TWM590327U - Battery charging device with intelligence AC to DC maximum power charging management - Google Patents

Battery charging device with intelligence AC to DC maximum power charging management Download PDF

Info

Publication number
TWM590327U
TWM590327U TW108209020U TW108209020U TWM590327U TW M590327 U TWM590327 U TW M590327U TW 108209020 U TW108209020 U TW 108209020U TW 108209020 U TW108209020 U TW 108209020U TW M590327 U TWM590327 U TW M590327U
Authority
TW
Taiwan
Prior art keywords
charging
battery
charger
maximum power
battery pack
Prior art date
Application number
TW108209020U
Other languages
Chinese (zh)
Inventor
衍敬 陳
陳木勲
林群展
林士涵
李明峻
陳源昌
Original Assignee
飛宏科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飛宏科技股份有限公司 filed Critical 飛宏科技股份有限公司
Priority to TW108209020U priority Critical patent/TWM590327U/en
Priority to JP2019003685U priority patent/JP3224344U/en
Publication of TWM590327U publication Critical patent/TWM590327U/en

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery charging device with intelligence AC to DC maximum power charging management includes a power conversion unit coupled to a charging control device, which contains a micro-controller, a voltage detection unit, a current detection unit, a temperature sensor, and a communication port, and providing a battery pack electrically connected to the battery charger enabling the charging controller to provide charging management for the battery pack, wherein the micro-controller can calculate charging power through received battery voltage, battery charger current, and temperature of the battery charger and tracking the maximum output charging power.

Description

具有智慧型交流/直流最大功率電池充電管理之充電裝置 Charging device with intelligent AC/DC maximum power battery charging management

本創作涉及一種電池充電裝置,特別是一種具有智慧型交流/直流最大功率電池充電管理之充電裝置。 This creation relates to a battery charging device, especially a charging device with intelligent AC/DC maximum power battery charging management.

電子設備,例如可攜式電話、筆記型電腦、平板電腦、等電子裝置或是其他如電動機車、電動腳踏車等電動機械裝置,一般這些電子裝置或是電動機械裝置會配置有內部可再充電的電池。由於這些可攜式電子裝置的體積或是電動機械裝置可容置電池的體積和這些裝置所配置電池單元的容量有限,因此需要利用一充電裝置對這些裝置的電池單元進行充電,使這些可攜式電子裝置或是電動機械裝置可以重複使用。 Electronic equipment, such as portable phones, notebook computers, tablet computers, and other electronic devices or other electromechanical devices such as electric locomotives and electric bicycles. Generally, these electronic devices or electromechanical devices are equipped with internal rechargeable battery. Due to the limited volume of these portable electronic devices or the volume of batteries that can be accommodated by electromechanical devices and the capacity of the battery cells configured with these devices, it is necessary to use a charging device to charge the battery cells of these devices to make these portable Electronic devices or electromechanical devices can be reused.

選擇適當的電池充電器以及充電方式一般需要在不同類型中依其充電特性的優缺點進行評估。 Choosing the appropriate battery charger and charging method generally need to be evaluated according to the advantages and disadvantages of its charging characteristics in different types.

傳統的電池充電器是固定輸出直流電流,因電池電壓係由低到高爬升的一個過程,但充電器仍必須設計足夠瓦數才能應付短暫的最大功率,如圖1,其表示充電器於一個完整充電過程之輸出電流(I_output)及輸出電壓(V_output)曲線,其中虛線曲線101表示充電器之輸出電流(I_output)、實線曲線103表示充電器之輸出電壓(V_output)。整個充電程序依序包括預充電模式(Pre-charge mode)、固定電流模式(constant current mode)、固定電壓模式(constant voltage mode)以及完成充電模式,故一開始時的充電功率較低無法以電源供應器的最大能力全力輸出造成充電效率低落,充電時間拉長。上述的傳統充電方 式,電池充電器為定電流-定電壓二階段充電法,第一階段以定小電流預充電一小段時間接著以最大電流對電池充電以達到想要的電壓,第二階段以定電壓充電,即一旦電池電壓升高到調節電壓充電電流會減少,而電池電壓會受到調節以避免過度充電,在此模式中,電池充電完畢且電池阻抗減少時,電流會逐漸減少。當電流降至預先決定程度時,便會停止充電。 The traditional battery charger is a fixed output DC current, because the battery voltage is a process of climbing from low to high, but the charger must still be designed with sufficient wattage to cope with the shortest maximum power, as shown in Figure 1, which shows that the charger is in a The output current (I_output) and output voltage (V_output) curves of the complete charging process, where the dashed curve 101 represents the charger output current (I_output), and the solid curve 103 represents the charger output voltage (V_output). The whole charging procedure includes the pre-charge mode, the constant current mode, the constant voltage mode and the complete charging mode in sequence, so the charging power at the beginning is too low to use the power supply The maximum output of the supplier's maximum capacity results in low charging efficiency and extended charging time. The above traditional charging method The battery charger is a two-stage charging method of constant current and constant voltage. In the first stage, the battery is pre-charged with a constant current for a short period of time, then the battery is charged with the maximum current to reach the desired voltage, and the second stage is charged with a constant voltage. That is, once the battery voltage rises to the regulated voltage, the charging current will decrease, and the battery voltage will be regulated to avoid overcharging. In this mode, when the battery is fully charged and the battery impedance decreases, the current will gradually decrease. When the current drops to a predetermined level, it will stop charging.

因此傳統充電方式僅能固定最大電流對電池充電,輸出功率會隨著電池電壓高低而變化,無法維持最大功率。 Therefore, the traditional charging method can only charge the battery with a fixed maximum current, and the output power will vary with the battery voltage level, and the maximum power cannot be maintained.

有鑑於此,本創作提出一種充電裝置,藉由偵測電池電壓、充電電流以及充電溫度,決定對電池充電之充電程序,達到電池快速充電、縮短使用者等待時間,提高使用者工作效率之目的。其具體方式是利用微控制器的運算調整並追蹤充電功率,並依充電器與電池狀態改變充電條件。 In view of this, the author proposes a charging device that determines the charging procedure for charging the battery by detecting the battery voltage, charging current and charging temperature, so as to achieve the purpose of fast battery charging, shorten user waiting time, and improve user efficiency . The specific method is to use the operation of the microcontroller to adjust and track the charging power, and change the charging conditions according to the state of the charger and the battery.

本創作之目的是提供一種具有智慧型交流/直流最大功率電池充電管理之充電裝置,其透過微控制器的運算調整充電功率,並依充電器與電池狀態改變充電條件。 The purpose of this creation is to provide a charging device with intelligent AC/DC maximum power battery charging management, which adjusts the charging power through the operation of the microcontroller and changes the charging conditions according to the state of the charger and the battery.

為實現上述目的,本創作提出一種具有智慧型交流/直流最大功率電池充電管理之充電裝置,其包括一功率轉換單元及一充電控制裝置電性地與該功率轉換單元耦合,其中該充電控制裝置包含一微控制器、一電壓偵測單元,電性地連接至該微控制器、一電流偵測單元,電性地連接至該微控制器、一溫度偵測單元,電性地連接至該微控制器、及一通訊埠,電性地連接至該微控制器;其中該充電控制裝置能對一電性地連接至該充電控制裝置之電池組充電,使該充電控制裝置利用該功率轉換單元對該電池組提供充電管理,其中該電池組藉由該通訊埠提供電池參數,其中該微控制器可以接收由該電壓偵測單元偵測得到該電池組的電壓、該電流偵測單元偵測得到該充電器的輸出電流、以及該由溫度偵測單元所偵測得到該充電器之溫度進行充電功率運算、並據以即時追蹤最大輸出功率。 To achieve the above purpose, the author proposes a charging device with intelligent AC/DC maximum power battery charging management, which includes a power conversion unit and a charging control device electrically coupled with the power conversion unit, wherein the charging control device It includes a microcontroller, a voltage detection unit, electrically connected to the microcontroller, a current detection unit, electrically connected to the microcontroller, and a temperature detection unit, electrically connected to the A microcontroller and a communication port are electrically connected to the microcontroller; wherein the charging control device can charge a battery pack electrically connected to the charging control device, so that the charging control device uses the power conversion The unit provides charge management for the battery pack, wherein the battery pack provides battery parameters through the communication port, wherein the microcontroller can receive the voltage of the battery pack detected by the voltage detection unit, and the current detection unit detects The output current of the charger and the temperature of the charger detected by the temperature detection unit are measured for charging power, and the maximum output power is tracked accordingly.

其中上述之即時追蹤最大功率是透過偵測該電池組電壓,然後饋入該微處理器的邏輯單元運算、並透過偵測該電池組的即時輸出電流與偵測該充電器溫度變化,將上述參數透過微處理器的邏輯單元運算據以追蹤最大功率,並對上述功率轉換單元輸出控制訊號以進行直流輸出調整。 The above-mentioned real-time tracking of the maximum power is achieved by detecting the voltage of the battery pack, and then feeding into the logic unit of the microprocessor, and by detecting the real-time output current of the battery pack and the temperature change of the charger. The parameters track the maximum power through the operation of the logic unit of the microprocessor, and output control signals to the power conversion unit for DC output adjustment.

上述充電控制裝置更包含一輸出開關電性地連接該功率轉換單元的輸出端與該電池組,用以提供該電池組與該充電控制裝置之充電與斷開模式間的切換。 The charging control device further includes an output switch electrically connecting the output end of the power conversion unit and the battery pack to provide switching between charging and disconnecting modes of the battery pack and the charging control device.

其中對上述功率轉換單元輸出的控制訊號是透過一耦合於該功率轉換單元與該充電控制裝置之間的光耦合器以進行傳輸。 The control signal output from the power conversion unit is transmitted through an optical coupler coupled between the power conversion unit and the charging control device.

上述充電程序可以藉由與電池組的通訊決定,該充電程序依序為預充電模式、最大功率充電模式、定電壓充電模式以及完成充電模式。 The above charging procedure can be determined by communication with the battery pack. The charging procedure is in order of pre-charging mode, maximum power charging mode, constant voltage charging mode, and completion charging mode.

上述充電程序於最大功率充電模式階段可以依該充電器溫度進行降載一次或是連續步階下降多次,亦能降載後回到最大功率之電流大小。 The above charging procedure can be carried out once in the maximum power charging mode stage according to the temperature of the charger, or it can be lowered multiple times in successive steps, and can also return to the maximum power current after the load is reduced.

101‧‧‧虛線曲線 101‧‧‧ dotted curve

103‧‧‧實線曲線 103‧‧‧ solid curve

201‧‧‧直流/交流(AC/DC)轉換器 201‧‧‧DC/AC (AC/DC) converter

203‧‧‧微處理器 203‧‧‧Microprocessor

205‧‧‧電壓偵測單元 205‧‧‧Voltage detection unit

207‧‧‧電流偵測單元 207‧‧‧current detection unit

209‧‧‧溫度偵測單元 209‧‧‧Temperature detection unit

211‧‧‧電池 211‧‧‧ battery

301‧‧‧電池電壓(實線曲線) 301‧‧‧Battery voltage (solid curve)

303‧‧‧充電電流(虛線曲線) 303‧‧‧Charging current (dotted curve)

320‧‧‧降載電流曲線 320‧‧‧Derating current curve

401‧‧‧功率轉換單元 401‧‧‧Power conversion unit

403‧‧‧最大功率控制器 403‧‧‧Max power controller

411‧‧‧電池組 411‧‧‧ battery pack

407‧‧‧電流感測器 407‧‧‧current sensor

409‧‧‧溫度感測器 409‧‧‧Temperature sensor

403a‧‧‧微處理器 403a‧‧‧Microprocessor

413、413a‧‧‧低通濾波器(LPF) 413, 413a‧‧‧Low Pass Filter (LPF)

415‧‧‧電壓迴路迴授補償運算放大器 415‧‧‧Voltage loop feedback compensation operational amplifier

415a‧‧‧電流迴路迴授補償運算放大器 415a‧‧‧Current loop feedback compensation operational amplifier

417‧‧‧DC輸出電壓感測器 417‧‧‧DC output voltage sensor

450‧‧‧輸出切換開關 450‧‧‧Output switch

460‧‧‧通訊埠 460‧‧‧Communication port

501‧‧‧偵測電池電壓(Vb) 501‧‧‧ Detect battery voltage (Vb)

503‧‧‧饋入微處理器的邏輯單元運算 503‧‧‧Logical unit operation fed into the microprocessor

505‧‧‧偵測電池的即時輸出電流(Io)與偵測充電器溫度變化 505‧‧‧ Detect the real-time output current (Io) of the battery and detect the temperature change of the charger

505‧‧‧將上述參數透過微處理器的邏輯單元運算 505‧‧‧Calculate the above parameters through the logic unit of the microprocessor

507‧‧‧輸出功率控制訊號(C_PWM、V_PWM) 507‧‧‧Output power control signal (C_PWM, V_PWM)

601‧‧‧功率轉換單元 601‧‧‧Power conversion unit

603‧‧‧最大功率控制器 603‧‧‧Max power controller

611‧‧‧電池組 611‧‧‧ battery pack

605‧‧‧EMI濾波整流器 605‧‧‧EMI filter rectifier

607‧‧‧功率因數修正電路(PFC) 607‧‧‧ Power factor correction circuit (PFC)

609‧‧‧直流/直流轉換器 609‧‧‧DC/DC converter

613‧‧‧電源供應控制器 613‧‧‧Power supply controller

615‧‧‧變壓器 615‧‧‧Transformer

617‧‧‧整流器 617‧‧‧Rectifier

619‧‧‧電壓感測器 619‧‧‧Voltage sensor

621‧‧‧電流感測器 621‧‧‧current sensor

611a‧‧‧電池 611a‧‧‧Battery

623‧‧‧溫度感測器 623‧‧‧Temperature sensor

603a‧‧‧微控制器(MCU) 603a‧‧‧Microcontroller (MCU)

625、625‧‧‧低通濾波器(LPF) 625, 625‧‧‧ Low Pass Filter (LPF)

627‧‧‧電壓迴路迴授補償運算放大器 627‧‧‧Voltage loop feedback compensation operational amplifier

627a‧‧‧電流迴路迴授補償運算放大器 627a‧‧‧Current loop feedback compensation operational amplifier

629‧‧‧光耦合器 629‧‧‧Optocoupler

639‧‧‧直流輸出電壓感測器 639‧‧‧DC output voltage sensor

650‧‧‧輸出切換開關 650‧‧‧Output switch

660‧‧‧通訊埠 660‧‧‧Communication port

圖1描繪了先前技術之電池充電曲線。 Figure 1 depicts the battery charging curve of the prior art.

圖2描繪了根據本創作之充電器配置功能方塊圖。 Figure 2 depicts a functional block diagram of the charger configuration according to this creation.

圖3(A)描繪了根據本創作較佳實施例之利用最大功率追蹤模式之充電曲線。 FIG. 3(A) depicts a charging curve using the maximum power tracking mode according to the preferred embodiment of the present invention.

圖3(B)描繪了根據本創作較佳實施例之利用最大功率追蹤模式下進行電流調整之充電曲線。 FIG. 3(B) depicts a charging curve for current adjustment in the maximum power tracking mode according to the preferred embodiment of the present invention.

圖4描繪了根據本創作較佳實施例之充電電路配置以及電路系統方塊圖。 FIG. 4 depicts a block diagram of a charging circuit configuration and a circuit system according to the preferred embodiment of the present invention.

圖5描繪了根據本創作較佳實施例之軟體控制方法圖。 FIG. 5 depicts a software control method diagram according to the preferred embodiment of the present creation.

圖6描繪了根據本創作較佳實施例之充電系統方塊圖。 Fig. 6 depicts a block diagram of a charging system according to a preferred embodiment of the present invention.

此處本創作將針對創作具體實施例及其觀點加以詳細描述,此類描述為解釋本創作之結構或步驟流程,其係供以說明之用而非用以限制本創作之申請專利範圍。因此,除說明書中之具體實施例與較佳實施例外,本創作亦可廣泛施行於其他不同的實施例中。以下藉由特定的具體實施例說明本創作之實施方式,熟悉此技術之人士可藉由本說明書所揭示之內容輕易地瞭解本創作之功效性與其優點。且本創作亦可藉由其他具體實施例加以運用及實施,本說明書所闡述之各項細節亦可基於不同需求而應用,且在不悖離本創作之精神下進行各種不同的修飾或變更。 Here, the creation will be described in detail with regard to the specific embodiments of the creation and their viewpoints. Such descriptions are used to explain the structure or steps of the creation. They are for illustrative purposes rather than to limit the scope of the patent application for the creation. Therefore, with the exception of the specific embodiments and preferred embodiments in the description, this creation can also be widely implemented in other different embodiments. The following describes the implementation of this creation by specific specific embodiments. Those familiar with this technology can easily understand the efficacy and advantages of this creation through the contents disclosed in this specification. And this creation can also be used and implemented by other specific embodiments. The details described in this specification can also be applied based on different needs, and various modifications or changes can be made without departing from the spirit of this creation.

如前所述,本創作針對可充電電池提出一種具有智慧型交流/直流最大功率電池充電管理之充電裝置。能夠藉由量測可充電電池的電壓及充電器本身的溫度來決定最大功率。以期完全利用充電器之效能,提高其充電效率,達到電池快速充電、縮短使用者等待時間之效果。其具體方式是利用微處理器的運算調整並追蹤充電功率,並依充電器與電池狀態改變充電條件。 As mentioned earlier, this creation proposes a charging device with intelligent AC/DC maximum power battery charging management for rechargeable batteries. The maximum power can be determined by measuring the voltage of the rechargeable battery and the temperature of the charger itself. In order to fully utilize the performance of the charger, improve its charging efficiency, achieve the effect of fast charging of the battery and shorten the waiting time of the user. The specific method is to use the calculation of the microprocessor to adjust and track the charging power, and change the charging conditions according to the state of the charger and the battery.

為了提高充電效率,縮短充電時間,本創作採用的充電器配置,如圖2所示,包含一組直流/交流(AC/DC)轉換器201、微處理器203、電壓偵測單元205、電流偵測單元207和溫度偵測單元209,電壓偵測單元205和電流偵測單元207藉由與電池211的通訊進而透過微處理器203根據由與電池211的通訊所回傳之電壓、電流參數、以及由溫度偵測單元209所偵測到的充電器溫度來運算調整並追蹤充電功率以決定充電程序,其中直流/交流(AC/DC)轉換器201、微處理器203、電壓偵測單元205、電流偵測單元207和溫度偵測單元209 可以整合為充電器對電池211充電,充電器充電的程序依序包括預充電模式、最大功率模式、固定電壓模式以及完成充電模式。詳細的電路運作及操作將於後續的圖4以及圖6做詳細說明。 In order to improve the charging efficiency and shorten the charging time, the charger configuration adopted in this creation, as shown in FIG. 2, includes a set of DC/AC converter 201, microprocessor 203, voltage detection unit 205, current The detection unit 207 and the temperature detection unit 209, the voltage detection unit 205 and the current detection unit 207 communicate with the battery 211 and then through the microprocessor 203 according to the voltage and current parameters returned by the communication with the battery 211 And the charger temperature detected by the temperature detection unit 209 to calculate and adjust and track the charging power to determine the charging procedure, in which the DC/AC converter 201, the microprocessor 203, the voltage detection unit 205, current detection unit 207 and temperature detection unit 209 The charger can be integrated to charge the battery 211, and the charging procedure of the charger sequentially includes a pre-charging mode, a maximum power mode, a fixed voltage mode, and a completion charging mode. The detailed circuit operation and operation will be described in detail in subsequent FIGS. 4 and 6.

本創作所採用的充電方法,以一較佳實施例而言,如圖3(A)所示,在電池電壓(實線曲線)301較低時提高充電電流(虛線曲線)303,即圖示中最大功率模式時之充電電流曲線,以達到可以維持功率最大值,當達到預設電壓值時(與傳統充電方式類似)接著以固定電壓模式以及完成充電模式完成整個充電程序。 In a preferred embodiment, the charging method used in this creation, as shown in FIG. 3(A), increases the charging current (dashed curve) 303 when the battery voltage (solid curve) 301 is low, that is, the illustration The charging current curve in the medium-maximum power mode can reach the maximum value that can maintain the power. When the preset voltage value is reached (similar to the traditional charging method), the entire charging process is completed in the fixed voltage mode and the completion charging mode.

以另一較佳實施例而言,如圖3(B)所示,其為利用上述最大功率追蹤模式下,根據與電池充電的狀態之參數(溫度、電壓、電流等)進行一次降載(或連續步階下降多次,亦能降載後回到最大功率之電流大小)之充電曲線320,當達到預設電壓值時(與傳統充電方式類似)接著以固定電壓模式以及完成充電模式完成整個充電程序。 In another preferred embodiment, as shown in FIG. 3(B), it uses the above-mentioned maximum power tracking mode to perform a load reduction according to the parameters (temperature, voltage, current, etc.) of the battery charging state ( Or it can be lowered several times in a continuous step, and the current can be returned to the maximum power after the load is reduced. The charging curve 320, when it reaches the preset voltage value (similar to the traditional charging method), is then completed in the fixed voltage mode and the completed charging mode The entire charging procedure.

充電器電路配置,如圖4所示,其包括功率轉換單元401及最大功率控制器403用以對電池組411充電,其中功率轉換單元401的功能是將台電電力系統之交流電(AC)轉為安全之直流電(DC),提供電池充電的電源,並為周邊電路,例如最大功率控制器403,提供電源。最大功率控制是由最大功率控制器403內部之電池電壓感測器405偵測電池組411的電壓Vb,由電流感測器407偵測電池411a之輸出電流Io以及由溫度感測器409偵測充電器的溫度,透過微處理器403a運算,輸出數位訊號V_PWM與C_PWM分別經過低通濾波器(LPF)413、413a轉換成類比訊號V_REF與C_REF作為相應的電壓迴路迴授補償運算放大器415與電流迴路迴授補償運算放大器415a的輸入參考訊號,則其參考輸入會與實際輸出相減以得到誤差訊號,其中實際電池電壓(電池電流)輸出是由DC輸出電壓感測器417(電流感測器407)所偵測,然後藉由負迴授控制調整CP之準位,電源轉換單元401則根據CP準位大小調整DC output之值,以符合充電功率規格。其中上述數位訊號V_PWM的大小決定輸出電壓的大小,如果電池電壓Vb處於過放電情況(電壓比較低),則充電器於預充電模式下一開 始的充電電壓不宜設定過高,避免因為輸出切換開關450兩側的電壓差而出現浪湧電流(inrush current)而損壞零件。偵測充電器溫度則是用於判斷高溫時設定輸出電壓略低於室溫下的充電電壓。此訊號(V_PWM)由微處理器運算產生。上述數位訊號C_PWM的大小是由電池電壓Vb以及充電器當時的溫度所決定,此訊號(C_PWM)由微處理器運算產生。輸出切換開關450等同於輸出開關,可以於特定條件下斷開電池與充電器之連接避免逆向電流造成損害。如果電池接通連接通訊埠460後,將可以透過通訊來建立電池與充電器的主從關係。如果電池為主而充電器為從時,就可以由電池送出參數,例如電池電壓、電池電流、以及溫度,來調整充電器的參數,反之如果充電器為主而電池為從時,則由電池電壓Vb及充電器溫度判斷充電程序。圖示中之虛線箭頭表示系統的功率流向,實線箭頭表示系統的訊號流向。 The charger circuit configuration, as shown in FIG. 4, includes a power conversion unit 401 and a maximum power controller 403 for charging the battery pack 411, wherein the function of the power conversion unit 401 is to convert the alternating current (AC) of the Taipower power system into Safe direct current (DC) provides power for battery charging and power for peripheral circuits, such as the maximum power controller 403. In the maximum power control, the battery voltage sensor 405 inside the maximum power controller 403 detects the voltage Vb of the battery pack 411, the current sensor 407 detects the output current Io of the battery 411a, and the temperature sensor 409 detects The temperature of the charger is calculated by the microprocessor 403a, and the output digital signals V_PWM and C_PWM are converted into analog signals V_REF and C_REF through the low-pass filters (LPF) 413 and 413a respectively as the corresponding voltage loops. The input reference signal of the loop feedback compensation operational amplifier 415a is subtracted from the actual output to obtain an error signal. The actual battery voltage (battery current) output is output by the DC output voltage sensor 417 (current sensor 407) Detected, and then adjust the level of the CP through negative feedback control, and the power conversion unit 401 adjusts the value of the DC output according to the size of the CP level to meet the charging power specifications. The size of the above-mentioned digital signal V_PWM determines the size of the output voltage. If the battery voltage Vb is in an over-discharge situation (the voltage is relatively low), the charger turns on in the pre-charge mode The initial charging voltage should not be set too high to avoid damage to parts due to inrush current due to the voltage difference across the output switch 450. Detecting the temperature of the charger is used to determine that the output voltage set at a high temperature is slightly lower than the charging voltage at room temperature. This signal (V_PWM) is generated by microprocessor operation. The size of the digital signal C_PWM is determined by the battery voltage Vb and the current temperature of the charger. This signal (C_PWM) is generated by the microprocessor. The output switch 450 is equivalent to an output switch, which can disconnect the battery and the charger under certain conditions to avoid damage caused by reverse current. If the battery is connected to the communication port 460, the master-slave relationship between the battery and the charger can be established through communication. If the battery is the master and the charger is the slave, the battery parameters such as battery voltage, battery current, and temperature can be used to adjust the parameters of the charger. Conversely, if the charger is the master and the battery is slave, the battery The voltage Vb and charger temperature determine the charging procedure. The dotted arrows in the diagram indicate the power flow direction of the system, and the solid arrows indicate the signal flow direction of the system.

圖5則顯示相應最大功率追蹤軟體控制操作方法,上述之最大功率追蹤係透過偵測電池電壓(Vb)501,然後饋入微處理器的邏輯單元運算503、並透過偵測電池的即時輸出電流(Io)與偵測充電器溫度變化505,將上述參數透過微處理器的邏輯單元運算503據以追蹤最大功率並對上述交流/直流轉換器輸出功率控制訊號(C_PWM、V_PWM)507以進行直流輸出調整 Figure 5 shows the corresponding maximum power tracking software control operation method. The above-mentioned maximum power tracking is by detecting the battery voltage (Vb) 501, and then feeding the logic unit operation 503 of the microprocessor, and by detecting the real-time output current of the battery ( Io) and detecting the temperature change of the charger 505, the above parameters are tracked through the logic unit operation 503 of the microprocessor to track the maximum power and output the power control signals (C_PWM, V_PWM) 507 to the DC/DC converter for DC output Adjustment

圖6顯示本創作之最佳實施例之系統方塊圖,其包括功率轉換單元601及最大功率控制器603用以對電池組611充電。功率轉換單元601包括EMI濾波整流器605、功率因數修正電路(PFC)607、直流/直流轉換器609、電源供應控制器613、變壓器615、以及整流器617,AC輸入電壓經由EMI濾波整流器605濾波整流後形成直流(DC)電壓,經過功率因數修正電路(PFC)607調整相位後再經由直流/直流轉換器609輸出至變壓器617初級側的輸入端,並透過電源供應控制器613控制能量儲存,配合連接變壓器615的二次側整流器617而可以將直流輸出(DC output)經由最大功率控制器603之控制而對電池組611充電。最大功率控制是由最大功率控制器603內部之電池電壓感測器619偵測電池組611的電壓Vb,由電流感測器621偵測電池611a之輸出電流Io以及由溫度感測器623偵測充電器的溫度,透過微控制器(MCU)603a運算,輸出數位訊號V_PWM與C_PWM分別經過低通濾波器(LPF)625、625a轉換成類比訊 號V_REF與C_REF作為相應的電壓迴路迴授補償運算放大器627與電流迴路迴授補償運算放大器627a的輸入參考訊號,則其參考輸入會與實際輸出相減以得到誤差訊號,其中實際電壓(電流)輸出是由直流輸出電壓感測器639(電流感測器621)所偵測,然後藉由負迴授控制調整CP之準位,然後透過光耦合器629將此回饋訊號CP饋入電源轉換單元601內部之電源控制器613的回饋控制端口,使電源轉換單元601可以根據CP之準位調整DC output值,以符合充電功率規格。其中上述數位訊號V_PWM的大小決定輸出電壓的大小,如果電池電壓Vb處於過放電情況(電壓比較低),則充電器於預充電模式下一開始的充電電壓不宜設定過高,避免因為輸出切換開關650兩側的電壓差而出現浪湧電流(inrush current)而損壞零件。偵測充電器溫度則是用於判斷高溫時設定輸出電壓略低於室溫下的充電電壓。此訊號(V_PWM)由微控制器運算產生。上述數位訊號C_PWM的大小是由電池電壓Vb以及充電器當時的溫度所決定,此訊號(C_PWM)由微控制器運算產生。輸出切換開關650等同於輸出開關,可以於特定條件下斷開電池與充電器之連接避免逆向電流造成損害。如果電池接通連接通訊埠660後,將可以透過通訊來建立電池與充電器的主從關係。如果電池為主而充電器為從時,就可以由電池送出參數,例如電池電壓、電池電流、以及溫度,來調整充電器的參數,反之如果充電器為主而電池為從時,則由電池電壓Vb及充電器溫度判斷充電程序。圖示中之虛線箭頭表示系統的功率流向,實線箭頭表示系統的訊號流向。 FIG. 6 shows a system block diagram of the preferred embodiment of the present invention, which includes a power conversion unit 601 and a maximum power controller 603 for charging the battery pack 611. The power conversion unit 601 includes an EMI filter rectifier 605, a power factor correction circuit (PFC) 607, a DC/DC converter 609, a power supply controller 613, a transformer 615, and a rectifier 617. The AC input voltage is filtered and rectified by the EMI filter rectifier 605 Form a direct current (DC) voltage, adjust the phase through the power factor correction circuit (PFC) 607, and then output it to the input terminal of the primary side of the transformer 617 through the DC/DC converter 609, and control the energy storage through the power supply controller 613, matching the connection The secondary-side rectifier 617 of the transformer 615 can charge the direct current output (DC output) through the maximum power controller 603 to charge the battery pack 611. For maximum power control, the battery voltage sensor 619 inside the maximum power controller 603 detects the voltage Vb of the battery pack 611, the current sensor 621 detects the output current Io of the battery 611a, and the temperature sensor 623 detects The temperature of the charger is calculated by the microcontroller (MCU) 603a, and the digital signals V_PWM and C_PWM are converted into analog signals through low-pass filters (LPF) 625 and 625a, respectively. V_REF and C_REF as the input reference signal of the corresponding voltage loop feedback compensation operational amplifier 627 and current loop feedback compensation operational amplifier 627a, then the reference input will be subtracted from the actual output to obtain the error signal, where the actual voltage (current) The output is detected by the DC output voltage sensor 639 (current sensor 621), and then the level of the CP is adjusted by negative feedback control, and then the feedback signal CP is fed into the power conversion unit through the optocoupler 629 The feedback control port of the power controller 613 inside the 601 allows the power conversion unit 601 to adjust the DC output value according to the CP level to meet the charging power specifications. The size of the above digital signal V_PWM determines the size of the output voltage. If the battery voltage Vb is in an over-discharge situation (the voltage is relatively low), the charging voltage of the charger in the pre-charge mode should not be set too high to avoid the output switching switch. The voltage difference between the two sides of the 650 causes an inrush current to damage the part. Detecting the temperature of the charger is used to determine that the output voltage set at a high temperature is slightly lower than the charging voltage at room temperature. This signal (V_PWM) is generated by the operation of the microcontroller. The size of the digital signal C_PWM is determined by the battery voltage Vb and the current temperature of the charger. This signal (C_PWM) is generated by the microcontroller. The output switching switch 650 is equivalent to the output switch, which can disconnect the battery and the charger under certain conditions to avoid damage caused by reverse current. If the battery is connected to the communication port 660, the master-slave relationship between the battery and the charger can be established through communication. If the battery is the master and the charger is the slave, the battery parameters such as battery voltage, battery current, and temperature can be used to adjust the parameters of the charger. Conversely, if the charger is the master and the battery is slave, the battery The voltage Vb and charger temperature determine the charging procedure. The dotted arrows in the diagram indicate the power flow direction of the system, and the solid arrows indicate the signal flow direction of the system.

綜上所述,本創作提出一種具有智慧型交流/直流最大功率電池充電管理之充電裝置,藉由偵測電池電壓、充電電流以及充電溫度,利用微控制器的運算調整並追蹤充電功率,並依充電器與電池狀態改變充電條件,然後決定對電池充電之充電程序,達到電池快速充電、縮短使用者等待時間,提高使用者工作效率之目的。 In summary, this author proposes a charging device with intelligent AC/DC maximum power battery charging management. By detecting the battery voltage, charging current and charging temperature, the operation of the microcontroller is used to adjust and track the charging power, and The charging conditions are changed according to the state of the charger and the battery, and then the charging procedure for charging the battery is determined to achieve the purpose of fast charging of the battery, shortening the waiting time of the user, and improving the work efficiency of the user.

在不脫離本文範疇之情況下,可對上述具有智慧型交流/直流最大功率電池充電管理之充電裝置做出改變。因此,應當注意,包含在以上描述中並且在附圖中示出之內容應當被解釋為說明性的而非限制性之意義。以下申請專利範圍旨在涵蓋本文中所描述之所有一般特徵及特定特徵,以及本創作具 有智慧型交流/直流最大功率電池充電管理之充電裝置之範疇的所有陳述,其在語言上可被說成落在其間。 Without departing from the scope of this article, changes can be made to the above charging device with intelligent AC/DC maximum power battery charging management. Therefore, it should be noted that the contents included in the above description and shown in the drawings should be interpreted as illustrative rather than limiting. The following patent application scope is intended to cover all the general and specific features described in this All statements in the category of charging devices with intelligent AC/DC maximum power battery charge management can be said to fall in the language.

201‧‧‧直流/交流(AC/DC)轉換器 201‧‧‧DC/AC (AC/DC) converter

203‧‧‧微處理器 203‧‧‧Microprocessor

205‧‧‧電壓偵測單元 205‧‧‧Voltage detection unit

207‧‧‧電流偵測單元 207‧‧‧current detection unit

209‧‧‧溫度偵測單元 209‧‧‧Temperature detection unit

211‧‧‧電池 211‧‧‧ battery

Claims (10)

一種具有智慧型交流/直流最大功率電池充電管理之充電裝置,其包括:一功率轉換單元;一充電控制裝置電性地與該功率轉換單元耦合;其中該充電控制裝置包含:一微控制器;一電壓偵測單元,電性地連接至該微控制器;一電流偵測單元,電性地連接至該微控制器;一溫度偵測單元,電性地連接至該微控制器;一通訊埠,電性地連接至該微控制器;其中該充電控制裝置能對一電性地連接至該充電控制裝置之一電池組充電,該充電控制裝置利用該功率轉換單元對該電池組提供充電管理,其中該電池組藉由該通訊埠提供電池參數至該微控制器;及其中該微控制器可以接收由該電壓偵測單元偵測得到該電池組的電壓、該電流偵測單元偵測得到該充電器的輸出電流、以及該由溫度偵測單元所偵測得到該充電器之溫度進行充電功率運算、並據以即時追蹤最大輸出功率。 A charging device with intelligent AC/DC maximum power battery charging management includes: a power conversion unit; a charging control device electrically coupled to the power conversion unit; wherein the charging control device includes: a microcontroller; A voltage detection unit, electrically connected to the microcontroller; a current detection unit, electrically connected to the microcontroller; a temperature detection unit, electrically connected to the microcontroller; a communication Port, electrically connected to the microcontroller; wherein the charging control device can charge a battery pack electrically connected to the charging control device, and the charging control device uses the power conversion unit to charge the battery pack Management, wherein the battery pack provides battery parameters to the microcontroller through the communication port; and wherein the microcontroller can receive the voltage of the battery pack detected by the voltage detection unit and the current detection unit detection The output current of the charger and the temperature of the charger detected by the temperature detection unit are calculated for charging power, and the maximum output power is tracked accordingly. 如請求項1所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述之即時追蹤最大功率是透過偵測該電池組電壓,然後饋入該微處理器的邏輯單元運算、並透過偵測該電池組的即時輸出電流與偵測該充電器溫度變化,將上述參數透過微處理器的邏輯單元運算據以追蹤最大功率,並對上述功率轉換單元輸出控制訊號以進行直流輸出調整。 The charging device with intelligent AC/DC maximum power battery charge management as described in claim 1, wherein the above-mentioned real-time tracking of the maximum power is performed by detecting the voltage of the battery pack and then feeding into the logic unit of the microprocessor for calculation and By detecting the real-time output current of the battery pack and detecting the temperature change of the charger, the above parameters are tracked through the logic unit of the microprocessor to track the maximum power, and the control signal is output to the power conversion unit for DC output adjustment . 如請求項1所述具有智慧型交流/直流最大功率電池充電管理之充電裝置, 其中上述充電控制裝置更包含輸出開關電性地連接該功率轉換單元的輸出端與該電池組,用以提供該電池組與該充電控制裝置之充電與斷開模式間的切換。 As described in claim 1, a charging device with intelligent AC/DC maximum power battery charging management, The charging control device further includes an output switch electrically connecting the output end of the power conversion unit and the battery pack to provide switching between the charging and disconnecting modes of the battery pack and the charging control device. 如請求項2所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中對上述功率轉換單元輸出的控制訊號是透過一耦合於該功率轉換單元與該充電控制裝置之間的光耦合器以進行傳輸。 The charging device with intelligent AC/DC maximum power battery charging management as described in claim 2, wherein the control signal output to the power conversion unit is through an optical coupling between the power conversion unit and the charging control device For transmission. 如請求項1所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述充電器更包含一充電程序,其可以藉由與該電池組的通訊決定,該充電程序依序為預充電模式、最大功率充電模式、定電壓充電模式以及完成充電模式。 The charging device with intelligent AC/DC maximum power battery charging management as described in claim 1, wherein the charger further includes a charging procedure, which can be determined by communication with the battery pack, and the charging procedure is in order Charging mode, maximum power charging mode, constant voltage charging mode and complete charging mode. 如請求項1所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述電池參數包括電池電壓、電池電流、以及溫度。 The charging device with intelligent AC/DC maximum power battery charging management as described in claim 1, wherein the battery parameters include battery voltage, battery current, and temperature. 如請求項5所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述充電程序於最大功率充電模式階段可以依該充電器溫度進行降載一次或是連續步階下降多次,亦能於降載後回到最大功率之電流大小。 The charging device with intelligent AC/DC maximum power battery charging management as described in claim 5, wherein the charging procedure can be performed once in the maximum power charging mode stage according to the temperature of the charger or it can be lowered multiple times in consecutive steps, It can also return to the maximum power current after derating. 如請求項5所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述電池組與上述充電器透過該通訊埠連接後,該電池組與該充電器將可以透過通訊來建立該電池組與該充電器之間的主從關係。 The charging device with intelligent AC/DC maximum power battery charging management as described in claim 5, wherein after the battery pack and the charger are connected through the communication port, the battery pack and the charger will be able to establish the The master-slave relationship between the battery pack and the charger. 如請求項8所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述電池組與上述充電器建立主從關係後,如果該電池組為主而該充電器為從時,就可以由該電池組傳送參數來調整該充電器的充電程序。 A charging device with intelligent AC/DC maximum power battery charging management as described in claim 8, wherein after the battery pack establishes a master-slave relationship with the charger, if the battery pack is the master and the charger is the slave, then The charging procedure of the charger can be adjusted by the battery pack transmitting parameters. 如請求項8所述具有智慧型交流/直流最大功率電池充電管理之充電裝置,其中上述電池組與上述充電器建立主從關係後,如果該充電器為主而該電池組為從時,就可以由該充電器所測得的電池電壓以及該充電器溫度來判斷該充電器的充電程序。 A charging device with intelligent AC/DC maximum power battery charging management as described in claim 8, wherein after the battery pack establishes a master-slave relationship with the charger, if the charger is the master and the battery pack is the slave, then The charging procedure of the charger can be judged by the battery voltage measured by the charger and the temperature of the charger.
TW108209020U 2019-07-10 2019-07-10 Battery charging device with intelligence AC to DC maximum power charging management TWM590327U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108209020U TWM590327U (en) 2019-07-10 2019-07-10 Battery charging device with intelligence AC to DC maximum power charging management
JP2019003685U JP3224344U (en) 2019-07-10 2019-09-30 Intelligent charging device that manages battery charging with maximum AC / DC output

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108209020U TWM590327U (en) 2019-07-10 2019-07-10 Battery charging device with intelligence AC to DC maximum power charging management

Publications (1)

Publication Number Publication Date
TWM590327U true TWM590327U (en) 2020-02-01

Family

ID=68835948

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108209020U TWM590327U (en) 2019-07-10 2019-07-10 Battery charging device with intelligence AC to DC maximum power charging management

Country Status (2)

Country Link
JP (1) JP3224344U (en)
TW (1) TWM590327U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770888B (en) * 2021-03-22 2022-07-11 飛宏科技股份有限公司 Intelligent securely charging system and method
TWI773522B (en) * 2021-09-09 2022-08-01 立錡科技股份有限公司 Charger circuit and charging control method
TWI779442B (en) * 2020-12-28 2022-10-01 飛宏科技股份有限公司 Intelligent charging system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132203B (en) * 2020-09-04 2023-11-14 南京国电南思科技发展股份有限公司 Charging pile control system based on intelligent temperature and humidity adjustment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI779442B (en) * 2020-12-28 2022-10-01 飛宏科技股份有限公司 Intelligent charging system and method
TWI770888B (en) * 2021-03-22 2022-07-11 飛宏科技股份有限公司 Intelligent securely charging system and method
TWI773522B (en) * 2021-09-09 2022-08-01 立錡科技股份有限公司 Charger circuit and charging control method

Also Published As

Publication number Publication date
JP3224344U (en) 2019-12-12

Similar Documents

Publication Publication Date Title
TWI707521B (en) Intelligence ac to dc maximum power charging management method of a battery charger
TWM590327U (en) Battery charging device with intelligence AC to DC maximum power charging management
US11038374B2 (en) Flexible bridge amplifier for wireless power
US20170040812A1 (en) Mobile terminal, dc-charging power source adaptor, and charging method
CN110071562B (en) Transmitting side switching hybrid topology constant-current constant-voltage induction type wireless charging method and system
TW201427227A (en) Portable wireless charger
CN106329689B (en) Adapter and method for realizing charging thereof
TW201804698A (en) Adapter and charging control method
TW201019563A (en) Contactless charging device and contactless charging method
US20220376548A1 (en) Online interactive uninterruptible power supply and method for control thereof
EP3797466A1 (en) Multilevel switched-capacitor ac-dc rectifier for wireless charging with power regulation
WO2021012219A1 (en) Charging and discharging circuit, vehicle-mounted charging and discharging system, and charging and discharging method
CN104092271A (en) Intelligent lithium battery charger
WO2022178839A1 (en) Energy system, and charging and discharging control method
TWI464995B (en) Wireless charging system and method for controlling the wireless charging system
JP2004112954A (en) Power storage device
CN103166276A (en) Power protection and conversion circuit
CN201656537U (en) Accumulator charger
TWI695564B (en) Temperature dependent current and pulse controlled charging method for a battery charger
CN110518663B (en) Charging control method and system
CN210327061U (en) Lithium battery charger circuit control system
CN109980757B (en) Constant-current constant-voltage wireless charging system based on topology switching
JP2023540707A (en) Parallel charger circuit with battery feedback control
Asa et al. Three phase LLC resonant converter with D-DLL control technique for EV battery chargers
CN203984065U (en) A kind of Intelligent lithium battery charger