TWM609087U - Drone flight management system - Google Patents

Drone flight management system Download PDF

Info

Publication number
TWM609087U
TWM609087U TW109215192U TW109215192U TWM609087U TW M609087 U TWM609087 U TW M609087U TW 109215192 U TW109215192 U TW 109215192U TW 109215192 U TW109215192 U TW 109215192U TW M609087 U TWM609087 U TW M609087U
Authority
TW
Taiwan
Prior art keywords
flight
drone
uav
flight management
data
Prior art date
Application number
TW109215192U
Other languages
Chinese (zh)
Inventor
林清一
Original Assignee
長榮大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長榮大學 filed Critical 長榮大學
Priority to TW109215192U priority Critical patent/TWM609087U/en
Publication of TWM609087U publication Critical patent/TWM609087U/en

Links

Images

Landscapes

  • Traffic Control Systems (AREA)

Abstract

一種無人機飛航管理系統,主要係無人機上配置一類自動回報監視通訊器(ADS-B Like),利用該類自動回報監視通訊器(ADS-B Like)於固定周期主動發出無人機的飛行數據,透過建置及分布在各地的通訊接收閘道裝置(Gateway)接收及中繼,將無人機的飛行數據、即時數據通過網際網路(Internet)傳送至無人機飛航管理系統(UTM)的雲端資料庫(cloud database),之後再經過網際網路(Internet)將該無人機的飛航資訊整合到地方性無人機飛航管理中心(RUTM)與全國型無人機飛航管理中心(NUTM),達到全面監控及管理的目的。An unmanned aerial vehicle flight management system, which is mainly equipped with a type of automatic report monitoring communicator (ADS-B Like) on the drone, and uses this type of automatic report monitoring communicator (ADS-B Like) to actively send out the flight of the drone in a fixed period The data is received and relayed through the built and distributed communication receiving gateway devices (Gateway), and the flight data and real-time data of the drone are transmitted to the drone flight management system (UTM) through the Internet (Internet) The UAV’s flight information is integrated into the local UAV flight management center (RUTM) and the national UAV flight management center (NUTM) via the Internet. ), to achieve the purpose of comprehensive monitoring and management.

Description

無人機飛航管理系統UAV flight management system

本創作是一種飛航管理系統,尤指針對無人機的飛航管理、監控加以規劃、建置的飛航管理系統。This creation is a flight management system, especially a flight management system that plans and builds the flight management and monitoring of UAVs.

按,無人機將開放可以在低空做各種用途的飛行。惟,大量的無人機飛上天空,將造成空域安全的隱憂。因此無人機必須建立類似有人機的回報監視技術,全面監視無人機的飛行,保障空中安全。雖然無人機的飛航管理(UAS Traffic Management, UTM)與有人機的飛航管理(Air Traffic Management, ATM)針對不同屬性的飛行器進行監控管理,但是飛行作業與安全規範大致相同,因此無人機的飛航管理(UTM)的技術應該從有人機的飛航管理(ATM)的基本規範來建設,以維護整體飛航安全。Press, the drone will be open to flying at low altitudes for various purposes. However, a large number of unmanned aerial vehicles flying into the sky will cause security concerns in the airspace. Therefore, UAVs must establish return monitoring technology similar to manned aircraft to fully monitor the flight of UAVs to ensure air safety. Although UAS Traffic Management (UAS Traffic Management, UTM) and Air Traffic Management (Air Traffic Management, ATM) of drones monitor and manage aircraft with different attributes, the flight operations and safety regulations are roughly the same. Flight management (UTM) technology should be built from the basic specifications of manned flight management (ATM) to maintain overall flight safety.

本創作無人機的飛航管理(UTM)系統,將依據民航局法規以400呎高度區隔,低空歸地方政府管轄的區域型無人機飛航管理中心(Regional UTM,RUTM)、或高空歸民航局管轄之全國型無人機飛航管理中心(National UTM, NUTM),各司其職。The flight management (UTM) system of this creative drone will be separated by 400 feet in accordance with the regulations of the Civil Aviation Administration. The low altitude will be returned to the regional UTM flight management center (Regional UTM, RUTM) under the jurisdiction of the local government, or the high altitude will be returned to civil aviation. The National UTM Flight Management Center (National UTM, NUTM) under the jurisdiction of the Bureau performs its duties.

本創作的主要創作目的,是在提供一種可對所有無人機進行統一監控的無人機飛航管理系統。The main purpose of this creation is to provide a drone flight management system that can monitor all drones uniformly.

本創作的主要特徵係在規劃及建置一套無人機飛航管理系統,主要係無人機上配置一類自動回報監視通訊器(ADS-B Like),利用該類自動回報監視通訊器(ADS-B Like)於固定周期主動發出無人機的飛行數據,透過建置及分布在各地的通訊接收閘道裝置(Gateway)接收及中繼,將無人機的飛行數據、即時數據通過網際網路(Internet)傳送至無人機飛航管理系統(UTM)的雲端資料庫(cloud database),之後再經過網際網路(Internet)將該無人機的飛航資訊整合到地方性無人機飛航管理中心(RUTM)與全國型無人機飛航管理中心(NUTM),達到全面監控及管理的目的。The main feature of this creation is to plan and build a set of drone flight management system, which is mainly equipped with a type of automatic report monitoring communicator (ADS-B Like) on the drone, using this type of automatic report monitoring communicator (ADS-B Like). B Like) actively sends out the flight data of the drone in a fixed period, and receives and relays the drone's flight data and real-time data through the Internet (Internet). ) Is sent to the cloud database of the UAV flight management system (UTM), and then the flight information of the UAV is integrated into the local UAV flight management center (RUTM) via the Internet. ) And the National UAV Flight Management Center (NUTM) to achieve the purpose of comprehensive monitoring and management.

有關本創作為達成上述目的、功效所採用的技術手段,茲舉以下實施例配合圖式說明如下。Regarding the technical means used in this creation to achieve the above-mentioned purposes and effects, the following examples are used in conjunction with the drawings to explain as follows.

請參閱圖1所示,本創作實施例之無人機飛航管理系統1,主要包含有一類自動回報監視通訊器10、複數座通訊接收閘道裝置(Gateway)11、一雲端資料庫(cloud database)12、設置在地方性無人機飛航管理中心(RUTM)13,及全國型無人機飛航管理中心(NUTM)14。其中,Please refer to Figure 1. The UAV flight management system 1 of this creative embodiment mainly includes a type of automatic reporting and monitoring communicator 10, a plurality of communication receiving gateway devices (Gateway) 11, and a cloud database (cloud database). ) 12. Set up at the local UAV flight management center (RUTM) 13, and the national UAV flight management center (NUTM) 14. among them,

Figure 02_image001
該類自動回報監視通訊器(Automatic dependent surveillance – broadcast Like,ADS-B Like)10,係配置於無人機2上。該類自動回報監視通訊器10配置有無人機2操作員的個人編號(Pilot)、無人機2的註冊登記編號。該類自動回報監視通訊器10的通訊系統可為行動通訊的4G、長距離無線傳輸的LoRa與XBee、自動封包回報的APRS等通訊技術。利用該類自動回報監視通訊器10於固定周期主動發出無人機2的飛行數據,發送給分布在所在的通訊接收閘道裝置11接收。依據不同通訊系統特性,該類自動回報監視通訊器10的回報通訊週期設定5~17秒,以避免數據流壅塞。該無人機2所發送飛航資訊、數據,可包含無人機2操作員的個人編號(Pilot)、無人機2註冊登記編號(ID)、GPS數據之X、Y座標、無人機2的飛行高度H、無人機2即時的六個自由度數據                        、(無人機2的電源電壓與電流或汽油燃料存量,數據以壓縮封包方式傳送,節省資訊流量。
Figure 02_image001
This type of Automatic dependent surveillance-broadcast Like (ADS-B Like) 10 is installed on the UAV 2. This type of automatic reporting and monitoring communicator 10 is configured with the personal number (Pilot) of the operator of the drone 2 and the registration number of the drone 2. The communication system of this type of automatic report monitoring communicator 10 can be 4G for mobile communication, LoRa and XBee for long-distance wireless transmission, APRS for automatic packet report and other communication technologies. Using this type of automatic reporting and monitoring communicator 10, the flight data of the UAV 2 is actively sent out in a fixed period and sent to the communication receiving gateway device 11 distributed in the location for reception. According to the characteristics of different communication systems, the reporting communication cycle of this type of automatic reporting monitoring communicator 10 is set to 5-17 seconds to avoid data flow congestion. The flight information and data sent by the drone 2 may include the personal number (Pilot) of the drone 2 operator, the registration number (ID) of the drone 2, the X and Y coordinates of the GPS data, and the flight altitude of the drone 2 H. UAV 2 real-time six degrees of freedom data, (UAV 2's power supply voltage and current or gasoline fuel stock, data is transmitted in compressed packets, saving information flow.

複數個通訊接收閘道裝置11,係做為該類自動回報監視通訊器10所發送的飛航數據之接收中繼站,分別架設在各地適當的地點上,可相隔15公里即設置一個。前述通訊系統若為行動通訊的4G,可與電信業者合作共用基地台;其他LoRa、XBee、APRS等通訊技術在架設選址上,可與電信業者共用基地台,或在山區使用林務局工作站來架設。如圖2,每一個圓圈代表APRS、LoRa、XBee設定的15公里半徑接收範圍,藍圈及紅圈使用電信業者基地台、黃圈使用林務局工作站,經過圖2所示的佈局,大台南地區、北至嘉義、南至高雄、東至台東,約十來個該通訊接收閘道裝置11的佈設即可以涵蓋上述範圍的全部無人機2之通訊。A plurality of communication receiving gateway devices 11 are used as receiving relay stations for automatically reporting the flight data sent by the monitoring communicator 10, and they are set up at appropriate locations in various places, and one can be set up 15 kilometers apart. If the aforementioned communication system is 4G for mobile communication, it can cooperate with telecom operators to share base stations; other LoRa, XBee, APRS and other communication technologies can share base stations with telecom operators or use Forest Service Workstations in mountainous areas. Come to erect. As shown in Figure 2, each circle represents the 15-kilometer radius receiving range set by APRS, LoRa, and XBee. The blue circle and the red circle use the carrier base station, and the yellow circle uses the forest service station. After the layout shown in Figure 2, Tainan In the region, from Chiayi in the north, Kaohsiung in the south, and Taitung in the east, the deployment of about a dozen of the communication receiving gateway devices 11 can cover all the communications of the UAV 2 in the above range.

該雲端資料庫(cloud database)12,係供上述複數個通訊接收閘道裝置11所接收到的該類自動回報監視通訊器10的飛航數據,透過網際網路(internet)傳送至該雲端資料庫12儲存。The cloud database 12 is used for the automatic reporting of the flight data of the monitoring communicator 10 received by the plurality of communication receiving gateway devices 11, and sending to the cloud data via the Internet Store in library 12.

該地方性無人機飛航管理中心(RUTM)13,係隸屬地方主管單位,用以管理飛行在地方管理範圍內的該無人機2;該全國型無人機飛航管理中心(NUTM)14,隸屬國家主管單位(如民航局),用以管理所有在地國領空飛行的無人機2。該地方性無人機飛航管理中心13及全國型無人機飛航管理中心(NUTM)14,可透過網際網路連線至該雲端資料庫12,由該雲端資料庫12下載即時飛航數據,並顯示所在區域的無人機2於所管轄的地方性無人機飛航管理中心(RUTM)13的電腦螢幕上。而且依據民航局法規規定,以400呎限定高度做區隔,配置低空歸地方性無人機飛航管理中心(RUTM)13管轄,限定高度400呎以上的高空歸民航局的全國型無人機飛航管理中心(NUTM)14管轄,各司其職。該地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14,可透過網際網路連線至該雲端資料庫12,由該雲端資料庫12下載即時飛航數據,顯示地方區域性或全國正在飛行的無人機2於電腦螢幕上。該全國型無人機飛航管理中心(NUTM)14的電腦螢幕,因無人機2總數較多,可將所顯示的無人機2依所在地區,以多螢幕呈現,自動彙整在鄰近的地圖畫面上,該地圖畫面也可自動分割為較小區域的監視範圍,形成多視窗分割畫面。該多螢幕、多視窗畫面,可讓兩位以上的管制員同時監控更多的無人機2飛行作業。如圖4至6所示為不同的無人機2監視顯示畫面、多機出現的畫面、不同地區顯示的監視畫面,可清楚顯示無人機2的即時監視。該地方性無人機飛航管理中心(RUTM)13及該全國型無人機飛航管理中心(NUTM)14管制追蹤地圖畫面,其中無人機2可以一特定圖像 (icon)呈現,如圖3所示,而且由畫面可顯示無人機2之動態訊息,包括無人機2的註冊登記編號(ID)、GPS位置、飛行方向箭號及其代表速度的長度、軌跡資料(後面尾隨的虛線為軌跡資料)。The local UAV flight management center (RUTM) 13 is subordinate to the local competent unit to manage the UAV 2 flying within the scope of local management; the national UAV flight management center (NUTM) 14 is subordinate to The national authority (such as the Civil Aviation Administration) is used to manage all UAVs flying in the airspace of the country2. The local drone flight management center 13 and the national drone flight management center (NUTM) 14 can be connected to the cloud database 12 through the Internet, and the cloud database 12 downloads real-time flight data. And display the UAV 2 in the area on the computer screen of the local UAV flight management center (RUTM) 13 under its jurisdiction. In addition, according to the regulations of the Civil Aviation Administration, a 400-foot limit is used as a division. The configuration of low altitude is under the jurisdiction of the Local UAV Flight Management Center (RUTM) 13, and the high altitude above 400 feet is owned by the Civil Aviation Administration’s national drone flight. The Management Center (NUTM) 14 is under the jurisdiction and each performs its own duties. The local drone flight management center (RUTM) 13 and the national drone flight management center (NUTM) 14 can be connected to the cloud database 12 through the Internet, and the cloud database 12 downloads real-time flight Airborne data, showing local, regional or nationally flying drones 2 on the computer screen. The computer screen of the National UAV Flight Management Center (NUTM) 14 has a large number of UAVs 2, so the displayed UAVs 2 can be displayed on multiple screens according to the region, and automatically aggregated on the adjacent map screen. , The map screen can also be automatically divided into smaller areas of monitoring range to form a multi-window split screen. The multi-screen, multi-window screen allows two or more controllers to monitor more UAV 2 flight operations at the same time. As shown in Figures 4 to 6, the different UAV 2 monitoring display screens, the multi-machine appearance screens, and the monitoring screens displayed in different regions can clearly display the UAV 2 real-time monitoring. The local UAV flight management center (RUTM) 13 and the national UAV flight management center (NUTM) 14 control the tracking map screen, in which UAV 2 can be presented with a specific image (icon), as shown in Figure 3. The screen can display the dynamic information of UAV 2, including the registration number (ID) of UAV 2, GPS position, flight direction arrow and its representative speed length, trajectory data (the trailing dotted line is the trajectory data ).

該無人機飛航管理系統1的操作架構如下:The operating architecture of the UAV flight management system 1 is as follows:

1. 民航局為了有效管理無人機2,已建立一套『遙控無人機管理資訊系統』,其中飛行操作員、無人機納入管理,獲得合格認證的人、機資料都可以連結,以合法取的申請飛行資格。申請的飛行計畫與路徑規劃將進入禁限航區資料庫中驗證,以獲得飛行許可。本創作的無人機飛航管理系統1與『遙控無人機管理資訊系統』連結流程如圖9所示。無人機2要飛行,操作員須先進行個人申請程序,如圖8,透過簡易的申請程序,作任務描述、無人機2的造冊資料、飛行操作員註冊資料的確認、飛行計畫與路徑規劃,並且登錄飛航記錄。飛航數據啟用後,將經過加密的程序,開始傳送資料到雲端資料庫12。進入地方性無人機飛航管理中心13的電腦螢幕將可觀測當時的氣象。1. In order to effectively manage UAV2, the Civil Aviation Administration has established a "Remote Control UAV Management Information System", in which flight operators and UAVs are included in the management, and the data of qualified personnel and aircraft can be linked and obtained legally. Apply for flight qualification. The applied flight plan and route plan will be verified in the no-flight-restricted zone database to obtain a flight permit. Figure 9 shows the connection process between the UAV flight management system 1 and the "Remote Control UAV Management Information System". For drone 2 to fly, the operator must first go through a personal application procedure, as shown in Figure 8. Through a simple application procedure, make task description, documentation of drone 2, confirmation of flight operator registration information, flight plan and route Plan and log in the flight record. After the flight data is activated, the encrypted process will start to send the data to the cloud database 12. Enter the computer screen of the local UAV flight management center 13 to observe the weather at that time.

2. 無人機2起飛前,如圖10,需先經過民航局的『遙控無人機管理資訊系統』的認證,確認氣象狀況(Meteorological Observation)合適否、申請飛航計畫(Flight Plan)、飛行時程規劃(Flight Schedule)。在獲得核准後,應先做電子繳費(e-pay)的動作,並對無人機2使用類自動回報監視通訊器10通訊回報的即時數據進行測試,以及透過飛行操作員的行動通訊(如手機)與地方性無人機飛航管理中心(RUTM)13及該全國型無人機飛航管理中心(NUTM)14管制員確認及做必要的通訊聯繫後,無人機2將獲得起飛許可。無人機2申請飛行許可並核准後可以調整飛行計畫時間,但是不能變更飛行路徑。一旦路徑變更或延遲起飛超過兩小時以上,將必須重新申請登錄。2. Before UAV 2 takes off, as shown in Figure 10, it needs to be certified by the Civil Aviation Administration’s "Remote Control UAV Management Information System" to confirm the suitability of Meteorological Observation, apply for a flight plan, and fly Flight Schedule. After obtaining the approval, you should first perform the electronic payment (e-pay) action, and test the real-time data reported by the drone 2 using the automatic reporting monitoring communicator 10, and through the flight operator’s mobile communications (such as mobile phones). ) After confirming and making necessary communication with the local UAV flight management center (RUTM) 13 and the national UAV flight management center (NUTM) 14 controllers, UAV 2 will obtain the take-off permission. After UAV 2 applies for a flight permit and is approved, the flight plan time can be adjusted, but the flight path cannot be changed. Once the route changes or the departure is delayed for more than two hours, you will have to re-apply for registration.

3.無人機( UAV)起飛後,如圖11,該無人機2的即時數據以類自動回報監視通訊器10透過飛行所至的通訊接收閘道裝置11通訊回報到雲端資料庫12,再經地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14監視管理後,納入全面監控,並啟動電子圍籬的屏障隔離、空域諮詢、感測與避讓(Detect and Avoid, DAA),完整的呈現在地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14的監視顯示器上。雲端資料庫12送至地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14電腦,對重複接收的數據加以篩選及解密。圖7、圖8為地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14的資訊流程圖,圖8代表系統架構從各地區400呎以下低空層的地方性無人機飛航管理中心(RUTM)13連結到400呎以上高空層的全國型無人機飛航管理中心(NUTM)14,並與有人機的飛航管理(ATM)結合,讓有人機的飛航管理(ATM) 得以掌握完整無人機2的確實資訊。如圖7,是從各地方性無人機飛航管理中心(RUTM)13往上送的無人機2資料,飛行高度若超過400呎,必須經過有人機的飛航管理(ATM)管制。無人機2的飛航數據紀錄、數據串流、大數據儲存以及全面監視,都是進入全國型無人機飛航管理中心(NUTM)14的必要程序,飛行高度在400呎更往上時,必須過透有效的通訊媒介,將飛往高空層的無人機2飛行數據通報到有人機的飛航管理(ATM)系統中,讓有人機的飛航管理(ATM)得以掌握完整確實的飛行數據。無人機2起飛後,各地方性無人機飛航管理中心13及全國型無人機飛航管理中心14從雲端資料庫12可下載無人機2的即時飛航數據,並顯示所有飛行在該管轄區域的無人機2於電腦顯示器上,該顯示器以適當的電子地圖建構,將產生狀況顯示(Situation Awareness)、領航服務(Air Navigation Service)、感測與避讓(Detect and Avoid, DAA)、通知飛行操作員、改道迴避(Detour) 的通知、航點管理(Waypoint Management)、落地報告(Landing Report)、任務完成(Mission Complete)、自動飛航記錄資料(Auto Logbook)、自動與民航局的『遙控無人機管理資訊系統』連結通報,完成一趟任務。而且在飛行途中,利用GPS位置演算,建立無人機2感測與避撞(DAA)功能,即時評估多架無人機2的接近距離,當兩機接近小於航空系統之安全規範時,發出警訊給管制員,讓管制員對飛行操作員以行動通訊(如手機)做避讓的管制協調。3. After the drone (UAV) takes off, as shown in Figure 11, the real-time data of the drone 2 is reported to the cloud database 12 through the communication receiving gateway device 11 where the drone 2 is automatically reported by the monitoring communicator 10, and then through After monitoring and management by the local UAV flight management center (RUTM)13 and the national UAV flight management center (NUTM)14, they will be included in comprehensive monitoring, and electronic fence isolation, airspace consultation, sensing and avoidance will be initiated ( Detect and Avoid, DAA), is fully displayed on the surveillance displays of the local UAV flight management center (RUTM) 13 and the national UAV flight management center (NUTM) 14. The cloud database 12 is sent to the local UAV Flight Management Center (RUTM) 13 and the National UAV Flight Management Center (NUTM) 14 computers to filter and decrypt the repeatedly received data. Figures 7 and 8 are the information flow diagrams of the local UAV flight management center (RUTM) 13 and the national UAV flight management center (NUTM) 14. Figure 8 represents the system architecture from the low altitude level below 400 feet in each region. The local drone flight management center (RUTM) 13 is connected to the national drone flight management center (NUTM) 14 at an altitude of more than 400 feet, and is combined with the manned flight management (ATM) to allow manned flight management (ATM) Flight Management (ATM) is able to grasp the exact information of the complete UAV2. As shown in Fig. 7, the data of UAV 2 sent up from various local UAV flight management centers (RUTM) 13. If the flight altitude exceeds 400 feet, it must be controlled by manned flight management (ATM). Flight data recording, data streaming, big data storage, and comprehensive monitoring of UAV 2 are all necessary procedures to enter the National UAV Flight Management Center (NUTM) 14. When flying at an altitude of 400 feet or higher, it must be Through an effective communication medium, the flight data of UAV 2 flying to the upper altitude is notified to the manned flight management (ATM) system, so that the manned flight management (ATM) can have complete and accurate flight data. After UAV 2 takes off, the local UAV flight management center 13 and the national UAV flight management center 14 can download the real-time flight data of UAV 2 from the cloud database 12 and display all flights in the jurisdiction. The UAV 2 is on a computer monitor. The monitor is constructed with an appropriate electronic map, which will generate Situation Awareness, Air Navigation Service, Detect and Avoid (DAA), and notify flight operations Notifications for crew members, Detour, Waypoint Management, Landing Report, Mission Complete, Auto Logbook, Automatic and Civil Aviation Administration’s "Remote Control Unmanned Machine Management Information System" link to report to complete a mission. Moreover, during the flight, GPS position calculation is used to establish the UAV 2 sensing and collision avoidance (DAA) function, which can instantly evaluate the approach distance of multiple UAVs 2, and issue a warning when the two aircraft are close to less than the safety regulations of the aviation system. For the controller, let the controller coordinate the control of the flight operator with mobile communication (such as mobile phone) to avoid.

上述本創作之無人機飛航管理系統1,於應用上至少具有下列的優點及功效:The above-mentioned UAV flight management system 1 of this creation has at least the following advantages and functions in application:

1.以一個網際網路的雲端資料庫12,建立無人機2即時飛航訊息,傳送到無人機飛航管理中心(地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14),以顯示多地區、多架無人機2的飛航管制。1. Use an Internet cloud database 12 to create real-time flight information of UAV 2 and send it to UAV flight management center (Local UAV Flight Management Center (RUTM) 13 and nationwide UAV flight management) Management Center (NUTM) 14) to display the flight control of multiple UAVs 2 in multiple regions.

2.採用類自動回報監視通訊器10自動回報監視通訊技術,掛載於無人機2上,起飛後隨時廣播回報即時飛航資訊。2. It adopts the automatic report monitoring communication technology of the similar automatic report monitoring communicator 10, which is mounted on the UAV 2, and broadcasts and reports real-time flight information at any time after takeoff.

3. 雲端資料庫12依據無人機2回報GPS位置與高度,以400呎為界線,自動區分於不同飛行區域、自動分派到各地區之地方性無人機飛航管理中心(RUTM)13,接受各地區管制員管理,或全國型無人機飛航管理中心(NUTM)14,分層負責管理。3. The cloud database 12 reports the GPS position and altitude based on the drone 2 and uses 400 feet as the boundary to automatically distinguish between different flight areas and automatically assign to the local drone flight management center (RUTM) 13 in each region. Regional controller management, or National UAV Flight Management Center (NUTM)14, is responsible for management in layers.

Figure 02_image001
4.無人機2的飛航數據,包含無人機2操作員個人編號(Pilot)、無人機2的註冊登記編號(ID)、GPS數據之X、Y座標、無人機2的飛行高度H、無人機2即時的六個自由度數據                       、電源電壓與電流或汽油燃料存量,數據及顯示可以完全掌握無人機2動態,達到無人機2監視的目的。
Figure 02_image001
4. Flight data of drone 2, including the personal number of drone 2 operator (Pilot), the registration number (ID) of drone 2, the X and Y coordinates of GPS data, the flying height of drone 2 H, and the drone The real-time six-degree-of-freedom data, power supply voltage and current, or gasoline fuel inventory, data and display of the drone 2 can fully grasp the dynamics of the drone 2 and achieve the purpose of the drone 2 monitoring.

5.利用GPS位置演算,建立無人機感測與避撞(DAA)功能,即時評估多架無人機的接近距離,當兩機接近小於航空系統之安全規範時,發出警訊給管制員,讓管制員對飛行操作員以行動通訊做避讓的管制協調。5. Use GPS position calculations to establish the UAV Sensing and Collision Avoidance (DAA) function to assess the proximity distance of multiple UAVs in real time. When the two UAVs are close to less than the safety regulations of the aviation system, a warning signal will be issued to the controller to allow The controller coordinates the control of the flight operator to avoid using mobile communications.

6. 雲端資料庫12、地方性無人機飛航管理中心(RUTM)13及全國型無人機飛航管理中心(NUTM)14系統自動與民航局之『遙控無人機管理資訊系統』結合,進行人、機起飛前核准、及完成飛行後的飛航記錄(Logbook)通報。6. The cloud database 12, the local drone flight management center (RUTM) 13 and the national drone flight management center (NUTM) 14 systems are automatically integrated with the "Remote Control Drone Management Information System" of the Civil Aviation Administration of , Approval before takeoff, and flight record (Logbook) notification after completion of the flight.

7.專屬的無人機2圖像(icon)顯示,如圖3,包含無人機註冊登記編號(ID)、GPS位置顯示於地圖上、飛行方向箭號及其代表速度的長度、虛線軌跡資料。7. The exclusive UAV 2 image (icon) display, as shown in Figure 3, contains the UAV registration number (ID), GPS location displayed on the map, the flight direction arrow and the length of its representative speed, and the dotted trajectory data.

8. 雲端資料庫12數據資料庫的架設,讓無人機數據完整保存,未來可以提供無人機事故追蹤的依據。8. The establishment of the cloud database 12 data database allows the complete preservation of UAV data, which can provide a basis for UAV accident tracking in the future.

9.本創作無人機飛航管理系統1建構完整的雲端資料庫12資訊系統,將空中飛行的無人機1全部納入監控管理。無人機2回報的資訊包括飛行軌跡及六個自由度數據,將全部收集儲存於資料庫系統中。完整的飛航中的軌跡座標與六個自由度數據,將可以提供無人機2飛航性能分析的依據,更可以在無人機2發生失效、事件、失事時,用以分析飛航作業品質保證(Flight Operation Quality Assurance, FOQA)的資料依據。9. This creative drone flight management system 1 constructs a complete cloud database 12 information system, and incorporates all drones flying in the air into monitoring management. The information reported by UAV 2 includes flight trajectory and six degrees of freedom data, all of which will be collected and stored in the database system. The complete flight trajectory coordinates and six degrees of freedom data will provide the basis for UAV 2 flight performance analysis, and can also be used to analyze flight operation quality assurance when UAV 2 fails, incidents, or crashes. (Flight Operation Quality Assurance, FOQA) data basis.

1:無人機飛航管理系統 10:類自動回報監視通訊器 11:通訊接收閘道裝置 12:雲端資料庫 13:地方性無人機飛航管理中心(RUTM) 14:全國型無人機飛航管理中心(NUTM) 2:無人機 1: UAV flight management system 10: Automatic report monitoring communicator 11: Communication receiving gateway device 12: Cloud database 13: Local UAV Flight Management Center (RUTM) 14: National UAV Flight Management Center (NUTM) 2: drone

圖1所示是本創作實施例的系統架構圖。 圖2所示是本創作實施例的通訊接收閘道裝置佈署圖。 圖3所示是本創作實施例無人機位於電腦螢幕上的圖像(icon)。 圖4、5、6所示是本創作實施例無人機於電腦螢幕上的即時監視畫面。 圖7所示是本創作實施例地方性無人機飛航管理中心(RUTM)連結到有人機的飛航管理(ATM)的全國型無人機飛航管理中心(NUTM)的資訊流程圖。 圖8所示是本創作實施例的地方性無人機飛航管理中心(RUTM)資訊流程圖。 圖9所示是本創作實施例的無人機飛航管理系統(UTM)與民航局的『遙控無人機管理資訊系統』連結圖。 圖10所示是本創作實施例無人機飛航管理系統(UTM)之無人機起飛、登錄與許可流程圖。 圖11所示是本創作實施例無人機飛航管理系統(UTM)之無人機起飛後流程圖。 Figure 1 shows a system architecture diagram of this authoring embodiment. Fig. 2 shows the deployment diagram of the communication receiving gateway device of this creative embodiment. Fig. 3 shows an icon of the drone located on the computer screen in this creative embodiment. Figures 4, 5, and 6 show the real-time monitoring images of the drone on the computer screen of this creative embodiment. FIG. 7 shows the information flow chart of the local UAV flight management center (RUTM) connected to the manned flight management (ATM) of the national drone flight management center (NUTM) of this creative embodiment. FIG. 8 shows the information flow chart of the local UAV flight management center (RUTM) of this creative embodiment. Figure 9 shows the connection diagram between the UAV flight management system (UTM) of this creative embodiment and the "Remote Control UAV Management Information System" of the Civil Aviation Administration. Fig. 10 shows a flow chart of UAV take-off, registration and permission of the UAV flight management system (UTM) of this creative embodiment. Fig. 11 is a flow chart of the UAV flight management system (UTM) of the present creative embodiment after taking off.

1:無人機飛航管理系統 1: UAV flight management system

10:類自動回報監視通訊器 10: Automatic report monitoring communicator

11:通訊接收閘道裝置 11: Communication receiving gateway device

12:雲端資料庫 12: Cloud database

2:無人機 2: drone

Claims (5)

一種無人機飛航管理系統,係包含有一類自動回報監視通訊器、複數座通訊接收閘道裝置、一雲端資料庫;其中該類自動回報監視通訊器,係配置於所述無人機上,配置有該無人機操作員的個人編號、該無人機的註冊登記編號,以通訊技術於固定周期主動發出該無人機的飛行數據,發送給所在的該通訊接收閘道裝置接收;該複數座通訊接收閘道裝置,係分別架設在各地,用以接收該類自動回報監視通訊器所發送的飛航數據,作為飛航數據接收中繼站;該雲端資料庫,係透過網際網路與上述複數個通訊接收閘道裝置連結,將該複數座通訊接收閘道裝置由該類自動回報監視通訊器所接收到的飛航數據,透過該網際網路傳送至該雲端資料庫儲存;該雲端資料庫的即時飛航數據,於各地方主管單位的地方性無人機飛航管理中心,以及配置於國家主管單位、用以管理飛行在全國領空中的所有該無人機的全國型無人機飛航管理中心,可透過網際網路連線下載,並顯示於電腦螢幕上,對該無人機進行監控、管理。 An unmanned aerial vehicle flight management system includes a type of automatic reporting and monitoring communicator, a plurality of communication receiving gateway devices, and a cloud database; wherein this type of automatic reporting and monitoring communicator is configured on the drone and configured Have the personal number of the drone operator and the registration number of the drone, and use communication technology to actively send out the flight data of the drone in a fixed period, and send it to the communication receiving gateway device where it is located; the plural communication receivers The gateway devices are set up in various places to receive the flight data sent by the automatic reporting and monitoring communicator, as a flight data receiving relay station; the cloud database is received through the Internet with the above-mentioned multiple communications Gateway device link, the multiple communication receiving gateway devices will automatically report the flight data received by the monitoring communicator through the Internet to the cloud database for storage; real-time flight data of the cloud database The aerial data is available in the local UAV flight management center of each local authority, and the national UAV flight management center deployed in the national authority to manage all the drones flying in the national airspace. It is downloaded via the Internet and displayed on the computer screen to monitor and manage the drone. 如請求項1所述之無人機飛航管理系統,其中該類自動回報監視通訊器所發出的所述飛航數據,係包含該無人機操作員的個人編號、該無人機的註冊登記編號、GPS數據之X、Y座標、該無人機的飛行高度、該無人機的即時六個自由度數據(p,q,r,α,β,γ)、該無人機的電源電壓與電流、汽油燃料存量,數據以壓縮封包方式傳送。 The drone flight management system described in claim 1, wherein the flight data sent by the automatic report monitoring communicator includes the personal number of the drone operator, the registration number of the drone, The X and Y coordinates of GPS data, the flight altitude of the drone, the real-time six degrees of freedom data of the drone (p, q, r, α, β, γ), the power supply voltage and current of the drone, and gasoline fuel Inventory, data is transmitted in compressed packets. 如請求項1所述之無人機飛航管理系統,其中該類自動回報監視通訊器的通訊系統,係以行動通訊的4G或長距離無線傳輸的LoRa或XBee或自動封包回報的APRS之通訊技術進行。 The unmanned aerial vehicle flight management system described in claim 1, wherein the communication system of this type of automatic reporting and monitoring communicator is the communication technology of 4G for mobile communication or LoRa or XBee for long-distance wireless transmission or APRS for automatic packet reporting get on. 如請求項1所述之無人機飛航管理系統,其中該地方性無人機飛航管理中心(RUTM)、該全國型無人機飛航管理中心(NUTM),於所述電腦螢幕上所顯示的該無人機圖像,更包含有該無人機的註冊登記編號(ID)、所處GPS位置、飛行方向箭號及其代表速度的長度、虛線軌跡資料。 The UAV flight management system according to claim 1, wherein the local UAV flight management center (RUTM) and the national UAV flight management center (NUTM) are displayed on the computer screen The UAV image also contains the UAV’s registration number (ID), GPS location, the flight direction arrow and the length of its representative speed, and the trajectory data of the dashed line. 如請求項1所述之無人機飛航管理系統,其中該地方性無人機飛航管理中心(RUTM)、該全國型無人機飛航管理中心(NUTM),係利用GPS位置演算,建立該無人機感測與避撞(DAA)防制機制,以即時評估多架該無人機的接近距離,當兩機接近小於航空系統之安全規範時,發出警訊給管制員,讓管制員對飛行操作員以行動通訊做避讓的管制協調。 The UAV flight management system described in claim 1, wherein the local UAV flight management center (RUTM) and the national UAV flight management center (NUTM) use GPS position calculations to establish the unmanned flight management system. Aircraft Sensing and Collision Avoidance (DAA) prevention mechanism to assess the proximity of multiple drones in real time. When the two drones are close to less than the safety regulations of the aviation system, a warning signal will be issued to the controller to allow the controller to operate the flight. The officer uses mobile communication to coordinate the control of avoidance.
TW109215192U 2019-09-10 2019-09-10 Drone flight management system TWM609087U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109215192U TWM609087U (en) 2019-09-10 2019-09-10 Drone flight management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109215192U TWM609087U (en) 2019-09-10 2019-09-10 Drone flight management system

Publications (1)

Publication Number Publication Date
TWM609087U true TWM609087U (en) 2021-03-11

Family

ID=76037072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109215192U TWM609087U (en) 2019-09-10 2019-09-10 Drone flight management system

Country Status (1)

Country Link
TW (1) TWM609087U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765710B (en) * 2021-05-19 2022-05-21 長榮大學 Sensing and Collision Avoidance Methods for UAVs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765710B (en) * 2021-05-19 2022-05-21 長榮大學 Sensing and Collision Avoidance Methods for UAVs

Similar Documents

Publication Publication Date Title
CN103927906B (en) The method of Big Dipper independent navigation based on Big Dipper short message and 4G communication pattern
CN103592948B (en) Unmanned plane flight collision avoidance method
US9405005B1 (en) Automatic dependent surveillance broadcast (ADS-B) system for ownership and traffic situational awareness
US9697736B2 (en) Tracking of suspect aircraft
US20140028485A1 (en) Airspace risk mitigation system
Sándor Challenges caused by the unmanned aerial vehicle in the air traffic management
US9613534B2 (en) Systems and methods for creating a network cloud based system for supporting regional, national and international unmanned aircraft systems
CN105825718A (en) Unmanned aerial vehicle comprehensive management platform system
CN109727493A (en) Based on the unmanned plane monitoring system of integrated answering machine and its response, ADS-B OUT/IN method
CN105100247A (en) Low-altitude aircraft meteorological information interaction system
CN109993995A (en) Unmanned long-range control coordinated decision system
EP3101643B1 (en) Systems and methods for creating a network cloud based system for supporting regional, national and international unmanned aircraft systems
CN111819610A (en) Air situation information and traffic management system for unmanned aerial vehicles and manned aircraft
US11790792B2 (en) UTM-ATC interface
Aweiss et al. Flight demonstration of unmanned aircraft system (UAS) traffic management (UTM) at technical capability level 3
TWM609087U (en) Drone flight management system
US20180026707A1 (en) System and method for re-broadcasting ads-b data
Kuenz et al. Live Trials of Dynamic Geo-Fencing for the Tactical Avoidance of Hazard Areas
Coldsnow et al. Safety Case for Small Uncrewed Aircraft Systems (sUAS) Beyond Visual Line of Sight (BVLOS) Operations at NASA Langley Research Center
CN108489493B (en) Navigation method of general aviation aircraft
CN112217559A (en) Branch unmanned aerial vehicle logistics operation and maintenance system
Kuenz City-ATM–Live Drone Trials with Dynamic Geo-fencing
Bragin et al. Onboard device for UAS remote identification
Yeniçeri et al. Towards Full Integration of Manned and Unmanned Air Traffic: A Test Case Study–Performance Results of Future All Aviation CNS Technology (FACT) Project
RU2794287C1 (en) Unified on-board module for aviation surveillance of unmanned aerial vehicles