TWM595251U - Backlight module applied to display panel - Google Patents

Backlight module applied to display panel Download PDF

Info

Publication number
TWM595251U
TWM595251U TW109202564U TW109202564U TWM595251U TW M595251 U TWM595251 U TW M595251U TW 109202564 U TW109202564 U TW 109202564U TW 109202564 U TW109202564 U TW 109202564U TW M595251 U TWM595251 U TW M595251U
Authority
TW
Taiwan
Prior art keywords
light
backlight module
guide plate
infrared light
arc
Prior art date
Application number
TW109202564U
Other languages
Chinese (zh)
Inventor
傅同龍
王偉榕
周正三
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of TWM595251U publication Critical patent/TWM595251U/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Image Input (AREA)
  • Planar Illumination Modules (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Liquid Crystal (AREA)

Abstract

A backlight module applied to a display panel includes a light guide plate and a visible light source. The light guide plate generates infrared light in conjunction with an infrared light source. The visible light source disposed on one side of the light guide plate emits light rays entering the light guide plate to generate visible light. Thus, light rays for information display and biometrics sensing can be provided.

Description

應用於顯示面板的背光模組 Backlight module applied to display panel

本新型是有關於一種具有屏下式紅外線生物感測器的電子設備,且特別是有關於一種可以應用於液晶顯示器(Liquid Crystal Display,LCD)及OLED等具有屏下式紅外線生物感測器的電子設備,以及應用於顯示面板的背光模組。 The present invention relates to an electronic device with an under-screen infrared biosensor, and particularly relates to an electronic device with an under-screen infrared biosensor that can be applied to liquid crystal displays (LCD) and OLED Electronic equipment and backlight module applied to display panel.

現今的移動電子裝置(例如手機、平板電腦、筆記本電腦等)通常配備有使用者生物識別系統,包括了例如指紋、臉型、虹膜等等不同技術,用以保護個人數據安全,其中例如應用於手機或智慧型手錶等攜帶型裝置,也兼具有行動支付的功能,對於使用者生物識別更是變成一種標準的功能,而手機等攜帶型裝置的發展更是朝向全螢幕(或超窄邊框)的趨勢,使得傳統電容式指紋按鍵(例如iphone 5到iphone 8的按鍵)無法再被繼續使用,進而演進出新的微小化光學成像裝置(非常類似傳統的相機模組,具有互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor(CMOS)Image Sensor(簡稱CIS))感測元件及光學鏡頭模組)。將微小化光學成像裝置設置於螢幕下方(可稱為屏下),透過螢幕部分透光(特別是有機發光二極體(Organic Light Emitting Diode,OLED)螢幕),可以擷取按壓於屏幕上方的物體的圖像,特別是指紋圖像,可以稱為屏幕下指紋感測(Fingerprint On Display,FOD)。 Today's mobile electronic devices (such as mobile phones, tablets, laptops, etc.) are usually equipped with user biometric systems, including different technologies such as fingerprints, face shapes, irises, etc., to protect personal data security, which is used in mobile phones, for example Mobile devices such as smart watches or smart watches also have the function of mobile payment, which becomes a standard function for user biometrics, and the development of mobile devices such as mobile phones is toward full screen (or ultra-narrow bezel) The trend of making traditional capacitive fingerprint buttons (such as the buttons of iphone 5 to iphone 8) can no longer be used, and has evolved new miniaturized optical imaging devices (much like traditional camera modules, with complementary metal oxide Semiconductor (Complementary Metal-Oxide Semiconductor (CMOS) Image Sensor (referred to as CIS) sensing element and optical lens module). The miniaturized optical imaging device is placed under the screen (may be called under the screen), partially transparent through the screen (especially organic light emitting diode (Organic Light Emitting Diode, OLED) screen), you can capture and press the top of the screen The image of the object, especially the fingerprint image, can be called Fingerprint On Display (FOD).

現有的光學生物感測器(譬如指紋感測器)至少包含一光學模組,光學模組裡面有CMOS影像感測器(CMOS Image Sensor,CIS)晶片或模組,透鏡陣列模組(Lens array module),這些元件或模組主要是放在OLED顯示器的下方。因為OLED顯示器本身就會透光,所以實施上沒有問題。 Existing optical biosensors (such as fingerprint sensors) include at least one optical module. The optical module has a CMOS image sensor (CMOS Image Sensor, CIS) chip or module, and a lens array module (Lens array) module), these components or modules are mainly placed under the OLED display. Because the OLED display itself transmits light, there is no problem in implementation.

但是除了OLED屏(或屏幕),許多產品也使用LCD屏,還有OLED屏也還在演進,例如低穿透屏(穿透率由3%到1%)的發展,這些都需要新的屏下光學指紋方案。本案所要解決的是如何設計一紅外線光學感測模組在液晶顯示器(Liquid Crystal Display,LCD),亦或者低穿透OLED,或者未來不同的屏的下方。這需要面臨到很多挑戰。譬如,LCD具有背光模組、增光膜、導光板等元件,RGB的可見光從側面打進來,然後從導光板及增光膜擴散出去,把光線均勻化或模糊化。導光板和增光膜上面有很多鋸齒狀結構,把光線散射到各種方向。如果把CIS模組放在背光模組的增光膜及導光板下面的話,背光模組裡面有抗反射塗層(Anti-Reflection Coating,ARC),讓可見光作全反射,因此從手指反射來的可見光無法穿透而達到CIS模組,造成圖像感測的問題。 However, in addition to OLED screens (or screens), many products also use LCD screens, and OLED screens are also evolving, such as the development of low-penetration screens (penetration rate from 3% to 1%), these require new screens Under the optical fingerprint scheme. The problem to be solved in this case is how to design an infrared optical sensing module under the liquid crystal display (Liquid Crystal Display, LCD), or low-transmission OLED, or a different screen in the future. This requires many challenges. For example, the LCD has components such as a backlight module, a light-enhancing film, and a light guide plate. RGB visible light comes in from the side, and then diffuses out from the light guide plate and the light-enhancing film to uniformize or blur the light. There are many zigzag structures on the light guide plate and the light enhancement film, which scatter the light in various directions. If the CIS module is placed under the light enhancement film and light guide plate of the backlight module, the backlight module has an anti-reflection coating (ARC) to allow total reflection of visible light, so the visible light reflected from the finger Unable to penetrate and reach the CIS module, causing image sensing problems.

本案另一個要解決問題是例如OLED顯示器,其解析度越來越高,可見光FOD受限於顯示器可見光穿透率越來越低(解析度越來越高),使得感測器的可見光的信噪比(Signal-to-Noise Ratio,SNR)越來越低,因此藉由IR的FOD方案也可以解決此一問題。當然其他顯示器的技術,例如微發光二極體(Micro Light Emitting Diode,uLED)顯示器等等,也都適用此一方案。 Another problem to be solved in this case is, for example, the OLED display, whose resolution is getting higher and higher, and the visible light FOD is limited by the lower and lower visible light transmittance of the display (the resolution is getting higher and higher), which makes the sensor visible light Signal-to-noise ratio (SNR) is getting lower and lower, so the FOD solution of IR can also solve this problem. Of course, other display technologies, such as Micro Light Emitting Diode (uLED) displays, etc., are also applicable to this solution.

因此,本新型的實施例的一個目的在於提供一種具有屏 下式紅外線生物感測器的電子設備以及應用於顯示面板的背光模組,此電子設備具有資訊顯示及生物感測的功能。 Therefore, an object of the embodiment of the present invention is to provide a screen The electronic device of the following infrared biosensor and the backlight module applied to the display panel. The electronic device has functions of information display and biosensing.

為達上述目的,本新型的實施例提供一種電子設備,至少包含一背光模組、一顯示面板、一透光保護板、一光學感測器以及一紅外光源。背光模組提供可見光朝上方行進,並具有一反射層來阻擋可見光朝下方行進。顯示面板設置於背光模組上方,並依據可見光來顯示資訊。透光保護板設置於顯示面板上方並讓資訊穿透。光學感測器設置於背光模組的下方。紅外光源提供紅外光到位於透光保護板上或上方的一生物體。生物體反射紅外光而產生反射的紅外光,反射的紅外光通過透光保護板、顯示面板及背光模組而被光學感測器所接收,使光學感測器獲得代表生物體的一圖像的一圖像信號,實現屏下式圖像感測功能。 To achieve the above purpose, embodiments of the present invention provide an electronic device, at least including a backlight module, a display panel, a light-transmitting protection plate, an optical sensor, and an infrared light source. The backlight module provides visible light to travel upward, and has a reflective layer to block visible light from traveling downward. The display panel is arranged above the backlight module and displays information according to visible light. The light-transmitting protection plate is arranged above the display panel and allows information to penetrate. The optical sensor is arranged below the backlight module. The infrared light source provides infrared light to a living body on or above the light-transmitting protective plate. The biological body reflects infrared light to generate reflected infrared light. The reflected infrared light is received by the optical sensor through the light-transmitting protection plate, the display panel and the backlight module, so that the optical sensor obtains an image representing the biological body An image signal to realize the under-screen image sensing function.

此外,本新型亦提供一種電子設備,至少包含:一顯示面板,提供可見光朝上方行進,並依據可見光來顯示資訊;一透光保護板,設置於顯示面板上方,讓資訊穿透;一光學感測器,設置於顯示面板的下方;以及一紅外光源,提供紅外光到位於透光保護板上或上方的一生物體,生物體反射紅外光而產生反射的紅外光,反射的紅外光通過透光保護板及顯示面板而被光學感測器所接收,使光學感測器獲得代表生物體的一圖像的一圖像信號。 In addition, the present invention also provides an electronic device, at least including: a display panel that provides visible light traveling upwards and displays information based on the visible light; a light-transmitting protective plate, which is provided above the display panel to allow information to penetrate; an optical sense The detector is arranged below the display panel; and an infrared light source, which provides infrared light to a living body located on or above the light-transmitting protection board. The living body reflects infrared light to generate reflected infrared light, and the reflected infrared light passes through the light The protection board and the display panel are received by the optical sensor, so that the optical sensor obtains an image signal representing an image of the living body.

本新型更提供一種應用於顯示面板的背光模組,至少包含一導光板及一可見光源。導光板配合一紅外光源產生一紅外光。可見光源,設置於導光板的一側,並發射光線進入導光板中行進以產生一可見光。藉此可提供資訊顯示及生物感測的所需要的光線。 The present invention further provides a backlight module applied to a display panel, which at least includes a light guide plate and a visible light source. The light guide plate cooperates with an infrared light source to generate an infrared light. The visible light source is arranged on one side of the light guide plate, and emits light to travel into the light guide plate to generate a visible light. This can provide the required light for information display and biological sensing.

藉由上述實施例,利用紅外光可以讓LCD下方設置的光學感測模組獲得良好的生物特徵圖像,而不影響LCD的顯示功能,也 利用LCD的反射層對於紅外光和可見光具有不同的特性,使得可見光無法穿透的反射層可以讓紅外光穿透,從手指而來的反射的紅外光可以輕易穿透反射層而到達設置於反射層下方的光學感測器,達成生物特徵感測的功能,為配備有LCD顯示器的電子裝置提供一種光學生物感測方案。除了適用於LCD顯示器以外,亦適用於OLED顯示器等其他顯示器的光學生物感測場合。 With the above embodiment, using infrared light can enable the optical sensing module provided under the LCD to obtain a good biometric image without affecting the display function of the LCD. The reflective layer of the LCD has different characteristics for infrared light and visible light. The reflective layer that makes the visible light impenetrable can allow infrared light to pass through. The reflected infrared light from the finger can easily penetrate the reflective layer to reach the set reflection The optical sensor below the layer achieves the function of biometric sensing, and provides an optical biosensing solution for electronic devices equipped with LCD displays. In addition to being suitable for LCD displays, it is also suitable for optical biosensing occasions of other displays such as OLED displays.

為讓本新型之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above-mentioned contents of the new model more obvious and understandable, the preferred embodiments are described in detail below in conjunction with the attached drawings, which are described in detail below.

F:生物體 F: Organism

FR:峰部 FR: Peak

FT:自由端 FT: Free end

FV:谷部 FV: Tanibu

H:高度 H: height

IR0:初始紅外光線 IR0: initial infrared light

IR1:紅外光 IR1: infrared light

IR2:反射的紅外光 IR2: reflected infrared light

P:節距 P: pitch

R:半徑 R: radius

VL:可見光 VL: visible light

10:背光模組 10: Backlight module

11:反射層 11: reflective layer

12:導光板 12: light guide plate

12A:基底 12A: Base

12B:弧狀凸部 12B: Arc convex

12C:V形切部 12C: V-shaped cut

12D:底面 12D: Underside

12E:頂面 12E: top surface

13:可見光源 13: Visible light source

14:可見光發光二極體 14: Visible light emitting diode

15:擴散增亮層 15: diffuse brightness enhancement layer

16:擴散層 16: Diffusion layer

17:增亮膜 17: Brightening film

18:驅動器 18: drive

20:顯示面板 20: Display panel

21:後偏光片 21: Rear polarizer

22:後配向層 22: Rear alignment layer

23:液晶層 23: Liquid crystal layer

24:前電極 24: front electrode

25:彩色濾光層 25: color filter layer

26:前偏光片 26: Front polarizer

30:透光保護板 30: Light-transmitting protection board

31:抗反射層 31: Anti-reflection layer

32:光學透明膠 32: Optical transparent glue

40:光學感測器 40: Optical sensor

41:透鏡模組 41: lens module

42:感測單元 42: Sensing unit

50:紅外光源 50: Infrared light source

51:發光單元 51: Light emitting unit

52:特定曲率透鏡 52: Specific curvature lens

53:光學膜 53: Optical film

55:電路板 55: circuit board

56:導光板 56: light guide plate

90:電池 90: battery

100:電子設備 100: electronic equipment

〔圖1〕顯示依據本新型較佳實施例的具有屏下式紅外線生物感測器的電子設備的示意圖。 [FIG. 1] A schematic diagram of an electronic device with an under-screen infrared biosensor according to a preferred embodiment of the present invention.

〔圖1A〕顯示〔圖1〕的電子設備的變化例的示意圖。 [FIG. 1A] A schematic diagram showing a modification of the electronic device of [FIG. 1].

〔圖2〕顯示〔圖1〕的電子設備的局部示意圖。 [FIG. 2] A partial schematic diagram showing the electronic device of [FIG. 1].

〔圖2A〕顯示〔圖2〕的電子設備的變化例的示意圖。 [FIG. 2A] A schematic diagram showing a modified example of the electronic device of [FIG. 2].

〔圖3〕顯示〔圖1〕的背光模組、顯示面板與透光保護板的組合結構的一個例子的示意圖。 [FIG. 3] A schematic diagram showing an example of the combined structure of the backlight module of [FIG. 1], a display panel, and a light-transmitting protective plate.

〔圖4〕顯示〔圖1〕的一個實際配置例子的局部示意圖。 [FIG. 4] A partial schematic diagram showing an actual configuration example of [FIG. 1].

〔圖5〕與〔圖6〕顯示〔圖4〕的兩個變化配置例子的局部示意圖。 [FIG. 5] and [FIG. 6] are partial schematic diagrams showing two variation configuration examples of [FIG. 4].

〔圖7〕至〔圖9〕顯示紅外光源相對於透光保護板的三種配置的示意圖。 [FIG. 7] to [FIG. 9] Schematic diagrams showing three configurations of the infrared light source relative to the light-transmitting protection plate.

〔圖10〕至〔圖12〕顯示〔圖1〕的三種變化例子的示意圖。 [FIG. 10] to [FIG. 12] Schematic diagrams showing three variations of [FIG. 1].

〔圖13〕顯示對應於〔圖10〕的背光模組的立體示意圖。 [FIG. 13] A perspective schematic view of a backlight module corresponding to [FIG. 10].

〔圖14〕顯示對應於〔圖13〕的背光模組的前視圖。 [FIG. 14] shows a front view of the backlight module corresponding to [FIG. 13].

〔圖15與〔圖16〕顯示對應於〔圖14〕的背光模組的兩個變化例的前視圖。 [FIG. 15 and [FIG. 16] are front views showing two variations of the backlight module corresponding to [FIG. 14].

〔圖17〕顯示對應於〔圖10〕的背光模組的變化例的立體示意圖。 [FIG. 17] A perspective schematic view showing a modification of the backlight module corresponding to [FIG. 10].

〔圖18〕顯示對應於〔圖10〕的背光模組的局部示意圖。 [FIG. 18] shows a partial schematic view of the backlight module corresponding to [FIG. 10].

〔圖19〕顯示對應於〔圖18〕的導光板的局部示意圖。 [FIG. 19] shows a partial schematic view of the light guide plate corresponding to [FIG. 18].

〔圖20〕顯示對應於〔圖19〕的導光板的另一例子的局部示意圖。 [FIG. 20] A partial schematic view showing another example of the light guide plate corresponding to [FIG. 19].

〔圖21〕顯示導光板的各個部件的尺寸標註示意圖。 [FIG. 21] A schematic diagram showing the dimensions of each component of the light guide plate.

〔圖22A〕至〔圖22F〕顯示利用六種不同尺寸的導光板所獲得的指紋圖像。 [FIG. 22A] to [FIG. 22F] display fingerprint images obtained by using six different sizes of light guide plates.

〔圖23〕顯示依據本新型另一實施例的具有屏下式紅外線生物感測器的電子設備的示意圖。 [FIG. 23] A schematic diagram of an electronic device with an under-screen infrared biosensor according to another embodiment of the present invention.

〔圖24〕顯示〔圖23〕的電子設備的變化例。 [FIG. 24] shows a variation of the electronic device of [FIG. 23].

〔圖25〕顯示〔圖23〕的光學感測器及紅外光源的變化例的前視圖。 [FIG. 25] A front view showing a variation of the optical sensor and infrared light source of [FIG. 23].

〔圖26〕顯示〔圖25〕的光學感測器的俯視圖。 [FIG. 26] A plan view showing the optical sensor of [FIG. 25].

本案創作人發現紅外線(Infrared,IR)可以穿透上述ARC,如此一來,將IR打上去手指,手指反射IR往下透過蓋板玻璃、顯示面板及背光模組而被CIS模組接收到,達成指紋的感測。但是,若要從背光模組的下方打IR上去到手指,IR朝上行進要經過背光模組,IR朝下行進也是要經過背光模組。如此一來,出射的IR被模糊化,反射回來的IR也被模糊化,使得感測到的指紋的圖像模糊。若要從正面發 射IR到手指,又會有很多干擾的問題需要解決。 The creator of this case found that infrared (IR) can penetrate the above ARC. In this way, the IR was hit by a finger, and the finger reflected IR down through the cover glass, display panel and backlight module and received by the CIS module. Achieve fingerprint sensing. However, if you want to hit IR from the bottom of the backlight module to your finger, the IR will pass through the backlight module when traveling upward, and the IR will also pass through the backlight module when traveling downward. As a result, the outgoing IR is blurred, and the reflected IR is also blurred, making the sensed fingerprint image blurred. To send from the front Shooting IR to your finger, there will be many interference problems to be solved.

本案提出四種設計架構來達成將IR發射到手指。第一種是有關於側向打光,由保護玻璃(蓋板玻璃)的一側來發射IR,其中保護玻璃的下方可以設置ARC以讓入射保護玻璃的IR強度保持在高強度。在這種打光方式中,可以採用全內反射(Total Internal Reflection,TIR)。第二種是有關於變更背光模組的設計,在背光模組側邊的可見光(紅綠藍GB)的LED陣列中,放入一些IR LED。第三種是有關於採用一條RGB LED的線性陣列及另一條IR LED的線性陣列平行設置。第四種則是透過修改導光模組的設計,這種方式可以將IR打光設置於所有可能的位置,包括側向打光及下打光。 This case proposes four design architectures to achieve IR emission to the finger. The first is about side lighting, which emits IR from the side of the cover glass (cover glass), where ARC can be placed under the cover glass to keep the IR intensity of the incident cover glass at a high intensity. In this lighting method, Total Internal Reflection (TIR) can be used. The second is about changing the design of the backlight module. In the visible light (red, green and blue GB) LED array on the side of the backlight module, put some IR LEDs. The third is about using a linear array of RGB LEDs and another IR LEDs in parallel. The fourth is to modify the design of the light guide module. In this way, IR lighting can be set at all possible positions, including side lighting and down lighting.

圖1顯示依據本新型較佳實施例的具有屏下式紅外線生物感測器的電子設備100的示意圖。圖2顯示圖1的電子設備100的局部示意圖。電子設備100譬如是移動電話、平板電腦、穿戴裝置、具有生物特徵感測功能的電子裝置等。如圖1與圖2所示,電子設備100至少包含一背光模組10、一顯示面板20、一透光保護板30、一光學感測器40以及一紅外光源50。電子設備100具有顯示資訊以與使用者互動的功能,也可以具有觸控功能來讓使用者輸入指令或資料。譬如,當使用者利用光學感測器40感測生物特徵時,可以進行登錄、生物特徵比對等動作,若生物特徵比對通過,則電子設備100的中央處理器(未顯示)可以進行解鎖,以讓使用者進行進階的操作,或進行交易等。 FIG. 1 shows a schematic diagram of an electronic device 100 with an under-screen infrared biosensor according to a preferred embodiment of the present invention. FIG. 2 shows a partial schematic diagram of the electronic device 100 of FIG. 1. The electronic device 100 is, for example, a mobile phone, a tablet computer, a wearable device, an electronic device with a biometric sensing function, and the like. As shown in FIGS. 1 and 2, the electronic device 100 includes at least a backlight module 10, a display panel 20, a light-transmitting protection plate 30, an optical sensor 40 and an infrared light source 50. The electronic device 100 has a function of displaying information to interact with the user, and may also have a touch function to allow the user to input commands or data. For example, when the user uses the optical sensor 40 to sense biometrics, he can perform actions such as login and biometric comparison. If the biometric comparison passes, the central processing unit (not shown) of the electronic device 100 can unlock To allow users to perform advanced operations or conduct transactions.

背光模組10提供可見光VL朝上方行進,背光模組10具有一反射層11,阻擋可見光VL朝下方(遠離顯示面板20的方向)行進。顯示面板20設置於背光模組10上方,用於依據可見光VL來顯示資訊,在手機等移動裝置上的應用可以是顯示單元(Display Cell),或者 是具有觸控功能的顯示單元。透光保護板30設置於顯示面板20上方,讓資訊穿透,在手機等移動裝置上的應用可以是蓋板玻璃(Cover Glass,CG)。光學感測器40設置於背光模組10的下方。於一例中,光學感測器40為透鏡式光學感測器,利用一個透鏡或多個透鏡的組合,達成圖像感測功能,另一例的光學感測器40為超薄的光學感測器,具有微透鏡準直器設計。 The backlight module 10 provides visible light VL to travel upward, and the backlight module 10 has a reflective layer 11 to block the visible light VL from traveling downward (away from the display panel 20). The display panel 20 is disposed above the backlight module 10 and is used to display information according to the visible light VL. The application on mobile devices such as mobile phones may be a display cell (Display Cell), or It is a display unit with touch function. The light-transmitting protective plate 30 is disposed above the display panel 20 to allow information to pass through. The application on mobile devices such as mobile phones may be Cover Glass (CG). The optical sensor 40 is disposed below the backlight module 10. In one example, the optical sensor 40 is a lens-type optical sensor, which uses one lens or a combination of multiple lenses to achieve an image sensing function. In another example, the optical sensor 40 is an ultra-thin optical sensor , With a microlens collimator design.

紅外光源50提供紅外光IR1到位於透光保護板30上或上方的一生物體F。於本實施例中,紅外光源50設置於反射層11的上方。譬如是手指的生物體F反射紅外光IR1而產生反射的紅外光IR2,反射的紅外光IR2通過透光保護板30、顯示面板20及背光模組10而被光學感測器40所接收,使光學感測器40獲得代表生物體F的一圖像的一圖像信號。圖像包含指紋圖像、血管圖像、血氧濃度圖像等等皮膚表層或皮膚下層的生物器官資訊。以上的配置結構即可達到本新型的效果,達成屏下式紅外線生物感測的功能。值得注意的是,上述的「反射」可以是紅外光被生物體F的表面反射,也可以是紅外光進入生物體F中而從生物體F發出的現象。 The infrared light source 50 provides infrared light IR1 to a living body F located on or above the light-transmitting protection plate 30. In this embodiment, the infrared light source 50 is disposed above the reflective layer 11. For example, the biological body F of a finger reflects infrared light IR1 to generate reflected infrared light IR2. The reflected infrared light IR2 is received by the optical sensor 40 through the transparent protective plate 30, the display panel 20, and the backlight module 10, so that The optical sensor 40 obtains an image signal representing an image of the living body F. The image includes fingerprint images, blood vessel images, blood oxygen concentration images, etc. of biological organ information on the surface or subcutaneous layers of the skin. The above configuration structure can achieve the effect of the new type, and achieve the function of under-screen infrared bio-sensing. It is worth noting that the above-mentioned "reflection" may be that infrared light is reflected by the surface of the living body F, or it may be a phenomenon in which infrared light enters the living body F and is emitted from the living body F.

於本實施例中,紅外光源50設置於透光保護板30的下方,並且設置於顯示面板20的一側。亦即,透光保護板30的面積大於顯示面板20的面積,紅外光源50設置於透光保護板30與顯示面板20所形成的冗餘空間中。光學感測器40設置於背光模組10的下方以及電子設備100的電池90的旁邊。另一實施例的光學感測器40(例如是具有超薄微透鏡準直器設計)可以設置於電池90與背光模組10之間,如圖1A所示。 In this embodiment, the infrared light source 50 is disposed below the light-transmitting protection plate 30 and is disposed on one side of the display panel 20. That is, the area of the transparent protective plate 30 is larger than the area of the display panel 20, and the infrared light source 50 is disposed in the redundant space formed by the transparent protective plate 30 and the display panel 20. The optical sensor 40 is disposed below the backlight module 10 and beside the battery 90 of the electronic device 100. In another embodiment, the optical sensor 40 (for example, having an ultra-thin microlens collimator design) may be disposed between the battery 90 and the backlight module 10, as shown in FIG. 1A.

如圖2所示,紅外光IR1穿過透光保護板30的一抗反射 層31,抗反射層31避免紅外光IR1被透光保護板30反射而無法到達生物體F。如圖2A所示,紅外光源50位於背光模組10的下方,提供的是一種下打光的方式,同樣適用於上述實施例。 As shown in FIG. 2, the infrared light IR1 passes through the anti-reflection of the transparent protective plate 30 The layer 31 and the anti-reflection layer 31 prevent the infrared light IR1 from being reflected by the light-transmitting protection plate 30 and failing to reach the living body F. As shown in FIG. 2A, the infrared light source 50 is located below the backlight module 10, and provides a downlighting method, which is also applicable to the above embodiment.

圖3顯示圖1的背光模組10、顯示面板20與透光保護板30的組合結構的一個例子的示意圖。如圖3所示,背光模組10與顯示面板20構成液晶顯示器(Liquid Crystal Display,LCD)。於一非限制例中,背光模組10至少包含反射層11、導光板(Light Guide Plate,LGP)12、可見光源13及擴散增亮層15。擴散增亮層15包含擴散層(Diffuser,DIFF)16及增亮膜(Brightness Enhanced Film,BEF)17。反射層11譬如是3M公司出產的增強型鏡面反射鏡(Enhanced Specular Reflector,ESR)。顯示面板20包含從下而上依序堆疊的後偏光片(Rear Polarizer)21、後配向層22、液晶層23、前電極24、彩色濾光層25及前偏光片(Front Polarizer)26,但是並非將本新型限制於此。此外,顯示面板20透過光學透明膠(Optical Clear Adhesive,OCA)32而黏接到透光保護板30。值得注意的是,圖3只是顯示出其中一個例子,並非特別將本新型限制於此。對於可見光而言,擴散層16及增亮膜17會使圖像模糊,導光板12會使圖像品質降低,反射層11會將可見光朝上反射。然而,本案創作人發現對於紅外光而言,紅外光可以穿透反射層11,且不會大幅受到擴散層16、增亮膜17及導光板12的影響。因此,本新型的實施例的配置是適合於LCD的應用場合,但不特別限制於此,舉凡設置有具有反射可見光的反射層的顯示器,都屬於本新型的實施例的應用場合。 FIG. 3 is a schematic diagram showing an example of the combined structure of the backlight module 10, the display panel 20, and the light-transmitting protection plate 30 of FIG. As shown in FIG. 3, the backlight module 10 and the display panel 20 constitute a liquid crystal display (Liquid Crystal Display, LCD). In a non-limiting example, the backlight module 10 includes at least a reflective layer 11, a light guide plate (LGP) 12, a visible light source 13, and a diffuse brightness enhancement layer 15. The diffusion brightening layer 15 includes a diffusion layer (Diffuser, DIFF) 16 and a brightness enhancement film (Brightness Enhanced Film, BEF) 17. The reflective layer 11 is, for example, an enhanced specular reflector (ESR) produced by 3M. The display panel 20 includes a rear polarizer 21, a rear alignment layer 22, a liquid crystal layer 23, a front electrode 24, a color filter layer 25, and a front polarizer (Front Polarizer) 26 stacked sequentially from bottom to top, but This new type is not limited to this. In addition, the display panel 20 is adhered to the light-transmitting protection plate 30 through an optical clear adhesive (Optical Clear Adhesive, OCA) 32. It is worth noting that FIG. 3 shows only one example, and does not specifically limit the present invention to this. For visible light, the diffusion layer 16 and the brightness enhancement film 17 will blur the image, the light guide plate 12 will reduce the image quality, and the reflective layer 11 will reflect the visible light upward. However, the author of this case found that for infrared light, infrared light can penetrate the reflective layer 11 and is not greatly affected by the diffusion layer 16, the brightness enhancement film 17, and the light guide plate 12. Therefore, the configuration of the embodiment of the present invention is suitable for the application of the LCD, but it is not particularly limited thereto. Any display provided with a reflective layer that reflects visible light belongs to the application of the embodiment of the present invention.

圖4顯示圖1的一個實際配置例子的局部示意圖。如圖4所示,電子設備100的一驅動器18控制背光模組10及顯示面板20的 運作,以讓電子設備100可以顯示出資訊給使用者。如圖4所示,紅外光IR1穿透透光保護板30而照射在直接接觸透光保護板30的生物體F的一峰部FR上而產生反射的紅外光IR2,而反射的紅外光IR2耦合進透光保護板30中,使得峰部FR對應的圖像的一部分呈現亮態。另一方面,而生物體F的一谷部FV無法反射穿透透光保護板30的紅外光IR1,使得谷部FV對應的圖像的一部分呈現暗態。於一例子中,紅外光源50與生物體F之間的一距離介於10mm至30mm之間或介於15mm至20mm之間,或者生物體F的感測區與紅外光源50的距離介於10mm至30mm之間或介於15mm至20mm之間。於圖4所示之範例中,可以獲得相當均勻的光場,增強圖像感測結果。 FIG. 4 shows a partial schematic diagram of an actual configuration example of FIG. 1. As shown in FIG. 4, a driver 18 of the electronic device 100 controls the backlight module 10 and the display panel 20 Operate so that the electronic device 100 can display information to the user. As shown in FIG. 4, the infrared light IR1 penetrates the light-transmitting protection plate 30 and is irradiated on a peak FR of the organism F directly contacting the light-transmitting protection plate 30 to generate reflected infrared light IR2, and the reflected infrared light IR2 is coupled Into the light-transmitting protective plate 30, a part of the image corresponding to the peak FR appears bright. On the other hand, a valley FV of the living body F cannot reflect the infrared light IR1 penetrating the light-transmitting protective plate 30, so that a part of the image corresponding to the valley FV appears in a dark state. In an example, a distance between the infrared light source 50 and the living body F is between 10 mm and 30 mm or between 15 mm and 20 mm, or a distance between the sensing area of the living body F and the infrared light source 50 is between 10 mm Between 30mm or 15mm to 20mm. In the example shown in FIG. 4, a fairly uniform light field can be obtained to enhance the image sensing result.

圖5與圖6顯示圖4的兩個變化配置例子的局部示意圖。如圖5所示,紅外光IR1穿透透光保護板30而照射在生物體F的一自由端FT上,由自由端FT耦合進生物體F中而產生反射的紅外光IR2,或者說紅外光IR1於生物體F中散射而產生反射的紅外光IR2。於此情況下,直接接觸透光保護板30的生物體F的峰部FR將反射的紅外光IR2耦合進透光保護板30中,使峰部FR對應的圖像的一部分呈現亮態,而谷部FV無法將反射的紅外光IR2耦合進生物體F中。於此例子中,生物體F受到的照光比較一致,相對於後述圖6的方式,變化比較小,也比較沒有透光保護板30上的殘留物影響圖像感測的問題。紅外光源50與生物體F之間的距離介於15mm至20mm之間,或者生物體F的感測區與紅外光源50的距離介於15mm至20mm之間。如圖6所示,紅外光IR1於透光保護板30內進行全反射,直接接觸透光保護板30的生物體F的峰部FR將紅外光IR1耦合進生物體F中,使峰部FR對應的圖像的一部分呈現暗態,而谷部FV無法將紅外光IR1耦合進生物體 F中,使得光學感測器40感測到的對應部分呈現亮態。利用全反射的優點是紅外光源50距離生物體F的距離可以比較遠,光場也會比較均勻,因為要使全反射效率到達一定的水平,紅外光的衰減程度並不高。 5 and 6 show partial schematic diagrams of two variation configuration examples of FIG. 4. As shown in FIG. 5, the infrared light IR1 penetrates the light-transmitting protective plate 30 and is irradiated on a free end FT of the living body F. The free end FT is coupled into the living body F to generate reflected infrared light IR2, or infrared The light IR1 is scattered in the living body F to generate reflected infrared light IR2. In this case, the peak FR of the biological body F directly contacting the light-transmitting protection plate 30 couples the reflected infrared light IR2 into the light-transmitting protection plate 30, so that a part of the image corresponding to the peak FR appears bright, and The valley part FV cannot couple the reflected infrared light IR2 into the living body F. In this example, the illumination received by the living body F is relatively uniform. Compared with the method of FIG. 6 described later, the change is relatively small, and there is no problem that the residue on the light-transmitting protective plate 30 affects the image sensing. The distance between the infrared light source 50 and the living body F is between 15 mm and 20 mm, or the distance between the sensing area of the living body F and the infrared light source 50 is between 15 mm and 20 mm. As shown in FIG. 6, the infrared light IR1 is totally reflected in the light-transmitting protection plate 30, and the peak FR of the biological body F directly contacting the light-transmitting protection plate 30 couples the infrared light IR1 into the biological body F to make the peak portion FR A part of the corresponding image appears dark, and the valley FV cannot couple infrared light IR1 into the living body In F, the corresponding part sensed by the optical sensor 40 appears bright. The advantage of using total reflection is that the distance between the infrared light source 50 and the organism F can be relatively long, and the light field will be relatively uniform, because the infrared light attenuation is not high to achieve a certain level of total reflection efficiency.

圖7至圖9顯示紅外光源相對於透光保護板的三種配置的示意圖。這三種配置可以各自應用於圖4至圖6的結構中。如圖7所示,可以藉由轉動紅外光源50的發光單元的配置角度而改變光場,使得安裝有發光單元的電路板55呈現傾斜的非水平狀態,這樣可以提供較佳的光場給生物體,目前的移動裝置的邊框大約有1mm來允許紅外光源50的轉動,但也可以加大邊框以提供適當的轉動空間。如圖8所示,紅外光源50包含:一發光單元51,發出紅外光IR1;以及一特定曲率透鏡52,覆蓋發光單元51來改變紅外光IR1的光發散角度與光場。發光單元51包含發光二極體(Light-Emitting Diode,LED)或雷射二極體(Laser Diode,LD),雷射二極體包含垂直共振腔面射型雷射(Vertical-Cavity Surface-Emitting Laser)。於一例子中,LD發出的光線的波長為940奈米(nm)。在圖8中,可以採用改變LED或LD的封裝的方式,利用特殊區率透鏡或結構來改變光發散角度與光場,以目前的技術而言,可以採用0402的LED封裝。 7 to 9 are schematic diagrams showing three configurations of the infrared light source relative to the transparent protective plate. These three configurations can each be applied to the structures of FIGS. 4 to 6. As shown in FIG. 7, the light field can be changed by rotating the arrangement angle of the light emitting unit of the infrared light source 50, so that the circuit board 55 mounted with the light emitting unit assumes a tilted non-horizontal state, which can provide a better light field to the living being In general, the frame of the current mobile device is about 1 mm to allow the rotation of the infrared light source 50, but the frame can also be enlarged to provide an appropriate rotation space. As shown in FIG. 8, the infrared light source 50 includes: a light emitting unit 51 that emits infrared light IR1; and a specific curvature lens 52 that covers the light emitting unit 51 to change the light divergence angle and light field of the infrared light IR1. The light-emitting unit 51 includes a light-emitting diode (LED) or a laser diode (LD), and the laser diode includes a vertical-cavity surface-emitting laser (Vertical-Cavity Surface-Emitting) Laser). In one example, the wavelength of light emitted by the LD is 940 nanometers (nm). In FIG. 8, the LED or LD package can be changed, and the special area ratio lens or structure can be used to change the light divergence angle and light field. With current technology, the 0402 LED package can be used.

如圖9所示,紅外光源50包含:一發光單元51,發出紅外光IR1;以及一光學膜53,設置於發光單元51上,光學膜53貼合於透光保護板30上並覆蓋發光單元51,來改變紅外光IR1的光發散角度與光場,發光單元51包含發光二極體或雷射二極體,光學膜53包含光柵(grating)、菲涅耳(Fresnel)透鏡或元件、或繞射元件。設計時,透過選擇光柵的繞射項或階層,可以控制出光角度。繞射元件譬如是繞射式光學元件(Diffractive Optical Element,DOE)。在光學膜中,較佳是採 用近乎平行光的輸出,所以可以搭配LED或LD,在封裝上利用準直器或準直結構先作簡單的準直效果,再使用這些元件作出光角度與光場的改變與控制,可以讓設計更加容易。或者,光學膜可以整合準直、光柵、菲涅耳透鏡以及繞射元件的至少兩者的功能,以產生所需的光場。 As shown in FIG. 9, the infrared light source 50 includes: a light-emitting unit 51 that emits infrared light IR1; and an optical film 53 disposed on the light-emitting unit 51. The optical film 53 is attached to the light-transmitting protection plate 30 and covers the light-emitting unit 51, to change the light divergence angle and light field of infrared light IR1, the light emitting unit 51 includes a light emitting diode or a laser diode, and the optical film 53 includes a grating, Fresnel lens or element, or Diffraction elements. When designing, by selecting the diffraction item or level of the grating, the light angle can be controlled. The diffractive element is, for example, a Diffractive Optical Element (DOE). In the optical film, it is preferable to use With nearly parallel light output, it can be matched with LED or LD, using a collimator or collimating structure on the package to make a simple collimating effect, and then using these components to change and control the light angle and light field, you can make Design is easier. Alternatively, the optical film may integrate the functions of at least two of collimation, grating, Fresnel lens, and diffractive elements to generate a desired light field.

因此,於圖9中,可以將光學膜貼合在透光保護板30的側面或底面,再將LED或LD貼合在光學膜上,來改變光發散角度與光場,機構組裝容易,也不需要擴大邊框,只需增加些許的厚度,而且增加的厚度又不影響到整個LCD,所以可以降低成本,譬如可以使用奈米壓印的方式來製造光學膜。此外,因為LED與光學膜是貼合的狀態,所以設計時需要有近場光學的考量。藉由以上的設置,可以改變光場以符合生物特徵感測的功能。 Therefore, in FIG. 9, the optical film can be attached to the side or bottom surface of the light-transmitting protective plate 30, and then the LED or LD can be attached to the optical film to change the light divergence angle and light field, and the mechanism is easy to assemble. There is no need to expand the bezel, only a small thickness needs to be added, and the increased thickness does not affect the entire LCD, so the cost can be reduced. For example, the nanoimprint method can be used to manufacture the optical film. In addition, because the LED and the optical film are in a bonded state, the design needs to consider the near field optics. With the above settings, the light field can be changed to match the biometric sensing function.

圖10至圖12顯示圖1的三種變化例子的示意圖。圖13顯示對應於圖10的背光模組的立體示意圖。圖14顯示對應於圖13的背光模組的前視圖。如圖10、13與14所示,紅外光源50與背光模組10的可見光源13設置於背光模組10的同一側。詳細而言,紅外光源50的多個發光單元51與背光模組10的可見光源13的多個可見光發光二極體14設置於背光模組10的導光板12的同一側。以另一角度看來,此等發光單元51與此等可見光發光二極體14交錯設置於導光板12的同一側,並且排列成一直線。值得注意的是,雖然圖14是以2個紅外光發光二極體當作例子作說明,但是於另一例子中,以4個紅外光發光二極體穿插於可見光發光二極體14之間,亦可獲得可以進行圖像感測的光場。 10 to 12 show schematic diagrams of three variations of FIG. 1. FIG. 13 shows a perspective schematic view of the backlight module corresponding to FIG. 10. FIG. 14 shows a front view of the backlight module corresponding to FIG. 13. As shown in FIGS. 10, 13 and 14, the infrared light source 50 and the visible light source 13 of the backlight module 10 are disposed on the same side of the backlight module 10. In detail, the plurality of light emitting units 51 of the infrared light source 50 and the plurality of visible light emitting diodes 14 of the visible light source 13 of the backlight module 10 are disposed on the same side of the light guide plate 12 of the backlight module 10. Viewed from another angle, the light-emitting units 51 and the visible light-emitting diodes 14 are alternately arranged on the same side of the light guide plate 12 and arranged in a straight line. It is worth noting that although FIG. 14 takes 2 infrared light emitting diodes as an example for illustration, in another example, 4 infrared light emitting diodes are interposed between visible light emitting diodes 14 , You can also get a light field that can be used for image sensing.

圖15與圖16顯示對應於圖14的背光模組的兩個變化例的前視圖。如圖11與15所示,此等發光單元51與此等可見光發光二 極體14設置於導光板12的同一側,並且排列成兩直線。如圖11與16所示,此等發光單元51與此等可見光發光二極體14設置於導光板12的同一側,並且排列成兩直線,且此等發光單元51的分佈面積小於此等可見光發光二極體14的分佈面積。 15 and 16 show front views of two variations of the backlight module corresponding to FIG. 14. As shown in FIGS. 11 and 15, the light-emitting units 51 and the visible light emit light. The polar bodies 14 are arranged on the same side of the light guide plate 12 and are arranged in two straight lines. As shown in FIGS. 11 and 16, the light-emitting units 51 and the visible light-emitting diodes 14 are disposed on the same side of the light guide plate 12, and are arranged in two straight lines, and the distribution area of the light-emitting units 51 is smaller than the visible light The distribution area of the light-emitting diode 14.

如圖12所示,紅外光源50的多個發光單元51與背光模組10的可見光源13的多個可見光發光二極體14設置於背光模組10的導光板12的相對側。 As shown in FIG. 12, the plurality of light emitting units 51 of the infrared light source 50 and the plurality of visible light emitting diodes 14 of the visible light source 13 of the backlight module 10 are disposed on opposite sides of the light guide plate 12 of the backlight module 10.

圖17顯示對應於圖10的背光模組的變化例的立體示意圖。如圖17所示,紅外光源50的多個發光單元51與背光模組10的可見光源13的多個可見光發光二極體14設置於背光模組10的導光板12的相鄰側。 FIG. 17 shows a perspective schematic view of a variation of the backlight module corresponding to FIG. 10. As shown in FIG. 17, the plurality of light emitting units 51 of the infrared light source 50 and the plurality of visible light emitting diodes 14 of the visible light source 13 of the backlight module 10 are disposed adjacent to the light guide plate 12 of the backlight module 10.

圖18顯示對應於圖10的背光模組的局部示意圖。圖19顯示對應於圖18的導光板的局部示意圖。如圖18與19所示,背光模組10應用於顯示面板20或與顯示面板20搭配使用,藉此可提供資訊顯示及生物感測的所需要的光線。背光模組10的導光板12配合紅外光源50產生紅外光IR1(光源50在此不是必要的元件,因為也可以如圖4到圖6地設置於側邊,也就是紅外光從指紋反射後透過背光模組,而被光學感測器40偵測),可見光源13設置於導光板12的一側,並發射光線進入導光板12中行進以產生可見光VL。導光板12至少包含一基底12A、多個弧狀凸部(Dot)12B以及多個V形切部(V-cut)12C。弧狀凸部12B設置於基底12A的一底面12D,用於破壞光線在基底12A中的全反射以產生可見光VL。V形切部12C設置於基底12A的一頂面12E,用於破壞光線在基底12A中的全反射以產生可見光VL。亦即,在沒有弧狀凸部12B以及V形切部12C的情況下,可見光源13的光線僅能在 基底12A內作全反射,藉由弧狀凸部12B及/或V形切部12C來將光線導引出來而產生可見光VL。弧狀凸部12B以及V形切部12C也會影響到紅外光的行進,所以在不影響可見光VL的情況下,需要設計出較佳的弧狀凸部12B以及V形切部12C,以獲得可接受的指紋圖像。 FIG. 18 shows a partial schematic view of the backlight module corresponding to FIG. 10. FIG. 19 shows a partial schematic view of the light guide plate corresponding to FIG. 18. As shown in FIGS. 18 and 19, the backlight module 10 is applied to or used in conjunction with the display panel 20, thereby providing light required for information display and bio-sensing. The light guide plate 12 of the backlight module 10 cooperates with the infrared light source 50 to generate infrared light IR1 (the light source 50 is not a necessary element here, because it can also be arranged on the side as shown in FIGS. 4 to 6, that is, infrared light is reflected from the fingerprint and transmitted The backlight module is detected by the optical sensor 40). The visible light source 13 is disposed on one side of the light guide plate 12 and emits light into the light guide plate 12 to travel to generate visible light VL. The light guide plate 12 includes at least a substrate 12A, a plurality of arc-shaped convex portions (Dot) 12B, and a plurality of V-cut portions (V-cut) 12C. The arc-shaped convex portion 12B is disposed on a bottom surface 12D of the base 12A, and is used to destroy the total reflection of light in the base 12A to generate visible light VL. The V-shaped cut portion 12C is disposed on a top surface 12E of the substrate 12A, and is used to destroy the total reflection of light in the substrate 12A to generate visible light VL. That is, without the arc-shaped convex portion 12B and the V-shaped cut portion 12C, the light from the light source 13 can be seen only in The substrate 12A is totally reflected, and the arc-shaped convex portion 12B and/or the V-shaped cut portion 12C guide light to generate visible light VL. The arc-shaped convex portion 12B and the V-shaped cut portion 12C will also affect the travel of infrared light, so without affecting the visible light VL, it is necessary to design a better arc-shaped convex portion 12B and the V-shaped cut portion 12C to obtain Acceptable fingerprint image.

圖20顯示對應於圖19的導光板的另一例子的局部示意圖。如圖20所示,也可以不需設置V形切部12C。 FIG. 20 shows a partial schematic view of another example of the light guide plate corresponding to FIG. 19. As shown in FIG. 20, it is not necessary to provide the V-shaped cut portion 12C.

圖21顯示導光板的各個部件的尺寸標註示意圖。如圖21所示,弧狀凸部12B具有半徑R及高度H。此些弧狀凸部12B分佈的節距(pitch)等於節距P。圖22A至圖22F顯示利用六種不同尺寸的導光板所獲得的指紋圖像。於本揭露內容中,利用六種不同的設計參數(如表1所列)來獲得六種指紋圖像(圖22A製圖22F),其調制轉換函數(Modulation Transfer Function)數值MTF(代表圖像模糊的程度)也列於表1中。 FIG. 21 shows a schematic diagram of dimensions of various components of the light guide plate. As shown in FIG. 21, the arc-shaped convex portion 12B has a radius R and a height H. The pitch of the distribution of these arc-shaped convex portions 12B is equal to the pitch P. 22A to 22F show fingerprint images obtained using six different sizes of light guide plates. In this disclosure, six different design parameters (as listed in Table 1) are used to obtain six fingerprint images (Figure 22A, Drawing 22F), and its modulation transfer function (Modulation Transfer Function) value MTF (representing image blur) Degree) is also listed in Table 1.

Figure 109202564-A0101-12-0013-1
Figure 109202564-A0101-12-0013-1

上述六個例子中,所有例子的導光板12對於顯示功能的效果差異不大,所以比較指紋圖像的MTF數值,即可獲得哪些參數是較佳的參數。從表1及圖22A至22F可以得到,MTF數值與P/H有相 關性,從第一例與第二例來看,半徑R相同,但是P/H的數值越大,則MTF數值越高。從第二例與第四例及第六例來看,P/H差不多,但是R值越大,MTF數值越高,雖然第六例的P/H數值略低於第二及第四例,但是R值的貢獻可以讓第六例的MTF數值高一些。然而,這並沒有絕對的線性關係,當P/H低於一定的數值以後,MTF數值會急遽下降,譬如從第五例可以看出。從第三例對應的圖22C來看,雖然MTF數值較高,但是在圖像上會造成莫爾條紋(moiré pattern),再依據其他實驗結果,P較佳是不要超過100微米,更佳是不要超過80微米。 In the above six examples, the effect of the light guide plate 12 on the display function of all the examples is not much different, so by comparing the MTF value of the fingerprint image, it can be obtained which parameters are better parameters. It can be obtained from Table 1 and Figures 22A to 22F that the MTF value is related to P/H From the first and second examples, the radius R is the same, but the larger the value of P/H, the higher the MTF value. From the second example and the fourth and sixth examples, P/H is similar, but the larger the R value, the higher the MTF value, although the P/H value of the sixth example is slightly lower than the second and fourth examples, But the contribution of the R value can make the MTF value of the sixth example higher. However, there is no absolute linear relationship. When P/H is lower than a certain value, the MTF value will drop sharply, as can be seen from the fifth example. According to Figure 22C corresponding to the third example, although the MTF value is high, moiré patterns will be caused on the image. According to other experimental results, P is preferably not more than 100 microns, and more preferably Do not exceed 80 microns.

因此,依據上述及其他實驗結果,關於指紋方面的應用,統整設計規範如下。此等弧狀凸部12B分佈的節距P小於或等於150、100或80微米,以避免莫爾條紋。各弧狀凸部12B的半徑介於10至300微米之間(介於10至150微米之間,或介於30至120微米之間,更佳是介於20至110微米之間),且節距P與各弧狀凸部12B的高度H的比值介於30至300之間(介於20至150之間,介於30至120之間或更佳是介於35至45之間),於一個設計例子是P/H等於40。當P/H增加時,可獲得改良的指紋圖像品質。因此,上述設計規範可以在不影響顯示功能的狀況下,抑制莫爾條紋並增加MTF數值。當然本揭露內容不僅僅適用於側向打光、導光板打光,對於下打光也是一樣適用的。 Therefore, according to the above and other experimental results, regarding the application of fingerprints, the unified design specifications are as follows. The pitch P of the distribution of these arc-shaped convex portions 12B is less than or equal to 150, 100, or 80 microns to avoid moiré. The radius of each arcuate convex portion 12B is between 10 and 300 microns (between 10 and 150 microns, or between 30 and 120 microns, and more preferably between 20 and 110 microns), and The ratio of the pitch P to the height H of each arcuate convex portion 12B is between 30 and 300 (between 20 and 150, between 30 and 120 or more preferably between 35 and 45) In a design example, P/H is equal to 40. As P/H increases, improved fingerprint image quality can be obtained. Therefore, the above design specifications can suppress moiré and increase the MTF value without affecting the display function. Of course, the content of this disclosure is not only applicable to side lighting, light guide plate lighting, but also to bottom lighting.

藉由上述實施例,利用紅外光可以讓LCD下方設置的光學感測模組獲得良好的生物特徵圖像,而不影響LCD的顯示功能,也利用LCD的反射層對於紅外光和可見光具有不同的特性,使得可見光無法穿透的反射層可以讓紅外光穿透,從手指而來的反射的紅外光可以輕易穿透反射層而到達設置於反射層下方的光學感測器,達成生物特徵感測的功能,為配備有LCD顯示器的電子裝置提供一種光學生物感測 方案。 With the above-mentioned embodiments, the use of infrared light allows the optical sensing module provided under the LCD to obtain a good biometric image without affecting the display function of the LCD. The reflective layer of the LCD also has different infrared and visible light. The reflective layer that makes visible light impenetrable allows infrared light to pass through. The reflected infrared light from the finger can easily penetrate the reflective layer and reach the optical sensor under the reflective layer to achieve biometric sensing Function to provide an optical biosensing for electronic devices equipped with LCD displays Program.

上述的設計方式,除了適用於LCD顯示器以外,亦可以作適當變化以適合於其他顯示器,譬如OLED顯示器或者未來可能發展的顯示器例如uLED等等。圖23顯示依據本新型另一實施例的具有屏下式紅外線生物感測器的電子設備的示意圖。如圖23所示,本實施例提供一種電子設備100,至少包含一顯示面板20、一透光保護板30、一光學感測器40以及一紅外光源50。顯示面板20提供可見光VL朝上方行進,並依據可見光VL來顯示資訊。顯示面板20包含但不限於有機發光二極體(Organic Light Emitting Diode,OLED)顯示面板。透光保護板30設置於顯示面板20上方,讓資訊穿透。光學感測器40設置於顯示面板20的下方。紅外光源50提供紅外光IR1到位於透光保護板30上或上方的一生物體F。紅外光IR1譬如是近紅外光(Near Infrared,NIR),波長大約在0.75至1.4微米之間。生物體F反射紅外光IR1而產生反射的紅外光IR2。反射的紅外光IR2通過透光保護板30及顯示面板20而被光學感測器40所接收,使光學感測器40獲得代表生物體F的一圖像的一圖像信號。於本例子中,紅外光源50位於顯示面板20的一側。藉由上述配置,亦可以達成屏下式紅外線生物感測的功能。 In addition to being suitable for LCD displays, the above-mentioned design methods can also be appropriately changed to suit other displays, such as OLED displays or displays that may be developed in the future, such as uLEDs. FIG. 23 shows a schematic diagram of an electronic device with an under-screen infrared biosensor according to another embodiment of the present invention. As shown in FIG. 23, this embodiment provides an electronic device 100 that includes at least a display panel 20, a light-transmitting protection plate 30, an optical sensor 40 and an infrared light source 50. The display panel 20 provides visible light VL to travel upward, and displays information according to the visible light VL. The display panel 20 includes but is not limited to an organic light emitting diode (Organic Light Emitting Diode, OLED) display panel. The light-transmitting protection plate 30 is disposed above the display panel 20 to allow information to penetrate. The optical sensor 40 is disposed below the display panel 20. The infrared light source 50 provides infrared light IR1 to a living body F located on or above the light-transmitting protection plate 30. The infrared light IR1 is, for example, near infrared light (Near Infrared, NIR), and the wavelength is about 0.75 to 1.4 microns. The living body F reflects infrared light IR1 and generates reflected infrared light IR2. The reflected infrared light IR2 is received by the optical sensor 40 through the light-transmitting protective plate 30 and the display panel 20, so that the optical sensor 40 obtains an image signal representing an image of the living body F. In this example, the infrared light source 50 is located on the side of the display panel 20. With the above configuration, the function of under-screen infrared bio-sensing can also be achieved.

圖24顯示圖23的電子設備的變化例。如圖24所示,與圖23的差異特徵在於紅外光源50位於顯示面板20的下方。紅外光源50具有一個或多個發光單元51,譬如是發光二極體,發光單元51可以設置於光學感測器40旁或周圍,並提供紅外光IR1穿透顯示面板20及透光保護板30而到達生物體F,如此亦可以達成屏下式紅外線生物感測的功能。 FIG. 24 shows a variation of the electronic device of FIG. 23. As shown in FIG. 24, the difference from FIG. 23 is that the infrared light source 50 is located below the display panel 20. The infrared light source 50 has one or more light-emitting units 51, such as light-emitting diodes. The light-emitting unit 51 can be disposed beside or around the optical sensor 40, and provides infrared light IR1 to penetrate the display panel 20 and the transparent protective plate 30 When reaching the biological body F, the under-screen infrared bio-sensing function can also be achieved.

圖25顯示圖23的光學感測器及紅外光源的變化例的前 視圖。圖26顯示圖25的光學感測器的俯視圖。如圖25與26所示,紅外光源50包含一個或多個發光單元51及一導光板56。發光單元51提供初始紅外光線IR0。導光板56位於光學感測器40周圍,將初始紅外光線IR0導光後產生紅外光IR1。於本例子中,光學感測器40包含一感測單元42及一透鏡模組41,光學感測器也可以是超薄的光學感測器,具有微透鏡準直器設計。反射的紅外光IR2透過透鏡模組41而聚焦於感測單元42上以獲得感測圖像。透鏡模組41可以是單一透鏡,也可以是多重透鏡疊合,或者是多重透鏡排列成二維陣列所構成。導光板56可以具有環狀結構(譬如是圓環狀或多邊形環狀結構),配置於透鏡模組41的周圍,如此可以利用導光板56將發光單元51的光線處理成均勻且朝上行進的紅外光IR1,可提供均勻的紅外光來提升感測品質。發光單元51可以配置在導光板56的旁側或下側。 FIG. 25 shows a front example of the variation of the optical sensor and infrared light source of FIG. 23 view. FIG. 26 shows a top view of the optical sensor of FIG. 25. As shown in FIGS. 25 and 26, the infrared light source 50 includes one or more light emitting units 51 and a light guide plate 56. The light emitting unit 51 provides initial infrared light IR0. The light guide plate 56 is located around the optical sensor 40, and guides the initial infrared light IR0 to generate infrared light IR1. In this example, the optical sensor 40 includes a sensing unit 42 and a lens module 41. The optical sensor may also be an ultra-thin optical sensor with a micro lens collimator design. The reflected infrared light IR2 passes through the lens module 41 and is focused on the sensing unit 42 to obtain a sensed image. The lens module 41 may be a single lens, multiple lenses, or multiple lenses arranged in a two-dimensional array. The light guide plate 56 may have a ring structure (such as a circular ring shape or a polygonal ring structure) arranged around the lens module 41, so that the light guide plate 56 can be used to process the light of the light emitting unit 51 into a uniform and traveling upward direction Infrared light IR1 can provide uniform infrared light to improve the sensing quality. The light emitting unit 51 may be arranged beside or below the light guide plate 56.

因此,本新型的實施例可以為配備有LCD或OLED顯示器的電子裝置提供一種光學生物感測方案,包含具有屏下式紅外線生物感測器的電子設備以及應用於顯示面板的背光模組。 Therefore, the embodiments of the present invention can provide an optical bio-sensing solution for electronic devices equipped with LCD or OLED displays, including electronic devices with under-screen infrared bio-sensors and backlight modules applied to display panels.

在較佳實施例的詳細說明中所提出的具體實施例僅用以方便說明本新型的技術內容,而非將本新型狹義地限制於上述實施例,在不超出本新型的精神及以下申請專利範圍的情況,所做的種種變化實施,皆屬於本新型之範圍。 The specific embodiments proposed in the detailed description of the preferred embodiments are only used to facilitate the description of the technical content of the present invention, rather than narrowly restricting the present invention to the above embodiments, without exceeding the spirit of the present invention and applying for patents below The scope of the situation, the various changes made and implemented, all belong to the scope of this new model.

IR1:紅外光 IR1: infrared light

VL:可見光 VL: visible light

10:背光模組 10: Backlight module

11:反射層 11: reflective layer

12:導光板 12: light guide plate

12A:基底 12A: Base

12B:弧狀凸部 12B: Arc convex

12C:V形切部 12C: V-shaped cut

12D:底面 12D: Underside

12E:頂面 12E: top surface

13:可見光源 13: Visible light source

16:擴散層 16: Diffusion layer

17:增亮膜 17: Brightening film

20:顯示面板 20: Display panel

50:紅外光源 50: Infrared light source

Claims (14)

一種應用於顯示面板的背光模組,至少包含: A backlight module applied to a display panel includes at least: 一導光板,配合一紅外光源產生一紅外光;以及 A light guide plate that cooperates with an infrared light source to produce an infrared light; and 一可見光源,設置於該導光板的一側,並發射光線進入該導光板中行進以產生一可見光。 A visible light source is disposed on one side of the light guide plate, and emits light into the light guide plate to travel to generate a visible light. 如請求項1所述的背光模組,其中該導光板包含: The backlight module according to claim 1, wherein the light guide plate includes: 一基底;以及 A base; and 多個弧狀凸部,設置於該基底的一底面,用於破壞該光線在該基底中的全反射以產生該可見光。 A plurality of arc-shaped convex portions are provided on a bottom surface of the substrate, for destroying the total reflection of the light in the substrate to generate the visible light. 如請求項2所述的背光模組,其中該導光板更包含: The backlight module according to claim 2, wherein the light guide plate further includes: 多個V形切部,設置於該基底的一頂面,用於破壞該光線在該基底中的全反射以產生該可見光。 A plurality of V-shaped cut-outs are provided on a top surface of the substrate for destroying the total reflection of the light in the substrate to generate the visible light. 如請求項2所述的背光模組,其中該等弧狀凸部分佈的節距小於或等於150微米。 The backlight module according to claim 2, wherein the pitch of the arcuate convex portions is less than or equal to 150 microns. 如請求項2所述的背光模組,其中各該弧狀凸部的半徑介於10至150微米之間。 The backlight module according to claim 2, wherein the radius of each arc-shaped convex portion is between 10 and 150 microns. 如請求項2所述的背光模組,其中各該弧狀凸部的節距與各該弧狀凸部的高度的比值介於20至150之間。 The backlight module according to claim 2, wherein the ratio of the pitch of each arc-shaped convex portion to the height of each arc-shaped convex portion is between 20 and 150. 如請求項2所述的背光模組,其中該等弧狀凸部分佈的節距小於或等於150微米,各該弧狀凸部的半徑 介於10至150微米之間,且該節距與各該弧狀凸部的高度的比值介於20至150之間。 The backlight module according to claim 2, wherein the pitch of the arc-shaped convex portions is less than or equal to 150 microns, and the radius of each arc-shaped convex portion It is between 10 and 150 microns, and the ratio of the pitch to the height of each arcuate convex portion is between 20 and 150. 如請求項2所述的背光模組,其中該等弧狀凸部分佈的節距小於或等於80微米。 The backlight module according to claim 2, wherein the pitch of the arcuate convex portions is less than or equal to 80 microns. 如請求項2所述的背光模組,其中該等弧狀凸部的半徑介於20至110微米之間。 The backlight module according to claim 2, wherein the radius of the arc-shaped convex portions is between 20 and 110 microns. 如請求項2所述的背光模組,其中各該弧狀凸部分佈的節距與各該弧狀凸部的高度的比值介於30至120之間。 The backlight module according to claim 2, wherein the ratio of the pitch of each arc-shaped convex portion to the height of each arc-shaped convex portion is between 30 and 120. 如請求項2所述的背光模組,其中該等弧狀凸部分佈的節距小於或等於80微米,各該弧狀凸部的半徑介於20至110微米之間,且該節距與各該弧狀凸部的高度的比值介於30至120之間。 The backlight module according to claim 2, wherein the pitch of the arc-shaped convex portions is less than or equal to 80 microns, the radius of each arc-shaped convex portion is between 20 and 110 microns, and the pitch is equal to The ratio of the height of each arc-shaped convex portion is between 30 and 120. 如請求項1所述的背光模組,其中該導光板包含: The backlight module according to claim 1, wherein the light guide plate includes: 一基底;以及 A base; and 多個V形切部,設置於該基底的一頂面,用於破壞該光線在該基底中的全反射以產生該可見光。 A plurality of V-shaped cut-outs are provided on a top surface of the substrate for destroying the total reflection of the light in the substrate to generate the visible light. 如請求項1所述的背光模組,其中該顯示面板依據該可見光來顯示資訊。 The backlight module according to claim 1, wherein the display panel displays information according to the visible light. 如請求項1所述的背光模組,其中該背光模組具有一反射層,阻擋該可見光朝遠離該顯示面板的方向行進。 The backlight module according to claim 1, wherein the backlight module has a reflective layer that blocks the visible light from traveling away from the display panel.
TW109202564U 2019-09-16 2020-03-06 Backlight module applied to display panel TWM595251U (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962900812P 2019-09-16 2019-09-16
US62/900,812 2019-09-16
US201962940445P 2019-11-26 2019-11-26
US62/940,445 2019-11-26

Publications (1)

Publication Number Publication Date
TWM595251U true TWM595251U (en) 2020-05-11

Family

ID=70786154

Family Applications (4)

Application Number Title Priority Date Filing Date
TW109202564U TWM595251U (en) 2019-09-16 2020-03-06 Backlight module applied to display panel
TW109107519A TWI730658B (en) 2019-09-16 2020-03-06 Backlight module applied to display panel
TW109107515A TWI725761B (en) 2019-09-16 2020-03-06 Electronic apparatus having under-display infrared biometrics sensor
TW109202563U TWM595259U (en) 2019-09-16 2020-03-06 Electronic apparatus having under-display infrared biometrics sensor

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW109107519A TWI730658B (en) 2019-09-16 2020-03-06 Backlight module applied to display panel
TW109107515A TWI725761B (en) 2019-09-16 2020-03-06 Electronic apparatus having under-display infrared biometrics sensor
TW109202563U TWM595259U (en) 2019-09-16 2020-03-06 Electronic apparatus having under-display infrared biometrics sensor

Country Status (3)

Country Link
CN (4) CN211207353U (en)
TW (4) TWM595251U (en)
WO (2) WO2021051752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730658B (en) * 2019-09-16 2021-06-11 神盾股份有限公司 Backlight module applied to display panel

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112417933A (en) * 2019-08-23 2021-02-26 华为技术有限公司 Backlight module and electronic equipment
CN113903312A (en) * 2020-06-19 2022-01-07 群创光电股份有限公司 Charging method and display device
US11594170B2 (en) * 2020-07-13 2023-02-28 Visera Technologies Company Limited Micro light-emitting diode display panel, micro light-emitting diode display device, and fingerprint identification method
WO2022071861A1 (en) * 2020-10-01 2022-04-07 Fingerprint Cards Anacatum Ip Ab A biometric imaging arrangement for infrared imaging comprising a waveguide formed on an image sensor
CN112099259A (en) * 2020-10-15 2020-12-18 武汉华星光电技术有限公司 Liquid crystal display module and liquid crystal display device
CN113377242B (en) * 2021-06-22 2023-12-15 武汉华星光电技术有限公司 Display module
CN113536962A (en) * 2021-06-24 2021-10-22 武汉天马微电子有限公司 Display device and fingerprint identification method

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100961702B1 (en) * 2008-05-16 2010-06-09 엘지전자 주식회사 Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
CN101840089B (en) * 2009-03-17 2013-08-21 鸿富锦精密工业(深圳)有限公司 Touch control type display device
TWI410703B (en) * 2009-06-18 2013-10-01 Au Optronics Corp Photo sensor, method of forming the same, and optical touch device
TWI386591B (en) * 2010-01-15 2013-02-21 Young Lighting Technology Corp Light source apparatus
CN102983154B (en) * 2012-11-05 2015-10-21 深圳典邦科技有限公司 Image transmission/reception device of the micro-display of a kind of integrated transparent OLED and preparation method thereof
CN103941323A (en) * 2013-01-18 2014-07-23 鸿富锦精密工业(深圳)有限公司 A light guide plate
JP6181936B2 (en) * 2013-02-25 2017-08-16 恵和株式会社 Light guide film manufacturing method, light guide film, ultra-thin liquid crystal backlight unit, and portable computer
US9235283B2 (en) * 2013-08-06 2016-01-12 Apple Inc. Electronic device including blurred finger image deblurring circuitry and related methods
TWI544254B (en) * 2014-02-10 2016-08-01 元太科技工業股份有限公司 Light source module and display device
CN104898895B (en) * 2015-05-04 2017-11-03 上海交通大学 Light wave conduction optical touch screen based on optical grating construction and compensatory light
CN107004130B (en) * 2015-06-18 2020-08-28 深圳市汇顶科技股份有限公司 Optical sensor module under screen for sensing fingerprint on screen
CN104991296A (en) * 2015-07-16 2015-10-21 宁波东旭成新材料科技有限公司 Wave-shaped self-repairing brightness enhancement film
CN106569360A (en) * 2015-10-10 2017-04-19 博昱科技(丹阳)有限公司 Light guide sheet, backlight apparatus and liquid crystal display apparatus
TWI595279B (en) * 2015-10-13 2017-08-11 元太科技工業股份有限公司 Reflective display apparatus and front light module thereof
CN205317976U (en) * 2015-12-23 2016-06-15 重庆鑫翎创福光电科技股份有限公司 Light guide plate
US10055062B2 (en) * 2016-03-29 2018-08-21 Microsoft Technology Licensing, Llc Pressure sensing display
TWI658410B (en) * 2016-09-07 2019-05-01 李美燕 Optical imaging system with variable light field for biometrics application
CN108427908B (en) * 2017-02-13 2020-08-07 神盾股份有限公司 Fingerprint identification system, sensing method and manufacturing method
CN207937734U (en) * 2018-02-05 2018-10-02 瑞仪光电(南京)有限公司 Quantum dot backlight module and display device
US10303921B1 (en) * 2018-02-26 2019-05-28 Shenzhen GOODIX Technology Co., Ltd. On-LCD screen optical fingerprint sensing based on optical imaging with lens-pinhole module and other optical designs
CN208400147U (en) * 2018-05-03 2019-01-18 东莞市美光达光学科技有限公司 A kind of infrared-type fingerprint recognition mould group for below screen
CN110175494A (en) * 2018-07-06 2019-08-27 神盾股份有限公司 Optical finger print sensing device
CN208654486U (en) * 2018-07-31 2019-03-26 Oppo广东移动通信有限公司 Display screen and electronic equipment
CN109313703B (en) * 2018-08-15 2022-02-08 深圳市汇顶科技股份有限公司 Optical fingerprint identification system under screen, backlight module, display screen and electronic equipment
CN109328358A (en) * 2018-09-17 2019-02-12 深圳市汇顶科技股份有限公司 Shield lower Systems for optical inspection, electronic equipment and its object proximity detection method
CN208672966U (en) * 2018-09-20 2019-03-29 Oppo广东移动通信有限公司 Electronic device
TWM579772U (en) * 2018-12-25 2019-06-21 金佶科技股份有限公司 Fingerprint identification module
CN109799635A (en) * 2019-01-16 2019-05-24 柳州阜民科技有限公司 A kind of electronic equipment
CN109919103A (en) * 2019-03-11 2019-06-21 深圳阜时科技有限公司 Biological characteristic detects mould group and backlight module and electronic device
CN109902655A (en) * 2019-03-11 2019-06-18 深圳阜时科技有限公司 Biological characteristic detects mould group and backlight module and electronic device
CN109902649A (en) * 2019-03-11 2019-06-18 深圳阜时科技有限公司 Biological characteristic detects mould group and backlight module, display and electronic device
WO2021051752A1 (en) * 2019-09-16 2021-03-25 神盾股份有限公司 Backlight module applied to display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730658B (en) * 2019-09-16 2021-06-11 神盾股份有限公司 Backlight module applied to display panel

Also Published As

Publication number Publication date
TW202113433A (en) 2021-04-01
WO2021051753A1 (en) 2021-03-25
CN111208665A (en) 2020-05-29
WO2021051752A1 (en) 2021-03-25
TWM595259U (en) 2020-05-11
CN111222497A (en) 2020-06-02
TW202113570A (en) 2021-04-01
TWI725761B (en) 2021-04-21
CN213240740U (en) 2021-05-18
CN211207353U (en) 2020-08-07
TWI730658B (en) 2021-06-11

Similar Documents

Publication Publication Date Title
TWI725761B (en) Electronic apparatus having under-display infrared biometrics sensor
CN210573827U (en) LCD fingerprint identification system, optical fingerprint identification device under screen and electronic device
US20190156096A1 (en) Image capture apparatus
WO2020077498A1 (en) Light emitting device, biometric feature detection device, and electronic apparatus
TWM553019U (en) Biological feature identification device
CN112867954B (en) Device for optical direct recording of skin prints for mobile applications
KR20180121329A (en) Optical sensor, display device and mobile terminal using the optical sensor
WO2021097720A1 (en) Under-screen fingerprint identification device and terminal apparatus
TWI730519B (en) Liquid crystal display device
TWM553018U (en) Biological feature identification device
CN111902822A (en) Under-screen illumination using external light sources
CN108803781B (en) Flat panel display with optical imaging sensor
WO2020181443A1 (en) Biometric detection module, backlight module and electronic device
CN209962256U (en) Biological characteristic detection module, backlight module, display and electronic device
CN210573817U (en) Biological characteristic detection module, backlight module and electronic device
CN210402375U (en) Backlight module, display, biological characteristic detection module and electronic device
CN210402376U (en) Biological characteristic detection module, backlight module and electronic device
CN210402370U (en) Biological characteristic detection module, backlight module and electronic device
TWM553003U (en) Biological feature identification device
TWM606233U (en) Electronic device
CN112154443A (en) Optical fingerprint sensor with folded optical path
WO2021128025A1 (en) Fingerprint recognition apparatus, backlight module, display screen, and electronic device
TW201909023A (en) Image capturing apparatus
WO2021237521A1 (en) Under-screen fingerprint recognition device and system, fingerprint recognition method, and electronic device
CN210573818U (en) Biological characteristic detection module, backlight module and electronic device

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees