TWM590313U - Stacked photovoltaic cell - Google Patents

Stacked photovoltaic cell Download PDF

Info

Publication number
TWM590313U
TWM590313U TW108211509U TW108211509U TWM590313U TW M590313 U TWM590313 U TW M590313U TW 108211509 U TW108211509 U TW 108211509U TW 108211509 U TW108211509 U TW 108211509U TW M590313 U TWM590313 U TW M590313U
Authority
TW
Taiwan
Prior art keywords
photovoltaic cell
film
light source
refractive
index film
Prior art date
Application number
TW108211509U
Other languages
Chinese (zh)
Inventor
張宇帆
施宏旻
柯崇文
Original Assignee
位速科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 位速科技股份有限公司 filed Critical 位速科技股份有限公司
Priority to TW108211509U priority Critical patent/TWM590313U/en
Publication of TWM590313U publication Critical patent/TWM590313U/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

一種堆疊式光伏電池,係於第一光伏電池與第二光伏電池之間設置有共振層,利用共振層控制讓光源通過第一光伏電池後,特定波長之光源再通過共振層並產生建設性干涉進入到第二光伏電池,且第二光伏電池所能吸收的光源波長等同於通過共振層之光源波長,讓堆疊式光伏電池可將轉換效率最大化,且可直接使用優化之光伏電池,方便進行設計與開發,且堆疊式光伏電池可兩面受光提升光源使用率。A stacked photovoltaic cell is provided with a resonance layer between the first photovoltaic cell and the second photovoltaic cell. After the resonance layer is used to control the light source to pass through the first photovoltaic cell, a light source with a specific wavelength passes through the resonance layer and produces constructive interference Enter the second photovoltaic cell, and the wavelength of the light source that the second photovoltaic cell can absorb is equal to the wavelength of the light source passing through the resonance layer, so that the stacked photovoltaic cell can maximize the conversion efficiency, and the optimized photovoltaic cell can be directly used, which is convenient for Designed and developed, and stacked photovoltaic cells can receive light on both sides to improve light source utilization.

Description

堆疊式光伏電池Stacked photovoltaic cells

一種堆疊式光伏電池,尤指利用共振層連接兩個光伏電池,且共振層為供特定波長之光源通過並產生建設性干涉,進而提高堆疊式光伏電池之發電效率。A stacked photovoltaic cell, in particular, a resonant layer is used to connect two photovoltaic cells, and the resonant layer is used to pass a light source of a specific wavelength and generate constructive interference, thereby improving the power generation efficiency of the stacked photovoltaic cell.

按,單層非晶矽薄膜光伏電池的轉化效率雖然比單晶矽光伏電池低,但是因為矽的用量極少,使得製作成本相較低很多,因此非晶矽薄膜光伏電池之業者無不以提升轉化效率作為研究發展方向,現階段主要是以,堆疊兩個吸收不同光源波長之非晶矽薄膜光伏電池,來提升轉化效率,此種做法受限於主動層材料的搭配才得以優化光伏電池之光電特性,例如:第一活性層為寬能帶材料搭配第二活性層之窄能帶材料,利用具有高低能隙的半導體材料,吸收光源中對應的短波長及長波長的能量,此種做法之堆疊式光伏電池,必須完全重新進行設計,無法使用現有已優化之單層光伏電池直接進行堆疊。是以,要如何能使用現有已優化之單層光伏電池進行堆疊,並可同時提升轉換效率,即為相關業者所亟欲研發之課題所在。According to the press, although the conversion efficiency of single-layer amorphous silicon thin-film photovoltaic cells is lower than that of single-crystal silicon photovoltaic cells, but because the amount of silicon used is very small, the production cost is much lower, so the amorphous silicon thin-film photovoltaic cell manufacturers can all improve Conversion efficiency is the research development direction. At this stage, stacking two amorphous silicon thin-film photovoltaic cells that absorb different light source wavelengths is used to improve conversion efficiency. This method is limited by the combination of active layer materials to optimize the photovoltaic cell. Photoelectric characteristics, for example: the first active layer is a wide band material with a narrow band material of the second active layer, using semiconductor materials with high and low energy gaps to absorb the energy of the corresponding short and long wavelengths in the light source. The stacked photovoltaic cells must be completely redesigned and cannot be stacked directly using existing optimized single-layer photovoltaic cells. Therefore, how to use the existing optimized single-layer photovoltaic cells for stacking and improve the conversion efficiency at the same time is the subject of urgent research and development of related industries.

本創作之主要目的乃在於,利用供特定波長之光源通過,並可使通過光源產生建設性干涉之共振層來連接兩個光伏電池,來形成堆疊式光伏電池,讓堆疊式光伏電池可將轉換效率最大化,且可直接使用優化之光伏電池,方便進行設計與開發,且堆疊式光伏電池可兩面受光提升光源使用率。The main purpose of this creation is to use a resonant layer that allows a light source of a specific wavelength to pass through and constructively interfere with the light source to connect two photovoltaic cells to form a stacked photovoltaic cell so that the stacked photovoltaic cell can convert The efficiency is maximized, and the optimized photovoltaic cells can be directly used, which is convenient for design and development, and the stacked photovoltaic cells can receive light on both sides to increase the utilization rate of the light source.

為達上述目的,本創作之堆疊式光伏電池,係於第一光伏電池與第二光伏電池之間設置有共振層,利用共振層控制讓光源通過第一光伏電池後,特定波長之光源再通過共振層並產生建設性干涉進入到第二光伏電池,且第二光伏電池所能吸收的光源波長等同於通過共振層之光源波長。To achieve the above purpose, the stacked photovoltaic cell of the present invention is provided with a resonance layer between the first photovoltaic cell and the second photovoltaic cell. After the resonance layer is used to control the light source to pass through the first photovoltaic cell, the light source with a specific wavelength passes through The resonance layer generates constructive interference and enters the second photovoltaic cell, and the wavelength of the light source that the second photovoltaic cell can absorb is equal to the wavelength of the light source passing through the resonance layer.

前述之堆疊式光伏電池,其中該第一光伏電池係具有第一透明基板以及設置於第一透明基板表面之第一發電薄膜,該第二光伏電池係具有第二透明基板以及設置於第二透明基板表面之第二發電薄膜,共振層係連接於第一發電薄膜與第二發電薄膜之間。The aforementioned stacked photovoltaic cell, wherein the first photovoltaic cell has a first transparent substrate and a first power generating film disposed on the surface of the first transparent substrate, and the second photovoltaic cell has a second transparent substrate and a second transparent substrate The resonance layer of the second power generation film on the surface of the substrate is connected between the first power generation film and the second power generation film.

前述之堆疊式光伏電池,其中該共振層係以第一高反射率低折射率膜、高折射率膜以及第二高反射率低折射率膜依序層疊而成,且第一高反射率低折射率膜連接於第一發電薄膜,第二高反射率低折射率膜連接於第二發電薄膜。The aforementioned stacked photovoltaic cell, wherein the resonance layer is formed by sequentially stacking a first high-reflectivity low-refractive-index film, a high-refractive-index film, and a second high-reflectivity low-refractive-index film, and the first high-reflectivity is low The refractive index film is connected to the first power generation film, and the second high reflectance low refractive index film is connected to the second power generation film.

前述之堆疊式光伏電池,其中該第一高反射率低折射率膜以及第二高反射率低折射率膜為銀或金等材料所製成。In the aforementioned stacked photovoltaic cell, the first high-reflectivity low-refractive-index film and the second high-reflectivity low-refractive-index film are made of silver or gold.

前述之堆疊式光伏電池,其中該高折射率膜為銦錫氧化物、環氧樹脂或二氧化鈦等材料所製成。In the aforementioned stacked photovoltaic cell, the high refractive index film is made of indium tin oxide, epoxy resin, or titanium dioxide.

請參閱第一圖所示,由圖中可清楚看出,本創作之堆疊式光伏電池係由第一光伏電池1、第二光伏電池2,以及連接於第一光伏電池1與第二光伏電池2之間之共振層3,其中:Please refer to the first figure. It can be clearly seen from the figure that the stacked photovoltaic cell of the present invention is composed of a first photovoltaic cell 1, a second photovoltaic cell 2, and a connection between the first photovoltaic cell 1 and the second photovoltaic cell Resonance layer 3 between 2, where:

該第一光伏電池1具有第一透明基板11以及設置於第一透明基板11表面之第一發電薄膜12。The first photovoltaic cell 1 has a first transparent substrate 11 and a first power generation film 12 provided on the surface of the first transparent substrate 11.

該第二光伏電池2具有第二透明基板21以及設置於第二透明基板21表面之第二發電薄膜22。The second photovoltaic cell 2 has a second transparent substrate 21 and a second power generation film 22 provided on the surface of the second transparent substrate 21.

該共振層3係連接於第一光伏電池1之第一發電薄膜12與第二光伏電池2之第二發電薄膜22之間,且共振層3係供特定波長之光源通過,並可讓通過之光源產生建設性干涉。The resonant layer 3 is connected between the first power generating film 12 of the first photovoltaic cell 1 and the second power generating film 22 of the second photovoltaic cell 2, and the resonant layer 3 is for passing a light source of a specific wavelength and allowing it to pass The light source produces constructive interference.

藉上,利用共振層3連接第一光伏電池1與第二光伏電池2時,只需將共振層3設計為,通過共振層3之光源波長為第二光伏電池2吸收效率最佳之光源波長即可,當光源通過第一光伏電池1後,只有特定波長之光源產生建設性干涉通過共振層3後進入到第二光伏電池2,即可得到光電轉換效率的最大化。如此,就不需考慮第一光伏電池1與第二光伏電池2兩者活性層材料問題,僅需將共振層3與第二光伏電池2調控搭配即可,即本創作可直接使用已優化之光伏電池(1、2)來製作堆疊式光伏電池。By the way, when the first photovoltaic cell 1 and the second photovoltaic cell 2 are connected by the resonance layer 3, only the resonance layer 3 needs to be designed such that the wavelength of the light source passing through the resonance layer 3 is the wavelength of the light source with the best absorption efficiency of the second photovoltaic cell 2 That is, after the light source passes through the first photovoltaic cell 1, only the light source of a specific wavelength generates constructive interference, passes through the resonance layer 3, and enters the second photovoltaic cell 2 to maximize the photoelectric conversion efficiency. In this way, there is no need to consider the active layer material problem of both the first photovoltaic cell 1 and the second photovoltaic cell 2, only the resonance layer 3 and the second photovoltaic cell 2 can be adjusted and matched, that is, the original can be used directly Photovoltaic cells (1, 2) to make stacked photovoltaic cells.

請參閱第二圖所示,由圖中可清楚看出,本創作之共振層3係以第一高反射率低折射率膜31、高折射率膜32以及第二高反射率低折射率膜33依序層疊而層,且第一高反射率低折射率膜31連接於第一發電薄膜12,第二高反射率低折射率膜33連接於第二發電薄膜22。Please refer to the second figure. It can be clearly seen from the figure that the resonant layer 3 of the present invention is composed of a first high-reflectivity low-refractive-index film 31, a high-refractive index film 32 and a second high-reflectivity low-refractive index film 33 are stacked in order, and the first high-reflectivity low-refractive-index film 31 is connected to the first power-generating thin film 12, and the second high-reflectivity low-refractive-index film 33 is connected to the second power-generating thin film 22.

前述之第一高反射率低折射率膜31與第二高反射率低折射率膜33為銀或金等材料所製成,金之折射率(Refractive index )為0.242,銀之折射率為0.05,而高折射率膜32可為銦錫氧化物、環氧樹脂或二氧化鈦等材料所製成,銦錫氧化物其折射率為介於1.8~2.0之間,環氧樹脂之折射率約為1.5,二氧化鈦之折射率介於2.4~2.6之間。The aforementioned first high-reflectivity low-refractive-index film 31 and second high-reflectivity low-refractive-index film 33 are made of silver or gold, the refractive index of gold (Refractive index) is 0.242, and the refractive index of silver is 0.05 The high refractive index film 32 can be made of indium tin oxide, epoxy resin or titanium dioxide. The refractive index of indium tin oxide is between 1.8 and 2.0, and the refractive index of epoxy resin is about 1.5 The refractive index of titanium dioxide is between 2.4~2.6.

藉上,當光源經過第一高反射低折射率膜31穿透至高折射率膜32中,會因折射率變化產生光程差,又因來回光程差導致相位差之改變,及第一高反射低折射率膜31與高折射率膜32、高折射率膜32與第二高反射低折射率膜33的界面反射時的相位差,相位差加總起來後之總相位差為2π的整數倍時,發生同調性的建設性干涉,此時在同調性建設性干涉下的特定波段才得以穿透。利用高折射率膜33及第一高反射低折射率膜31與第二高反射低折射率膜32之材料挑選搭配,並透過計算穿透光之相位差,調整高折射率膜33的厚度,即可控制想要的光源穿透波段並因建設性干涉可使穿透之光源之光強增強,如此即可將兩個優化之第一光伏電池1與第二光伏電池2利用此共振層3連接,透過共振層3的調控即可得到光電轉換效率的最大化,再者,利用調控共振層3之第二高反射率低折射率膜33的反射率,利用反射光增加堆疊式光伏電池之第一光伏電池1的吸光,進而提升堆疊電池的光電轉換效率。又上述作法亦可使第一光伏電池1與第二光伏電池2皆可自第一透明基板11及第二透明基板21受光來提升光源使用率。By the way, when the light source penetrates into the high-refractive-index film 32 through the first high-reflection low-refractive-index film 31, the optical path difference will be caused by the refractive index change, and the phase difference will change due to the back-and-forth optical path difference, and the first high The phase difference between the reflective low-refractive-index film 31 and the high-refractive-index film 32, the high-refractive-index film 32 and the second high-reflection low-refractive-index film 33 at the time of reflection, and the total phase difference after the sum of the phase differences is an integer of 2π At times, a coherent constructive interference occurs, at which time a specific band under coherent constructive interference can penetrate. The materials of the high refractive index film 33, the first high reflection low refractive index film 31 and the second high reflection low refractive index film 32 are selected and matched, and the thickness of the high refractive index film 33 is adjusted by calculating the phase difference of the transmitted light, You can control the desired light source to penetrate the band and constructive interference can enhance the light intensity of the penetrated light source, so that the two optimized first photovoltaic cells 1 and second photovoltaic cells 2 can use this resonance layer 3 Connection, through the adjustment of the resonance layer 3, the photoelectric conversion efficiency can be maximized. Furthermore, the use of the reflectance of the second high-reflectivity low-refractive-index film 33 of the resonance layer 3 is adjusted to increase the use of reflected light The first photovoltaic cell 1 absorbs light, thereby improving the photoelectric conversion efficiency of the stacked cells. In addition, the above method can also enable both the first photovoltaic cell 1 and the second photovoltaic cell 2 to receive light from the first transparent substrate 11 and the second transparent substrate 21 to improve the light source utilization rate.

1‧‧‧第一光伏電池1‧‧‧The first photovoltaic cell

11‧‧‧第一透明基板11‧‧‧The first transparent substrate

12‧‧‧第一發電薄膜12‧‧‧First power generation film

2‧‧‧第二光伏電池2‧‧‧Second photovoltaic cell

21‧‧‧第二透明基板21‧‧‧Second transparent substrate

22‧‧‧第二發電薄膜22‧‧‧Second power generation film

3‧‧‧共振層3‧‧‧Resonance layer

31‧‧‧第一高反射率低折射率膜31‧‧‧The first high reflectivity low refractive index film

32‧‧‧高折射率膜32‧‧‧High refractive index film

33‧‧‧第二高反射率低折射率膜33‧‧‧Second high reflectivity low refractive index film

第一圖係為本創作第一實施例之示意圖。 第二圖係為本創作第二實施例之示意圖。 The first figure is a schematic diagram of the first embodiment of the creation. The second figure is a schematic diagram of the second embodiment of the creation.

1‧‧‧第一光伏電池 1‧‧‧The first photovoltaic cell

11‧‧‧第一透明基板 11‧‧‧The first transparent substrate

12‧‧‧第一發電薄膜 12‧‧‧First power generation film

2‧‧‧第二光伏電池 2‧‧‧Second photovoltaic cell

21‧‧‧第二透明基板 21‧‧‧Second transparent substrate

22‧‧‧第二發電薄膜 22‧‧‧Second power generation film

3‧‧‧共振層 3‧‧‧Resonance layer

Claims (5)

一種堆疊式光伏電池,係於第一光伏電池與第二光伏電池之間設置有共振層,利用共振層控制讓光源通過第一光伏電池後,特定波長之光源再通過共振層並產生建設性干涉進入到第二光伏電池,且第二光伏電池所能吸收的光源波長等同於通過共振層之光源波長。 A stacked photovoltaic cell is provided with a resonance layer between the first photovoltaic cell and the second photovoltaic cell. After the resonance layer is used to control the light source to pass through the first photovoltaic cell, a light source with a specific wavelength passes through the resonance layer and produces constructive interference Enter the second photovoltaic cell, and the wavelength of the light source that the second photovoltaic cell can absorb is equal to the wavelength of the light source passing through the resonance layer. 如請求項1所述之堆疊式光伏電池,其中該第一光伏電池係具有第一透明基板以及設置於第一透明基板表面之第一發電薄膜,該第二光伏電池係具有第二透明基板以及設置於第二透明基板表面之第二發電薄膜,共振層係連接於第一發電薄膜與第二發電薄膜之間。 The stacked photovoltaic cell according to claim 1, wherein the first photovoltaic cell has a first transparent substrate and a first power generation film disposed on the surface of the first transparent substrate, and the second photovoltaic cell has a second transparent substrate and The second power generating film provided on the surface of the second transparent substrate is connected between the first power generating film and the second power generating film. 如請求項2所述之堆疊式光伏電池,其中該共振層係以第一高反射率低折射率膜、高折射率膜以及第二高反射率低折射率膜依序層疊而成,且第一高反射率低折射率膜連接於第一發電薄膜,第二高反射率低折射率膜連接於第二發電薄膜。 The stacked photovoltaic cell according to claim 2, wherein the resonance layer is formed by sequentially stacking a first high-reflectivity low-refractive-index film, a high-refractive index film, and a second high-reflectivity low-refractive index film, and the first A high-reflectivity low-refractive-index film is connected to the first power generation film, and a second high-reflectivity low-refractive-index film is connected to the second power generation film. 如請求項3所述之堆疊式光伏電池,其中該第一高反射率低折射率膜以及第二高反射率低折射率膜為銀或金等材料所製成。 The stacked photovoltaic cell according to claim 3, wherein the first high-reflectivity low-refractive-index film and the second high-reflectivity low-refractive-index film are made of silver or gold. 如請求項3所述之堆疊式光伏電池,其中該高折射率膜為銦錫氧化物、環氧樹脂或二氧化鈦等材料所製成。The stacked photovoltaic cell according to claim 3, wherein the high refractive index film is made of materials such as indium tin oxide, epoxy resin, or titanium dioxide.
TW108211509U 2019-08-29 2019-08-29 Stacked photovoltaic cell TWM590313U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108211509U TWM590313U (en) 2019-08-29 2019-08-29 Stacked photovoltaic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108211509U TWM590313U (en) 2019-08-29 2019-08-29 Stacked photovoltaic cell

Publications (1)

Publication Number Publication Date
TWM590313U true TWM590313U (en) 2020-02-01

Family

ID=70413996

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108211509U TWM590313U (en) 2019-08-29 2019-08-29 Stacked photovoltaic cell

Country Status (1)

Country Link
TW (1) TWM590313U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706557B (en) * 2019-08-29 2020-10-01 位速科技股份有限公司 Stacked photovoltaic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI706557B (en) * 2019-08-29 2020-10-01 位速科技股份有限公司 Stacked photovoltaic cell

Similar Documents

Publication Publication Date Title
Jaysankar et al. Perovskite–silicon tandem solar modules with optimised light harvesting
Saive Light trapping in thin silicon solar cells: A review on fundamentals and technologies
JP5600593B2 (en) Interference solar cell
Gjessing et al. 2D back-side diffraction grating for improved light trapping in thin silicon solar cells
Mallick et al. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells
US20070000536A1 (en) Light trapping in thin film solar cells using textured photonic crystal
JP2011508430A (en) Multi-junction photovoltaic cell
Heidarzadeh et al. Analysis of the light trapping effect on the performance of silicon-based solar cells: absorption enhancement
Gupta et al. Design and analysis of light trapping in thin film GaAs solar cells using 2-D photonic crystal structures at front surface
US11815705B2 (en) Innovative solutions for improving laser damage performance of multi-layer dielectric gratings
Rothemund et al. Light trapping in pyramidally textured crystalline silicon solar cells using back‐side diffractive gratings
WO2007108212A1 (en) Periodic structure and method for manufacturing periodic structure and application product
Durmaz et al. Thin silicon interference solar cells for targeted or broadband wavelength absorption enhancement
TWM590313U (en) Stacked photovoltaic cell
US9595912B2 (en) Light concentrator and a solar cell
JP7280532B2 (en) Light receiving element
TWI706557B (en) Stacked photovoltaic cell
Razzaq et al. Application of a genetic algorithm in four-terminal perovskite/crystalline-silicon tandem devices
WO2009078417A1 (en) Photovoltaic cell
Ateto et al. Triple Layer Antireflection Design Concept for the Front Side of c‐Si Heterojunction Solar Cell Based on the Antireflective Effect of nc‐3C‐SiC: H Emitter Layer
Fisker et al. Opimization of imprintable nanostructured a-Si solar cells: FDTD study
TWI436492B (en) Concentrating photovoltaic module
CN210778620U (en) Stacked photovoltaic cell
CN112466971A (en) Stacked photovoltaic cell
Pandey et al. A review on advancements in photovoltaic cells