 affected by pressure. When the new type of soft touch device capable of sensing pressure is combined with prosthetic aids, robots and other equipment devices, the new type can simulate the perception of human skin and contact the device through objects. The pressure generated by the surface layer 10, the pressure position of the surface layer 10 and the area of the surface layer 10 affected by the pressure, assist the device to determine the size and shape of the object, and the range of pressure that the object exerts on the surface layer 10 The size and force distribution increase the coordination of the device in simulating human limbs, and further know whether the object poses a safety threat to the user of the prosthetic assistive device or the robot device, etc., so as to increase the available sensing pressure The ability of the soft touch device to simulate the perception function of human skin.

10:表面層 11:第一光學膠層 20:軟性觸控面板 21:第一薄膜層 22:第一電極層 23:第二薄膜層 24:第二電極層 25:第二光學膠層 30:觸控晶片 40:運算控制器 50:物體 100:觸控裝置 110:觸控面板 111:電極 120:壓力感測屏幕 130:空隙10: Surface layer 11: The first optical adhesive layer 20: Flexible touch panel 21: The first film layer 22: The first electrode layer 23: second film layer 24: second electrode layer 25: The second optical adhesive layer 30: Touch chip 40: Operation controller 50: Object 100: Touch device 110: Touch panel 111: Electrode 120: Pressure sensing screen 130: gap

圖1:本新型可供感測壓力的軟性觸控裝置的結構示意圖。 圖2:本新型可供感測壓力的軟性觸控裝置的方塊示意圖。 圖3:物件對本新型可供感測壓力的軟性觸控裝置的側視示意圖。 圖4A:習知觸控顯示裝置其壓力感測屏幕與電極的剖面側視示意圖。 圖4B:習知觸控顯示裝置其壓力感測屏幕受按壓的剖面側視示意圖。 Figure 1: A schematic diagram of the structure of the new flexible touch device capable of sensing pressure. Figure 2: The block diagram of the new flexible touch device capable of sensing pressure. Figure 3: A schematic side view of an object to the new type of soft touch device capable of sensing pressure. Fig. 4A: A schematic cross-sectional side view of the pressure sensing screen and electrodes of the conventional touch display device. Fig. 4B: A schematic cross-sectional side view of the pressure sensing screen of the conventional touch display device being pressed.

10:表面層 10: Surface layer

11:第一光學膠層 11: The first optical adhesive layer

20:觸控面板 20: Touch panel

21:第一薄膜層 21: The first film layer

22:第一電極層 22: The first electrode layer

23:第二薄膜層 23: second film layer

24:第二電極層 24: second electrode layer

25:第二光學膠層 25: The second optical adhesive layer

Claims (7)

一種可供感測壓力的軟性觸控裝置,包含有: 一表面層,該表面層為彈性結構; 一軟性觸控面板,設置於該表面層的下表面; 其中,該表面層的形變造成的介電常數變化干涉該軟性觸控面板產生的電容值。 A soft touch device capable of sensing pressure, including: A surface layer, the surface layer is an elastic structure; A flexible touch panel arranged on the lower surface of the surface layer; Wherein, the change in the dielectric constant caused by the deformation of the surface layer interferes with the capacitance value generated by the flexible touch panel. 如請求項1所述之可供感測壓力的軟性觸控裝置,其中,該軟性觸控面板電連接一觸控晶片,該觸控晶片電連接一運算控制器; 當一物體對該表面層造成形變時,該觸控晶片根據該軟性觸控面板感測的電容變化量產生一壓力訊號給該運算控制器。 The flexible touch device capable of sensing pressure according to claim 1, wherein the flexible touch panel is electrically connected to a touch chip, and the touch chip is electrically connected to a computing controller; When an object deforms the surface layer, the touch chip generates a pressure signal to the computing controller according to the capacitance change sensed by the flexible touch panel. 如請求項1所述之可供感測壓力的軟性觸控裝置,該軟性觸控面板包含有: 一第一薄膜層; 一第一電極層,設置於該第一薄膜層的上表面,且該第一電極層包含有複數第一軸向電極; 一第二薄膜層,設置於該第一電極層的上表面; 一第二電極層,設置於該第二薄膜層的上表面與該表面層的下表面之間,且該第二電極層包含有複數第二軸向電極; 其中,該觸控晶片電連接該複數第一軸向電極及該複數第二軸向電極,該觸控晶片根據該複數第一軸向電極及該複數第二軸向電極感測的電容變化量產生該壓力訊號。 According to claim 1, the flexible touch device capable of sensing pressure, the flexible touch panel includes: A first film layer; A first electrode layer disposed on the upper surface of the first thin film layer, and the first electrode layer includes a plurality of first axial electrodes; A second thin film layer disposed on the upper surface of the first electrode layer; A second electrode layer disposed between the upper surface of the second film layer and the lower surface of the surface layer, and the second electrode layer includes a plurality of second axial electrodes; Wherein, the touch chip is electrically connected to the plurality of first axis electrodes and the plurality of second axis electrodes, and the touch chip senses capacitance changes according to the plurality of first axis electrodes and the plurality of second axis electrodes Generate the pressure signal. 如請求項1所述之可供感測壓力的軟性觸控裝置,該表面層經由一第一光學膠層與該軟性觸控面板連接。In the flexible touch device capable of sensing pressure as described in claim 1, the surface layer is connected to the flexible touch panel via a first optical adhesive layer. 如請求項4所述之可供感測壓力的軟性觸控裝置,該第一光學膠層由固態透明光學膠帶(Optically Clear Adhesive, OCA)或液態透明光學膠(Optical Clear Resin, OCR)構成。According to the flexible touch device capable of sensing pressure according to claim 4, the first optical adhesive layer is composed of a solid transparent optical adhesive (Optically Clear Adhesive, OCA) or a liquid transparent optical adhesive (Optical Clear Resin, OCR). 如請求項3所述之可供感測壓力的軟性觸控裝置,該第一電極層透過一第二光學膠層與該第二薄膜層連接。In the flexible touch device capable of sensing pressure according to claim 3, the first electrode layer is connected to the second film layer through a second optical adhesive layer. 如請求項6所述之可供感測壓力的軟性觸控裝置,該第二光學膠層由固態透明光學膠帶(Optically Clear Adhesive, OCA)或液態透明光學膠(Optical Clear Resin, OCR)構成。In the flexible touch device capable of sensing pressure according to claim 6, the second optical adhesive layer is composed of a solid transparent optical adhesive (Optically Clear Adhesive, OCA) or a liquid transparent optical adhesive (Optical Clear Resin, OCR).
TW110200186U 2021-01-07 2021-01-07 Flexible touch device capable of pressure sensing TWM613509U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110200186U TWM613509U (en) 2021-01-07 2021-01-07 Flexible touch device capable of pressure sensing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110200186U TWM613509U (en) 2021-01-07 2021-01-07 Flexible touch device capable of pressure sensing

Publications (1)

Publication Number Publication Date
TWM613509U true TWM613509U (en) 2021-06-21

Family

ID=77518443

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110200186U TWM613509U (en) 2021-01-07 2021-01-07 Flexible touch device capable of pressure sensing

Country Status (1)

Country Link
TW (1) TWM613509U (en)

Similar Documents

Publication Publication Date Title
US9965079B2 (en) Pressure-sensitive touch screen and touch display screen and electronic device
CN102012771B (en) Sensor device and information processing device
JP6032371B2 (en) Detection sensor and input device
US6002389A (en) Touch and pressure sensing method and apparatus
CN106445097B (en) Electronic device with shear force sensing
US10156949B2 (en) Force-touch sensor with multilayered electrodes
KR102361247B1 (en) In-cell touch type display device, touch circuit, display driver, and method for driving the in-cell touch type display device
TW202211009A (en) Touch display apparatus, stylus and sensing method of stylus
TW201533639A (en) Capacitive finger navigation module and manufacturing method thereof
TW201706803A (en) Touch 3D-signal input equipment and multi-function touch panel
JP4932773B2 (en) Capacitive pen
JP2013015976A (en) Multifunction sensor
CN208766625U (en) Capacitance sensor and for detecting the degree of approach, touch and the system of pressure
WO2017166813A1 (en) Pressure sensor, haptic feedback device and related devices
TW201928628A (en) Electronic device and methods of operating thereof and wireless controllable electronic assembly
US10180751B2 (en) Sensing device for force and tactile-proximity sensing
TWI717280B (en) Capacitive touch button
TWM522414U (en) High-precision force-touch sensor with multilayered electrodes
TWM613509U (en) Flexible touch device capable of pressure sensing
KR101676613B1 (en) Stylus pen for detecting pressure and preventing from recognition error of touch based on capacitive sensing type
KR20190004679A (en) Touch device, touch display device and driving method for touch device
JP2022190516A (en) capacitive pressure sensor
TWM534849U (en) Sensing device with pressure-tactile function
CN206271593U (en) A kind of button and electronic equipment
JP2019101876A (en) Input device, input control device, operated device, and program