TWM597409U - Composite optical structure - Google Patents

Composite optical structure Download PDF

Info

Publication number
TWM597409U
TWM597409U TW109200513U TW109200513U TWM597409U TW M597409 U TWM597409 U TW M597409U TW 109200513 U TW109200513 U TW 109200513U TW 109200513 U TW109200513 U TW 109200513U TW M597409 U TWM597409 U TW M597409U
Authority
TW
Taiwan
Prior art keywords
layer
composite
infrared light
optical structure
reflection layer
Prior art date
Application number
TW109200513U
Other languages
Chinese (zh)
Inventor
林郁傑
閆斌
李紅蕾
Original Assignee
閎暉實業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 閎暉實業股份有限公司 filed Critical 閎暉實業股份有限公司
Priority to TW109200513U priority Critical patent/TWM597409U/en
Publication of TWM597409U publication Critical patent/TWM597409U/en

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

本創作關於一種複合式光學結構,其包含:透光基板;第一複合抗反射層,係形成在該透光基板之第一表面上;以及第二複合抗反射層,係形成在該透光基板上相對於該第一表面之第二表面上。 This composition relates to a composite optical structure, which includes: a light-transmitting substrate; a first composite anti-reflection layer formed on the first surface of the light-transmitting substrate; and a second composite anti-reflection layer formed on the light transmission The second surface on the substrate opposite to the first surface.

Description

複合式光學結構 Compound optical structure

本創作係有關於一種堆疊式光學結構,尤其指能提高紅外光穿透率之複合式光學結構。 This creation is about a stacked optical structure, especially a composite optical structure that can increase the transmittance of infrared light.

隨著科技不斷創新與進步,現今有許多先進電子產品,尤其是人工智慧(AI)與物聯網(IoT)類的電子產品,在設計上逐漸朝向將各種操作、顯示、攝影、感應與控制等功能,集中整合到同一片人機操作介面上,人機操作介面通常是一塊觸控面板,因此對於同一片觸控面板而言,除了基本的影像顯示與接受使用者操作手勢之外,還需要另外提供狀態感應、攝影、與控制訊號接收等多重功能。 With the continuous innovation and progress of technology, there are many advanced electronic products, especially artificial intelligence (AI) and Internet of Things (IoT) electronic products, which are gradually designed to integrate various operations, displays, photography, sensing and control, etc. The functions are centralized and integrated into the same man-machine interface. The man-machine interface is usually a touch panel. Therefore, for the same touch panel, in addition to the basic image display and accepting user operation gestures, it also needs In addition, it provides multiple functions such as status sensing, photography, and control signal reception.

這時觸控面板的外層透明玻璃視窗,除了提供足夠剛性以保護顯示螢幕之基本需求外,也需要滿足更多對於光學特性的設計需求,舉例而言,在同一塊玻璃視窗上,某些區域需要盡可能的對可見光提供高穿透性,但某些區域卻希望盡可能的降低可見光的穿透性,或者另一個區域只需要盡可能的對紅外光提供高穿透性,但盡可能的降低可見光的穿透性以避免光學干擾,而其他區域卻可能希望將完全將各種光線,無論是可見光、紅外光或者紫外光等全部遮蔽掉。 At this time, the outer transparent glass window of the touch panel not only provides sufficient rigidity to protect the display screen, but also needs to meet more design requirements for optical characteristics. For example, on the same glass window, certain areas require Provide high penetration of visible light as much as possible, but some areas want to reduce the penetration of visible light as much as possible, or another area only needs to provide high penetration of infrared light as much as possible, but reduce it as much as possible Visible light penetrability to avoid optical interference, while other areas may wish to completely shield all light, whether it is visible light, infrared light or ultraviolet light.

但是目前習用技術中觸控面板的外層透明玻璃視窗結構,在光學特性上仍然無法良好的滿足上述需求,因此基於上述需求,有需要重 新設計開發觸控面板的外層透明玻璃視窗,並改進其光學特性,以滿足上述需求,使得無論是人機操作介面或是觸控面板,可進一步提供更多功能,以便跟上電子產品之各種創新設計。 However, in the current conventional technology, the outer transparent glass window structure of the touch panel still cannot satisfy the above requirements in terms of optical characteristics. Therefore, based on the above requirements, it is necessary to refocus New design and development of the outer transparent glass window of the touch panel, and improve its optical characteristics to meet the above requirements, so that whether it is a man-machine interface or touch panel, it can further provide more functions to keep up with various electronic products Innovative design.

職是之故,鑑於習用技術的不足,申請人經過悉心試驗與研究,並一本鍥而不捨之精神,終構思出本案「複合式光學結構」,能夠克服上述習用技術所存在的各項缺點,以下為本創作之簡要說明。 The reason is that, in view of the lack of conventional technology, the applicant after careful testing and research, and a persistent spirit, finally conceived the "composite optical structure" of this case, which can overcome the shortcomings of the conventional technology, the following This is a brief description of the creation.

本創作提出一種複合式光學結構,可在電子產品的同一片視窗面板上,界定出多個不同的功能區塊,並讓這些功能區域共存在同一片視窗面板上,舉例來說,將玻璃視窗面板上的某個區塊布局為對可見光與紅外光皆提供高穿透性,當以這些區塊作為顯示區的時候,可增加所顯示影像的清晰度與品質並且不易產生眩光,但在某些區塊則有適當的遮光性,而在另外某些區塊則布局為專門為紅外線提供高穿透性,以良好感應與接收紅外線訊號,但同時可濾除可見光以避免誤作動。 This creation proposes a composite optical structure that can define multiple different functional blocks on the same window panel of an electronic product and allow these functional areas to coexist on the same window panel. For example, a glass window The layout of a certain block on the panel provides high penetration for both visible light and infrared light. When these blocks are used as the display area, the clarity and quality of the displayed image can be increased and glare is not easy to produce. Some blocks have proper light-shielding properties, while others are specifically designed to provide high penetration for infrared light to better sense and receive infrared signals, but at the same time, visible light can be filtered out to avoid misoperation.

本創作提出之複合式光學結構,係借由形成IR穿透油墨、多層抗反射鍍膜與遮光層等之堆疊結構,透過在透光基板的兩側表面都堆疊出厚度大於例如320nm以上的複合抗反射層,而對紅外光提供高達94%以上的穿透率,而對可見光選擇性提供高達95%以上穿透率、或者介於2%-5%的穿透率。 The composite optical structure proposed in this creation is formed by forming a stacked structure of IR penetrating ink, multi-layer anti-reflective coating and light-shielding layer. The reflective layer provides a penetration rate of more than 94% for infrared light, and selectively provides a penetration rate of more than 95% for visible light, or a transmission rate of between 2% and 5%.

據此本創作提出一種複合式光學結構,其包含:透光基板;第一複合抗反射層,係形成在該透光基板之第一表面上;以及第二複合抗反射層,係形成在該透光基板上相對於該第一表面之第二表面上。 Based on this, the author proposes a composite optical structure including: a light-transmitting substrate; a first composite anti-reflection layer formed on the first surface of the light-transmitting substrate; and a second composite anti-reflection layer formed on the The second surface of the transparent substrate opposite to the first surface.

較佳的,所述之複合式光學結構,還包含:第一紅外光穿透層,係介於該第一表面與該第一複合抗反射層之間;或者第二紅外光穿透層,係介於該第二表面與該第二複合抗反射層之間;第一遮光層,係介於該第一表面與該第一複合抗反射層之間;以及第二遮光層,係介於該第二表面與該第二複合抗反射層之間。 Preferably, the composite optical structure further includes: a first infrared light transmission layer between the first surface and the first composite anti-reflection layer; or a second infrared light transmission layer, Is between the second surface and the second composite anti-reflection layer; the first shading layer is between the first surface and the first composite anti-reflection layer; and the second shading layer is between Between the second surface and the second composite anti-reflection layer.

較佳的,所述之複合式光學結構,其中該第一複合抗反射層具有大於320nm的厚度,該第二複合抗反射層具有大於320nm的厚度。 Preferably, in the aforementioned composite optical structure, the first composite anti-reflection layer has a thickness greater than 320 nm, and the second composite anti-reflection layer has a thickness greater than 320 nm.

較佳的,該第一複合抗反射層還包含經由多次反覆實施第一鍍膜方法而形成的多層抗反射鍍膜,該第二複合抗反射層還包含經由多次反覆實施第二鍍膜方法而形成的多層抗反射鍍膜,該第一鍍膜方法與該第二鍍膜方法係選自熱蒸鍍製程、離子束濺鍍製程、電漿濺鍍製程以及原子層沉積製程其中之一。 Preferably, the first composite anti-reflective layer further includes a multilayer anti-reflective coating formed by repeatedly performing the first coating method, and the second composite anti-reflective layer further includes a multiple coating repeatedly formed by performing the second coating method Multi-layer anti-reflection coating, the first coating method and the second coating method are selected from one of a thermal evaporation process, an ion beam sputtering process, a plasma sputtering process, and an atomic layer deposition process.

較佳的,該第一紅外光穿透層係透過實施第一印製方法而形成,該第二紅外光穿透層係透過實施第二印製方法而形成,該第一印製方法與該第二印製方法係選自網印法以及噴墨列印法其中之一。 Preferably, the first infrared light transmission layer is formed by implementing a first printing method, the second infrared light transmission layer is formed by implementing a second printing method, the first printing method and the The second printing method is selected from one of the screen printing method and the inkjet printing method.

較佳的,所述之複合式光學結構,其為紅外光提供大於94%以上的穿透率,並為可見光提供小於3%以下的穿透率。 Preferably, the composite optical structure described above provides a penetration rate of greater than 94% for infrared light and a penetration rate of less than 3% for visible light.

較佳的,所述之複合式光學結構,其為紅外光提供大於94%以上的穿透率,並為可見光提供大於95%以上的穿透率。 Preferably, the composite optical structure described above provides a penetration rate of greater than 94% for infrared light and a penetration rate of greater than 95% for visible light.

100‧‧‧本創作複合式光學結構 100‧‧‧Created composite optical structure

110‧‧‧透光基板 110‧‧‧Transparent substrate

111‧‧‧第一表面 111‧‧‧ First surface

112‧‧‧第二表面 112‧‧‧Second surface

121‧‧‧第一複合抗反射層 121‧‧‧The first composite anti-reflection layer

122‧‧‧第二複合抗反射層 122‧‧‧The second composite anti-reflection layer

131‧‧‧第一紅外光穿透層 131‧‧‧ First infrared light transmission layer

132‧‧‧第二紅外光穿透層 132‧‧‧Second infrared light transmission layer

141‧‧‧遮光層 141‧‧‧ shading layer

142‧‧‧遮光層 142‧‧‧ shading layer

143‧‧‧遮光層 143‧‧‧ shading layer

144‧‧‧遮光層 144‧‧‧ shading layer

210‧‧‧紅外光 210‧‧‧Infrared

220‧‧‧可見光 220‧‧‧Visible light

A‧‧‧第一區域 A‧‧‧The first area

B‧‧‧第二區域 B‧‧‧The second area

C‧‧‧第三區域 C‧‧‧The third area

S1‧‧‧第一側 S1‧‧‧First side

S2‧‧‧第二側 S2‧‧‧Second side

第1圖係揭示本創作複合式光學結構第一實施例之結構體側剖面示意 圖。 FIG. 1 is a schematic side sectional view showing the structure of the first embodiment of the composite optical structure of the present invention Figure.

第2圖係揭示本創作複合式光學結構第二實施例之結構體側剖面示意圖。 FIG. 2 is a schematic side cross-sectional view showing a structure of the second embodiment of the composite optical structure of the present invention.

本創作將可由以下的實施例說明而得到充分瞭解,使得熟習本技藝之人士可以據以完成之,然本創作之實施並非可由下列實施案例而被限制其實施型態;本創作之圖式並不包含對大小、尺寸與比例尺的限定,本創作實際實施時其大小、尺寸、形狀與比例尺並非可經由本創作之圖式而被限制。 This creation will be fully understood by the following example descriptions, so that people who are familiar with this skill can complete it accordingly, but the implementation of this creation is not limited by the following implementation cases and its implementation type; It does not include restrictions on size, size and scale. The actual size, size, shape and scale of this creation are not limited by the drawings of this creation.

本文中用語“較佳”是非排他性的,應理解成“較佳為但不限於”,任何說明書或請求項中所描述或者記載的任何步驟可按任何順序執行,而不限於請求項中所述的順序,本創作的範圍應僅由所附請求項及其均等方案確定,不應由實施方式示例的實施例確定;本文中用語“包含”及其變化出現在說明書和請求項中時,是一個開放式的用語,不具有限制性含義,並不排除其他特徵或步驟。 The term "preferred" in this article is non-exclusive, and should be understood as "preferred but not limited to". Any steps described or recorded in any specification or request can be performed in any order, not limited to those described in the request Order, the scope of this creation should be determined only by the appended request items and their equivalents, and should not be determined by the examples of implementation examples; when the term "comprising" and its variations appear in the description and the request items, An open language does not have a restrictive meaning and does not exclude other features or steps.

第1圖係揭示本創作複合式光學結構第一實施例之結構體側剖面示意圖;本創作複合式光學結構100較佳是經配置作為,例如但不限於:手機、電腦、電視、儀表板、車載顯示器、中控台、控制面板、觸控面板、人機介面、物聯網(internet of things、IoT)裝置、或者人工智慧(artificial intelligence、AI)裝置等電子產品之視窗面板、蓋板或者外蓋。 FIG. 1 is a schematic side sectional view of the structure of the first embodiment of the creative composite optical structure; the creative composite optical structure 100 is preferably configured as, for example, but not limited to: a mobile phone, a computer, a TV, an instrument panel, Window panels, covers, or externals of electronic products such as in-vehicle displays, center consoles, control panels, touch panels, human-machine interfaces, internet of things (IoT) devices, or artificial intelligence (AI) devices cover.

本創作複合式光學結構100第一實施例是以一片透光基板110作為基本載體,較佳是一片玻璃基板或者一片PMMA基板,透光基板110 具有彼此相對的第一表面111與第二表面112,並可為可見光(visible light)或者紅外光(infrared ray light、IR light),提供大致介於88%-91%之間的穿透率(transmittance),依照比爾-朗伯定律(Beer-Lambert law),穿透率係定義為入射光(incident light)之於透射光(transmitted light)的比率。 The first embodiment of the creative composite optical structure 100 uses a transparent substrate 110 as a basic carrier, preferably a glass substrate or a PMMA substrate, the transparent substrate 110 It has a first surface 111 and a second surface 112 opposite to each other, and can be visible light (infrared ray light, IR light), providing a penetration rate between 88%-91% ( transmittance), according to Beer-Lambert law, transmittance is defined as the ratio of incident light to transmitted light.

第一表面111上形成有一層第一複合抗反射層(anti-reflection coating)121,第一複合抗反射層121較佳具有大於320nm之厚度,第二表面112上形成有一層第二複合抗反射層122,第二複合抗反射層122較佳具有大於320nm之厚度;第一複合抗反射層121與第二複合抗反射層122較佳是透過鍍膜方法(coating scheme)所製作,例如但不限於:熱蒸鍍(thermal evaporation coating)、離子束濺鍍(IBS)、電漿濺鍍(plasma sputtering)或者原子層沉積(ALD)等製程,而在第一表面111與第二表面112上各自形成第一複合抗反射層121與第二複合抗反射層122。 A first composite anti-reflection coating 121 is formed on the first surface 111, the first composite anti-reflection coating 121 preferably has a thickness greater than 320 nm, and a second composite anti-reflection coating is formed on the second surface 112 Layer 122, the second composite anti-reflective layer 122 preferably has a thickness greater than 320nm; the first composite anti-reflective layer 121 and the second composite anti-reflective layer 122 are preferably manufactured through a coating scheme, such as but not limited to : Thermal evaporation coating, ion beam sputtering (IBS), plasma sputtering (plasma sputtering) or atomic layer deposition (ALD) and other processes, which are formed on the first surface 111 and the second surface 112 respectively The first composite anti-reflection layer 121 and the second composite anti-reflection layer 122.

第一複合抗反射層121與第二複合抗反射層122較佳還分別包含不同厚度與成分的多層抗反射鍍膜的組合,以建構出光學干涉效應來增加可見光與紅外光之穿透特性,第一複合抗反射層121與第二複合抗反射層122對可見光與紅外光提供的穿透率,係取決於內部抗反射鍍膜之膜層數、每一層的厚度、膜層折射率、以及在膜層介面的折射率差等,因此第一複合抗反射層121與第二複合抗反射層122較佳都是透過反覆實施上述鍍膜方法而分別形成在第一表面111與第二表面112上。 The first composite anti-reflective layer 121 and the second composite anti-reflective layer 122 preferably further comprise a combination of multi-layer anti-reflective coatings of different thicknesses and compositions to construct an optical interference effect to increase the transmission characteristics of visible light and infrared light. The transmittance of a composite anti-reflection layer 121 and the second composite anti-reflection layer 122 to visible light and infrared light depends on the number of film layers of the internal anti-reflection coating, the thickness of each layer, the film refractive index, and the film The difference in the refractive index of the layer interface is such that the first composite anti-reflective layer 121 and the second composite anti-reflective layer 122 are preferably formed on the first surface 111 and the second surface 112 by repeatedly performing the above coating method.

以熱蒸鍍製程為例,經過考慮最大化干涉、最小化干涉、材料折射率、1/2波長厚度、或者1/4波長厚度等條件後,選擇配合以例如但不限於:高折射材料例如氧化鈦(TiO2或Ti3O5)或氧化鉭(Ta2O5)、中折射材料例 如氧化鋁(Al2O3)或氧化鋯(ZrO2)、低折射材料例如氧化矽(SiO2)或氟化鎂(MgF2)等材料作為靶材,經過高溫游離(ionized)蒸發後,在高真空環境當中,從蒸發源抵達第一表面111與第二表面112,經沉積在第一表面111與第二表面112上,以在第一表面111與第二表面112上各自形成高純度的抗反射鍍膜。 Taking the thermal evaporation process as an example, after considering the conditions of maximizing interference, minimizing interference, material refractive index, 1/2 wavelength thickness, or 1/4 wavelength thickness, choose to match, for example, but not limited to: high refractive materials such as Titanium oxide (TiO 2 or Ti 3 O 5 ) or tantalum oxide (Ta 2 O 5 ), medium refractive materials such as aluminum oxide (Al 2 O 3 ) or zirconium oxide (ZrO 2 ), low refractive materials such as silicon oxide (SiO 2 ) Or magnesium fluoride (MgF 2 ) as a target material, after high temperature ionized evaporation, in a high vacuum environment, it reaches the first surface 111 and the second surface 112 from the evaporation source, and is deposited on the first surface 111 and the second surface 112 to form high-purity anti-reflection coatings on the first surface 111 and the second surface 112, respectively.

例如,在一組由三層抗反射鍍膜組成的第一複合抗反射層121中,經計算確定1/2波長厚度m與1/4波長厚度n之後,便可選用折射率為1.38的低折射率氟化鎂(MgF2)形成厚度m的第一層抗反射鍍膜,選用折射率為2.15的高折射率氧化鉭(Ta2O5)形成厚度n的第二層抗反射鍍膜,以及選用折射率為1.70的中折射率氧化鋁(Al2O3)形成厚度m的第三層抗反射鍍膜,而在第一表面111上組合形成第一複合抗反射層121。 For example, in a group of first composite anti-reflective layers 121 composed of three anti-reflective coatings, after calculating and determining 1/2 wavelength thickness m and 1/4 wavelength thickness n, a low refractive index with a refractive index of 1.38 can be selected Use magnesium fluoride (MgF 2 ) to form the first antireflective coating of thickness m, choose high refractive index tantalum oxide (Ta 2 O 5 ) with a refractive index of 2.15 to form the second antireflective coating of thickness n, and choose refraction A medium-refractive-index alumina (Al 2 O 3 ) with a rate of 1.70 forms a third layer of anti-reflective coating with a thickness of m, and a first composite anti-reflective layer 121 is combined on the first surface 111.

因此經由堆疊多層光學反射鍍膜形成堆疊結構,第一複合抗反射層121與第二複合抗反射層122較佳可以為可見光提供大於95%以上的穿透率,並且可以為紅外光提供大於94%以上的穿透率,可見光是指在電磁波譜(electromagnetic spectrum)上波長介於380nm到760nm的一段電磁波,屬於人眼可見之電磁波動,紅外光較佳大致是近紅外光(NIR),指在電磁波譜上波長介於700nm到1400nm、位於可見光光譜之外的一段電磁波,屬人眼不可見電磁波動,常應用於紅外線遙控(IR remote control)技術;當第一複合抗反射層121與第二複合抗反射層122分別形成在第一表面111與第二表面112上之後,本創作複合式光學結構100在第一區域A的範圍內,可以為紅外光210提供大於94%以上的穿透率,並為可見光220提供大於95%以上的穿透率。 Therefore, a stacked structure is formed by stacking multiple layers of optical reflective coatings. The first composite anti-reflective layer 121 and the second composite anti-reflective layer 122 preferably can provide a transmittance of greater than 95% for visible light, and can provide greater than 94% for infrared light. The above transmittance, visible light refers to a section of electromagnetic waves with a wavelength between 380nm and 760nm in the electromagnetic spectrum, which belongs to the electromagnetic fluctuations visible to the human eye. Infrared light is preferably roughly near infrared light (NIR), which refers to The electromagnetic wave with a wavelength between 700nm and 1400nm and outside the visible light spectrum is an invisible electromagnetic wave of the human eye. It is often used in infrared remote control technology; when the first composite anti-reflection layer 121 and the second After the composite anti-reflection layer 122 is formed on the first surface 111 and the second surface 112, the original composite optical structure 100 can provide the infrared light 210 with a transmittance of more than 94% in the range of the first area A , And provide more than 95% transmittance for visible light 220.

本創作複合式光學結構100,還可以選擇性包含一層紅外光穿透層,其可以選擇配置在透光基板110的第一表面111與第一複合抗反射層121之間、或者配置在第二表面112與第二複合抗反射層122之間;在本實施例,係選擇在例如但不限於,第二表面112上、介於第二表面112與第二複合抗反射層122之間,進一步形成一層的第二紅外光穿透層132,當然也可以另外選擇在第一表面111上、介於第一表面111與第一複合抗反射層121之間,形成一層的第一紅外光穿透層(本實施例未示出)。 The original composite optical structure 100 may optionally include an infrared light transmission layer, which may be disposed between the first surface 111 of the light-transmitting substrate 110 and the first composite anti-reflection layer 121, or disposed in the second Between the surface 112 and the second composite anti-reflection layer 122; in this embodiment, it is selected on, for example but not limited to, the second surface 112, between the second surface 112 and the second composite anti-reflection layer 122, further A layer of second infrared light transmission layer 132 is formed, of course, another layer of first infrared light transmission can be formed on the first surface 111 between the first surface 111 and the first composite anti-reflection layer 121 Layer (not shown in this example).

第二紅外光穿透層132較佳是透過印製方法(printing scheme),例如但不限於:網印(screen printing)、或者噴墨列印(inkjet printing)等方式,配合使用油性IR穿透油墨而印製在第二表面112上,第二紅外光穿透層132之作用在於,其允許紅外光,尤其是近紅外光穿透,但卻可遮擋波長小於近紅外光的可見光和紫外光之穿透。 The second infrared light transmissive layer 132 is preferably transmitted through a printing scheme, such as but not limited to: screen printing, inkjet printing, etc., with the use of oily IR transmission The ink is printed on the second surface 112. The function of the second infrared light penetrating layer 132 is that it allows infrared light, especially near infrared light to penetrate, but it can block visible light and ultraviolet light with a wavelength less than near infrared light. The penetration.

當只有配置單一層的第二紅外光穿透層132時,單層的第二紅外光穿透層132可以為紅外光提供最大89%穿透率,但是當在第二紅外光穿透層132上進一步形成一層第二複合抗反射層122時,透過共同配置第二紅外光穿透層132與第二複合抗反射層122,可以將紅外光之穿透率提高到94%,於此同時仍可過濾掉可見光,第二紅外光穿透層132大致只能為可見光提供介於2%-5%之穿透率。 When only a single layer of the second infrared light transmission layer 132 is configured, the single layer of the second infrared light transmission layer 132 can provide a maximum 89% transmittance for infrared light, but when the second infrared light transmission layer 132 When a second composite anti-reflective layer 122 is further formed on top of it, by disposing the second infrared light transmission layer 132 and the second composite anti-reflection layer 122 together, the infrared light transmittance can be increased to 94%, while still Visible light can be filtered out, and the second infrared light penetrating layer 132 can only provide visible light with a penetration rate between 2% and 5%.

當第二紅外光穿透層132、與配置在其上的第二複合抗反射層122形成在第二表面112上之後,本創作複合式光學結構100在第二區域B的範圍內,可以為紅外光210提供大於94%以上的穿透率,同時卻可遮蔽可見光220,僅為可見光220提供大約介於2%-5%之穿透率,當本創作複合式 光學結構100應用在紅外線遙控技術時,就能有效過濾掉可見光,避免紅外線遙控受到可見光的干擾而產生誤作動。 After the second infrared light transmission layer 132 and the second composite anti-reflection layer 122 disposed thereon are formed on the second surface 112, the original composite optical structure 100 may be within the range of the second region B Infrared light 210 provides a penetration rate of greater than 94%, but at the same time it can shield visible light 220, and only visible light 220 provides a penetration rate between 2% and 5%. When the optical structure 100 is applied to the infrared remote control technology, it can effectively filter out visible light and prevent the infrared remote control from being interfered by the visible light and causing misoperation.

而為了遮蔽配置在第二紅外光穿透層132下方的紅外線感應元件和電路構造等,第二紅外光穿透層132包含的IR穿透油墨之油墨色相最好選用黑色,且較佳會安排布局在複合式光學結構100整體結構中靠近邊緣的位置上。 In order to shield the infrared sensor element and the circuit structure disposed under the second infrared light penetrating layer 132, the ink hue of the IR penetrating ink contained in the second infrared light penetrating layer 132 is preferably black, and preferably arranged The layout is close to the edge in the overall structure of the composite optical structure 100.

本創作複合式光學結構100,還包含一層遮光層141,其可選擇配置在第一表面111與第一複合抗反射層121之間、或者選擇配置在第二表面112與第二複合抗反射層122之間,而以第一複合抗反射層121或者第二複合抗反射層122作為複合式光學結構100的最外層,在此配置下,遮光層141可以選擇直接配置在第一表面111或者第二表面121上、或者直接配置在例如第二紅外光穿透層132上,在本實施例,係選擇在例如但不限於,在介於第二表面112與第二複合抗反射層122之間、且直接在第二紅外光穿透層132上,進一步形成一層遮光層141。 The original composite optical structure 100 further includes a light-shielding layer 141, which can be optionally disposed between the first surface 111 and the first composite anti-reflection layer 121, or alternatively disposed on the second surface 112 and the second composite anti-reflection layer Between 122, the first composite anti-reflection layer 121 or the second composite anti-reflection layer 122 is used as the outermost layer of the composite optical structure 100. In this configuration, the light shielding layer 141 can be directly disposed on the first surface 111 or the first The two surfaces 121, or directly disposed on the second infrared light transmission layer 132, for example, but not limited to, between the second surface 112 and the second composite anti-reflection layer 122 in this embodiment And, directly on the second infrared light penetrating layer 132, a light shielding layer 141 is further formed.

遮光層141較佳是透過印製方法(printing scheme),例如但不限於:網印(screen printing)、或者噴墨列印(inkjet printing)等方式,配合使用遮光性油墨而接續印製在第二紅外光穿透層132上,遮光層141之作用在於,阻擋所有的可見光與紅外光,為可見光與紅外光提供0%的穿透率,當遮光層141配置完成之後,本創作複合式光學結構100在第三區域C的範圍內,可以阻擋所有的可見光與紅外光,為可見光與紅外光提供0%的穿透率。 The light-shielding layer 141 is preferably printed through a printing scheme, such as, but not limited to, screen printing, inkjet printing, etc., in conjunction with the use of light-shielding ink and subsequent printing on the first 2. On the infrared light penetrating layer 132, the function of the shading layer 141 is to block all visible light and infrared light, and provide 0% transmittance for the visible light and infrared light. When the shading layer 141 is configured, the original composite optical In the range of the third region C, the structure 100 can block all visible light and infrared light, and provide 0% transmittance for visible light and infrared light.

在本實施例中,還可以選擇性的在介於第二表面112與第二複合抗反射層122之間、且直接在第二表面112上,進一步透過印製方法形 成遮光層142與遮光層143,透過配置多個的遮光層141、遮光層142與遮光層143,可以為本創作複合式光學結構100,定義出多個互相獨立的操作區域,可以各自為可見光與紅外光,提供不同的穿透率,而為安裝有本創作複合式光學結構100的裝置,提供更多不同的功能與設計變化。 In this embodiment, it can also be selectively located between the second surface 112 and the second composite anti-reflective layer 122 and directly on the second surface 112, and further formed by a printing method Forming the light-shielding layer 142 and the light-shielding layer 143, by arranging a plurality of the light-shielding layer 141, the light-shielding layer 142 and the light-shielding layer 143, the composite optical structure 100 can be defined for the original creative multiple optical structure 100, and a plurality of mutually independent operation areas can be defined, which can be visible light Compared with infrared light, it provides different penetration rates, and for the device equipped with the original composite optical structure 100, it provides more different functions and design changes.

舉例來說,本創作複合式光學結構100可在第一區域A為紅外光210提供大於94%以上的穿透率,並為可見光220提供大於95%以上的穿透率,在第二區域B為紅外光210提供大於94%以上的穿透率,同時卻可遮蔽可見光220,僅為可見光220提供大約介於2%-5%之穿透率,在第三區域C阻擋所有的可見光與紅外光,為可見光與紅外光提供0%的穿透率;因此第一區域A較佳可以設計作為例如但不限於:影像顯示區、觸控操作區、影像感應區、外部攝影區、或者基於可見光感應之控制區等,第二區域B較佳可以設計作為例如但不限於:紅外線遙控區用來接收紅外線控制訊號、或者紅外線感應區用來感應紅外線觸發訊號,第三區域C較佳可以設計作為例如但不限於:邊框區、元件構造遮蔽區、或者裝飾區,可滿足在電子產品的同一片視窗面板上,需要擁有多個不同的功能區塊之需求。 For example, the original composite optical structure 100 can provide infrared light 210 with a transmittance of greater than 94% in the first area A, and a transmittance of greater than 95% with visible light 220, and in the second area B Provides infrared light 210 with a transmittance greater than 94%, while shielding visible light 220, and only providing visible light 220 with a transmittance between 2% and 5%, blocking all visible light and infrared in the third area C Light, which provides 0% transmittance for visible light and infrared light; therefore, the first area A can be preferably designed as, for example, but not limited to, an image display area, a touch operation area, an image sensing area, an external photography area, or based on visible light For sensing control area, etc., the second area B can be preferably designed as, for example, but not limited to: an infrared remote control area for receiving infrared control signals, or an infrared sensing area for sensing infrared trigger signals, and a third area C can preferably be designed as For example, but not limited to: the frame area, the component structure shielding area, or the decoration area, which can meet the requirement of having multiple different functional blocks on the same window panel of the electronic product.

在本實施例中,由於第一表面111上只形成有一層第一複合抗反射層121,而第二紅外光穿透層132、遮光層141、遮光層142與遮光層143等皆選擇配置在第二表面112上,因此第一表面111與第一複合抗反射層121大致呈現平坦的狀態;當本創作複合式光學結構100應用作為電子產品之視窗面板時,較佳可將第一複合抗反射層121設計為外層構件,而朝向使用者所在的第一側S1,將第二複合抗反射層122設計為內層構件,而朝向產品內部的第二側S2,當使用者從第一側S1觀看或操作視窗面板時,可展示 出一個大致平整的外表面,有助提升視窗面板整體外觀之美觀與平整度,同時也提升使用者體驗(user experiences)。 In this embodiment, since only a first composite anti-reflection layer 121 is formed on the first surface 111, the second infrared light transmission layer 132, the light shielding layer 141, the light shielding layer 142, and the light shielding layer 143 are all selectively disposed On the second surface 112, the first surface 111 and the first composite anti-reflection layer 121 are generally flat; when the original composite optical structure 100 is applied as a window panel of an electronic product, it is preferable to use the first composite anti-reflection layer The reflective layer 121 is designed as an outer layer member, and faces the first side S1 where the user is, and the second composite anti-reflective layer 122 is designed as an inner layer member, and toward the second side S2 inside the product, when the user is from the first side S1 can be displayed when viewing or operating the window panel A generally flat outer surface helps to improve the overall appearance and flatness of the window panel, and at the same time enhances user experiences.

小結而言,本創作提出之複合式光學結構,借由形成IR穿透油墨、多層抗反射鍍膜與遮光層等之堆疊結構,例如但不限於堆疊出厚度大於320nm的複合抗反射層,可以在透光基板上對紅外光提供高達94%以上的穿透率,而對可見光選擇性提供高達95%以上或者介於2%-5%的穿透率,利用這樣的光學結構,實現在同一片透明玻璃視窗蓋板上,就擁有各種不同的穿透率變化,可以讓新科技的電子產品能增加更多不同的功能設計與變化。 In summary, the composite optical structure proposed in this work can be formed by stacking structures such as IR penetrating inks, multilayer anti-reflective coatings and light-shielding layers, such as but not limited to stacking composite anti-reflective layers with a thickness greater than 320 nm. The translucent substrate provides a penetration rate of up to 94% for infrared light, and selectively provides a penetration rate of up to 95% or between 2% and 5% for visible light. With this optical structure, the same piece The transparent glass window cover has a variety of different penetration rate changes, which can enable new technology electronic products to add more different functional designs and changes.

第2圖係揭示本創作複合式光學結構第二實施例之結構體側剖面示意圖;本創作複合式光學結構200之第二實施例包含第一實施例之所有技術特徵,在本實施例中,將一層遮光層144與一層第一紅外光穿透層131選擇配置在第一表面111與第一複合抗反射層121之間,而以第一複合抗反射層121作為複合式光學結構100的最外層,故選擇將遮光層144直接形成在第一表面111上,而第一紅外光穿透層131則形成在第一表面111與遮光層144上,而依照不同製程的選用與電子產品之實際構造需求,第一紅外光穿透層131不一定需要覆蓋在遮光層144上。值得注意的是,依照不同製程的選用與電子產品之實際構造需求,也可選擇將第一紅外光穿透層131直接形成在第一表面111上,而另將遮光層144則形成在第一紅外光穿透層131上。 FIG. 2 is a schematic cross-sectional side view of the structure of the second embodiment of the creative composite optical structure; the second embodiment of the creative composite optical structure 200 includes all the technical features of the first embodiment. In this embodiment, A light-shielding layer 144 and a first infrared light transmission layer 131 are selectively disposed between the first surface 111 and the first composite anti-reflection layer 121, and the first composite anti-reflection layer 121 is used as the most The outer layer, so choose to form the light-shielding layer 144 directly on the first surface 111, and the first infrared light-transmitting layer 131 is formed on the first surface 111 and the light-shielding layer 144, according to the choice of different manufacturing processes and the actual electronic products For structural requirements, the first infrared light transmission layer 131 does not necessarily need to cover the light shielding layer 144. It is worth noting that, according to the selection of different manufacturing processes and the actual structural requirements of electronic products, the first infrared light transmission layer 131 can also be formed directly on the first surface 111, and the light shielding layer 144 is formed on the first The infrared light penetrates the layer 131.

本創作複合式光學結構200可在第一區域A為紅外光210提供大於94%以上的穿透率,並為可見光220提供大於95%以上的穿透率,在第二區域B為紅外光210提供大於94%以上的穿透率,同時卻可遮蔽可見光 220,僅為可見光220提供大約介於2%-5%之穿透率,在第三區域C阻擋所有的可見光與紅外光,為可見光與紅外光提供0%的穿透率。 The inventive composite optical structure 200 can provide infrared light 210 with a transmittance of greater than 94% in the first area A, and a transmittance of greater than 95% with visible light 220, and infrared light 210 in the second area B Provides a penetration rate greater than 94%, while blocking visible light 220, only providing visible light 220 with a transmission rate between about 2% and 5%, blocking all visible light and infrared light in the third region C, and providing 0% transmission rate for visible light and infrared light.

當本創作複合式光學結構200應用作為電子產品之視窗面板時,第一複合抗反射層121與第二複合抗反射層122不限定作為外層構件或者內層構件,第一複合抗反射層121與第二複合抗反射層122皆適合作為外層構件或者內層構件,或者同時既是外層構件也是內層構件,反之亦然,以因應未來各式電子產品之各種可能的創新功能與設計變化。 When the original composite optical structure 200 is applied as a window panel of an electronic product, the first composite anti-reflection layer 121 and the second composite anti-reflection layer 122 are not limited to be an outer layer member or an inner layer member, the first composite anti-reflection layer 121 and The second composite anti-reflection layer 122 is suitable as an outer layer member or an inner layer member, or both an outer layer member and an inner layer member at the same time, and vice versa, in order to respond to various possible innovative functions and design changes of various electronic products in the future.

本創作提出之複合式光學結構,借由形成IR穿透油墨、多層抗反射鍍膜與遮光層等之堆疊結構,例如但不限於堆疊出厚度大於320nm的複合抗反射層,可以在透光基板上對紅外光提供高達94%以上的穿透率,而對可見光選擇性提供高達95%以上或者介於2%-5%的穿透率,利用這樣的光學結構,實現在同一片透明玻璃視窗蓋板上,就擁有各種不同的穿透率變化,可以讓新科技的電子產品能增加更多不同的功能設計與變化。 The composite optical structure proposed in this work can be formed on a transparent substrate by forming a stacked structure of IR penetrating ink, multilayer anti-reflective coating and shading layer, such as but not limited to stacking a composite anti-reflective layer with a thickness greater than 320nm Provides up to 94% transmittance for infrared light, and up to 95% or 2%-5% transmittance for visible light selectivity. With this optical structure, the same transparent glass window cover can be realized On the board, there are various changes in penetration rate, which can allow new technology electronic products to add more different functional designs and changes.

本創作提出之複合式光學結構,可以為電子產品的視窗面板界定出多塊不同的功能區域,舉例來說,使玻璃視窗面板上的某個區域可對可見光與紅外光皆提供高穿透性,當以這些區域作為顯示區的時候,可增加所顯示影像的清晰度並且不易產生眩光等,但某些區域則有適當的遮光性,而另外某些區域則可以專門為紅外線提供高穿透性,以良好的感應與接收到紅外線遙控訊號,但同時可濾除可見光以最大可能的避免誤作動,並讓上述不同的功能區域共存在一片玻璃視窗面板上;透過應用這樣的複合式光學結構,能夠更好的支援未來各種更智慧的電子產品之各種可能的創新功能與設計變化。 The composite optical structure proposed in this creation can define multiple different functional areas for the window panel of electronic products. For example, a certain area on the glass window panel can provide high transparency for both visible light and infrared light. When these areas are used as the display area, the clarity of the displayed image can be increased and glare is not easily generated, but some areas have proper shading, while others can provide high penetration for infrared light With good induction and receiving infrared remote control signals, but at the same time can filter out visible light to avoid misoperation as much as possible, and allow the above-mentioned different functional areas to coexist on a glass window panel; by applying such a composite optical structure , Can better support all kinds of possible innovative functions and design changes of various smarter electronic products in the future.

茲進一步提供更多本創作實施例如次: We hereby provide more examples of this creation:

實施例1:一種複合式光學結構,其包含:透光基板;第一複合抗反射層,係形成在該透光基板之第一表面上;以及第二複合抗反射層,係形成在該透光基板上相對於該第一表面之第二表面上。 Embodiment 1: A composite optical structure comprising: a light-transmitting substrate; a first composite anti-reflection layer formed on the first surface of the light-transmitting substrate; and a second composite anti-reflection layer formed on the transparent The second surface of the optical substrate opposite to the first surface.

實施例2:如實施例1所述之複合式光學結構,還包含以下其中之一:第一紅外光穿透層,係介於該第一表面與該第一複合抗反射層之間;第二紅外光穿透層,係介於該第二表面與該第二複合抗反射層之間;第一遮光層,係介於該第一表面與該第一複合抗反射層之間;以及第二遮光層,係介於該第二表面與該第二複合抗反射層之間。 Embodiment 2: The composite optical structure as described in Embodiment 1, further comprising one of the following: a first infrared light transmission layer is interposed between the first surface and the first composite anti-reflection layer; Two infrared light penetrating layers are interposed between the second surface and the second composite anti-reflection layer; a first light-shielding layer is interposed between the first surface and the first composite anti-reflection layer; and Two light shielding layers are interposed between the second surface and the second composite anti-reflection layer.

實施例3:如實施例1所述之複合式光學結構,其中該第一複合抗反射層具有大於320nm的厚度,該第二複合抗反射層具有大於320nm的厚度。 Embodiment 3: The composite optical structure as described in Embodiment 1, wherein the first composite anti-reflection layer has a thickness greater than 320 nm, and the second composite anti-reflection layer has a thickness greater than 320 nm.

實施例4:如實施例1所述之複合式光學結構,其中該第一複合抗反射層還包含經由多次反覆實施第一鍍膜方法而形成的多層抗反射鍍膜,該第二複合抗反射層還包含經由多次反覆實施第二鍍膜方法而形成的多層抗反射鍍膜,該第一鍍膜方法與該第二鍍膜方法係選自熱蒸鍍製程、離子束濺鍍製程、電漿濺鍍製程以及原子層沉積製程其中之一。 Embodiment 4: The composite optical structure as described in Embodiment 1, wherein the first composite anti-reflection layer further includes a multilayer anti-reflection coating formed by repeatedly performing the first coating method, and the second composite anti-reflection layer It also includes a multilayer anti-reflective coating formed by repeatedly performing the second coating method repeatedly. The first coating method and the second coating method are selected from a thermal evaporation process, an ion beam sputtering process, a plasma sputtering process, and One of the atomic layer deposition processes.

實施例5:如實施例2所述之複合式光學結構,其中該第一紅外光穿透層係透過實施第一印製方法而形成,該第二紅外光穿透層係透過實施第二印製方法而形成,該第一印製方法與該第二印製方法係選自網印法以及噴墨列印法其中之一。 Embodiment 5: The composite optical structure as described in Embodiment 2, wherein the first infrared light transmission layer is formed by performing a first printing method, and the second infrared light transmission layer is formed by performing a second printing The first printing method and the second printing method are selected from one of a screen printing method and an inkjet printing method.

實施例6:如實施例2所述之複合式光學結構,其中該第一紅 外光穿透層或者該第二紅外光穿透層可為紅外光提供最高89%的穿透率。 Embodiment 6: The composite optical structure as described in Embodiment 2, wherein the first red The external light penetrating layer or the second infrared light penetrating layer can provide infrared light with a transmittance of up to 89%.

實施例7:如實施例2所述之複合式光學結構,其為紅外光提供大於94%以上的穿透率,並為可見光提供小於3%以下的穿透率。 Embodiment 7: The composite optical structure as described in Embodiment 2, which provides a transmittance of more than 94% for infrared light and a transmittance of less than 3% for visible light.

實施例8:如實施例1所述之複合式光學結構,其為紅外光提供大於94%以上的穿透率,並為可見光提供大於95%以上的穿透率。 Embodiment 8: The composite optical structure as described in Embodiment 1, which provides a transmittance of greater than 94% for infrared light and a transmittance of greater than 95% for visible light.

實施例9:如實施例1所述之複合式光學結構,其中該透光基板係選自PMMA基板以及玻璃基板其中之一,並對紅外光或者可見光提供介於88%-91%之間的穿透率。 Embodiment 9: The composite optical structure as described in Embodiment 1, wherein the light-transmitting substrate is selected from one of a PMMA substrate and a glass substrate, and provides between 88% and 91% of infrared light or visible light Penetration rate.

實施例10:如實施例6、7、8或9所述之複合式光學結構,其中該紅外光具有介於700nm到1,400nm範圍之電磁波長,該可見光具有介於380nm到760nm範圍之電磁波長。 Embodiment 10: The composite optical structure as described in Embodiment 6, 7, 8 or 9, wherein the infrared light has an electromagnetic wavelength ranging from 700 nm to 1,400 nm, and the visible light has an electromagnetic wavelength ranging from 380 nm to 760 nm .

本創作各實施例彼此之間可以任意組合或者替換,從而衍生更多之實施態樣,但皆不脫本創作所欲保護之範圍,本創作保護範圍之界定,悉以本創作申請專利範圍所記載者為準。 The embodiments of this creation can be arbitrarily combined or replaced with each other, so as to derive more implementation forms, but all do not deviate from the scope of protection of this creation. The definition of the protection scope of this creation is based on the scope of the patent application for this creation. The writer shall prevail.

100‧‧‧本創作複合式光學結構 100‧‧‧Created composite optical structure

110‧‧‧透光基板 110‧‧‧Transparent substrate

111‧‧‧第一表面 111‧‧‧ First surface

112‧‧‧第二表面 112‧‧‧Second surface

121‧‧‧第一複合抗反射層 121‧‧‧The first composite anti-reflection layer

122‧‧‧第二複合抗反射層 122‧‧‧The second composite anti-reflection layer

132‧‧‧第二紅外光穿透層 132‧‧‧Second infrared light transmission layer

141‧‧‧遮光層 141‧‧‧ shading layer

142‧‧‧遮光層 142‧‧‧ shading layer

143‧‧‧遮光層 143‧‧‧ shading layer

210‧‧‧紅外光 210‧‧‧Infrared

220‧‧‧可見光 220‧‧‧Visible light

A‧‧‧第一區域 A‧‧‧The first area

B‧‧‧第二區域 B‧‧‧The second area

C‧‧‧第三區域 C‧‧‧The third area

S1‧‧‧第一側 S1‧‧‧First side

S2‧‧‧第二側 S2‧‧‧Second side

Claims (10)

一種複合式光學結構,其包含: A composite optical structure, including: 一透光基板; A transparent substrate; 一第一複合抗反射層,係形成在該透光基板之一第一表面上;以及 A first composite anti-reflection layer formed on a first surface of the light-transmitting substrate; and 一第二複合抗反射層,係形成在該透光基板上相對於該第一表面之一第二表面上。 A second composite anti-reflection layer is formed on a second surface of the light-transmissive substrate opposite to the first surface. 如請求項1所述之複合式光學結構,還包含以下其中之一: The composite optical structure as described in claim 1, further comprising one of the following: 一第一紅外光穿透層,係介於該第一表面與該第一複合抗反射層之間; A first infrared light transmission layer between the first surface and the first composite anti-reflection layer; 一第二紅外光穿透層,係介於該第二表面與該第二複合抗反射層之間; A second infrared light penetrating layer between the second surface and the second composite anti-reflection layer; 一第一遮光層,係介於該第一表面與該第一複合抗反射層之間;以及 A first light-shielding layer between the first surface and the first composite anti-reflection layer; and 一第二遮光層,係介於該第二表面與該第二複合抗反射層之間。 A second shading layer is interposed between the second surface and the second composite anti-reflection layer. 如請求項1所述之複合式光學結構,其中該第一複合抗反射層具有大於320nm的厚度,該第二複合抗反射層具有大於320nm的厚度。 The composite optical structure according to claim 1, wherein the first composite anti-reflection layer has a thickness greater than 320 nm, and the second composite anti-reflection layer has a thickness greater than 320 nm. 如請求項1所述之複合式光學結構,其中該第一複合抗反射層還包含經由多次反覆實施一第一鍍膜方法而形成的多層抗反射鍍膜,該第二複合抗反射層還包含經由多次反覆實施一第二鍍膜方法而形成的多層抗反射鍍膜,該第一鍍膜方法與該第二鍍膜方法係選自一熱蒸鍍製程、一離 子束濺鍍製程、一電漿濺鍍製程以及一原子層沉積製程其中之一。 The composite optical structure according to claim 1, wherein the first composite anti-reflection layer further includes a multilayer anti-reflection coating formed by repeatedly performing a first coating method, and the second composite anti-reflection layer further includes The multilayer anti-reflective coating formed by repeatedly performing a second coating method multiple times, the first coating method and the second coating method are selected from a thermal evaporation process, a separate One of the beamlet sputtering process, a plasma sputtering process, and an atomic layer deposition process. 如請求項2所述之複合式光學結構,其中該第一紅外光穿透層係透過實施一第一印製方法而形成,該第二紅外光穿透層係透過實施一第二印製方法而形成,該第一印製方法與該第二印製方法係選自一網印法以及一噴墨列印法其中之一。 The composite optical structure according to claim 2, wherein the first infrared light transmission layer is formed by implementing a first printing method, and the second infrared light transmission layer is formed by implementing a second printing method As a result, the first printing method and the second printing method are selected from one of a screen printing method and an inkjet printing method. 如請求項2所述之複合式光學結構,其中該第一紅外光穿透層或者該第二紅外光穿透層可為一紅外光提供最高89%的穿透率。 The composite optical structure according to claim 2, wherein the first infrared light transmission layer or the second infrared light transmission layer can provide a maximum penetration rate of 89% for an infrared light. 如請求項2所述之複合式光學結構,其為一紅外光提供大於94%以上的穿透率,並為一可見光提供小於3%以下的穿透率。 The composite optical structure as described in claim 2, which provides a transmittance of more than 94% for an infrared light and a transmittance of less than 3% for a visible light. 如請求項1所述之複合式光學結構,其為一紅外光提供大於94%以上的穿透率,並為一可見光提供大於95%以上的穿透率。 The composite optical structure as described in claim 1, which provides an infrared light with a transmittance greater than 94% and a visible light with a transmittance greater than 95%. 如請求項1所述之複合式光學結構,其中該透光基板係選自一PMMA基板以及一玻璃基板其中之一,並對一紅外光或者一可見光提供介於88%-91%之間的穿透率。 The composite optical structure according to claim 1, wherein the transparent substrate is selected from one of a PMMA substrate and a glass substrate, and provides between 88% and 91% for an infrared light or a visible light Penetration rate. 如請求項6、7、8或9所述之複合式光學結構,其中該紅外光具有介於700nm到1,400nm範圍之電磁波長,該可見光具有介於380nm到760nm範圍之電磁波長。 The composite optical structure according to claim 6, 7, 8, or 9, wherein the infrared light has an electromagnetic wavelength ranging from 700 nm to 1,400 nm, and the visible light has an electromagnetic wavelength ranging from 380 nm to 760 nm.
TW109200513U 2020-01-14 2020-01-14 Composite optical structure TWM597409U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109200513U TWM597409U (en) 2020-01-14 2020-01-14 Composite optical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109200513U TWM597409U (en) 2020-01-14 2020-01-14 Composite optical structure

Publications (1)

Publication Number Publication Date
TWM597409U true TWM597409U (en) 2020-06-21

Family

ID=72177799

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109200513U TWM597409U (en) 2020-01-14 2020-01-14 Composite optical structure

Country Status (1)

Country Link
TW (1) TWM597409U (en)

Similar Documents

Publication Publication Date Title
TWI531939B (en) Touch panels
JP6979730B2 (en) Optical filter and infrared image sensing system including the optical filter
US11448801B2 (en) Textured glass layers in electronic devices
US9903989B2 (en) Metal structure for decorative bezel and method for manufacturing same
TWI567413B (en) Composite substrate structure and touch-sensitive device
JP4122010B2 (en) Infrared light emitter / receiver
CN109473042B (en) Coating for transparent substrates in electronic devices
TWI605366B (en) Touch device
KR20120025977A (en) Electrode film and coordinate detecting apparatus
JP2009083183A (en) Optical membrane laminate
US20110212305A1 (en) Transparent conductive laminate comprising visual light adjustment layers
CN102214498A (en) Transparent conductive laminated body with visible adjustment layers
TWI471771B (en) Touch panel
CN210626697U (en) Integrated black coated cover plate
US7864428B2 (en) Optical recognition device and optical recognition display comprising the same
US20130189491A1 (en) Display apparatus and composite optical film thereof and manufacturing method of composite optical film
CN206308263U (en) Cover-plate glass stepped construction
JP6907778B2 (en) Cover members and information equipment
TWM597409U (en) Composite optical structure
CN211826582U (en) Composite optical structure
CN105005402A (en) Touch panel
TWI579747B (en) Touch panel and method for manufacturing the same
JP2021056455A (en) Infrared bandpass filter structure and infrared bandpass filter applying the same
TWI647599B (en) Touch panel, method of manufacturing touch panel, display device, and method of manufacturing display device
CN212160641U (en) Display panel