TWM604050U - Conductive laminated structure and foldable electronic device - Google Patents

Conductive laminated structure and foldable electronic device Download PDF

Info

Publication number
TWM604050U
TWM604050U TW109208454U TW109208454U TWM604050U TW M604050 U TWM604050 U TW M604050U TW 109208454 U TW109208454 U TW 109208454U TW 109208454 U TW109208454 U TW 109208454U TW M604050 U TWM604050 U TW M604050U
Authority
TW
Taiwan
Prior art keywords
layer
conductive
laminated structure
electronic device
thickened
Prior art date
Application number
TW109208454U
Other languages
Chinese (zh)
Inventor
蔡宜珍
方瑋嘉
朱俊鴻
蕭仲欽
Original Assignee
大陸商天材創新材料科技(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商天材創新材料科技(廈門)有限公司 filed Critical 大陸商天材創新材料科技(廈門)有限公司
Priority to TW109208454U priority Critical patent/TWM604050U/en
Publication of TWM604050U publication Critical patent/TWM604050U/en

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

A conductive laminated structure includes a conductive layer and a thickened layer The conductive layer extends along a first direction. The thickened layer is disposed over or under the conductive layer. The conductive laminated structure can withstand more than 40,000 folding times without breaking when the radius of curvature R = 3 mm, the folding direction is perpendicular or parallel to the first direction, and the folding angle is 180°. A foldable electronic device is also provided herein.

Description

導電層疊構和折疊式電子裝置Conductive laminated structure and folding electronic device

本揭示內容係關於導電層疊構,特別是用於折疊式電子裝置的走線中的導電層疊構。The present disclosure relates to conductive laminated structures, especially conductive laminated structures used in the wiring of foldable electronic devices.

電子元件不斷趨向小型化、高速化發展,其中可保有高性能且讓電子元件具有柔軟性的可撓式電子技術為下一世代最受矚目的新技術,包含可撓式面板、顯示器、電池、穿戴式電子裝置等。Electronic components continue to be miniaturized and high-speed development. Among them, flexible electronic technology that can maintain high performance and make electronic components flexible is the most eye-catching new technology of the next generation, including flexible panels, displays, batteries, Wearable electronic devices, etc.

但是,在折疊式電子裝置中,在彎折處的走線經過多次彎折可能容易出現斷裂問題,從而影響信號的傳送,而影響折疊式電子裝置的性能。However, in a foldable electronic device, the wiring at the bend may be prone to breakage after multiple bends, which affects signal transmission and affects the performance of the foldable electronic device.

有鑑於上述問題,本揭示內容的目的在於提供一種具有增厚層的導電層疊構,以提高折疊式電子裝置的耐彎折性。In view of the above problems, the purpose of the present disclosure is to provide a conductive laminate structure with a thickened layer to improve the bending resistance of the foldable electronic device.

本揭示內容的一些實施方式提供了一種導電層疊構,包含導電層以及增厚層。導電層沿第一方向延伸。增厚層位在導電層上方或下方,且導電層疊構在曲率半徑R=3毫米,垂直或平行第一方向延伸方向彎折180°時,可承受折疊次數超過40000次不斷裂。Some embodiments of the present disclosure provide a conductive laminated structure including a conductive layer and a thickening layer. The conductive layer extends in the first direction. When the thickening layer is located above or below the conductive layer, and the conductive layered structure is bent at a radius of curvature R=3 mm, perpendicular or parallel to the extension direction of the first direction, it can withstand more than 40,000 folding times without breaking.

在一些實施方式中,增厚層在第一方向上的長度大於9毫米且不超過導電層沿第一方向延伸的長度。In some embodiments, the length of the thickening layer in the first direction is greater than 9 mm and does not exceed the length of the conductive layer extending in the first direction.

在一些實施方式中,增厚層在第一方向上的長度大於15毫米且不超過導電層沿第一方向延伸的長度。In some embodiments, the length of the thickening layer in the first direction is greater than 15 mm and does not exceed the length of the conductive layer extending in the first direction.

在一些實施方式中,導電層疊構的彎折軸心與增厚層兩端的夾角為180°~360°。In some embodiments, the angle between the bending axis of the conductive laminated structure and the two ends of the thickened layer is 180° to 360°.

在一些實施方式中,增厚層使導電層疊構彎折時的應力應變量增加0.1至10%,且導電層疊構的曲率半徑減小0.5至3毫米。In some embodiments, the thickening layer increases the amount of stress strain when the conductive laminated structure is bent by 0.1 to 10%, and the radius of curvature of the conductive laminated structure is reduced by 0.5 to 3 mm.

在一些實施方式中,增厚層位於導電層疊構彎折時的應力拉伸側。In some embodiments, the thickening layer is located on the stress stretch side when the conductive laminated structure is bent.

在一些實施方式中,提出了一種折疊式電子裝置,其包含以上和以下的實施方式或實施例所描述的導電層疊構。In some embodiments, a foldable electronic device is proposed, which includes the conductive laminated structure described in the above and following embodiments or examples.

本揭示內容的一些實施方式提供了一種折疊式電子裝置,包含顯示區以及非顯示區。非顯示區位在顯示區外側,其中非顯示區具有複數條走線其沿第一方向延伸,所述複數條走線中的每一條走線包含:基板和導電層其位在基板上方。其中非顯示區具有局部增厚區域,其包含折疊式電子裝置的彎折處,在局部增厚區域中這些複數條走線中的每一條走線更包含增厚層,其在導電層上方或下方,且位在折疊式電子裝置彎折時的應力拉伸側。Some embodiments of the present disclosure provide a foldable electronic device including a display area and a non-display area. The non-display area is located outside the display area, wherein the non-display area has a plurality of wires extending along the first direction, and each of the plurality of wires includes a substrate and a conductive layer located above the substrate. The non-display area has a locally thickened area, which includes the bend of the foldable electronic device. In the locally thickened area, each of these multiple traces further includes a thickened layer, which is above or above the conductive layer. Below, and located on the side of stress stretch when the foldable electronic device is bent.

在一些實施方式中,在折疊式電子裝置中,局部增厚區域的寬度其沿著垂直於第一方向的第二方向延伸,且這些走線中的一走線寬度為W 1,這些走線之間的間距為P 1,這些走線的數目為N,局部增厚區域的寬度範圍在介於W 1至 (W 1+P 1) x N 之間。 In some embodiments, in the foldable electronic device, the width of the locally thickened area extends along a second direction perpendicular to the first direction, and one of these traces has a width of W 1 , and these traces The distance between them is P 1 , the number of these traces is N, and the width of the locally thickened area ranges from W 1 to (W 1 +P 1 ) x N.

在一些實施方式中,在折疊式電子裝置中,增厚層沿第一方向的長度大於3毫米。In some embodiments, in the foldable electronic device, the length of the thickened layer along the first direction is greater than 3 mm.

在一些實施方式中,在折疊式電子裝置中,增厚層為由金屬材料形成,且增厚層與導電層的厚度的比值為約0.05~5。In some embodiments, in the foldable electronic device, the thickening layer is formed of a metal material, and the ratio of the thickness of the thickening layer to the conductive layer is about 0.05-5.

在一些實施方式中,在折疊式電子裝置中,增厚層為由非金屬材料或複合導電材料形成,且增厚層與導電層的厚度的比值為約0.1~50。In some embodiments, in the foldable electronic device, the thickening layer is formed of non-metallic materials or composite conductive materials, and the ratio of the thickness of the thickening layer to the conductive layer is about 0.1-50.

在一些實施方式中,在折疊式電子裝置中,增厚層為由金屬材料形成,且基板的厚度乘以基板的楊氏模量的值為約100~300,導電層的厚度乘以導電層的楊氏模量的值為約20~70,增厚增的厚度乘以楊氏模量的值為約5~30。In some embodiments, in the foldable electronic device, the thickening layer is formed of a metal material, and the thickness of the substrate multiplied by the Young's modulus of the substrate is about 100 to 300, and the thickness of the conductive layer is multiplied by the conductive layer. The value of Young's modulus is about 20~70, and the value of thickening and increasing the Young's modulus is about 5-30.

在一些實施方式中,在折疊式電子裝置中,增厚層為由非金屬材料或複合導電材料形成,且基板的厚度乘以基板的楊氏模量的值為約100~300,導電層的厚度乘以導電層的楊氏模量的值為約20~70,增厚層的厚度乘以增厚層的楊氏模量的值為約2~60。In some embodiments, in the foldable electronic device, the thickening layer is formed of a non-metallic material or a composite conductive material, and the thickness of the substrate multiplied by the Young's modulus of the substrate is about 100 to 300. The value of the thickness multiplied by the Young's modulus of the conductive layer is about 20 to 70, and the value of the thickness of the thickened layer multiplied by the Young's modulus of the thickened layer is about 2 to 60.

在一些實施方式中,在折疊式電子裝置中,增厚層包含:第一聚合物層和第二聚合物層。第二聚合物層在第一聚合物層上方,其中第一聚合物層的材料不同於第二聚合物層的材料。In some embodiments, in the foldable electronic device, the thickening layer includes: a first polymer layer and a second polymer layer. The second polymer layer is above the first polymer layer, wherein the material of the first polymer layer is different from the material of the second polymer layer.

在一些實施方式中,在折疊式電子裝置中,第一聚合物層的楊氏模量與第二聚合物層的楊氏模量的比值為約10 3~10 6In some embodiments, in the foldable electronic device, the ratio of the Young's modulus of the first polymer layer to the Young's modulus of the second polymer layer is about 10 3 to 10 6 .

在一些實施方式中,在折疊式電子裝置中,第一聚合物的厚度與導電層的厚度的比值為約30~100,第二聚合物的厚度與導電層的厚度的比值為約30~100,且第一聚合物的厚度與第二聚合物的厚度的比值為約0.5~2。In some embodiments, in the foldable electronic device, the ratio of the thickness of the first polymer to the thickness of the conductive layer is about 30-100, and the ratio of the thickness of the second polymer to the thickness of the conductive layer is about 30-100. , And the ratio of the thickness of the first polymer to the thickness of the second polymer is about 0.5-2.

本揭示內容提供了許多不同的實施方式或實施例,以實現本揭示內容的不同的特徵。以下描述組件和配置的具體實施例,以簡化本揭示內容。這些當然僅是實施例,並不意圖為限制性的。例如,在隨後的描述中,第二特徵形成於第一特徵上方或之上,可能包括其中第一和第二特徵形成直接接觸的實施方式,並且還可能包括在第一和第二特徵之間可能形成附加的特徵,因此第一和第二特徵可能不是直接接觸的實施方式。This disclosure provides many different implementations or examples to achieve different features of the disclosure. Specific embodiments of components and configurations are described below to simplify the present disclosure. These are of course only examples and are not intended to be limiting. For example, in the following description, the second feature is formed on or on the first feature, which may include embodiments in which the first and second features are in direct contact, and may also be included between the first and second features Additional features may be formed, so the first and second features may not be in direct contact.

可能在此使用空間上的相對用語,諸如「之下」、「低於」、「下部」、「高於」、「上部」、和類似用語,以描述如在圖式中所繪示的一個元件或特徵與另一個元件或特徵之間的關係。除了在圖式中所描繪的方向之外,空間上的相對用語旨在涵蓋裝置或設備在使用中或操作中的不同位向。裝置或設備可能有其他位向(旋轉90度或其他位向),並且此處所使用的空間上相對用語也可能相應地解釋。Spatially relative terms, such as "below", "below", "lower", "above", "upper", and similar terms may be used here to describe one as shown in the diagram The relationship between an element or feature and another element or feature. In addition to the directions depicted in the drawings, relative terms in space are intended to cover different orientations of devices or equipment in use or operation. The device or equipment may have other orientations (rotated by 90 degrees or other orientations), and the spatially relative terms used here may also be interpreted accordingly.

目前在顯示裝置中,常用例如氧化銦錫(ITO)的金屬氧化物為導電層疊構的材料,形成走線。但是,氧化銦錫等金屬氧化物材料脆性大、柔性差,因此製成的導電層疊構容易折斷。此外,在以奈米銀為導電層的導電層疊構中,由於在顯示裝置的彎折區除了奈米銀線外仍包含其他的金屬的導線,其金屬材料本身能承受的應力值相對小,易產生形變而造成電阻值升高。At present, in display devices, metal oxides such as indium tin oxide (ITO) are commonly used as conductive laminated materials to form traces. However, metal oxide materials such as indium tin oxide are brittle and poor in flexibility, so the conductive laminated structure made is easy to break. In addition, in the conductive laminate structure with nanosilver as the conductive layer, since the bending area of the display device still contains other metal wires in addition to the nanosilver wire, the stress value that the metal material itself can withstand is relatively small. It is easy to produce deformation and increase the resistance value.

折疊式電子裝置的走線設計有兩個重點:其一,由於彎折處必須承受數萬次的折疊,彎折處需要具有一定的結構強度;其二,折疊式電子裝置的走線需具有較好的可折疊性,亦即具有較小的彎折的曲率半徑。There are two key points in the layout design of the folding electronic device: First, because the bend must withstand tens of thousands of times of folding, the bend must have a certain structural strength; second, the wiring of the folding electronic device must have Better foldability, that is, a smaller bending radius of curvature.

本揭示內容的一些實施方式提供一種導電層疊構,在承受最大應力的彎折處的拉伸側,增加了增厚層,因此達到在較小的曲率半徑時折疊特性的提升。Some embodiments of the present disclosure provide a conductive laminate structure, which adds a thickening layer on the stretched side of the bending part that bears the greatest stress, so that the folding characteristics are improved when the radius of curvature is small.

在一些實施方式中,導電層疊構可形成為電子裝置的走線,應用於可折疊的電子裝置中,例如,具有面板的電子裝置,諸如,手機、平板、穿戴式電子裝置(例如智慧手環、智慧手錶、虛擬實境裝置等)、電視、顯示器、筆記型電腦、電子書、數位相框、導航儀、或類似者。In some embodiments, the conductive laminated structure can be formed as a trace of an electronic device, and is applied to a foldable electronic device, for example, an electronic device with a panel, such as a mobile phone, a tablet, a wearable electronic device (such as a smart bracelet). , Smart watches, virtual reality devices, etc.), TVs, monitors, notebook computers, e-books, digital photo frames, navigators, or the like.

第1A圖繪示根據本揭示內容的一些實施方式的面板的示意圖。面板100為折疊式面板,可沿線AA為軸彎折(垂直走線延伸方向),或是沿線BB為軸彎折(平行走線延伸方向)。在面板100的邊緣具有多個走線110用以傳導信號。如圖所示,面板100的走線110所在的位置具有多個局部增厚的區域112、114、和116。FIG. 1A is a schematic diagram of a panel according to some embodiments of the present disclosure. The panel 100 is a foldable panel, which can be bent along the line AA as the axis (the direction in which the wires extend vertically), or bend along the line BB as the axis (the direction in which the wires extend in parallel). A plurality of traces 110 are provided on the edge of the panel 100 to conduct signals. As shown in the figure, the position where the trace 110 of the panel 100 is located has a plurality of locally thickened regions 112, 114, and 116.

第1B圖為根據一些實施方式,沿著第1A圖的局部增厚的區域114中的線CC的走線(導電層疊構)局部的截面示意圖。導電層疊構120包含基板122、在基板122上方的金屬層124、在金屬層124上方的增厚層126、以及在增厚層126上方的導電層128。其中,基板122、金屬層124、和導電層128為在走線110的其他區域也具有的層面。在一些實施方式中,在走線110的局部區域中(例如,在導電層疊構120中),在金屬層124和導電層128之間增加了增厚層126。在另一些實施方式中,沿著走線110延伸方向的增厚層126的長度不大於導電層128的長度。FIG. 1B is a partial cross-sectional schematic diagram of the trace (conductive laminated structure) along the line CC in the locally thickened region 114 of FIG. 1A according to some embodiments. The conductive laminated structure 120 includes a substrate 122, a metal layer 124 above the substrate 122, a thickened layer 126 above the metal layer 124, and a conductive layer 128 above the thickened layer 126. Among them, the substrate 122, the metal layer 124, and the conductive layer 128 are layers that are also present in other areas of the wiring 110. In some embodiments, a thickening layer 126 is added between the metal layer 124 and the conductive layer 128 in a local area of the trace 110 (for example, in the conductive laminated structure 120). In other embodiments, the length of the thickening layer 126 along the extending direction of the trace 110 is not greater than the length of the conductive layer 128.

在一些實施方式中,基板122的材料可為聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、環烯烴聚合物(Cyclo olefin polymer,COP)、聚醯亞胺(polyimide,PI)、聚碳酸酯(polycarbonate, PC)、無色聚醯亞胺(Colorless Polyimide,CPI)、聚萘二甲酸乙二醇酯(polyethylene naphthalate,PEN)、或類似者。在一些實施方式中,金屬層124的材料可為金、鈀、銀、銅、鎳、其合金、或其組合。在一些實施方式中,導電層118的材料可為氧化銦錫(ITO)、奈米銀線、金屬網格、導電高分子(例如:聚(3,4-伸乙二氧基噻吩)/聚(苯乙烯磺酸) (PEDOT/PSS))、奈米碳管、石墨烯、或類似者。In some embodiments, the material of the substrate 122 may be polyethylene terephthalate (PET), cyclic olefin polymer (Cyclo olefin polymer, COP), polyimide (PI), polyimide Polycarbonate (PC), colorless polyimide (CPI), polyethylene naphthalate (PEN), or the like. In some embodiments, the material of the metal layer 124 may be gold, palladium, silver, copper, nickel, alloys thereof, or combinations thereof. In some embodiments, the material of the conductive layer 118 can be indium tin oxide (ITO), nano silver wire, metal mesh, conductive polymer (for example: poly(3,4-ethylenedioxythiophene)/poly (Styrene sulfonic acid) (PEDOT/PSS)), carbon nanotubes, graphene, or the like.

在一些實施方式中,增厚層126的材料可為金屬、非金屬、或複合導電材料。金屬可例如為金、鈀、銀、銅、鎳、其合金、或其組合。非金屬可例如為高分子絕緣材料(例如:保護層)或高分子導電材料(例如:PEDOT/PSS)。複合導電材料可例如為奈米銀/碳黑/奈米碳管/石墨烯摻雜金屬粒子和樹酯。在一些實施方式中,增厚層的材料與在其下方的層的材料具有好的連接與附著而形成良導體。In some embodiments, the material of the thickening layer 126 may be a metal, a non-metal, or a composite conductive material. The metal may be, for example, gold, palladium, silver, copper, nickel, alloys thereof, or combinations thereof. The non-metal can be, for example, a polymer insulating material (for example, a protective layer) or a polymer conductive material (for example: PEDOT/PSS). The composite conductive material can be, for example, silver nano/carbon black/carbon nanotube/graphene doped metal particles and resin. In some embodiments, the material of the thickened layer has good connection and adhesion with the material of the underlying layer to form a good conductor.

在一些實施方式中,形成增厚層可經由圖案化製程達成,例如:微影(Lithography)、噴墨列印(IJP)、噴塗(Spray)、絲網印刷(Screen printing)、柔版印刷(Flexo printing)、或類似者。In some embodiments, the formation of the thickening layer can be achieved through a patterning process, such as: Lithography, Inkjet Printing (IJP), Spraying, Screen printing, Flexographic Printing Flexo printing), or similar.

請參看第1C圖,在另一些實施方式中,沿著第1A圖的局部增厚的區域114中的線CC的走線部分(導電層疊構)為第1C圖所示的導電層疊構130。導電層疊構130包含基板132、在基板132上方的導電層134、在導電層134上方的金屬層136、以及在金屬層136上方的增厚層138。其中,基板132、導電層134、和金屬層136為在走線110的其他區域也具有的層面。在一些實施方式中,在走線110的局部區域中(例如,在導電層疊構130中),在導電層134和金屬層136上方增加了增厚層138。在另一些實施方式中,沿著走線110延伸方向的增厚層138的長度不大於導電層134的長度。Please refer to FIG. 1C. In other embodiments, the trace portion (conductive laminate structure) along the line CC in the locally thickened region 114 of FIG. 1A is the conductive laminate structure 130 shown in FIG. 1C. The conductive laminated structure 130 includes a substrate 132, a conductive layer 134 above the substrate 132, a metal layer 136 above the conductive layer 134, and a thickening layer 138 above the metal layer 136. Among them, the substrate 132, the conductive layer 134, and the metal layer 136 are layers that are also present in other areas of the wiring 110. In some embodiments, a thickening layer 138 is added above the conductive layer 134 and the metal layer 136 in a local area of the trace 110 (for example, in the conductive laminated structure 130). In other embodiments, the length of the thickening layer 138 along the extending direction of the trace 110 is not greater than the length of the conductive layer 134.

導電層疊構130的各個層的材料可與第1B圖的導電層疊構120的各個層的材料相同,並且可利用如上述相同的製程而形成。The material of each layer of the conductive laminate structure 130 may be the same as the material of each layer of the conductive laminate structure 120 in FIG. 1B, and may be formed by the same process as described above.

請參看第1D圖,在又另一些實施方式中,沿著第1A圖的局部增厚的區域114中的線CC的走線部分(導電層疊構)為第1D圖所示的導電層疊構140。導電層疊構140包含基板142、在基板142上方的金屬層144、在金屬層144上方的導電層146、以及在導電層146上方的增厚層148。其中,基板142、金屬層144、和導電層146為在走線110的其他區域也具有的層面。在一些實施方式中,在走線110的局部區域中(例如,在導電層疊構140中),在金屬層144和導電層146上方增加了增厚層148。在另一些實施方式中,沿著走線110延伸方向的增厚層138的長度不大於導電層134的長度。Please refer to FIG. 1D. In still other embodiments, the trace portion (conductive laminate structure) along the line CC in the locally thickened region 114 of FIG. 1A is the conductive laminate structure 140 shown in FIG. 1D. . The conductive laminated structure 140 includes a substrate 142, a metal layer 144 above the substrate 142, a conductive layer 146 above the metal layer 144, and a thickening layer 148 above the conductive layer 146. Among them, the substrate 142, the metal layer 144, and the conductive layer 146 are layers that are also present in other areas of the wiring 110. In some embodiments, a thickening layer 148 is added above the metal layer 144 and the conductive layer 146 in a local area of the trace 110 (for example, in the conductive laminated structure 140). In other embodiments, the length of the thickening layer 138 along the extending direction of the trace 110 is not greater than the length of the conductive layer 134.

導電層疊構140的各個層的材料可與第1B圖的導電層疊構120的各個層的材料相同,並且可利用如上述相同的製程而形成。The material of each layer of the conductive laminate structure 140 may be the same as the material of each layer of the conductive laminate structure 120 in FIG. 1B, and may be formed by the same process as described above.

請參看第1E圖,其為第1A圖的局部增厚的區域114的放大示意圖。走線110的寬度尺寸為W 1,走線間之間的間距尺寸為P 1,虛線為裝置彎折時的彎折線。在一些實施方式中,具有增厚層的區域為在非顯示區的走線的部分中。在第一方向(走線延伸的方向,亦即y方向)上,具有增厚層的區域的長度為L 1Please refer to FIG. 1E, which is an enlarged schematic view of the locally thickened area 114 in FIG. 1A. The width dimension of the wiring 110 is W 1 , the spacing dimension between the wirings is P 1 , and the dashed line is the bending line when the device is bent. In some embodiments, the area with the thickened layer is in the wiring portion of the non-display area. In the first direction (the direction in which the trace extends, that is, the y direction), the length of the region with the thickened layer is L 1 .

在一些實施方式中,在第二方向上(與第一方向垂直的方向,亦即x方向),增厚層的寬度可能為單個走線110的寬度,亦即,個別的增厚層位在不同的走線中。也就是說,增厚層的寬度尺寸為W 1。在另一些實施方式中,當增厚層由非金屬材料形成,例如聚合物材料,可形成一整體的增厚層其位於複數條走線110的範圍中,亦即,一單獨的增厚層覆蓋複數條走線110的導電層。也就是說,當有N條走線時,增厚層的寬度尺寸Wt為等於或略大於N x W 1+ (N-1) x P 1。或者,增厚層的寬度尺寸W t為約等於N x (W 1+ P 1)。因此,增厚層在第二方向上的寬度尺寸範圍可介於約W 1和約(W 1+ P 1) x N之間。 In some embodiments, in the second direction (the direction perpendicular to the first direction, that is, the x-direction), the width of the thickened layer may be the width of a single trace 110, that is, individual thickened layers are located in Different traces. In other words, the width dimension of the thickened layer is W 1 . In other embodiments, when the thickened layer is formed of a non-metallic material, such as a polymer material, a whole thickened layer can be formed in the range of the plurality of traces 110, that is, a single thickened layer A conductive layer covering a plurality of traces 110. That is, when there are N traces, the width dimension Wt of the thickened layer is equal to or slightly larger than N x W 1 + (N-1) x P 1 . Alternatively, the width dimension W t of the thickened layer is approximately equal to N x (W 1 + P 1 ). Therefore, the width dimension of the thickened layer in the second direction may range between about W 1 and about (W 1 + P 1 ) x N.

第2A圖和第2B圖繪示導電層疊構的彎折區在彎折狀態的示意圖。增厚層所覆蓋的區域的長度與彎折時的曲率半徑和彎折角度相關。在第2A圖所繪示的導電層疊構20中,導電層疊構沿著第一方向(x方向)延伸,增厚層26位於基板22和走線材料層(金屬或非金屬)24上方。在第2A圖中,曲率半徑為R 1,彎折的角度為θ 1,增厚層26的長度為W 1。在第2B圖的導電層疊構30中,曲率半徑為R 2,彎折的角度為θ 2,增厚層36位於基板32和走線材料層34上方且長度為W 22A and 2B show schematic diagrams of the bending area of the conductive laminated structure in a bent state. The length of the area covered by the thickened layer is related to the radius of curvature and the bending angle during bending. In the conductive laminated structure 20 shown in FIG. 2A, the conductive laminated structure extends along the first direction (x direction), and the thickening layer 26 is located above the substrate 22 and the wiring material layer (metal or non-metal) 24. In Figure 2A, the radius of curvature is R 1 , the bending angle is θ 1 , and the length of the thickened layer 26 is W 1 . In the conductive laminated structure 30 in FIG. 2B, the radius of curvature is R 2 , the bending angle is θ 2 , and the thickening layer 36 is located above the substrate 32 and the wiring material layer 34 and has a length of W 2 .

在一些實施方式中,增厚層沿第一方向的長度取決於可折疊的電子裝置的曲率半徑和彎折的角度。在一些實施方式中,導電層疊構的曲率半徑為1毫米,彎折的角度為180度,增厚層沿第一方向的長度至少為3毫米。In some embodiments, the length of the thickened layer in the first direction depends on the radius of curvature and the bending angle of the foldable electronic device. In some embodiments, the radius of curvature of the conductive laminated structure is 1 mm, the bending angle is 180 degrees, and the length of the thickened layer in the first direction is at least 3 mm.

在一些實施方式中,導電層疊構沿著第一方向延伸,增厚層在第一方向上在彎折區的長度取決於電子元件裝置的彎折時的曲率半徑和彎折的角度,增厚層長度至少需要大於對應曲率半徑180°的弧長範圍。In some embodiments, the conductive laminated structure extends along the first direction, and the length of the thickening layer in the bending area in the first direction depends on the curvature radius and the bending angle of the electronic component device when the electronic component device is bent. The layer length must be at least greater than the arc length range corresponding to the radius of curvature of 180°.

在一些實施方式中,增厚層的長度範圍大於15毫米(mm),彎折軸心與增厚層兩端的夾角為180°~360° (隨增厚層長度而異);相較於沒有設置增厚層的導電層疊構,本揭示內容的實施方式中的導電層疊構對於彎折時的應力應變量能增加0.1至10%,導電層疊構的曲率半徑能減小0.5至3毫米。In some embodiments, the length of the thickened layer is greater than 15 millimeters (mm), and the angle between the bending axis and the two ends of the thickened layer is 180°~360° (varies with the length of the thickened layer); With the conductive laminated structure provided with the thickening layer, the conductive laminated structure in the embodiment of the present disclosure can increase the amount of stress strain during bending by 0.1 to 10%, and the radius of curvature of the conductive laminated structure can be reduced by 0.5 to 3 mm.

在一些實施方式中,導電層疊構沿第一方向延伸,在第一方向上增厚層的長度為大於9毫米,當以曲率半徑為約3毫米彎折時,曲率半徑的中心點與增厚層兩端的夾角約180°。In some embodiments, the conductive layered structure extends along the first direction, and the length of the thickened layer in the first direction is greater than 9 mm. When bent with a radius of curvature of about 3 mm, the center point of the radius of curvature and the thickness increase The angle between the two ends of the layer is about 180°.

在另一些實施方式中,導電層疊構沿第一方向延伸,在第一方向上增厚層的長度為大於15毫米,當以曲率半徑為約5毫米彎折時,曲率半徑的中心點與增厚層兩端的夾角約180°。In some other embodiments, the conductive laminated structure extends along the first direction, and the length of the thickened layer in the first direction is greater than 15 mm. When bending with a radius of curvature of about 5 mm, the center point of the radius of curvature and the increase The angle between the two ends of the thick layer is about 180°.

在一些實施方式中,導電層沿第一方向延伸,增厚層在第一方向上的長度與導電層沿第一方向延伸的長度比值為0.001~1,例如0.001、0.005、0.01、0.02、0.05、0.08、0.1、0.2、0.5、0.8。In some embodiments, the conductive layer extends in the first direction, and the ratio of the length of the thickening layer in the first direction to the length of the conductive layer extending in the first direction is 0.001 to 1, such as 0.001, 0.005, 0.01, 0.02, 0.05 , 0.08, 0.1, 0.2, 0.5, 0.8.

在一些實施方式中,本揭示內容的導電層疊可應用於可折疊的電子裝置的走線。可折疊的電子裝置包含第一部分、可重覆折疊區域其連接第一部分、以及第二部分其連接可重覆折疊區域。走線在可重覆折疊區域中包含增厚層,位於可折疊的電子裝置折疊時的拉伸應力承受側,用以降低走線斷裂的風險。其中第一部分和第二部分在可折疊的電子裝置非折疊時的角度可能為150度-180度或180度-210度,且第一部分和第二部分在可折疊的電子裝置呈折疊時的角度可能為0度-30度或330度-360度。In some embodiments, the conductive stack of the present disclosure can be applied to the wiring of a foldable electronic device. The foldable electronic device includes a first part, a foldable area connected to the first part, and a second part connected to the foldable area. The wiring includes a thickened layer in the foldable area, which is located on the side where the foldable electronic device is subjected to tensile stress when folded, so as to reduce the risk of wiring breakage. The angle of the first part and the second part when the foldable electronic device is not folded may be 150°-180° or 180°-210°, and the angle of the first part and the second part when the foldable electronic device is folded It may be 0 degrees-30 degrees or 330 degrees-360 degrees.

當導電層疊構形成為導電的走線應用於折疊式電子裝置中,在多次彎折應力的作用下,導電的走線的電阻改變(增加)應盡可能小。一旦導電的走線發生破裂或斷裂,導電的走線的電阻增大甚至失效,會導致折疊式電子裝置的性能劣化甚至故障。其中本文所述定義之斷裂為導電的走線電阻增大超過10%。When the conductive stacked structure is formed as a conductive trace and is applied to a folding electronic device, under the action of multiple bending stresses, the resistance change (increase) of the conductive trace should be as small as possible. Once the conductive traces are cracked or broken, the resistance of the conductive traces increases or even fails, which may cause performance degradation or even failure of the foldable electronic device. Among them, the wire resistance defined by the definition of fracture as conductive increases by more than 10%.

以下結合比較例(參看第3A圖至第3B圖)和實驗例(參見第4圖至第4C圖),說明本案實施方式的導電層疊構的彎折試驗的測試結果。The following describes the test results of the bending test of the conductive laminated structure according to the embodiment of the present application in combination with a comparative example (see FIGS. 3A to 3B) and an experimental example (see FIGS. 4 to 4C).

進行彎折試驗採用湯淺電池(Yuasa Battery)公司生產的型號為DMLHP-CS的彎折機進行對各實施例和對比例的導電層疊構進行測試。試驗條件為曲率半徑為3毫米,彎折頻率為每分鐘30次,最大的折疊力為4 Nm。然後記錄不同的導電層疊構的彎折次數及電阻變化百分比。The bending test was performed using a bending machine model DMLHP-CS produced by Yuasa Battery Co., Ltd. to test the conductive laminate structures of each embodiment and comparative example. The test conditions are that the radius of curvature is 3 mm, the bending frequency is 30 times per minute, and the maximum folding force is 4 Nm. Then record the number of bending times and the resistance change percentage of different conductive laminated structures.

第3A圖繪示根據一些比較例的導電層疊構40在彎折狀態的示意圖;第3B圖繪示導電層疊構40在非彎折狀態的示意圖。導電層疊構40包含基板42、和在基板42上方的金屬層44。此外,導電層疊構40的線長為100μm。在導電疊構40中,基板42的材料為PET,厚度為50微米,楊氏模量為2~3GP。金屬層44的材料為銅層,厚度為0.3微米,楊氏模量為140Gpa。在第3B圖中所示的虛線為彎折時的中性軸的位置。FIG. 3A shows a schematic diagram of the conductive laminated structure 40 in a bent state according to some comparative examples; FIG. 3B shows a schematic diagram of the conductive laminated structure 40 in a non-flexed state. The conductive laminated structure 40 includes a substrate 42 and a metal layer 44 on the substrate 42. In addition, the line length of the conductive laminated structure 40 is 100 μm. In the conductive stack 40, the material of the substrate 42 is PET, the thickness is 50 microns, and the Young's modulus is 2 to 3 GP. The material of the metal layer 44 is a copper layer, the thickness is 0.3 micrometers, and the Young's modulus is 140 Gpa. The broken line shown in Fig. 3B is the position of the neutral axis at the time of bending.

以下表一為不同的比較例的導電層疊構,以曲率半徑3毫米,角度180°進行的彎折試驗的結果。其中比較例中的金屬層(銅層)分別以濺鍍、或不同的電鍍製程(亦即化學鍍(一)、(二)、(三))形成。The following Table 1 shows the results of the bending test conducted on the conductive laminated structures of different comparative examples with a radius of curvature of 3 mm and an angle of 180°. The metal layer (copper layer) in the comparative example is formed by sputtering or different electroplating processes (ie, electroless plating (1), (2), (3)).

表一 銅層的形成方式 走線電阻的變化(R L) (%) 1千次 5千次 2萬次 3萬6千次 6萬次 10萬次 20萬次 濺鍍 2.0 4.9 6.6 10.8 - - - 電鍍(一) 0 0.5 23 92 - - - 電鍍(二) 0.7 2.1 110.2 40786 - - - 電鍍(三) -0.5 8.9 25.1 630 - - - Table I How the copper layer is formed Change of trace resistance (R L ) (%) 1,000 times 5 thousand times 20,000 times 36,000 times 60,000 times 100,000 times 200,000 times Sputtering 2.0 4.9 6.6 10.8 - - - Electroplating (1) 0 0.5 twenty three 92 - - - Electroplating (2) 0.7 2.1 110.2 40786 - - - Electroplating (3) -0.5 8.9 25.1 630 - - -

由表一可知,在以曲率半徑3毫米,經過2萬次的折疊後,上述各個比較例的導電層疊構的電阻明顯的增加。其中採用電鍍(一)、電鍍(二)、和電鍍(三)製程所形成的導電疊構走線電阻的變化大於10%。It can be seen from Table 1 that after 20,000 times of folding with a radius of curvature of 3 mm, the electrical resistance of the conductive laminate structure of each of the above-mentioned comparative examples increased significantly. Among them, the resistance of the conductive stacked wiring formed by electroplating (1), electroplating (2), and electroplating (3) processes is greater than 10%.

第4A圖繪示根據一些實驗例的導電層疊構50在非彎折狀態的示意圖。導電層疊構50包含基板52、在基板52上方的導電層54、在導電層54上方的金屬層56、和在金屬層56上方的增厚層58。其中,增厚層58的材料為銅。在第4A圖中所示的虛線為彎折時的中性軸的位置。FIG. 4A illustrates a schematic diagram of the conductive laminated structure 50 in a non-bending state according to some experimental examples. The conductive laminated structure 50 includes a substrate 52, a conductive layer 54 above the substrate 52, a metal layer 56 above the conductive layer 54, and a thickening layer 58 above the metal layer 56. Among them, the material of the thickening layer 58 is copper. The broken line shown in Fig. 4A is the position of the neutral axis at the time of bending.

第4B圖繪示根據一些實驗例的導電層疊構60在非彎折狀態的示意圖。導電層疊構60包含基板62、在基板62上方的導電層64、在導電層64上方的金屬層66,以及在金屬層66上方的增厚層68。其中,基板62由PET形成,厚度為50微米。導電層64包含奈米銀材料,厚度為0.2-0.5μm。金屬層66的材料為銅,厚度為0.2-0.5μm。增厚層68的為一聚合物層,其材料為壓克力,厚度為5至10μm。在第4B圖中所示的虛線為彎折時的中性軸的位置。FIG. 4B illustrates a schematic diagram of the conductive laminated structure 60 in a non-bending state according to some experimental examples. The conductive laminated structure 60 includes a substrate 62, a conductive layer 64 above the substrate 62, a metal layer 66 above the conductive layer 64, and a thickening layer 68 above the metal layer 66. Wherein, the substrate 62 is formed of PET and has a thickness of 50 microns. The conductive layer 64 includes nano-silver material and has a thickness of 0.2-0.5 μm. The material of the metal layer 66 is copper, and the thickness is 0.2-0.5 μm. The thickening layer 68 is a polymer layer whose material is acrylic and has a thickness of 5 to 10 μm. The broken line shown in Fig. 4B is the position of the neutral axis at the time of bending.

以下表二為不同的如第4B圖所示的實施例的導電層疊構,以曲率半徑3毫米,角度180°進行的彎折試驗的結果。其中對照組為未塗佈聚合物(不含增厚層)的導電疊構。The following Table 2 shows the results of a bending test with a radius of curvature of 3 mm and an angle of 180° for the conductive laminated structure of the embodiment shown in FIG. 4B. The control group is a conductive stack without polymer coating (without thickening layer).

表二 銅層的形成方式 疊構的設計 走線電阻的變化(R L) (%) 1萬次 2萬次 4萬次 16萬5千次 電鍍(一) 未塗佈聚合物  0 27 86 - 塗佈聚合物層 -1 - 1 3536% 電鍍(二) 未塗佈聚合物 0.4 57 6589 - 塗佈聚合物層 -1 - 3   9653%   Table II How the copper layer is formed Stacked design Change of trace resistance (R L ) (%) 10,000 times 20,000 times 40,000 times 165,000 times Electroplating (1) Uncoated polymer 0 27 86 - Coated polymer layer -1 - 1 3536% Electroplating (2) Uncoated polymer 0.4 57 6589 - Coated polymer layer -1 - 3 9653%

由表二可知,在經過4萬次的折疊後,上述各個實施例的導電層疊構的電阻沒有明顯的變化;相反地,未塗佈聚合物的導電層疊構的走線電阻明顯地上升,代表有線路斷裂的情況。因此,實施例的導電層疊構有更好的耐彎折性,顯著地優於未塗佈聚合物的對照組導電層疊構。It can be seen from Table 2 that after 40,000 folds, the resistance of the conductive laminate structure of the above embodiments did not change significantly; on the contrary, the trace resistance of the conductive laminate structure without polymer coating increased significantly, representing There is a broken line. Therefore, the conductive laminate structure of the example has better bending resistance, which is significantly better than the conductive laminate structure of the control group without polymer coating.

第4C圖繪示根據一些實驗例的導電層疊構70在非彎折狀態的示意圖。導電層疊構70包含基板72、在基板72上方的導電層74、在導電層74上方的金屬層76,在金屬層76上方的第一聚合物層78、以及在第一聚合物層78上方的第二聚合物層80。也就是說,在導電層疊構70中,增厚層為異質性聚合物形成的多層,包含第一聚合物層78和第二聚合物層80。在導電層疊構70中,基板72由PET形成,厚度為50微米。導電層74包含奈米銀材料,厚度為100 nm以下。金屬層76的材料為銅,厚度為0.2~0.5μm。第一聚合物層78的材料為光學膠(OCA),厚度為50微米。第二聚合物層80的材料為PET,厚度為50微米。在第4C圖中所示的虛線為彎折時的中性軸的位置。FIG. 4C is a schematic diagram of the conductive laminated structure 70 in a non-bending state according to some experimental examples. The conductive laminate 70 includes a substrate 72, a conductive layer 74 above the substrate 72, a metal layer 76 above the conductive layer 74, a first polymer layer 78 above the metal layer 76, and a first polymer layer 78 above the first polymer layer 78. The second polymer layer 80. That is, in the conductive laminated structure 70, the thickening layer is a multilayer formed of heterogeneous polymers, including the first polymer layer 78 and the second polymer layer 80. In the conductive laminated structure 70, the substrate 72 is formed of PET and has a thickness of 50 microns. The conductive layer 74 includes nanosilver material and has a thickness of 100 nm or less. The material of the metal layer 76 is copper, and the thickness is 0.2 to 0.5 μm. The material of the first polymer layer 78 is Optical Adhesive (OCA), and the thickness is 50 microns. The material of the second polymer layer 80 is PET, and the thickness is 50 microns. The broken line shown in Fig. 4C is the position of the neutral axis at the time of bending.

以下表三為不同的實施例的導電層疊構,以曲率半徑3毫米,角度180°進行的彎折試驗的結果。其中對照組為未塗佈聚合物(不含增厚層)的導電疊構。在表三中,含OCA層/PET層的導電層疊構相當於第4C 圖所示的實施例的結構。The following Table 3 shows the results of bending tests conducted on the conductive laminated structures of different embodiments with a radius of curvature of 3 mm and an angle of 180°. The control group is a conductive stack without polymer coating (without thickening layer). In Table 3, the conductive laminate structure containing the OCA layer/PET layer corresponds to the structure of the embodiment shown in Fig. 4C.

表三 銅層的形成方式 疊構的設計 走線電阻的變化(R L) (%) 1萬次 2萬次 4萬次 6萬次 16萬5千次 20萬次 電鍍(一) 未塗佈聚合物 0 27 86 - - - OCA層/PET層 - - 1 1 1 1 電鍍(二) 未塗佈聚合物 0.4 57 6589 - - - OCA層/PET層 - - 1   2 2 2 電鍍(三) 未塗佈聚合物 9.7 34 466 - - - OCA層/PET層 - - 0 1 1 0 Table Three How the copper layer is formed Stacked design Change of trace resistance (R L ) (%) 10,000 times 20,000 times 40,000 times 60,000 times 165,000 times 200,000 times Electroplating (1) Uncoated polymer 0 27 86 - - - OCA layer/PET layer - - 1 1 1 1 Electroplating (2) Uncoated polymer 0.4 57 6589 - - - OCA layer/PET layer - - 1 2 2 2 Electroplating (3) Uncoated polymer 9.7 34 466 - - - OCA layer/PET layer - - 0 1 1 0

由表三可知,在經過4萬次的折疊後,上述具有第一聚合物層和第二聚合物層的實施例的導電層疊構的電阻沒有明顯的變化;並且,在經過6萬次、16萬5千次、和20萬次的折疊後,上述導電層疊構的電阻也沒有明顯的變化。亦即,在經過多次折疊後,導電層疊構沒有斷裂的情況。因此,這些實施例的導電層疊構有更好的耐彎折性,顯著地優於未塗佈聚合物的對照組導電層疊構。It can be seen from Table 3 that after 40,000 times of folding, the resistance of the conductive laminate structure of the above embodiment with the first polymer layer and the second polymer layer did not change significantly; and after 60,000 times, 16 After 5,000 times and 200,000 times of folding, the resistance of the above-mentioned conductive laminate structure did not change significantly. That is, after many times of folding, the conductive laminate structure did not break. Therefore, the conductive laminate structures of these examples have better bending resistance, which is significantly better than the control conductive laminate structures without polymer coating.

第5A圖至第5D圖繪示根據本揭示內容的一些實施方式的導電層疊構的示意圖。FIG. 5A to FIG. 5D are schematic diagrams of conductive laminated structures according to some embodiments of the present disclosure.

第5A圖繪示導電層疊構210,其包含基板212、在基板212上方的走線材料層214、和在走線材料層214上方的增厚層216。其中,走線材料層214的材料可為金屬、非金屬、或其組合。增厚層216的材料可為金屬、非金屬、或複合導電材料。FIG. 5A shows a conductive laminated structure 210, which includes a substrate 212, a wiring material layer 214 above the substrate 212, and a thickening layer 216 above the wiring material layer 214. The material of the wiring material layer 214 can be metal, non-metal, or a combination thereof. The material of the thickening layer 216 may be metal, non-metal, or composite conductive material.

在一些實施方式中,當增厚層216的材料為金屬時,增厚層216的厚度與走線材料層214的厚度比值為0.05~5,例如,0.05~0.5、0.1~1、0.5~2、或2~5。In some embodiments, when the material of the thickening layer 216 is metal, the ratio of the thickness of the thickening layer 216 to the thickness of the wiring material layer 214 is 0.05 to 5, for example, 0.05 to 0.5, 0.1 to 1, 0.5 to 2 , Or 2~5.

在一些實施方式中,當增厚層216的材料為非金屬或複合導電材料時,增厚層216的厚度與走線材料層214的厚度比值為0.1~50,例如0.1~10、10~20、或20~50。In some embodiments, when the material of the thickening layer 216 is a non-metallic or composite conductive material, the ratio of the thickness of the thickening layer 216 to the thickness of the wiring material layer 214 is 0.1-50, such as 0.1-10, 10-20 , Or 20~50.

在一些實施方式中,導電層疊構210的基板212的厚度(單位:μm)乘以楊氏模量(單位:Gpa)的值為約100~300,走線材料層214的厚度乘以楊氏模量的值為約20~70,增厚層216的材料為金屬,且增厚層216的厚度乘以楊氏模量的值為約5~30。In some embodiments, the thickness (unit: μm) of the substrate 212 of the conductive laminated structure 210 multiplied by the Young's modulus (unit: Gpa) is about 100 to 300, and the thickness of the wiring material layer 214 is multiplied by the Young's modulus. The value of the modulus is about 20 to 70, the material of the thickened layer 216 is metal, and the thickness of the thickened layer 216 multiplied by the Young's modulus is about 5 to 30.

在一些實施方式中,導電層疊構210的基板212的厚度乘以楊氏模量的值為約100~300,走線材料層214的厚度乘以楊氏模量的值為約20~70,增厚層216的材料為非金屬或複合導電材料,且增厚層216的厚度乘以楊氏模量的值為約2~60。In some embodiments, the thickness of the substrate 212 of the conductive laminated structure 210 multiplied by the Young's modulus is about 100 to 300, and the thickness of the wiring material layer 214 multiplied by the Young's modulus is about 20 to 70. The material of the thickening layer 216 is a non-metal or composite conductive material, and the value of the thickness of the thickening layer 216 multiplied by the Young's modulus is about 2-60.

第5B圖繪示導電層疊構220,其包含基板222、在基板222上方的走線材料層224、在走線材料層224上方的第一聚合物層226、和在第一聚合物層226上方的第二聚合物層228。在導電層疊構220中,基板222和走線材料層224的材料類似於第5A圖所示的導電層疊構210的基板212和走線材料層214。在導電層疊構220中,增厚層為異質性聚合物形成的多層,包含第一聚合物層226和第二聚合物層228。第一聚合物層226和第二聚合物層228為不同的聚合物材料。在一些實施方式中,第一聚合物層226與第二聚合物層228的楊氏模量的比值為約10 3~10 6,例如,第一聚合物層226由OCA形成,第二聚合物層228由PET形成。在導電層疊構220中,第一聚合物層226的厚度與走線材料層224的厚度的比值為約30至100,第二聚合物層228的厚度與走線材料層214的厚度的比值為約30至100,並且第一聚合物層的厚度與第二聚合物層的厚度的比值為約0.5至2。 FIG. 5B shows a conductive laminated structure 220, which includes a substrate 222, a wiring material layer 224 above the substrate 222, a first polymer layer 226 above the wiring material layer 224, and a first polymer layer 226 The second polymer layer 228. In the conductive laminated structure 220, the materials of the substrate 222 and the wiring material layer 224 are similar to the substrate 212 and the wiring material layer 214 of the conductive laminated structure 210 shown in FIG. 5A. In the conductive laminated structure 220, the thickening layer is a multilayer formed of heterogeneous polymers, including a first polymer layer 226 and a second polymer layer 228. The first polymer layer 226 and the second polymer layer 228 are different polymer materials. In some embodiments, the ratio of the Young's modulus of the first polymer layer 226 to the second polymer layer 228 is about 10 3 to 10 6. For example, the first polymer layer 226 is formed of OCA, and the second polymer layer The layer 228 is formed of PET. In the conductive laminated structure 220, the ratio of the thickness of the first polymer layer 226 to the thickness of the wiring material layer 224 is about 30 to 100, and the ratio of the thickness of the second polymer layer 228 to the thickness of the wiring material layer 214 is It is about 30 to 100, and the ratio of the thickness of the first polymer layer to the thickness of the second polymer layer is about 0.5 to 2.

在一些實施方式中,導電層疊構220的基板222的厚度乘以楊氏模量的值為約100~300,走線材料層224厚度乘以楊氏模量的值為約20~70,第一聚合物層226的厚度乘以楊氏模量的值為約2~60,第二聚合物層228的厚度乘以楊氏模量的值為約100~300。In some embodiments, the thickness of the substrate 222 of the conductive laminated structure 220 multiplied by the Young's modulus is about 100 to 300, and the thickness of the wiring material layer 224 multiplied by the Young's modulus is about 20 to 70. The value of the thickness of one polymer layer 226 multiplied by the Young's modulus is about 2-60, and the value of the thickness of the second polymer layer 228 multiplied by the Young's modulus is about 100-300.

第5C圖繪示導電層疊構230,其包含基板232、在基板232上方的觸媒層(Catalyst layer)234、在觸媒層234上方的導電層236、和在導電層236上方的增厚層238。在導電層疊構230中,基板232、和增厚層238類似於第5A圖所示的導電層疊構210中的基板212、和增厚層216。在一些實施方式中,觸媒層234的材料可能為鈀、銠、鉑、銥、鋨、金、鎳、鐵等其中任意一種金屬。在導電層疊構230中,導電層236的材料為金屬,例如可經由化學鍍製程而形成銅層在觸媒層234之上,並且導電層236的厚度與觸媒層234的厚度的比值為約0.5~5、或約2~10。FIG. 5C shows a conductive laminated structure 230, which includes a substrate 232, a catalyst layer 234 above the substrate 232, a conductive layer 236 above the catalyst layer 234, and a thickening layer above the conductive layer 236 238. In the conductive laminated structure 230, the substrate 232 and the thickened layer 238 are similar to the substrate 212 and the thickened layer 216 in the conductive laminated structure 210 shown in FIG. 5A. In some embodiments, the material of the catalyst layer 234 may be any one of metals such as palladium, rhodium, platinum, iridium, osmium, gold, nickel, and iron. In the conductive laminated structure 230, the material of the conductive layer 236 is metal, for example, a copper layer can be formed on the catalyst layer 234 through an electroless plating process, and the ratio of the thickness of the conductive layer 236 to the thickness of the catalyst layer 234 is about 0.5~5, or about 2~10.

第5D圖繪示導電層疊構240,其包含基板242、在基板232上方的觸媒層244、在觸媒層244上方的導電層246、在導電層246上方的第一聚合物層248、和在第一聚合物層248上方的第二聚合物層250。在導電層疊構240中,基板242、第一聚合物層248、和第二聚合物層250類似於第5B圖所示的導電層疊構220中的基板222、第一聚合物層226、和第二聚合物層228。在一些實施方式中,觸媒層244的材料可能為鈀、銠、鉑、銥、鋨、金、鎳、鐵等其中任意一種金屬。在導電層疊構240中,導電層246的材料為金屬,例如可經由化學鍍製程而形成銅層在觸媒層244之上,並且導電層246的厚度與觸媒層244的厚度的比值為約0.5~5、或約2~10。FIG. 5D shows a conductive laminate structure 240, which includes a substrate 242, a catalyst layer 244 above the substrate 232, a conductive layer 246 above the catalyst layer 244, a first polymer layer 248 above the conductive layer 246, and The second polymer layer 250 above the first polymer layer 248. In the conductive laminate structure 240, the substrate 242, the first polymer layer 248, and the second polymer layer 250 are similar to the substrate 222, the first polymer layer 226, and the second polymer layer in the conductive laminate structure 220 shown in FIG. 5B. Two polymer layer 228. In some embodiments, the material of the catalyst layer 244 may be any one of metals such as palladium, rhodium, platinum, iridium, osmium, gold, nickel, and iron. In the conductive laminated structure 240, the material of the conductive layer 246 is metal. For example, a copper layer can be formed on the catalyst layer 244 through an electroless plating process, and the ratio of the thickness of the conductive layer 246 to the thickness of the catalyst layer 244 is about 0.5~5, or about 2~10.

第6A至第6F圖繪示根據一些實施方式的導電層疊構應用於單面折疊式電子裝置的示意圖。6A to 6F are schematic diagrams illustrating the application of the conductive laminated structure according to some embodiments to a single-sided folding electronic device.

第6A圖為導電層疊構310以U型折疊時的示意圖,第6B圖為導電層疊構310展開時的示意圖。FIG. 6A is a schematic view when the conductive laminated structure 310 is folded in a U shape, and FIG. 6B is a schematic view when the conductive laminated structure 310 is unfolded.

導電層疊構310包含基板312、在基板312上方的金屬層314、和在金屬層上方的導電層318,增厚層316在形成在彎折處的金屬層314和導電層318之間。在一些實施方式中,在彎折處,金屬層314之上先局部增厚,形成材料為金屬或複合導電複合的增厚層316,之後塗覆包含奈米銀線的導電層318。The conductive laminated structure 310 includes a substrate 312, a metal layer 314 above the substrate 312, and a conductive layer 318 above the metal layer. The thickening layer 316 is formed between the metal layer 314 and the conductive layer 318 formed at the bend. In some embodiments, at the bend, the metal layer 314 is locally thickened first to form a thickened layer 316 made of metal or composite conductive compound, and then coated with a conductive layer 318 containing silver nanowires.

第6C圖為導電層疊構330以U型折疊時的示意圖,第6D圖為導電層疊構330展開時的示意圖。FIG. 6C is a schematic diagram when the conductive laminated structure 330 is folded in a U shape, and FIG. 6D is a schematic diagram when the conductive laminated structure 330 is unfolded.

導電層疊構330包含基板332、在基板332上方的金屬層334、和在金屬層上方的導電層336,增厚層338在形成在彎折處的導電層336之上。在一些實施方式中,在彎折處,先塗覆包含奈米銀線的導電層336,之後,在局部形成材料為金屬、非金屬、或複合導電材料的增厚層338。The conductive laminated structure 330 includes a substrate 332, a metal layer 334 above the substrate 332, and a conductive layer 336 above the metal layer, and the thickening layer 338 is formed on the conductive layer 336 formed at the bend. In some embodiments, a conductive layer 336 containing silver nanowires is first coated at the bend, and then a thickened layer 338 made of metal, non-metal, or composite conductive material is formed locally.

第6E圖為導電層疊構350以U型折疊時的示意圖,第6F圖為導電層疊構350展開時的示意圖。FIG. 6E is a schematic diagram when the conductive laminated structure 350 is folded in a U shape, and FIG. 6F is a schematic diagram when the conductive laminated structure 350 is unfolded.

導電層疊構350包含基板352、在基板352上方的導電層354、和在導電層354上方的金屬層356,增厚層358在形成在彎折處的金屬層356之上。在一些實施方式中,在彎折處,在金屬層356之上局部地形成材料為金屬、非金屬、或複合導電材料的增厚層358。The conductive laminated structure 350 includes a substrate 352, a conductive layer 354 above the substrate 352, and a metal layer 356 above the conductive layer 354, and the thickening layer 358 is formed on the metal layer 356 formed at the bend. In some embodiments, at the bend, a thickened layer 358 made of metal, non-metal, or a composite conductive material is locally formed on the metal layer 356.

第7A至第7F圖繪示根據一些實施方式的導電層疊構應用於雙面折疊式電子裝置的示意圖。7A to 7F are schematic diagrams illustrating the application of the conductive laminated structure according to some embodiments to a double-sided folding electronic device.

第7A圖為導電層疊構410以S型折疊時的示意圖,第7B圖為導電層疊構410展開時的示意圖。FIG. 7A is a schematic diagram when the conductive laminated structure 410 is folded in an S shape, and FIG. 7B is a schematic diagram when the conductive laminated structure 410 is unfolded.

導電層疊構410包含具有雙側金屬膜的結構層414、在具有雙側金屬膜的結構層414的兩側上的導電層412和418,以及位在彎折處的增厚層416。The conductive laminated structure 410 includes a structure layer 414 having a double-sided metal film, conductive layers 412 and 418 on both sides of the structure layer 414 having a double-sided metal film, and a thickening layer 416 located at a bend.

具有雙側金屬膜的結構層414包含基板414B,在基板414B的雙側上形成金屬層414A和414C。在彎折處,增厚層416位在介於金屬層414A之間和導電層412之間,以及位在介於金屬層414C和導電層418之間。在一些實施方式中,在彎折處,金屬層314之上先局部增厚,形成材料為金屬或複合導電材料的增厚層416,之後塗覆包含奈米銀線的導電層412和418。The structural layer 414 with double-sided metal films includes a substrate 414B, and metal layers 414A and 414C are formed on both sides of the substrate 414B. At the bend, the thickening layer 416 is located between the metal layer 414A and the conductive layer 412, and between the metal layer 414C and the conductive layer 418. In some embodiments, at the bend, the metal layer 314 is locally thickened first to form a thickened layer 416 made of metal or composite conductive material, and then coated with conductive layers 412 and 418 containing silver nanowires.

第7C圖為導電層疊構430以S型折疊時的示意圖,第7D圖為導電層疊構430展開時的示意圖。FIG. 7C is a schematic diagram when the conductive laminated structure 430 is folded in an S shape, and FIG. 7D is a schematic diagram when the conductive laminated structure 430 is unfolded.

導電層疊構430包含具有雙側金屬膜的結構層434、在具有雙側金屬膜的結構層434的兩側上的導電層432和436,以及位在彎折處的增厚層438。The conductive laminated structure 430 includes a structure layer 434 with a double-sided metal film, conductive layers 432 and 436 on both sides of the structure layer 434 with a double-sided metal film, and a thickened layer 438 located at a bend.

具有雙側金屬膜的結構層434包含基板434B,在基板434B的雙側上形成金屬層434A和434C。在彎折處,增厚層438位在導電層432和436上。在一些實施方式中,先塗覆包含奈米銀線的導電層432和436之後,在彎折處,形成材料為金屬、非金屬、或複合導電材料的增厚層438。The structural layer 434 with double-sided metal films includes a substrate 434B, and metal layers 434A and 434C are formed on both sides of the substrate 434B. At the bend, the thickened layer 438 is located on the conductive layers 432 and 436. In some embodiments, after the conductive layers 432 and 436 containing silver nanowires are first coated, the thickened layer 438 made of metal, non-metal, or composite conductive material is formed at the bend.

第7E圖為導電層疊構450以S型折疊時的示意圖,第7F圖為導電層疊構450展開時的示意圖。FIG. 7E is a schematic diagram when the conductive laminated structure 450 is folded in an S shape, and FIG. 7F is a schematic diagram when the conductive laminated structure 450 is unfolded.

導電層疊構450包含具有雙側導電膜(例如,透明導電層)的結構層454、在具有雙側導電膜的結構層454的兩側上的金屬層452和456,以及位在彎折處的增厚層458。The conductive laminated structure 450 includes a structure layer 454 having a double-sided conductive film (for example, a transparent conductive layer), metal layers 452 and 456 on both sides of the structure layer 454 having a double-sided conductive film, and Thickening layer 458.

具有雙側導電膜的結構層454包含基板454B,在基板454B的雙側上形成導電層454A和454C。在一些實施方式中,在彎折處,在金屬層452和456之上局部地形成材料為金屬、非金屬、或複合導電材料的增厚層458。The structure layer 454 having a double-sided conductive film includes a substrate 454B, and conductive layers 454A and 454C are formed on both sides of the substrate 454B. In some embodiments, at the bend, a thickened layer 458 made of metal, non-metal, or composite conductive material is locally formed on the metal layers 452 and 456.

以下提供具有增厚層的導電層疊構的折疊式裝置製造方法。The following provides a method for manufacturing a foldable device with a conductive laminated structure with a thickened layer.

第8A圖至第8I圖繪示根據一些實施方式的一製程,形成一折疊式電子裝置其層面依序包含單側的金屬膜(single-side metal film,SMF)、選擇性成長的金屬(selective growth metal,SGM)和導電層,其中增厚層為金屬材料。Figures 8A to 8I illustrate a process according to some embodiments to form a foldable electronic device whose layers sequentially include a single-side metal film (SMF) and a selective growth metal (selective) growth metal, SGM) and conductive layer, in which the thickening layer is a metal material.

如第8A圖所示,提供具有金屬層504的基板502。可能利用濺鍍或電鍍,將例如銅的金屬材料形成在基板502上。As shown in FIG. 8A, a substrate 502 having a metal layer 504 is provided. It is possible to form a metal material such as copper on the substrate 502 by sputtering or electroplating.

如第8B圖所示,之後形成光阻層506在金屬層504上,並且進行曝光和顯影而圖案化光阻層506。As shown in FIG. 8B, a photoresist layer 506 is then formed on the metal layer 504, and exposure and development are performed to pattern the photoresist layer 506.

如第8C圖所示,之後進行蝕刻製程,將未被圖案化的光阻層506遮蓋的金屬層504的部分蝕刻,形成圖案化的金屬層504。之後剝離光阻層506。As shown in FIG. 8C, an etching process is then performed to etch a portion of the metal layer 504 that is not covered by the patterned photoresist layer 506 to form a patterned metal layer 504. Then, the photoresist layer 506 is stripped off.

如第8D圖所示,形成光阻層510於圖案化的金屬層504的間隔之間,並進行曝光和顯影。之後在金屬層504上方選擇性成長增厚層508。在一些實施方式中,經由濺鍍或電鍍,將銅材料形成在金屬層504之上。As shown in FIG. 8D, a photoresist layer 510 is formed between the intervals of the patterned metal layer 504, and exposure and development are performed. Then, a thickening layer 508 is selectively grown on the metal layer 504. In some embodiments, a copper material is formed on the metal layer 504 via sputtering or electroplating.

如第8E圖所示,移除光阻層510,並且在基板502上、金屬層504上和增厚層508上設置導電層512。在一些實施方式中,可經由塗覆的方式,將含有奈米銀線或ITO的導電材料形成為導電層512。As shown in FIG. 8E, the photoresist layer 510 is removed, and a conductive layer 512 is provided on the substrate 502, the metal layer 504, and the thickening layer 508. In some embodiments, a conductive material containing silver nanowires or ITO may be formed as the conductive layer 512 by coating.

如第8F圖所示,設置光阻層514,並且曝光和顯影而形成圖案化的光阻層514。As shown in FIG. 8F, a photoresist layer 514 is provided, and exposed and developed to form a patterned photoresist layer 514.

如第8G圖所示,之後進行蝕刻,蝕刻未被圖案化的光阻層遮蓋的導電層512、增厚層508、和金屬層504。因此,形成了複數個分隔的走線。As shown in FIG. 8G, etching is then performed to etch the conductive layer 512, the thickening layer 508, and the metal layer 504 that are not covered by the patterned photoresist layer. Therefore, a plurality of separate traces are formed.

如第8H圖所示,將光阻層514剝離。As shown in FIG. 8H, the photoresist layer 514 is peeled off.

如第8I圖所示,在基板502、金屬層504、增厚層508、和導電層512上方設置保護層(over coating)516。在第8I圖所示的結構中,在走線中,增厚層508位於金屬層504和導電層512之間。As shown in FIG. 8I, an over coating 516 is provided on the substrate 502, the metal layer 504, the thickening layer 508, and the conductive layer 512. In the structure shown in FIG. 8I, the thickening layer 508 is located between the metal layer 504 and the conductive layer 512 in the wiring.

第9A圖至第9J圖繪示根據一些實施方式的一製程,形成一折疊式電子裝置其層面依序包含單側的金屬膜、導電層、和選擇性成長的金屬,其中增厚層為金屬材料。Figures 9A to 9J illustrate a process according to some embodiments to form a foldable electronic device whose layers include a single-sided metal film, a conductive layer, and a selectively grown metal, in which the thickened layer is a metal material.

如第9A圖所示,提供具有金屬層524的基板522。可能利用濺鍍或電鍍,將例如銅的金屬材料形成在基板522上。As shown in FIG. 9A, a substrate 522 having a metal layer 524 is provided. A metal material such as copper may be formed on the substrate 522 by sputtering or electroplating.

如第9B圖所示,在金屬層524上方形成光阻層526,並經曝光和顯影而形成圖案化的光阻層526。As shown in FIG. 9B, a photoresist layer 526 is formed on the metal layer 524, and a patterned photoresist layer 526 is formed by exposure and development.

如第9C圖所示,之後進行蝕刻製程,將未被圖案化的光阻層526遮蓋的金屬層524的部分蝕刻,形成圖案化的金屬層。之後剝離光阻層526。As shown in FIG. 9C, an etching process is then performed to etch the part of the metal layer 524 that is not covered by the patterned photoresist layer 526 to form a patterned metal layer. Then, the photoresist layer 526 is peeled off.

如第9D圖所示,在基板522和金屬層524之上設置導電層528。可經由塗覆的方式,將含有奈米銀線或ITO的導電材料形成為導電層528。As shown in FIG. 9D, a conductive layer 528 is provided on the substrate 522 and the metal layer 524. A conductive material containing silver nanowires or ITO can be formed as the conductive layer 528 by coating.

如第9E圖所示,形成光阻層530,並經曝光和顯影形成圖案化的光阻層530。As shown in FIG. 9E, a photoresist layer 530 is formed, and a patterned photoresist layer 530 is formed by exposure and development.

如第9F圖所示,在導電層上方未被圖案化的光阻層530覆蓋的區域設置增厚層532。在一些實施方式中,可經由選擇性成長,例如將銅材料濺鍍或電鍍在導電層528上。As shown in FIG. 9F, a thickening layer 532 is provided in an area above the conductive layer that is not covered by the patterned photoresist layer 530. In some embodiments, selective growth, such as sputtering or electroplating a copper material on the conductive layer 528 can be performed.

如第9G圖所示,剝離光阻層530。As shown in FIG. 9G, the photoresist layer 530 is peeled off.

如第9H圖所示,形成光阻層534,並經曝光和顯影而形成圖案化的光阻層534。As shown in FIG. 9H, a photoresist layer 534 is formed, and a patterned photoresist layer 534 is formed by exposure and development.

如第9I圖所示,之後進行蝕刻,移除未被圖案化的光阻層534遮蓋的增厚層532、導電層528、和金屬層524。因此,形成複數個分隔的走線。之後剝離光阻層534。As shown in FIG. 9I, etching is then performed to remove the thickening layer 532, the conductive layer 528, and the metal layer 524 that are not covered by the patterned photoresist layer 534. Therefore, a plurality of separate traces are formed. Then, the photoresist layer 534 is peeled off.

如第9J圖所示,在基板522、金屬層524、導電層528、和增厚層532上方設置保護層536。在第9J圖所示的結構中,在走線中,增厚層532位於金屬層524和導電層528二者的上方。As shown in FIG. 9J, a protective layer 536 is provided on the substrate 522, the metal layer 524, the conductive layer 528, and the thickening layer 532. In the structure shown in FIG. 9J, the thickening layer 532 is located above both the metal layer 524 and the conductive layer 528 in the wiring.

第10A圖至第10G圖繪示根據一些實施方式的一製程,形成一折疊式電子裝置其層面依序包含導電層、單側的金屬膜、和選擇性成長的金屬,其中增厚層為金屬材料。Figures 10A to 10G illustrate a process according to some embodiments to form a foldable electronic device whose layers include a conductive layer, a metal film on one side, and a selectively grown metal, in which the thickened layer is a metal material.

如第10A圖所示,首先提供提供包含導電層604(透明導電膜)的基板602,之後在導電層604之上設置金屬層606。在一些實施方式中,可經由濺鍍或電鍍,將銅材料形成在導電層604之上。As shown in FIG. 10A, a substrate 602 including a conductive layer 604 (transparent conductive film) is provided first, and then a metal layer 606 is provided on the conductive layer 604. In some embodiments, the copper material may be formed on the conductive layer 604 through sputtering or electroplating.

如第10B圖所示,形成光阻層608,並經曝光和顯影而形成圖案化的光阻層608。As shown in FIG. 10B, a photoresist layer 608 is formed, and a patterned photoresist layer 608 is formed by exposure and development.

如第10C圖所示,在金屬層606未被光阻層608遮蓋的部分之上設置增厚層610。在一些實施方式中,可經由選擇性成長金屬層,例如濺鍍或電鍍,將銅材料設置於金屬層606之上。As shown in FIG. 10C, a thickening layer 610 is provided on the portion of the metal layer 606 that is not covered by the photoresist layer 608. In some embodiments, the copper material can be disposed on the metal layer 606 through selective growth of a metal layer, such as sputtering or electroplating.

如第10D圖所示,剝離光阻層608。As shown in FIG. 10D, the photoresist layer 608 is peeled off.

如第10E圖所示,在增厚層610和金屬層606之上設置光阻層612,並經曝光和顯影而形成圖案化的光阻層612。As shown in FIG. 10E, a photoresist layer 612 is provided on the thickening layer 610 and the metal layer 606, and a patterned photoresist layer 612 is formed by exposure and development.

如第10F圖所示,之後進行蝕刻,移除未被圖案化的光阻層612遮蓋的增厚層610、金屬層、和導電層604。因此,形成複數個分隔的走線。As shown in FIG. 10F, etching is then performed to remove the thickening layer 610, the metal layer, and the conductive layer 604 that are not covered by the patterned photoresist layer 612. Therefore, a plurality of separate traces are formed.

如第10G圖所示,移除在中間區域(例如之後將形成為電子裝置的顯示區)的金屬層606。之後在增厚層610、金屬層606、和導電層604上方設置保護層614。在第10G圖所示的結構中,在走線中,增厚層610位於導電層604和金屬層606二者的上方。As shown in FIG. 10G, the metal layer 606 in the middle area (for example, the display area that will be formed later as an electronic device) is removed. After that, a protective layer 614 is disposed on the thickening layer 610, the metal layer 606, and the conductive layer 604. In the structure shown in FIG. 10G, the thickening layer 610 is located above the conductive layer 604 and the metal layer 606 in the wiring.

第11A圖至第11H圖繪示根據一些實施方式的一製程,形成一折疊式電子裝置其層面依序包含金屬層、導電層、和增厚層,其中增厚層為非金屬材料,例如聚合物材料。Figures 11A to 11H illustrate a process according to some embodiments to form a foldable electronic device. The layers of the foldable electronic device include a metal layer, a conductive layer, and a thickened layer in sequence. The thickened layer is made of a non-metallic material, such as a polymer.物材料。 Material.

如第11A圖所示,提供具有金屬層704的基板702。可能利用濺鍍或電鍍,將例如銅的金屬材料形成在基板702上。As shown in FIG. 11A, a substrate 702 having a metal layer 704 is provided. It is possible to form a metal material such as copper on the substrate 702 by sputtering or electroplating.

如第11B圖所示,在金屬層704上方形成光阻層706,並經曝光和顯影而形成圖案化的光阻層706。As shown in FIG. 11B, a photoresist layer 706 is formed on the metal layer 704, and a patterned photoresist layer 706 is formed by exposure and development.

如第11C圖所示,蝕刻未被圖案化的光阻層706遮蓋的金屬層704。之後剝離光阻層706。As shown in FIG. 11C, the metal layer 704 that is not covered by the patterned photoresist layer 706 is etched. Then the photoresist layer 706 is stripped off.

如第11D圖所示,在基板702和金屬層704上方設置導電層708。可經由塗覆的方式,將含有奈米銀線或ITO的導電材料形成為導電層708。As shown in FIG. 11D, a conductive layer 708 is provided on the substrate 702 and the metal layer 704. A conductive material containing silver nanowires or ITO can be formed as the conductive layer 708 by coating.

如第11E圖所示,在導電層708之上形成光阻層710,並經曝光和顯影而形成圖案化的光阻層710。As shown in FIG. 11E, a photoresist layer 710 is formed on the conductive layer 708, and a patterned photoresist layer 710 is formed by exposure and development.

如第11F圖所示,之後進行蝕刻,移除未被圖案化的光阻層710遮蓋的導電層708和金屬層704的部分,形成複數個分隔的走線。As shown in FIG. 11F, etching is then performed to remove the portions of the conductive layer 708 and the metal layer 704 that are not covered by the patterned photoresist layer 710 to form a plurality of separated traces.

如第11G圖所示,之後剝離光阻層710。在隨後的製程中,形成保護層712在各個走線之上。保護層712可由聚合物材料形成。As shown in FIG. 11G, the photoresist layer 710 is then peeled off. In the subsequent manufacturing process, a protective layer 712 is formed on each trace. The protective layer 712 may be formed of a polymer material.

如第11H圖所示,之後在保護層712之上形成增厚層714。增厚增714可由不同於保護層712的另一種聚合物材料形成。As shown in FIG. 11H, a thickening layer 714 is then formed on the protective layer 712. The thickening 714 may be formed of another polymer material different from the protective layer 712.

第12A圖至第12H圖繪示根據一些實施方式的一製程,形成一折疊式電子裝置其層面依序包含導電層、金屬層、和增厚層,其中增厚層為非金屬材料,例如聚合物材料。Figures 12A to 12H illustrate a process according to some embodiments to form a foldable electronic device. The layers include a conductive layer, a metal layer, and a thickened layer in sequence. The thickened layer is made of a non-metallic material, such as polymer.物材料。 Material.

如第12A圖所示,首先提供提供包含導電層724的基板722,導電層724可例如為包含奈米銀線。在一些實施方式中,在導電層724之上為一保護層(未圖式)。之後在導電層724上方設置金屬層726。在一些實施方式中,可經由濺鍍或電鍍,將銅材料形成在導電層724上方。As shown in FIG. 12A, first, a substrate 722 including a conductive layer 724 is provided. The conductive layer 724 may, for example, include silver nanowires. In some embodiments, there is a protective layer (not shown) on the conductive layer 724. Afterwards, a metal layer 726 is disposed on the conductive layer 724. In some embodiments, the copper material may be formed on the conductive layer 724 through sputtering or electroplating.

如第12B圖所示,在金屬層726上方形成光阻層728,並經曝光和顯影而形成圖案化的光阻層728。As shown in FIG. 12B, a photoresist layer 728 is formed on the metal layer 726, and a patterned photoresist layer 728 is formed by exposure and development.

如第12C圖所示,蝕刻未被圖案化的光阻層728遮蓋的金屬層726和導電層724。因此形成複數個分隔的走線。As shown in FIG. 12C, the metal layer 726 and the conductive layer 724 that are not covered by the patterned photoresist layer 728 are etched. Therefore, a plurality of separate traces are formed.

如第12D圖所示,剝離在中間區域的光阻層728。As shown in FIG. 12D, the photoresist layer 728 in the middle area is peeled off.

如第12E圖所示,移除在中間區域的金屬層726。As shown in FIG. 12E, the metal layer 726 in the middle area is removed.

如第12F圖所示,剝離光阻層728。As shown in FIG. 12F, the photoresist layer 728 is peeled off.

如第12G圖所示,形成第一聚合物層730在各個走線之上和導電層724之上。As shown in FIG. 12G, a first polymer layer 730 is formed on each trace and on the conductive layer 724.

如第12H圖所示,形成第二聚合物層732在裝置的外圍(亦即非顯示區)的基板722、導電層724、和金屬層726上方。在第12H圖所示的結構中,第二聚合物層732、或者第一聚合物層730和第二聚合物層732之組合相當於走線的增厚層。As shown in FIG. 12H, a second polymer layer 732 is formed on the substrate 722, the conductive layer 724, and the metal layer 726 on the periphery of the device (ie, the non-display area). In the structure shown in FIG. 12H, the second polymer layer 732 or the combination of the first polymer layer 730 and the second polymer layer 732 is equivalent to a thickened layer of the trace.

本揭示內容的導電層疊構使折疊式電子裝置具有較小的彎折曲率半徑,可折疊性增強,並且在多次彎折後走線仍能夠具有較好的可靠性,提升產品的品質並且增加裝置的壽命。The conductive laminated structure of the present disclosure enables the foldable electronic device to have a smaller bending radius of curvature, enhance the foldability, and the routing can still have better reliability after multiple bendings, improve product quality and increase The life of the device.

以上概述了數個實施方式,以便本領域技術人員可以較佳地理解本揭示內容的各態樣。彼等熟習此技術者應理解,其可將本揭示內容用作設計或修飾其他製程與結構的基礎,以實現與本文介紹的實施方式或實施例相同的目的和/或達到相同的優點。本領域技術人員亦會理解,與這些均等的建構不脫離本揭示內容的精神和範圍,並且他們可能在不脫離本揭示內容的精神和範圍的情況下,進行各種改變、替換、和變更。Several implementation manners have been summarized above so that those skilled in the art can better understand various aspects of the present disclosure. Those who are familiar with this technology should understand that they can use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or the same advantages as the embodiments or examples introduced herein. Those skilled in the art will also understand that these equal constructions do not depart from the spirit and scope of the present disclosure, and they may make various changes, substitutions, and alterations without departing from the spirit and scope of the present disclosure.

20:導電層疊構 22:基板 24:走線材料層 26:增厚層 30:導電層疊構 32:基板 34:走線材料層 36:增厚層 40:導電層疊構 42:基板 44:金屬層 50:導電層疊構 52:基板 54:導電層 56:金屬層 58:增厚層 60:導電層疊構 62:基板 64:導電層 66:金屬層 68:增厚層 70:導電層疊構 72:基板 74:導電層 76:金屬層 78:第一聚合物層 80:第二聚合物層 100:面板 110:走線 112、114、116:區域 120:導電層疊構 122:基板 124:金屬層 126:增厚層 128:導電層 130:導電層疊構 132:基板 134:導電層 136:金屬層 138:增厚層 140:導電層疊構 142:基板 144:金屬層 146:導電層 148:增厚層 210:導電層疊構 212:基板 214:走線材料層 216:增厚層 220:導電層疊構 222:基板 224:走線材料層 226:第一聚合物層 228:第二聚合物層 230:導電層疊構 232:基板 234:觸媒層 236:導電層 238:增厚層 240:導電層疊構 242:基板 244:觸媒層 246:導電層 248:第一聚合物層 250:第二聚合物層 310:導電層疊構 312:基板 314:金屬層 316:增厚層 318:導電層 330:導電層疊構 332:基板 334:金屬層 336:導電層 338:增厚層 350:導電層疊構 352:基板 354:導電層 356:金屬層 358:增厚層 410:導電層疊構 412:導電層 414:具有雙側金屬膜的結構層 414A:金屬層 414B:基板 414C:金屬層 416:增厚層 418:導電層 430:導電層疊構 432:導電層 434:具有雙側金屬膜的結構層 434A:金屬層 434B:基板 434C:金屬層 436:導電層 438:增厚層 450:導電層疊構 452:金屬層 454:具有雙側導電膜的結構層 454A:導電層 454B:基板 454C:導電層 456:金屬層 458:增厚層 502:基板 504:金屬層 506:光阻層 508:增厚層 510:光阻層 512:導電層 514:光阻層 516:保護層 522:基板 524:金屬層 526:光阻層 528:導電層 530:光阻層 532:增厚層 534:光阻層 536:保護層 602:基板 604:導電層 606:金屬層 608:光阻層 610:增厚層 612:光阻層 614:保護層 702:基板 704:金屬層 706:光阻層 708:導電層 710:光阻層 712:保護層 714:增厚層 722:基板 724:導電層 726:金屬層 728:光阻層 730:第一聚合物層 732:第二聚合物層 AA、BB、CC:線 R1、R2:曲率半徑 W1、W2:長度 θ1、θ2:角度 20: conductive laminated structure 22: substrate 24: routing material layer 26: thickening layer 30: conductive laminated structure 32: substrate 34: routing material layer 36: thickening layer 40: conductive laminated structure 42: substrate 44: metal layer 50: conductive laminated structure 52: substrate 54: conductive layer 56: metal layer 58: thickened layer 60: conductive laminated structure 62: substrate 64: conductive layer 66: metal layer 68: thickened layer 70: conductive laminated structure 72: substrate 74: conductive layer 76: metal layer 78: first polymer layer 80: second polymer layer 100: panel 110: traces 112, 114, 116: area 120: conductive laminated structure 122: substrate 124: metal layer 126: Thickening layer 128: conductive layer 130: conductive layered structure 132: substrate 134: conductive layer 136: metal layer 138: thickened layer 140: conductive layered structure 142: substrate 144: metal layer 146: conductive layer 148: thickened layer 210 : Conductive laminate structure 212: substrate 214: wiring material layer 216: thickening layer 220: conductive laminate structure 222: substrate 224: wiring material layer 226: first polymer layer 228: second polymer layer 230: conductive laminate Structure 232: substrate 234: catalyst layer 236: conductive layer 238: thickening layer 240: conductive laminated structure 242: substrate 244: catalyst layer 246: conductive layer 248: first polymer layer 250: second polymer layer 310 : Conductive layered structure 312: substrate 314: metal layer 316: thickened layer 318: conductive layer 330: conductive layered structure 332: substrate 334: metal layer 336: conductive layer 338: thickened layer 350: conductive layered structure 352: substrate 354 : Conductive layer 356: metal layer 358: thickened layer 410: conductive laminated structure 412: conductive layer 414: structural layer with double-sided metal film 414A: metal layer 414B: substrate 414C: metal layer 416: thickened layer 418: conductive Layer 430: Conductive laminated structure 432: Conductive layer 434: Structural layer with double-sided metal films 434A: Metal layer 434B: Substrate 434C: Metal layer 436: Conductive layer 438: Thickening layer 450: Conductive laminated structure 452: Metal layer 454 : Structural layer with double-sided conductive film 454A: conductive layer 454B: substrate 454C: conductive layer 456: metal layer 458: thickening layer 502: substrate 504: metal layer 506: photoresist layer 508: thickening layer 510: photoresist Layer 512: conductive layer 514: photoresist layer 516: protective layer 522: substrate 524: metal layer 526: photoresist layer 528: conductive layer 530: photoresist layer 532: thickened layer 534: photoresist layer 536: protective layer 602 : Substrate 604: conductive layer 606: metal layer 608: photoresist layer 610: thickening layer 612: photoresist layer 614: protective layer 702: substrate 704: metal layer 706: photoresist layer 708: conductive layer 710: photoresist layer 712: protective layer 714: thickened layer 722: substrate 724: Conductive layer 726: metal layer 728: photoresist layer 730: first polymer layer 732: second polymer layer AA, BB, CC: line R 1 , R 2 : radius of curvature W 1 , W 2 : length θ 1 , θ 2 : Angle

本揭示內容可由以下的詳細描述,並且與所附圖式一起閱讀,得到最佳的理解。要強調的是,根據產業中的標準實踐,各個特徵未按比例繪製,並且僅用於說明目的。事實上,為了討論的清楚性起見,各個特徵可能任意地增加或減小。 第1A圖為根據本揭示內容的一些實施方式的面板的示意圖。 第1B圖至第1D圖為根據本揭示內容的一些實施方式的走線的局部的截面視圖。 第1E圖為第1A圖中的面板的區域114的局部放大圖。 第2A圖和第2B圖為導電層疊構在彎折狀態的示意圖。 第3A圖和第3B圖為一比較例的導電層疊構的彎折狀態和非彎折狀態的示意圖。 第4A圖至第4C圖分別為根據一些實驗例的導電層疊構。 第5A圖至第5D圖為根據一些實施方式的導電層疊構的配置示意圖。 第6A圖和第6B圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第6C圖和第6D圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第6E圖和第6F圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第7A圖和第7B圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第7C圖和第7D圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第7E圖和第7F圖為根據一些實施方式的導電層疊構在彎折狀態與展開狀態的示意圖。 第8A圖至第8I圖為根據本揭示內容的一些實施方式的一折疊式電子裝置在製造製程中不同的中間階段的截面視圖。 第9A圖至第9J圖為根據本揭示內容的一些實施方式的一折疊式電子裝置在製造製程中不同的中間階段的截面視圖。 第10A圖至第10G圖為根據本揭示內容的一些實施方式的一折疊式電子裝置在製造製程中不同的中間階段的截面視圖。 第11A圖至第11H圖為根據本揭示內容的一些實施方式的一折疊式電子裝置在製造製程中不同的中間階段的截面視圖。 第12A圖至第12H圖為根據本揭示內容的一些實施方式的一折疊式電子裝置在製造製程中不同的中間階段的截面視圖。 This disclosure can be best understood by reading the following detailed description together with the accompanying drawings. It is emphasized that according to standard practice in the industry, the various features are not drawn to scale and are used for illustration purposes only. In fact, for the sake of clarity of discussion, each feature may be arbitrarily increased or decreased. Figure 1A is a schematic diagram of a panel according to some embodiments of the present disclosure. Figures 1B to 1D are partial cross-sectional views of the wiring according to some embodiments of the present disclosure. FIG. 1E is a partial enlarged view of the area 114 of the panel in FIG. 1A. 2A and 2B are schematic diagrams of the conductive laminated structure in a bent state. Fig. 3A and Fig. 3B are schematic diagrams of the folded state and the non-folded state of the conductive laminated structure of a comparative example. Figures 4A to 4C respectively show conductive laminate structures according to some experimental examples. 5A to 5D are schematic diagrams of the configuration of conductive laminate structures according to some embodiments. Fig. 6A and Fig. 6B are schematic diagrams of the conductive laminated structure in the bent state and the unfolded state according to some embodiments. FIG. 6C and FIG. 6D are schematic diagrams of the conductive laminated structure in the bent state and the unfolded state according to some embodiments. Fig. 6E and Fig. 6F are schematic diagrams of the conductive laminated structure in the bent state and the unfolded state according to some embodiments. FIG. 7A and FIG. 7B are schematic diagrams of a conductive laminated structure in a bent state and an unfolded state according to some embodiments. FIG. 7C and FIG. 7D are schematic diagrams of the conductive laminated structure in the bent state and the unfolded state according to some embodiments. FIG. 7E and FIG. 7F are schematic diagrams of the conductive laminated structure in the bent state and the unfolded state according to some embodiments. 8A to 8I are cross-sectional views of a foldable electronic device at different intermediate stages in the manufacturing process according to some embodiments of the present disclosure. 9A to 9J are cross-sectional views of a foldable electronic device at different intermediate stages in the manufacturing process according to some embodiments of the present disclosure. 10A to 10G are cross-sectional views of a foldable electronic device at different intermediate stages in the manufacturing process according to some embodiments of the present disclosure. 11A to 11H are cross-sectional views of a foldable electronic device at different intermediate stages in the manufacturing process according to some embodiments of the present disclosure. 12A to 12H are cross-sectional views of a foldable electronic device in different intermediate stages of the manufacturing process according to some embodiments of the present disclosure.

210:導電層疊構 210: Conductive laminated structure

212:基板 212: substrate

214:走線材料層 214: routing material layer

216:增厚層 216: Thickened Layer

Claims (18)

一種導電層疊構,包含: 一導電層,沿一第一方向延伸;以及 一增厚層,在該導電層上方或下方,且該導電層疊構在曲率半徑R=3毫米,垂直或平行該第一方向彎折180°時,可承受折疊次數超過40000次不斷裂。 A conductive laminated structure, including: A conductive layer extending along a first direction; and When a thickening layer is above or below the conductive layer, and the conductive laminated structure has a radius of curvature R=3 mm, and is bent 180° perpendicular or parallel to the first direction, it can withstand more than 40,000 folding times without breaking. 如請求項1所述之導電層疊構,其中該增厚層在該第一方向上的長度大於9毫米且不超過該導電層沿該第一方向延伸的長度。The conductive laminated structure according to claim 1, wherein the length of the thickening layer in the first direction is greater than 9 mm and does not exceed the length of the conductive layer extending in the first direction. 如請求項2所述之導電層疊構,其中該增厚層在該第一方向上的長度大於15毫米且不超過該導電層沿該第一方向延伸的長度。The conductive laminate structure according to claim 2, wherein the length of the thickening layer in the first direction is greater than 15 mm and does not exceed the length of the conductive layer extending in the first direction. 如請求項1所述之導電層疊構,其中該導電層疊構的一彎折軸心與該增厚層兩端的夾角為180°~360°。The conductive laminated structure according to claim 1, wherein the angle between a bending axis of the conductive laminated structure and both ends of the thickened layer is 180°~360°. 如請求項1所述之導電層疊構,其中該增厚層在該第一方向上的長度與該導電層沿該第一方向延伸的長度比值為0.001~1。The conductive laminate structure according to claim 1, wherein the ratio of the length of the thickening layer in the first direction to the length of the conductive layer extending in the first direction is 0.001 to 1. 如請求項1所述之導電層疊構,其中該增厚層使該導電層疊構彎折時的應力應變量增加0.1至10%,且該導電層疊構的曲率半徑減小0.5至3毫米。The conductive laminated structure according to claim 1, wherein the thickened layer increases the amount of stress strain when the conductive laminated structure is bent by 0.1 to 10%, and the radius of curvature of the conductive laminated structure is reduced by 0.5 to 3 mm. 如請求項1所述之導電層疊構,其中該增厚層位於該導電層疊構彎折時的一應力拉伸側。The conductive laminated structure according to claim 1, wherein the thickening layer is located on a stress stretch side when the conductive laminated structure is bent. 一種折疊式電子裝置,包含如請求項1至7任一項所述之導電層疊構。A foldable electronic device comprising the conductive laminated structure according to any one of claims 1 to 7. 一種折疊式電子裝置,包含: 一顯示區;以及 一非顯示區,位在該顯示區之外側,其中該非顯示區具有複數條走線其沿一第一方向延伸,所述複數條走線中的每一條走線包含: 一基板,和 一導電層,位在該基板上方; 其中該非顯示區具有一局部增厚區域,其包含該折疊式電子裝置的一彎折處,在該局部增厚區域中該些複數條走線中的每一條走線更包含一增厚層,其在該導電層上方或下方,且位在該折疊式電子裝置彎折時的一應力拉伸側。 A folding electronic device, including: A display area; and A non-display area is located outside the display area, wherein the non-display area has a plurality of wires extending along a first direction, and each of the plurality of wires includes: A substrate, and A conductive layer located above the substrate; The non-display area has a locally thickened area, which includes a bend of the foldable electronic device, and each of the plurality of wires in the locally thickened area further includes a thickened layer, It is above or below the conductive layer, and is located on a stress-stretched side when the foldable electronic device is bent. 如請求項9所述之折疊式電子裝置,其中該局部增厚區域具有一寬度,其沿著垂直於該第一方向的一第二方向延伸,且該些走線中的一走線寬度為W 1,該些走線之間的間距為P 1,該些走線的數目為N,該局部增厚區域的寬度範圍在介於W 1至 (W 1+P 1) x N 之間。 The foldable electronic device according to claim 9, wherein the locally thickened area has a width extending along a second direction perpendicular to the first direction, and a width of one of the lines is W 1 , the spacing between the traces is P 1 , the number of the traces is N, and the width of the locally thickened region ranges from W 1 to (W 1 +P 1 ) x N. 如請求項9所述之折疊式電子裝置,其中該增厚層沿該第一方向的長度大於3毫米。The foldable electronic device according to claim 9, wherein the length of the thickened layer along the first direction is greater than 3 mm. 如請求項9所述之折疊式電子裝置,其中該增厚層為由一金屬材料形成,且該增厚層與該導電層的厚度的比值為約0.05~5。The foldable electronic device according to claim 9, wherein the thickened layer is formed of a metal material, and the ratio of the thickness of the thickened layer to the conductive layer is about 0.05-5. 如請求項9所述之折疊式電子裝置,其中該增厚層為由一非金屬材料或複合導電材料形成,且該增厚層與該導電層的厚度的比值為約0.1~50。The foldable electronic device according to claim 9, wherein the thickening layer is formed of a non-metallic material or a composite conductive material, and the ratio of the thickness of the thickening layer to the conductive layer is about 0.1-50. 如請求項9所述之折疊式電子裝置,其中該增厚層為由一金屬材料形成,且該基板的厚度乘以該基板的楊氏模量的值為約100~300,該導電層的厚度乘以該導電層的楊氏模量的值為約20~70,該增厚層的厚度乘以該增厚層的楊氏模量的值為約5~30。The foldable electronic device according to claim 9, wherein the thickening layer is formed of a metal material, and the thickness of the substrate multiplied by the Young's modulus of the substrate is about 100 to 300, and the conductive layer The value of the thickness multiplied by the Young's modulus of the conductive layer is about 20 to 70, and the value of the thickness of the thickened layer multiplied by the Young's modulus of the thickened layer is about 5 to 30. 如請求項9所述之折疊式電子裝置,其中該增厚層為由一非金屬材料或一複合導電材料形成,且該基板的厚度乘以該基板的楊氏模量的值為約100~300,該導電層的厚度乘以該導電層的楊氏模量的值為約20~70,該增厚增的厚度乘以該楊氏模量的值為約2~60。The foldable electronic device according to claim 9, wherein the thickening layer is formed of a non-metallic material or a composite conductive material, and the thickness of the substrate multiplied by the Young's modulus of the substrate is about 100~ 300. The value of the thickness of the conductive layer multiplied by the Young's modulus of the conductive layer is about 20 to 70, and the value of the increased thickness multiplied by the Young's modulus is about 2 to 60. 如請求項9所述之折疊式電子裝置,其中該增厚層包含: 一第一聚合物層;和 一第二聚合物層,在該第一聚合物層上方,其中該第一聚合物層的材料不同於該第二聚合物層的材料。 The foldable electronic device according to claim 9, wherein the thickening layer comprises: A first polymer layer; and A second polymer layer above the first polymer layer, wherein the material of the first polymer layer is different from the material of the second polymer layer. 如請求項16所述之折疊式電子裝置,其中該第一聚合物層的楊氏模量與該第二聚合物層的楊氏模量的比值為約10 3~10 6The foldable electronic device according to claim 16, wherein the ratio of the Young's modulus of the first polymer layer to the Young's modulus of the second polymer layer is about 10 3 to 10 6 . 如請求項16所述之折疊式電子裝置,其中該第一聚合物的厚度與該導電層的厚度的比值為約30~100,該第二聚合物的厚度與該導電層的厚度的比值為約30~100,且該第一聚合物的厚度與該第二聚合物的厚度的比值為約0.5~2。The foldable electronic device according to claim 16, wherein the ratio of the thickness of the first polymer to the thickness of the conductive layer is about 30-100, and the ratio of the thickness of the second polymer to the thickness of the conductive layer is It is about 30-100, and the ratio of the thickness of the first polymer to the thickness of the second polymer is about 0.5-2.
TW109208454U 2020-07-02 2020-07-02 Conductive laminated structure and foldable electronic device TWM604050U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109208454U TWM604050U (en) 2020-07-02 2020-07-02 Conductive laminated structure and foldable electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109208454U TWM604050U (en) 2020-07-02 2020-07-02 Conductive laminated structure and foldable electronic device

Publications (1)

Publication Number Publication Date
TWM604050U true TWM604050U (en) 2020-11-11

Family

ID=74203565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109208454U TWM604050U (en) 2020-07-02 2020-07-02 Conductive laminated structure and foldable electronic device

Country Status (1)

Country Link
TW (1) TWM604050U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733731B2 (en) 2020-08-03 2023-08-22 Cambrios Film Solutions Corporation Conductive laminated structure and foldable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11733731B2 (en) 2020-08-03 2023-08-22 Cambrios Film Solutions Corporation Conductive laminated structure and foldable electronic device

Similar Documents

Publication Publication Date Title
KR101493412B1 (en) Foldable touch screen panel
US9173289B2 (en) Multilayer substrate
CN109725756B (en) Electrode connection structure and electronic device including the same
TWI524232B (en) Touch panels and fabrication methods thereof
US11169630B2 (en) Touch panel with nanowires
CN106920800B (en) Flexible display device and forming method thereof
WO2016123811A1 (en) Capacitive touch screen and combination of same with flexible circuit board
WO2020062157A1 (en) Foldable touch module, touch screen and terminal device
TWI749630B (en) Touch panel and manufacturing method thereof
TWM604050U (en) Conductive laminated structure and foldable electronic device
TWI736098B (en) Bending-resistant structure and display panel
WO2020078117A1 (en) Touch display screen and manufacturing method
TWI743883B (en) Touch panel and manufacturing method thereof
TWI827856B (en) Conductive laminated structure and foldable electronic device
CN212061907U (en) Conductive layer stack and foldable electronic device
CN114327118A (en) Transparent conductive film, method for manufacturing transparent conductive film, and touch panel
US20220035406A1 (en) Conductive laminated structure and foldable electronic device
CN113823439A (en) Conductive layer stack and foldable electronic device
CN111722742A (en) Transparent conductive film and preparation method thereof
CN216773243U (en) Display panel and display device
TWI742697B (en) Touch device, touch panel, and touch display of using the same
CN101820721B (en) Circuit board, base material for same and manufacture method of same
CN212781960U (en) Touch panel and touch device
CN212391785U (en) Transparent conductive film and touch panel
US20210408214A1 (en) Display panel and display device