TWM598990U - 消費數據處理系統 - Google Patents

消費數據處理系統 Download PDF

Info

Publication number
TWM598990U
TWM598990U TW109204763U TW109204763U TWM598990U TW M598990 U TWM598990 U TW M598990U TW 109204763 U TW109204763 U TW 109204763U TW 109204763 U TW109204763 U TW 109204763U TW M598990 U TWM598990 U TW M598990U
Authority
TW
Taiwan
Prior art keywords
data
enterprise
consumption
consumer
marketing
Prior art date
Application number
TW109204763U
Other languages
English (en)
Inventor
李榮生
簡嘉宏
傅心瑋
陳鈺欣
Original Assignee
治略資訊整合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 治略資訊整合股份有限公司 filed Critical 治略資訊整合股份有限公司
Priority to TW109204763U priority Critical patent/TWM598990U/zh
Publication of TWM598990U publication Critical patent/TWM598990U/zh

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一種消費數據處理系統,系統提出一伺服系統,其中運行一消費數據處理的流程。一開始,伺服系統匯入一企業數據,企業數據涵蓋屬於一企業屬性的消費者資料,再對企業數據進行數據清洗,並擷取其中特徵,接著演算一機器學習法,取得企業數據中的標籤,建立一企業特性模型,再匯入一主數據至此企業特性模型,以原先企業數據的少數特徵,從主數據中建立一行銷清單,之後可以依據此行銷清單投放行銷廣告,並根據行銷結果取得更多特徵,建立更多標籤,以更新此企業特性模型。以此可優化關聯所述企業屬性的企業特性模型並持續更新優化。

Description

消費數據處理系統
說明書公開一種數據處理的技術,特別是指一種彙整既有消費數據,利用機器學習彌補數據偏差與不足,達到行銷目的的消費數據處理系統。
在習知的行銷方式中,由業者(企業主)向廣告業者提出需求,經製作文字或影音媒體後,在大眾媒體、網路、各社群媒體(social medi)投放廣告,相較於習知的精準行銷來說,這樣的廣告效益不大。
所述精準行銷為可以根據業者商品的屬性得出目標客群(target audience),再將廣告通過特定媒體(主要是網路社群)投放給鎖定的目標客群,由於所投放廣告的商品(或服務)與目標客群的喜好一致,因此相對來說,廣告所帶來的收入效益會比較好。
所述目標客群可以是企業內部數據得出,而這筆數據中的消費者可能是過去已經來店(或網路)消費的人,對傳統企業而言,不容易拓展到此數據以外的消費者。目標客群也可經過一大數據分析從眾多的消費者數據中篩選出的對象,例如在各種社群媒體中投放廣告時,通過選擇地區、年齡層等方式設定投放廣告的目標,藉此可以得出企業本身數據以外的對象,或可通過一些篩選機制得出相對有興趣的一群人,使得投放的廣告可以更精準。
有鑑於一般企業所採集的消費數據較少,也有偏差,說明書所提出的消費數據處理系統即利用企業的數據以機器學習演算法學習企業的消費者特徵,以建立企業特性模型,用以一主數據得出與企業的消費者特徵相符的一群新名單。在所述消費數據處理系統中,目的之一為提出一種讓企業可以在本身企業數據以外得出更多潛在目標客群的方法,當採用了機器學習方法建立企業特性模型,可經匯入更大消費記錄的主數據後,以根據主數據與企業數據的關聯性提供一行銷清單。
根據實施例,消費數據處理系統提出一伺服系統,設有一主數據庫,其中即運行所述的消費數據處理方法。
在所述消費數據處理方法中,匯入一企業數據,此企業數據涵蓋屬於一企業屬性的消費者資料,接著對企業數據進行數據清洗,並擷取其中特徵,以對經數據清洗與取得特徵的數據演算一機器學習法,取得企業數據中的標籤,建立一企業特性模型。之後,可匯入一主數據至此企業特性模型,其中主數據涵蓋的消費者數量大於企業數據,且不限於企業數據的屬性。
接著由主數據中得出關聯企業數據的特徵的一行銷清單,再依據此行銷清單對其中全部或部分的消費者投放行銷廣告,之後可根據一行銷結果更新企業特性模型,經反覆將結果匯入並重新訓練用以更新企業特性模型,得以優化關聯企業屬性的企業特性模型。
進一步地,於對企業數據進行數據清洗的步驟中,可進行一客戶關係管理(Customer Relationship Management)分析,用以分類企業數據中的消費者。客戶關係管理分析可採用一種最近一次消費(Recency)、消費頻率(Frequency)以及消費金額(Monetary)分析,對企業數據內消費者進行評分,以利取得企業數據中的標籤。
進一步地,伺服系統設有一數據平台,用以連接社群媒體主機,可通過應用程式介面(Application Program Internet)取得在社群媒體形成的消費數據,以建立主數據。
根據一實施例,建立所述主數據的方法為在一社群媒體中建立一或多個團購活動,之後在進行團購活動的過程中分析其中信息,之後可根據分析結果建立主數據。
為使能更進一步瞭解本新型的特徵及技術內容,請參閱以下有關本新型的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本新型加以限制。
以下是通過特定的具體實施例來說明本創作的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本創作的優點與效果。本創作可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本創作的構思下進行各種修改與變更。另外,本創作的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本創作的相關技術內容,但所公開的內容並非用以限制本創作的保護範圍。
應當可以理解的是,雖然本文中可能會使用到“第一”、“第二”、“第三”等術語來描述各種元件或者信號,但這些元件或者信號不應受這些術語的限制。這些術語主要是用以區分一元件與另一元件,或者一信號與另一信號。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
有鑑於一般企業一方面僅能從過去消費數據進行較為精準的行銷提昇回客率,另一方面但卻苦於無法有效拓展更多消費者客群,在習知技術中,若要拓展更多的業績,需要通過廣告商利用各種大眾媒體、網路、社群網路投放廣告給不特定消費者,或是投放廣告給經過簡單篩選過的目標客群,但因為無法有效鎖定目標客戶,廣告效益都不高。針對習知企業投放廣告效益不彰的困擾,揭露書提出一種消費數據處理系統,針對一般企業的數據少且有偏差的問題,提出以機器學習演算法學習企業的消費者特徵後建立一企業特性模型,用以在所提出的主數據中找出與企業的消費者特徵相符的一群新名單,即通過演算的方法彌補數據偏差與數據不足的問題,使得企業可以觸及傳統數據無法涵蓋的目標客群。
圖1顯示消費數據處理系統架構實施例示意圖。
此例中,系統端提出一伺服系統11,其中設有主數據庫110,通過網路10連接社群媒體13,可以藉由社群媒體13中的消費活動取得消費者數據,另一方面通過網路10連結企業主機15,可以取得企業數據庫150中的數據,經機器學習後建立企業特性模型,可以通過系統端的主數據觸及更多的客戶,彌補企業屬性產生數據的偏差與不足。
另一方面,伺服系統11可以在社群媒體13中建立自己的銷售系統,讓商品或服務的供應商17可以藉此管道銷售商品或服務,同時,伺服系統11即可通過此銷售管道取得更大量的消費者資料,建立主數據,以服務數據量小的企業拓展業務。當通過機器學習法針對各種企業屬性建立行銷系統後,系統可提供廣告業主19開拓廣告業務,針對企業特性模型所得出的行銷對象投放行銷廣告。
在伺服系統11中運行的消費數據處理流程的概念是,一般企業數據一定存在因為企業屬性產生的偏差,先以機器學習法學習企業的特徵,得出企業屬性,這可以用多個特徵標籤描述企業屬性,接著系統利用數量更大的主數據根據機器學習形成的模型得出有類似屬性(有相同的特徵標籤)的更多潛在的目標客群,除了新客戶開發外,更能成為新產品開發或展店建議的參考。
圖2接著以流程描述消費數據處理系統架構,其中以示意圖表示出企業端提供有企業主機21,實際運行時可以同時處理一或多個企業提供的數據,各企業主機21設有企業數據庫210,通過其企業數據平台212可以觸及客戶215。企業數據平台212示意表示通過傳統的方式取得客戶資料外,還可包括從各種管道(如網路)得到的消費數據,而其中企業數據為對應企業屬性的消費者資料。
系統端設有伺服系統20,設有企業數據介面201,示意表示通過此企業數據介面201取得企業數據庫210的企業數據,並能同時服務多個企業,取得其他企業數據208。
伺服系統20中包括有軟體搭配硬體(如處理器、記憶體、網路)實現的各種功能模組,如圖示中的預處理模組202、機器學習模組203、模型建立模組204、行銷清單產生模組205、主數據庫206(包括會員資料庫、消費數據)以及一數據平台207。其中各功能模組仍可由各獨立運行的主機所實現。
所述預處理模組202用於對匯入系統的數據,如企業數據,進行數據清洗(data cleansing)、特徵擷取、分析與分類等處理程序。其中數據清洗為將匯入的數據刪除當中無用、不完整、無法識別或重複的數據,並盡可能更正錯誤,之後可通過格式化讓各種數據能統一被系統所接受。特徵擷取的程序為文意解析出各數據之內容,以擷取當中特徵,如此例針對消費數據擷取的特徵有消費地區、消費者年齡、商品價格、屬性、消費者職業、收入、消費時間、企業屬性等,這些特徵也預計成為建立模型所需的標籤。所述分析與分類的目的是可以依據需求設定參數以對匯入的每筆數據進行評分,例如常見的有一種RFM評分方法,所依據的客觀指標包括最近一次消費(Recency)、消費頻率(Frequency)以及消費金額(Monetary),對每筆數據進行分類,據此評分,以利取得企業數據中的標籤。在此一提的是,對於所述方法,RFM只是其中一種特徵提取的手法,並舉例說明,並非用於限制所提出的方案。
機器學習模組203用以執行特定機器學習演算法,學習匯入之數據中的規則,得出關於數據屬性的特徵標籤(tag)。此例中,即根據企業數據庫210中的大數據進行訓練,執行數據探勘(data mining),得出各種消費數據中有意義的特徵(如關鍵字),形成建立與主數據關聯的標籤,通過模型建立模組204得出行銷對象的企業特性模型。
模型建立模組204的工作除了根據機器學習演算得出對應企業數據的特徵標籤建立企業特性模型外,並能根據之後行銷結果產生的回饋信息更新模型,達到優化企業特性模型的目的。
之後,通過行銷清單產生模組205從主數據中得出行銷清單,此行銷清單記載之後投放廣告的建議對象,包括用來測試用的小量投放的行銷清單,之後行銷結果也成為評估企業特性模型優劣的依據,行銷清單產生模組205接續也從優化的企業特性模型產生新的行銷清單。其中,在一技術概念下,先透過第一次投放測試結果,基於原先企業數據的少數特徵,從具有更多面向的主數據中取得更多樣特徵,使得機器學習演算法轉向從主數據取得關聯的消費者特徵,建立更多維度的行銷模型,再依下次投放持續更新優化行銷模型。
伺服系統20設有主數據庫206,其中記載各樣消費者資料,包括在各種消費平台上取得的會員資料庫、消費數據等,特別是包括通過一數據平台207取得在各種社群媒體23, 24中的消費活動形成的數據,數據平台207以一客戶關係管理與進銷存系統實現,可以觸及在社群媒體23, 24中的用戶250,並通過各社群媒體23, 24提供的應用程式介面(API)取得用戶250在其中消費活動的數據。
值得一提的是,伺服系統20提供的主數據庫206所記載的主數據量體大於(或遠大於)企業數據庫210。在一實施例中,雖然企業數據210與主數據206運行在同一伺服系統20,但是較佳地,仍為兩個不同且獨立的數據庫。當通過根據企業數據建立的企業特性模型時,即建立主數據與各種企業數據的關聯性,因此可以從主數據中得出與企業屬性相關連的更多消費者清單,拓展為企業行銷的對象。
圖3描述消費數據處理方法的流程實施例圖。
系統由各種數據來源301(至少兩個來源,或以上)建立主數據302,例如社群媒體中的消費活動,或是來自各種企業提供的數據。其中主數據302的特徵為更多維度的內容,遠大於企業數據。
企業數據303涵蓋屬於一企業屬性的消費者資料,匯入系統後,經過預處理程序,包括上述實施例所描述的數據清洗,以得出有效的數據,並進行特徵擷取,以再根據上述RFM分析進行評分(304),利用機器學習305學習數據中的特徵,其中部分用於訓練之用,目的是建立模型306。之後再將主數據302匯入模型306,藉由這些步驟彌補企業數據303僅針對特定企業屬性而產生的偏差與數據不足的問題,從主數據302中得出相似度高而具有相似屬性的初步行銷清單307。
在所述消費數據處理方法中,依據初步行銷清單307對其中全部或部分的消費者投放行銷廣告(308),產生一行銷結果,行銷結果將顯示出初步行銷清單307中的消費者是否有進行消費,成為之後更新企業特性模型的依據。
舉例來說,根據行銷結果,消費行為符合者,設為1,消費行為不符合者,設為0,再對主數據302進行數據清洗、特徵擷取309,同樣以機器學習310方法更新模型311,同時根據行銷結果更新數據中的標籤,再次產生更新後的行銷清單312,並再次根據其中行銷對象投放廣告,同樣地得出新的行銷結果,繼續根據行銷結果更新企業特性模型。經反覆將結果匯入並重新訓練用以更新企業特性模型,得以優化關聯企業屬性的企業特性模型。
如此,在所述方法中,當產生行銷結果,所述機器學習演算法可繼續依據行銷結果,在原先企業數據的少數特徵的基礎中,從主數據中取得更多特徵,重建立更多維度的模型,再依下次投放持續更新優化模型。
在所述消費數據處理方法中,當對企業數據303進行數據清洗的步驟中,可進行一客戶關係管理(CRM)分析,用以分類企業數據303中的消費者,而所述客戶關係管理分析中,並不限於特定方法,以上述實施例所揭示的RFM分析方法為例,其中採用最近一次消費、消費頻率以及消費金額分析,對企業數據303內消費者進行評分,以利取得企業數據中的標籤。
形成系統端的主數據的方式之一是收集來自各種行銷活動得到的消費者消費喜好與記錄,舉例來說,利用社群媒體所啟動的團購活動,當有社群使用者參加團購活動,並表達對團購物件有興趣或參與購買,即可通過取得的數據建立消費者人物誌(Persona),人物誌用於描繪消費者在各種消費行為與記錄所建立的資訊,除了個人基本資料外,還包括消費喜好與行為方式等描述。
圖4描述建立主數據的方法的其中之一流程實施例圖,此實施例列舉通過一社群媒體的消費活動建立數據的方法。
在社群媒體中,伺服系統的業者可以招募會員對供應商提供的商品邀請群友加入團購活動的群組(步驟S401),提出團購物件(步驟S403),讓群友在社群媒體中以來往信息表達意見,包括參與團購活動,因此,伺服系統可以通過社群媒體提供的特定介面(如API)取得消費者回應信息(步驟S405),這些回應信息通過伺服系統分析,包括執行統計與語意分析(步驟S407),可以得出有效數據,並建立主數據(步驟S409)。
在此一提的是,持續自各種來源取得的消費數據建立的主數據具有相對廣而複雜的數據,樣本數量應遠大於企業數據,因此相對可代表市場母體,因此,所述方法通過智能學習企業數據的特徵而建立與主數據的關聯後,可以協助企業有效將原本過於單一的屬性的行銷對象拓展到更多的消費族群。
其中,根據一實施例,當系統的會員於社群媒體中建立一或多個團購活動時,可以在分析各種有關消費的信息時,利用運行於社群媒體中聊天室中的聊天機器人分析社群媒體中的用戶於一或多個團購活動的活動,並產生分析結果,例如訂單彙整後的結果、關於各團購活動的喜好等,用以建立主數據。
根據實施例,伺服系統中可採用客戶關係管理方法處理各種消費相關信息,並配合一種進銷存系統記錄消費活動中的商品資料、價格、成本、庫存、供應商等。如此,通過彙整各種零售(如團購)的會員資料與消費數據建立主數據,可以接續利用機器學習彌補來自單一屬性的企業數據中的偏差(bias)與不足,這類企業屬性的特點是數據相似度高,固定某屬性或特徵。
圖5接著顯示通過上述系統實現消費數據處理方法的流程實施例圖。
一開始,匯入企業數據至系統中(步驟S501),企業數據涵蓋屬於某特定企業屬性的消費者資料,相較之下,與系統端的主數據差異大,存有偏差,之後對企業數據進行數據清洗,並擷取其中特徵(步驟S503)。這時,還可包括建立企業數據中各消費者的一特徵檔案,這是一種根據消費者在各種消費活動的記錄建立的消費者特徵檔案,可稱人物誌(personal)(步驟S505),用於描述各消費者的消費屬性。
進一步地,從經過數據清洗後的企業數據中的消費者數據進行上述RFM分析,但不限於此方法,其目的是進行評分並分類(步驟S507),這些預處理程序產生後續執行機器學習的訓練集。
在此一提的是,在所述評分所採用的RFM分析的實施例中,所採用的最近一次消費(Recency)指標指的是消費者在上一次購買的時候的資料,包括上一次消費時間、上一次消費所依據的參考資料,原則上這是評分較高的消費者,也可能對後續行銷資訊較有反應。所採用的消費頻率(Frequency)指標指的是消費者進行消費的頻率,若為頻率高的消費者,表示對企業提供的商品或服務的喜好度較高,具有忠誠度,也是評分較高的消費者。所採用的消費金額(Monetary)指標指的是最近一段時間消費的額度,這是頗為直覺的指標,消費額度愈高,表示消費者願意消費的意願愈高,並貢獻企業相對高的利潤,也是評分消費者的重要指標。
接著,對經數據清洗與取得特徵的數據演算機器學習法,取得企業數據中的標籤,建立一企業特性模型(步驟S509)。
之後匯入主數據(步驟S511),建立企業數據與主數據的關聯性,其中主數據涵蓋的消費者數量大於企業數據,且不限於企業數據的屬性,使得可以從主數據中得出關聯企業數據的特徵的行銷清單(步驟S513),可取得具有特定特徵(針對企業)的目標客群,再能依據此行銷清單對其中全部或部分的消費者投放行銷廣告。
圖6接續顯示檢驗行銷清單的方法流程實施例圖。
一旦以企業特性模型產生行銷清單後(步驟S601),將通過檢驗行銷結果來優化企業特性模型,這時,將依據清單進行市場驗證的小量測試性投放(步驟S603),得出行銷結果(步驟S605),基於這個結果,可依據其中行為結果與特徵相符的消費者重新定義特徵,包括再次機器學習,以更新或建立模型中的標籤(步驟S607)。
之後,建立主數據為主的企業特性模型(步驟S609),並形成新的行銷清單(步驟S611),這時,回到步驟S603,必要時可反覆根據每次的行銷結果更新企業特性模型,反覆將主數據匯入更新後的企業特性模型,以優化關聯企業屬性的企業特性模型。
上述圖4至圖6描述了揭露書所提出的消費數據處理方法流程,包括主數據的建立、主要處理流程,以及後續檢驗與優化模型的流程,以下列舉所應用的情境。
企業如一泰式餐廳,泰式餐廳的客戶群應具備有喜歡(或不排斥)泰式料理的特性,例如可能是喜歡口味重、辣味、和菜等特性的人。因此,泰式餐廳的數據庫包括了「喜歡泰式且高價值的客戶」,這類消費者對往後的行銷活動理應有較好的反應。根據上述方法,可利用泰式餐廳的既有數據依RFM分析假設抽取「喜歡泰式且高價值的客戶」的特徵,以這樣的特徵作為機器學習的材料。
利用上述方法,將相對消費者數據更廣、更多的主數據匯入根據企業數據建立的企業特性模型後,可以得出其中可能喜歡泰式料理特性的更多消費者,也就是符合「喜歡泰式且高價值的客戶」特性的其他消費者,這時,可以進行市場驗證的小量投放,依投放結果將再進行特徵抽取與分析,產生更多標籤或特徵,重新假設說明這群顧客是「喜歡或是可以接受泰式料理的人」,再依行為結果與特徵相符的消費者重新定義假設「喜歡泰式且高價值的客戶」的模型。
如此,過程中因為機器學習,所建立的模型產出結果會一次比一次更精準。
綜上所述,以上所描述消費數據處理系統運行的方法的實施例應用在如零售業本身的客戶消費數據,這類企業數據因為是針對其產業特性而為幾乎固定某種屬性或特徵的數據,因此會與多種來源形成的大數據(如實施例所描述的主數據)之間具有偏差,系統可以通過主數據來彌補這個偏差與數據不足的問題,使得企業可以拓展原本客群以外的潛在客群,以帶來更多的利潤,相關的方法流程還可以協助企業開發新客戶、新產品開發與展店的需求。
以上所公開的內容僅為本新型的優選可行實施例,並非因此侷限本新型的申請專利範圍,所以凡是運用本新型說明書及圖式內容所做的等效技術變化,均包含於本新型的申請專利範圍內。
10:網路 11:伺服系統 110:主數據庫 13:社群媒體 15:企業主機 150:企業數據庫 17:供應商 19:廣告業主 21:企業主機 210:企業數據庫 212:企業數據平台 215:客戶 20:伺服系統 208:其他企業數據 201:企業數據介面 202:預處理模組 203:機器學習模組 204:模型建立模組 205:行銷清單產生模組 206:主數據庫 207:數據平台 23,24:社群媒體 250:用戶 301:數據來源 302:主數據 303:企業數據 304:數據清洗、特徵擷取與評分 305:機器學習 306:建立模型 307:初步行銷清單 308:投放市場 309:數據清洗、特徵擷取 310:機器學習 311:更新模型 312:行銷清單 步驟S401~S409:建立主數據的流程 步驟S501~S513:消費數據處理流程 步驟S601~S611:檢驗行銷清單的流程
圖1顯示消費數據處理系統架構實施例示意圖;
圖2顯示消費數據處理系統的另一架構實施例示意圖;
圖3顯示消費數據處理方法的流程實施例圖;
圖4描述建立主數據的方法流程實施例圖;
圖5顯示消費數據處理方法流程實施例圖;以及
圖6顯示檢驗行銷清單的方法流程實施例圖。
21:企業主機
210:企業數據庫
212:企業數據平台
215:客戶
20:伺服系統
208:其他企業數據
201:企業數據介面
202:預處理模組
203:機器學習模組
204:模型建立模組
205:行銷清單產生模組
206:主數據庫
207:數據平台
23,24:社群媒體
250:用戶

Claims (10)

  1. 一種消費數據處理系統,包括: 一企業主機,設有一企業數據庫,通過一企業數據平台觸及客戶,建立一企業數據;以及 一伺服系統,設有一主數據庫以及一企業數據介面,通過該企業數據介面連接該企業主機以取得該企業數據庫中的企業數據; 其中該伺服系統中運行一消費數據處理方法,包括: 匯入該企業數據,其中該企業數據涵蓋屬於一企業屬性的消費者資料; 對該企業數據進行數據清洗,並擷取其中特徵; 以對經數據清洗與取得特徵的數據演算一機器學習演算法,取得該企業數據中的標籤,建立一企業特性模型; 匯入一主數據至該企業特性模型,其中該主數據涵蓋的消費者數量大於該企業數據,且不限於該企業數據的屬性; 由該主數據中得出關聯該企業數據的特徵的一行銷清單; 依據該行銷清單對其中全部或部分的消費者投放行銷廣告;以及 根據一行銷結果,更新該企業特性模型。
  2. 如請求項1所述的消費數據處理系統,其中該伺服系統中實現的模組包括: 一預處理模組,對匯入的該企業數據進行數據清洗、特徵擷取、分析與分類; 一機器學習模組,執行該機器學習演算法,訓練並學習匯入的該企業數據中的規則,得出相關數據屬性的特徵標籤; 一模型建立模組,根據該企業數據的特徵標籤,建立該企業特性模型;以及 一行銷清單產生模組,從該主數據中得出該行銷清單,其中記載之後投放廣告的建議對象。
  3. 如請求項1所述的消費數據處理系統,其中該企業數據與該主數據為兩個不同且獨立的數據庫,當通過根據該企業數據建立該企業特性模型時,即建立該主數據與該企業數據的關聯性。
  4. 如請求項1所述的消費數據處理系統,其中,於該消費數據處理方法中對該企業數據進行數據清洗的步驟中,進行一客戶關係管理分析,用以分類該企業數據中的消費者。
  5. 如請求項4所述的消費數據處理系統,其中該客戶關係管理分析採用最近一次消費、消費頻率以及消費金額分析,對該企業數據內消費者進行評分,以利取得該企業數據中的標籤。
  6. 如請求項4所述的消費數據處理系統,其中,對該企業數據進行數據清洗的步驟中,包括建立該企業數據中各消費者的一特徵檔案。
  7. 如請求項1所述的消費數據處理系統,其中,經反覆將該行銷結果匯入該主數據,重新以該機器學習法訓練並更新該企業特性模型,得以優化關聯該企業屬性的該企業特性模型。
  8. 如請求項1至7中任一項所述的消費數據處理系統,其中該伺服系統設有一數據平台,連接一社群媒體主機,通過一應用程式介面取得在一社群媒體形成的消費數據,以建立該主數據。
  9. 如請求項8所述的消費數據處理系統,其中該數據平台以一客戶關係管理與進銷存系統實現。
  10. 如請求項8所述的消費數據處理系統,其中該伺服系統通過該社群媒體建立該主數據的方法包括: 於該社群媒體中建立一或多個團購活動; 分析該社群媒體中的用戶於該一或多個團購活動的活動;以及 根據分析結果建立該主數據。
TW109204763U 2020-04-22 2020-04-22 消費數據處理系統 TWM598990U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109204763U TWM598990U (zh) 2020-04-22 2020-04-22 消費數據處理系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109204763U TWM598990U (zh) 2020-04-22 2020-04-22 消費數據處理系統

Publications (1)

Publication Number Publication Date
TWM598990U true TWM598990U (zh) 2020-07-21

Family

ID=72601687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109204763U TWM598990U (zh) 2020-04-22 2020-04-22 消費數據處理系統

Country Status (1)

Country Link
TW (1) TWM598990U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779387B (zh) * 2020-11-06 2022-10-01 台北富邦商業銀行股份有限公司 智能客戶貼標裝置及方法
TWI783613B (zh) * 2021-08-04 2022-11-11 中國信託商業銀行股份有限公司 數位行銷決策系統及數位行銷決策方法
TWI819356B (zh) * 2021-08-18 2023-10-21 威霸科技股份有限公司 廣告、銷售及消費端的多方整合平台

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779387B (zh) * 2020-11-06 2022-10-01 台北富邦商業銀行股份有限公司 智能客戶貼標裝置及方法
TWI783613B (zh) * 2021-08-04 2022-11-11 中國信託商業銀行股份有限公司 數位行銷決策系統及數位行銷決策方法
TWI819356B (zh) * 2021-08-18 2023-10-21 威霸科技股份有限公司 廣告、銷售及消費端的多方整合平台

Similar Documents

Publication Publication Date Title
Ahlemeyer-Stubbe et al. A practical guide to data mining for business and industry
US8032405B2 (en) System and method for providing E-commerce consumer-based behavioral target marketing reports
CN110222272A (zh) 一种潜在客户挖掘与推荐方法
US20130124361A1 (en) Consumer, retailer and supplier computing systems and methods
US8341101B1 (en) Determining relationships between data items and individuals, and dynamically calculating a metric score based on groups of characteristics
TWM598990U (zh) 消費數據處理系統
Rezaeinia et al. Recommender system based on customer segmentation (RSCS)
TW202141386A (zh) 消費數據處理方法與系統
US20130262355A1 (en) Tools and methods for determining semantic relationship indexes
CN111815351A (zh) 一种基于协同过滤与关联规则的服装推荐方法
JP2020035409A (ja) 特性推定装置、特性推定方法、及び特性推定プログラム等
CN117726357A (zh) 一种基于scrm的电商营销方法
Chajri et al. Application of data mining in e-commerce
CN113781074A (zh) 消费数据处理方法与系统
CN110738521B (zh) 一种多电商品牌的客户销售方法和装置
KANG et al. Design of evaluation index system for information experience based on b2c e-commerce bigdata and artificial intelligence
Malik et al. Applying data mining for clustering shoppers based on store loyalty
Alsiehemy Emergence of Digital Marketing in Current Scenario and Implementation of AI to Improve the Productivity of a Concern
Purnamasari et al. Consumer Behavior Analysis of Leathercraft Small and Medium-Sized Enterprises (SME) Using Market Basket Analysis and Clustering Algorithms
Aggarwal et al. A comparative study of centralized online booking in e-commerce websites: Effects on repurchase behavior and product attributes
US11922476B2 (en) Generating recommendations based on descriptors in a multi-dimensional search space
US11869063B2 (en) Optimize shopping route using purchase embeddings
Kirana et al. Online-Customers Segmentation on PT. Rumah Mebel Nusantara (Ikea) in Semarang Region By Using K-Means Analysis With SPSS
Upadhyay An analysis of e-commerce purchase behaviour across the UK and Brazil
Andjarwati et al. Conceptual models for integration of Data Mining and SEO to Improve E-Commerce Performance