TWM586483U - Battery charger with digital analog hybrid controller - Google Patents

Battery charger with digital analog hybrid controller Download PDF

Info

Publication number
TWM586483U
TWM586483U TW108208048U TW108208048U TWM586483U TW M586483 U TWM586483 U TW M586483U TW 108208048 U TW108208048 U TW 108208048U TW 108208048 U TW108208048 U TW 108208048U TW M586483 U TWM586483 U TW M586483U
Authority
TW
Taiwan
Prior art keywords
voltage
battery
analog
signal
digital
Prior art date
Application number
TW108208048U
Other languages
Chinese (zh)
Inventor
陳建宏
陸宇銓
Original Assignee
新普科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新普科技股份有限公司 filed Critical 新普科技股份有限公司
Priority to TW108208048U priority Critical patent/TWM586483U/en
Publication of TWM586483U publication Critical patent/TWM586483U/en

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一種具有數位類比混合型控制器之電池充電器包含:一數位控制電路、以及一類比控制電路;其中,該數位控制電路用以接收外部電子裝置寫入之定電壓與定電流充電等相關參數,並且依據電池之電壓與電流回授訊號,產生一類比電壓、電性連接於類比控制電路之輸入級;類比控制電路則將其輸入級之電壓訊號、電池之電壓與電流回授訊號做控制運算後,產生一脈波寬度調變訊號、驅動後級之電力轉換器。 A battery charger with a digital analog hybrid controller includes: a digital control circuit and an analog control circuit; wherein the digital control circuit is used to receive constant voltage and constant current charging parameters written by an external electronic device, And according to the voltage and current feedback signals of the battery, an analog voltage is generated, which is electrically connected to the input stage of the analog control circuit; the analog control circuit uses the voltage signal of its input stage, the battery voltage and current feedback signal to perform control operations After that, a pulse width modulation signal is generated to drive the subsequent power converter.

Description

具有數位類比混合型控制器之電池充電器 Battery charger with digital analog hybrid controller

本創作係關於一種電池充電器,尤其關於一種同時具有數位及類比控制電路之電池充電系統。 This creation is about a battery charger, especially a battery charging system with both digital and analog control circuits.

在電池充電器應用中,電力轉換器需同時具備定電流與定電壓輸出功能。其中,定電流通常分兩階段式充電。以鋰二次電池充電為例,充電器檢測電池組串電壓過低、單顆鋰電池芯之電壓低於3V時,充電器以恆定的小電流對鋰二次電池組充電,避免電池過放電時,高充電電流導致電池過熱、壽命衰減之問題,此模式又稱為預充電模式(Pre-Charging Mode)。在鋰電池串電壓大於門檻電壓後,充電器轉換為大電流對鋰二次電池組充電,此模式又稱為快速充電模式(Fast Charging Mode)。目前傳統的做法是以運算放大器或可調式並聯穩壓器TL431,構成類比電壓控制器及電流控制器,兩控制器輸出再透過二極體並接至脈波寬度調變IC,達到上述功能。其中,兩控制器採切換之方式,由負載條件決定電壓控制器或電流控制器對脈波 寬度調變晶片(Pulse width modulation controller)進行控制。舉例來說,因充電器之輸出電壓約等同於鋰二次電池電壓,在鋰二次電池處於低電量時,電壓控制器因無法將輸出控制在命令電壓而發生飽和,其輸出二極體呈開路狀態,此時由電流控制器決定電力轉換級之責任週期(Duty cycle);反之,鋰二次電池電壓接近定電壓模式之命令電壓時,電壓控制器由飽和狀態恢復,當電壓控制器之輸出電壓低於電流控制器之輸出時,電流控制器之輸出二極體呈現開路,此時由電壓控制器決定電力轉換級之責任週期。 In battery charger applications, the power converter needs to have both constant current and constant voltage output functions. Among them, the constant current is usually charged in two stages. Taking lithium secondary battery charging as an example, when the charger detects that the battery string voltage is too low and the voltage of a single lithium battery cell is lower than 3V, the charger charges the lithium secondary battery pack with a constant low current to avoid overdischarging the battery. At this time, the high charging current causes the battery to overheat and reduce the life. This mode is also called Pre-Charging Mode. After the lithium battery string voltage is greater than the threshold voltage, the charger converts to a large current to charge the lithium secondary battery pack. This mode is also called Fast Charging Mode. At present, the traditional method is to use an operational amplifier or an adjustable parallel regulator TL431 to form an analog voltage controller and a current controller. The output of the two controllers is then connected to the pulse width modulation IC through the diode to achieve the above functions. Among them, the two controllers adopt a switching method, and the voltage controller or the current controller determines the pulse wave according to the load conditions. A width modulation chip (Pulse width modulation controller) controls. For example, because the output voltage of the charger is approximately equal to the voltage of the lithium secondary battery, when the lithium secondary battery is at a low level, the voltage controller saturates because it cannot control the output to the command voltage, and its output diode is In the open state, the current controller determines the duty cycle of the power conversion stage. On the contrary, when the voltage of the lithium secondary battery approaches the command voltage in the constant voltage mode, the voltage controller recovers from the saturation state. When the output voltage is lower than the output of the current controller, the output diode of the current controller shows an open circuit. At this time, the voltage controller determines the duty cycle of the power conversion stage.

第1圖為習知相關技術之電池充電器之局部電路圖。請參考第1圖,經感測器所量測之電池電壓與充電電流訊號,分別輸入至類比電壓控制器114以及類比電流控制器116,其中,電壓命令VCMD_CV與電流命令VCMD_CC,可為一硬體產生的參考電壓,或由微控制裝置透過數位類比轉換器產生的可調參考電壓。電壓控制器114與類比電流控制器116之輸出各設置了一顆二極體112與二極體110,二極體112與二極體110並聯後的類比電壓VC連接至脈波寬度調變晶片100的COMP腳位;其中,脈波寬度調變晶片100可為但不限於UC3843晶片;接著,類比電壓VC經由脈波寬度調變晶片100內部的串聯二極體104與分壓電阻106,連接比較器108之負輸入;最後,與比較器108正輸入腳位之鋸齒波訊號VRAMP比較,產生電力轉換級所需的閘極驅動訊號。值得注意的是,此實施例無使用脈波寬度調變晶片100內部的誤差放大器102,在整個充電過程中,充電器的回授穩定度及輸出響應係由類比電壓控制器114或類比電流控制器116所決定。然而,透過二極體將外部控制器並接之方法,造成控制器輸出訊號VC增加了一個二極體順向 導通電壓;此時,若設計者選用的脈波寬度調變晶片於比較器正輸入無配置一補償偏壓,或沒有如脈波寬度調變晶片100的串聯二極體104,將產生脈波寬度調變率降低,以及最小責任週期過高的問題。 FIG. 1 is a partial circuit diagram of a battery charger in the related art. Please refer to Figure 1. The battery voltage and charging current signals measured by the sensor are input to the analog voltage controller 114 and the analog current controller 116 respectively. Among them, the voltage command VCMD_CV and the current command VCMD_CC can be a hard The reference voltage generated by the body, or the adjustable reference voltage generated by the micro control device through a digital analog converter. The output of the voltage controller 114 and the analog current controller 116 are each provided with a diode 112 and a diode 110. The analog voltage VC after the diode 112 and the diode 110 are connected in parallel is connected to the pulse width modulation chip. COMP pin of 100; among them, the pulse width modulation chip 100 may be, but is not limited to, a UC3843 chip; then, the analog voltage VC is connected via the series diode 104 and the voltage dividing resistor 106 inside the pulse width modulation chip 100. The negative input of the comparator 108; finally, compared with the sawtooth wave signal VRAMP of the positive input pin of the comparator 108, a gate driving signal required for the power conversion stage is generated. It is worth noting that the error amplifier 102 inside the PWM chip 100 is not used in this embodiment. During the entire charging process, the feedback stability and output response of the charger are controlled by the analog voltage controller 114 or the analog current. Device 116. However, the method of connecting the external controller in parallel through the diode causes the controller output signal VC to add a diode forward Turn-on voltage; at this time, if the pulse width modulation chip selected by the designer is not configured with a compensation bias at the positive input of the comparator, or if there is no series diode 104 such as the pulse width modulation chip 100, a pulse wave will be generated Decreased width modulation rate and high minimum duty cycle.

一般來說,將外部類比控制器之輸出串接於寬度調變晶片內的誤差放大器輸入,即可解決上述問題。但這樣的作法會增加回授系統的極點與零點,造成充電器定電流、定電壓控制器設計上的困難;此問題在寬輸入電壓、寬輸出電壓之應用上尤其明顯。另外,使用數位訊號處理器取代類比控制器及脈波寬度調變晶片之控制架構,是兼具彈性、亦能解決上述問題的做法。然而,在體積小型化的產品應用上,例如具有高切換頻率之諧振及準諧振轉換器(Resonant and quasi-resonant converter),勢必需使用較高運算速度的數位訊號處理器,導致產品成本上升。。 Generally speaking, the output of the external analog controller is connected in series with the input of the error amplifier in the width modulation chip to solve the above problem. However, this method will increase the poles and zeros of the feedback system, causing difficulties in the design of the constant current and constant voltage controllers of the charger; this problem is particularly obvious in the application of wide input voltage and wide output voltage. In addition, the use of a digital signal processor instead of the control structure of the analog controller and the pulse width modulation chip is a flexible method that can also solve the above problems. However, in the application of miniaturized products, such as Resonant and quasi-resonant converters with high switching frequency, it is necessary to use digital signal processors with higher computing speeds, resulting in increased product costs. .

本新型一實施例之目的在於提供一種具有數位類比混合型控制器之電池充電器。藉以使充電器在不使用多級類比控制器之架構下,能運用低階微控制裝置與市售脈寬調變晶片達到定電壓與定電流充電功能。依據本新型一實施例,能夠改善上述習知技術之缺點,依據本新型一實施例,一種具有數位類比混合型控制器之電池充電器,其包括一數位控制電路及一類比控制電路。數位控制電路用以接收一 相關充電參數訊號、一電池電流回授訊號及一電池電壓回授訊號,並依據該相關充電參數訊號、該電池電流回授訊號及該電池電壓回授訊號產生一控制電壓。類比控制電路其係與該數位控制電路電性連接,用以接收該控制電壓、該電池電流回授訊號及該電池電壓回授訊號,以產生一脈波寬度調變訊號。 The purpose of an embodiment of the present invention is to provide a battery charger with a digital analog hybrid controller. In this way, the charger can use a low-order micro-control device and a commercially available pulse width modulation chip to achieve constant voltage and constant current charging functions without using a multi-stage analog controller architecture. According to an embodiment of the present invention, the disadvantages of the conventional technology can be improved. According to an embodiment of the present invention, a battery charger with a digital analog hybrid controller includes a digital control circuit and an analog control circuit. The digital control circuit is used for receiving a A related charging parameter signal, a battery current feedback signal and a battery voltage feedback signal, and a control voltage is generated according to the related charging parameter signal, the battery current feedback signal and the battery voltage feedback signal. The analog control circuit is electrically connected to the digital control circuit, and is used for receiving the control voltage, the battery current feedback signal and the battery voltage feedback signal to generate a pulse width modulation signal.

於一實施例中,該數位控制電路更包括一微控制裝置。微控制裝置包含一命令產生器與一控制器,並且依據被寫入之該相關充電參數、該電池電流回授訊號,以及該電池電壓回授訊號,藉由該命令產生器與該控制器,分別產生兩種控制電壓訊號;並且,依據被寫入之該相關充電參數產生一模式選擇訊號。 In one embodiment, the digital control circuit further includes a micro control device. The micro control device includes a command generator and a controller, and according to the related charging parameters, the battery current feedback signal, and the battery voltage feedback signal, the command generator and the controller are used, Two types of control voltage signals are generated respectively; and a mode selection signal is generated according to the related charging parameters written.

於一實施例中,該數位控制電路更包括一二對一多工器,該二對一多工器用以接收微控制裝置所產生的該兩種控制電壓訊號及該模式選擇訊號,依據該模式選擇訊號將該兩種控制電壓訊號擇一輸出。 In an embodiment, the digital control circuit further includes a two-to-one multiplexer for receiving the two control voltage signals and the mode selection signal generated by the micro-control device, according to the mode. The selection signal outputs one of the two control voltage signals.

於一實施例中,該數位控制電路更包括一數位類比轉換器。數位類比轉換器其與該二對一多工器之輸出端電性連接,將該輸出之數位數值轉換為一類比之控制電壓訊號,作為該控制電壓。 In one embodiment, the digital control circuit further includes a digital analog converter. The digital analog converter is electrically connected to the output end of the two-to-one multiplexer, and converts the digital value of the output into an analog control voltage signal as the control voltage.

於一實施例中,該類比控制電路更包括一加法器電路。加法器電路用以接收該電池電流回授訊號及該電池電壓回授訊號,其將該電池電流回授 訊號及該電池電壓回授訊號做加法運算後,產生一加法運算後電壓訊號。 In an embodiment, the analog control circuit further includes an adder circuit. The adder circuit is used to receive the battery current feedback signal and the battery voltage feedback signal, which feedback the battery current After the signal and the battery voltage feedback signal are added, a voltage signal after the addition is generated.

於一實施例中,該類比控制電路更包括一脈波寬度調變控制器、一減法器電路及一阻抗器。減法器電路用以接收該加法器電路輸出之該加法運算後電壓訊號以及該控制電壓,並對該加法運算後電壓訊號以及該控制電壓進行減法運算後,產生一減法運算後類比電壓。阻抗器分別電性連接該減法器電路及該脈波寬度調變控制器。該減法運算後類比電壓再經由該阻抗器輸入至該脈波寬度調變控制器,藉以利用該阻抗器及該脈波寬度調變控制器產生該脈波寬度調變訊號。 In an embodiment, the analog control circuit further includes a pulse width modulation controller, a subtractor circuit, and an resistor. The subtractor circuit is used to receive the voltage signal after the addition and the control voltage output by the adder circuit, and perform a subtraction operation on the voltage signal after the addition and the control voltage to generate an analog voltage after the subtraction. The resistor is electrically connected to the subtractor circuit and the pulse width modulation controller, respectively. After the subtraction operation, the analog voltage is input to the pulse width modulation controller through the resistor, so as to generate the pulse width modulation signal by using the resistor and the pulse width modulation controller.

如上所述,本新型一實施例之優點在於,能夠進行回授輸入之偏壓調整,使得充電器能彈性地運用多種脈寬調變控制器,實現單級電壓與電流控制器之架構。此外,數位控制電路僅作為充電命令參數調整及回授補償,故不需使用高階的數位訊號處理器,可有效降低電路成本。 As mentioned above, the advantage of an embodiment of the present invention is that the bias of the feedback input can be adjusted, so that the charger can flexibly use a variety of pulse width modulation controllers to implement a single-stage voltage and current controller architecture. In addition, the digital control circuit is only used for charging command parameter adjustment and feedback compensation, so it does not need to use a high-order digital signal processor, which can effectively reduce the circuit cost.

10‧‧‧直流電壓源 10‧‧‧DC voltage source

100‧‧‧脈波寬度調變晶片 100‧‧‧Pulse Width Modulation Chip

102‧‧‧誤差放大器 102‧‧‧Error Amplifier

104‧‧‧串聯二極體 104‧‧‧series diode

106‧‧‧分壓電阻 106‧‧‧ Voltage Divider

108‧‧‧比較器 108‧‧‧ Comparator

110‧‧‧二極體 110‧‧‧diode

112‧‧‧二極體 112‧‧‧diode

114‧‧‧電壓控制器 114‧‧‧Voltage Controller

116‧‧‧類比電流控制器 116‧‧‧ Analog Current Controller

20‧‧‧電池充電器 20‧‧‧ Battery Charger

202‧‧‧數位控制電路 202‧‧‧digital control circuit

20202‧‧‧相關充電參數 20202‧‧‧Related charging parameters

204‧‧‧類比控制電路 204‧‧‧ Analog Control Circuit

206‧‧‧電力轉換器 206‧‧‧ Power Converter

30‧‧‧負載 30‧‧‧Load

300‧‧‧加法器電路 300‧‧‧ Adder Circuit

302‧‧‧減法器 302‧‧‧Subtractor

304‧‧‧阻抗器 304‧‧‧ Impedance

306‧‧‧脈波寬度調變控制器 306‧‧‧Pulse Width Modulation Controller

30602‧‧‧誤差放大器 30602‧‧‧Error Amplifier

30604‧‧‧比較器 30604‧‧‧ Comparator

40‧‧‧電子裝置 40‧‧‧electronic device

502‧‧‧類比數位轉換器 502‧‧‧ Analog Digital Converter

504‧‧‧微控制裝置 504‧‧‧Micro-control device

50402‧‧‧記憶體 50402‧‧‧Memory

50404‧‧‧命令產生器 50404‧‧‧Command generator

50406‧‧‧控制器 50406‧‧‧Controller

506‧‧‧二對一多工器 506‧‧‧Two-to-One Multiplexer

508‧‧‧數位類比轉換器 508‧‧‧ Digital Analog Converter

第1圖為習知相關技術之電池充電器之局部電路圖。 FIG. 1 is a partial circuit diagram of a battery charger in the related art.

第2圖為本新型一實施例之具有數位類比混合型控制器之電池充電器的方塊圖。 FIG. 2 is a block diagram of a battery charger with a digital analog hybrid controller according to an embodiment of the present invention.

第3圖為本新型一實施例之類比控制電路的局部電路圖。 FIG. 3 is a partial circuit diagram of an analog control circuit according to an embodiment of the present invention.

第4圖為本新型一實施例之類比控制電路的類比命令曲線示意圖。 FIG. 4 is a schematic diagram of an analog command curve of an analog control circuit according to an embodiment of the present invention.

第5圖為本新型一實施例之數位控制電路的方塊圖。 FIG. 5 is a block diagram of a digital control circuit according to an embodiment of the present invention.

以下為本新型所實施之較佳實施例詳細說明,然而實施例圖示與文字描述僅為揭示之用,並不限制本新型之應用範圍。 The following is a detailed description of the preferred embodiments of the present invention. However, the illustrations and text descriptions of the embodiments are for disclosure only and do not limit the scope of application of the present invention.

請參考第2圖,第2圖為本新型之具有數位類比混合型控制器之電池充電器之一實施例方塊圖。本新型之具有數位類比混合型控制器之電池充電器20,係依據電子裝置40寫入之充電電壓與充電電流參數,將直流電壓源10轉換為一需求電壓提供於負載30;其中,直流電壓源10可為一外部直接輸入之直流電壓,或者為一外部輸入交流電壓、經由充電器內部交流對直流轉換器產生之直流電壓。可理解的是,本新型闡述之數位類比混合型控制方法亦能應用至其他領域,故負載30可為例如但不限定為一鋰二次電池模組。具有數位類比混合型控制器之電池充電器20包含一數位控制電路202、一類比控制電路204及一電力轉換器206。數位控制電路202之第一輸入係為外部電子裝置40所寫入之相關充電參數20202,第二輸入係為一電池電流回授訊號V1,第三輸入係為一電池電壓回授訊號V2;其中,電池電流回授訊號V1與電池電壓回授訊號V2係來自於電流感測器及電壓感測器之輸出,該電流感測器可為一霍爾式感測器(Hall effect transducers)、一比流器(Current transformer)或一電阻配置放大器之電路;而電壓感測器可為一電阻分壓網路,或一電阻分壓網路配置一隔離放大器(Isolation amplifier)之偵測 電路;由於該電流與電壓感測方法為本領域中具有通常知識者所熟知,故細節不再此贅述。數位控制電路202則根據該三個輸入訊號產生一控制電壓VC,電性連接至類比控制電路204。類比控制電路204同時接收該控制電壓VC、電池電流回授訊號V1,以及電池電壓回授訊號V2,輸出一脈波寬度調變訊號PWM驅動電力轉換器206;電力轉換器206則透過脈波寬度調變訊號PWM,將直流電壓源10轉換為一需求電壓對負載30進行充電。 Please refer to FIG. 2. FIG. 2 is a block diagram of an embodiment of a new type of battery charger with a digital analog hybrid controller. The new battery charger 20 with a digital analog hybrid controller is based on the charging voltage and charging current parameters written by the electronic device 40, and converts the DC voltage source 10 into a demand voltage and provides it to the load 30. Among them, the DC voltage The source 10 may be an externally inputted DC voltage, or an externally inputted AC voltage, a DC voltage generated by an internal AC-to-DC converter via a charger. It can be understood that the digital-analog hybrid control method described in the present invention can also be applied to other fields, so the load 30 may be, for example, but not limited to, a lithium secondary battery module. The battery charger 20 having a digital analog hybrid controller includes a digital control circuit 202, an analog control circuit 204 and a power converter 206. The first input of the digital control circuit 202 is the relevant charging parameter 20202 written by the external electronic device 40, the second input is a battery current feedback signal V1, and the third input is a battery voltage feedback signal V2; The battery current feedback signal V1 and the battery voltage feedback signal V2 are from the output of the current sensor and the voltage sensor. The current sensor can be a Hall effect transducers, a A current transformer or a resistor-configured amplifier circuit; and a voltage sensor can be a resistor-divider network or a resistor-divider network configured with an isolation amplifier. Circuit; since the current and voltage sensing method is well known to those having ordinary knowledge in the art, details are not repeated here. The digital control circuit 202 generates a control voltage VC according to the three input signals, and is electrically connected to the analog control circuit 204. The analog control circuit 204 receives the control voltage VC, the battery current feedback signal V1, and the battery voltage feedback signal V2 at the same time, and outputs a pulse width modulation signal PWM to drive the power converter 206. The power converter 206 transmits the pulse width The modulation signal PWM converts the DC voltage source 10 into a demand voltage to charge the load 30.

請參考第3圖,第3圖為本新型之類比控制電路之一實施例局部電路圖。如第3圖所示,類比控制電路204包含有一加法器電路300、一減法器電路302、一阻抗器304,以及一脈波寬度調變控制器306。首先,電池電流回授訊號V1與電池電壓回授訊號V2輸入至加法器電路300,加法器電路300將電池電流回授訊號V1及電池電壓回授訊號V2做加法運算後,產生一加法運算後電壓訊號。加法器電路300之輸出電性連接至減法器電路302。減法器電路302將加法運算後電壓訊號與控制電壓VC做減法運算後產生一減法運算後類比電壓,該減法運算後類比電壓再經由阻抗器304輸入至脈波寬度調變控制器306內部之誤差放大器30602;最後,誤差放大器30602之輸出電性連接至比較器30604,與鋸齒波訊號VRAMP比較後,產生一脈波寬度調變訊號PWM,對後級電力轉換器進行調變。值得注意的是,本新型之類比控制電路中,僅包含一組由阻抗器304及誤差放大器30602所構成的回授補償器(Feedback compensator),相較於先前技術以二極體將外置電壓、電流控制器輸出並接於誤差放大器輸出之實施例,能有效解決脈波寬度調變率降低,以及最小責任週期過高的問題。此外,因充電過程中的定電流與定電 壓模式係經由控制電壓VC所決定,該控制電壓為一連續且具可微分性,因此能改善先前技術中,電壓控制器與電流控制器切換瞬間之暫態響應調整問題。 Please refer to FIG. 3, which is a partial circuit diagram of an embodiment of the analog control circuit of the present invention. As shown in FIG. 3, the analog control circuit 204 includes an adder circuit 300, a subtracter circuit 302, an impedance 304, and a pulse width modulation controller 306. First, the battery current feedback signal V1 and the battery voltage feedback signal V2 are input to the adder circuit 300. The adder circuit 300 adds the battery current feedback signal V1 and the battery voltage feedback signal V2 to generate an addition operation. Voltage signal. The output of the adder circuit 300 is electrically connected to the subtractor circuit 302. The subtractor circuit 302 subtracts the voltage signal after the addition operation and the control voltage VC to generate an analog voltage after the subtraction operation. The analog voltage after the subtraction operation is then input to the pulse width modulation controller 306 via the resistor 304. Amplifier 30602; finally, the output of the error amplifier 30602 is electrically connected to the comparator 30604, and after comparing with the sawtooth wave signal VRAMP, a pulse width modulation signal PWM is generated to modulate the subsequent power converter. It is worth noting that the analog control circuit of the new type only includes a group of feedback compensators composed of an impedance 304 and an error amplifier 30602. Compared with the prior art, the external voltage is set by a diode. The embodiment in which the output of the current controller is connected to the output of the error amplifier can effectively solve the problems of reduced pulse width modulation rate and excessively high minimum duty cycle. In addition, due to the constant current and constant power during charging The voltage mode is determined by the control voltage VC. The control voltage is continuous and differentiable, so it can improve the transient response adjustment problem of the voltage controller and the current controller in the prior art.

請參考第4圖,第4圖為本新型之類比控制電路之一實施例類比命令曲線示意圖。在此,本實施例係將快速充電模式之電流命令與定電壓模式之電壓命令設計在電池電流回授訊號V1與電池電壓回授訊號V2之最大值。如第4圖所示,當電池電壓低於預充電終止電壓VPRE時,充電器於預充電模式操作、以10%之標準充電電流(Standard charge current)IPRE對電池進行定電流充電,此時控制電壓VC之計算如下式:VC=V2-VREF+V1 Please refer to FIG. 4. FIG. 4 is a schematic diagram of an analog command curve of an embodiment of the analog control circuit of the present invention. Here, this embodiment designs the current command in the fast charging mode and the voltage command in the constant voltage mode at the maximum values of the battery current feedback signal V1 and the battery voltage feedback signal V2. As shown in Figure 4, when the battery voltage is lower than the pre-charge termination voltage VPRE, the charger operates in the pre-charge mode and charges the battery at a constant current at 10% of the standard charge current IPRE. The calculation of the voltage VC is as follows: V C = V 2 -V REF + V 1

在電池電壓上升至預充電終止電壓VPRE時,充電器進入快速充電模式、改以快速充電電流ICC對電池進行定電流充電;由於快速充電電流命令亦即脈波寬度調變控制器306內部之參考電壓VREF,故於此模式下之控制電壓VC僅需扣除電池回授電壓訊號V2,其式表示如下:VC=V2 When the battery voltage rises to the pre-charge termination voltage VPRE, the charger enters the fast charging mode and uses the fast charging current ICC to charge the battery at a constant current. Because the fast charging current command is the internal reference of the pulse width modulation controller 306 The voltage VREF, so the control voltage VC in this mode only needs to deduct the battery feedback voltage signal V2, the formula is as follows: V C = V 2

同樣地,由於定電壓充電命令亦即脈波寬度調變控制器306內部之參考電壓VREF,故當電池電壓到達定電壓VCV時,充電器進入定電壓充電模式操作,此時控制電壓VC僅需扣除電池回授電流訊號V1,其式表示如下:VC=V1 Similarly, since the constant voltage charging command is the reference voltage VREF inside the pulse width modulation controller 306, when the battery voltage reaches the constant voltage VCV, the charger enters the constant voltage charging mode operation. At this time, the control voltage VC only needs to be After deducting the battery feedback current signal V1, the formula is as follows: V C = V 1

由上述三式可繪製出如第4圖所示於充電過程中之控制電壓VC曲線;其中,充電器由預充電模式轉換為快速充電模式係為一步階電流變化,而實際上該模式切換通常採用斜坡命令,以降低暫態響應對系統之影響;此外,如第3圖所示之減法器302中包含了一低通濾波器,該濾波器可將減法器302之輸出調整為一連續可微分之訊號,因此,由阻抗器304及誤差放大器30602所構成之回授補償器之設計無暫態響應問題,該極點與零點係針對輸出電流漣波及電壓漣波而調整。 The above three formulas can be used to draw the control voltage VC curve during charging as shown in Figure 4. Among them, the charger changes from the pre-charge mode to the fast-charge mode as a step-by-step current change. In fact, the mode switching is usually The ramp command is used to reduce the impact of the transient response on the system. In addition, the subtractor 302 shown in Figure 3 includes a low-pass filter, which can adjust the output of the subtractor 302 to a continuous Differential signals. Therefore, the design of the feedback compensator composed of the resistor 304 and error amplifier 30602 has no transient response problem. The poles and zeros are adjusted for output current ripple and voltage ripple.

請參考第5圖,第5圖為本新型之數位控制電路之一實施例方塊圖。如第5圖所示,數位控制電路202包含有一類比數位轉換器502、一微控制裝置504、一二對一多工器506,以及一數位類比轉換器508;其中,微控制裝置504內部包含一記憶體50402、一命令產生器50404,及一控制器50406。首先,相關充電參數20202透過數位通訊界面寫入微控制裝置504內部之記憶體50402,該相關充電參數20202根據特定電池具有不同的預充模式邊界電壓、預充模式電流、快速充電模式電流、定電壓模式電壓、充電截止電流、二對一多工器506之輸入訊號選擇條件,以及控制器增益等參數。電池電流回授訊號V1與電池電壓回授訊號V2則透過類比數位轉換器502,將該類比電壓轉換成數位訊號並輸入微控制裝置504,提供至微控制裝置504內部之命令產生器50404與控制器50406。命令產生器50404與控制器50406將該回授訊號及記憶體50402中之充電命令做計算後,產生各自之數位輸出訊號作為兩種控制電壓訊號,電性連接於外部二對一多工器506。接著,二對一多 工器506依據記憶體50402內之條件,將係為前述兩種控制電壓訊號的兩輸入訊號擇一輸出,並且二對一多工器506的輸出端電性連接於數位類比轉換器508。最後,數位類比轉換器508將該數位訊號轉換為類比之控制電壓訊號,用以作為控制電壓VC,對後級類比控制電路204進行控制。 Please refer to FIG. 5, which is a block diagram of an embodiment of the digital control circuit of the present invention. As shown in FIG. 5, the digital control circuit 202 includes an analog-to-digital converter 502, a micro-control device 504, a two-to-one multiplexer 506, and a digital-to-analog converter 508. Among them, the micro-control device 504 contains A memory 50402, a command generator 50404, and a controller 50406. First, the relevant charging parameters 20202 are written into the memory 50402 inside the micro-control device 504 through a digital communication interface. The relevant charging parameters 20202 have different precharge mode boundary voltages, precharge mode currents, fast charge mode currents, Voltage mode voltage, charging cut-off current, input signal selection conditions of two-to-one multiplexer 506, and controller gain and other parameters. The battery current feedback signal V1 and the battery voltage feedback signal V2 pass through the analog-to-digital converter 502 to convert the analog voltage into a digital signal and input it to the micro-control device 504, and provide it to the command generator 50404 and control in the micro-control device 504.器 50406. The command generator 50404 and the controller 50406 calculate the feedback signal and the charging command in the memory 50402, and generate respective digital output signals as two control voltage signals, which are electrically connected to the external two-to-one multiplexer 506 . Then two to one more The multiplexer 506 selects one of the two input signals for the two control voltage signals according to the conditions in the memory 50402, and the output of the two-to-one multiplexer 506 is electrically connected to the digital analog converter 508. Finally, the digital analog converter 508 converts the digital signal into an analog control voltage signal, which is used as the control voltage VC to control the subsequent analog control circuit 204.

如新型內容中所描述,數位控制電路可依據不同電池之充電需求,選擇於開迴路模式或閉迴路模式操作。開迴路即為由命令產生器50404產生控制電壓VC之模式,該控制電壓VC之計算方式如先前說明,故細節不再贅述;而當充電器選擇在閉迴路模式操作時,充電器之回授補償將改由控制器50406所執行。請同時參考第3圖及第5圖,為了消除類比控制電路204之回授補償及誤差放大器30602內部參考電壓VREF對輸出之影響,數位控制電路202之輸出表示式如下:VC=V1+V2-VREF+△V As described in the new content, the digital control circuit can be operated in open-loop mode or closed-loop mode according to the charging requirements of different batteries. The open loop is the mode in which the control generator VC generates the control voltage VC. The calculation method of the control voltage VC is as described previously, so the details are not repeated; and when the charger chooses to operate in the closed loop mode, the charger feedback The compensation will be executed by the controller 50406 instead. Please refer to FIG. 3 and FIG. 5 at the same time. In order to eliminate the feedback compensation of the analog control circuit 204 and the influence of the internal reference voltage VREF of the error amplifier 30602 on the output, the output expression of the digital control circuit 202 is as follows: V C = V 1 + V 2 -V REF + △ V

其中,△V為控制器50406之運算輸出數值。舉例來說,當充電器操作於定電壓模式時,控制器50406將記憶體50402內部之定電壓數值,與透過類比數位轉換器502轉換之電池電壓回授訊號V2數值相減,相減後之誤差值輸入該內部可為例如但不限定為一比例積分控制器。值得注意的是,為了簡化設計,該比例積分控制器通常串聯一額外的補償器,此補償器採極零點對消(Pole-zero cancellation)之設計法則,以抵消類比控制器204內部由阻抗器304及誤差放大器30602所產生的極點與零點。 Among them, ΔV is the operation output value of the controller 50406. For example, when the charger operates in the constant voltage mode, the controller 50406 subtracts the constant voltage value in the memory 50402 from the value of the battery voltage feedback signal V2 converted by the analog-to-digital converter 502. The input of the error value may be, for example, but not limited to, a proportional-integral controller. It is worth noting that in order to simplify the design, the proportional-integral controller is usually connected in series with an additional compensator. This compensator adopts the design rule of pole-zero cancellation to offset the internal resistor of the analog controller 204. Pole and zero generated by 304 and error amplifier 30602.

另外,第5圖中所示之類比數位轉換器502、微控制裝置504、二對一 多工器506以及數位類比轉換器508之電路架構僅為一範例說明,而並非作為本新型的限制。本領域中具有通常知識者在閱讀過上述揭露說明之後,應可了解類比數位轉換器502以及二對一多工器506之功能亦可整合至微控制裝置504中;並且,二對一多工器506之輸出亦可為一PWM訊號,以低成本之RC低通濾波器實現數位類比轉換器508之功能。 In addition, the analog-to-digital converter 502, the microcontroller 504, and the two-to-one converter shown in FIG. The circuit architectures of the multiplexer 506 and the digital-to-analog converter 508 are only examples, and are not intended to limit the present invention. After reading the above disclosure, those with ordinary knowledge in the art should understand that the functions of the analog-to-digital converter 502 and the two-to-one multiplexer 506 can also be integrated into the microcontroller 504; and, the two-to-one multiplexer The output of the converter 506 can also be a PWM signal, and the function of the digital analog converter 508 can be realized by a low-cost RC low-pass filter.

另外,第3圖中加法器電路300、減法器電路302、阻抗器304,以及一脈波寬度調變控制器306之電路架構僅為一範例說明,而並非作為本新型的限制。本領域中具有通常知識者在閱讀過上述揭露說明之後,應可了解該電路架構具有最大的設計彈性,亦即透過控制電壓VC之調整,便可使用該電路內部之補償器進行定電壓或定電流控制;然而,倘若採取數位與類比之混和控制方式,亦即由類比控制電路204執行定電流模式控制、數位控制電路202執行定電壓模式控制,或者由類比控制電路204執行定電壓模式控制、數位控制電路202執行定電流模式控制之策略;此時僅需將電池電流回授訊號V1與電池電壓回授訊號V2擇一輸入至類比控制電路204,如此便可省去加法器電路300。又或者,數位控制電路產生一反相之控制電壓VC訊號,再將加法器電路300設計為具有三組輸入之加法器,如此便可省去減法器電路302;上述這些設計變化均應屬於本新型之範疇。 In addition, the circuit architecture of the adder circuit 300, the subtracter circuit 302, the impedance 304, and the pulse width modulation controller 306 in FIG. 3 is only an example, and is not a limitation of the present invention. After reading the above disclosure, those with ordinary knowledge in the field should understand that the circuit architecture has the greatest design flexibility. That is, by adjusting the control voltage VC, the compensator inside the circuit can be used for constant voltage or fixed voltage. Current control; however, if digital and analog mixed control is adopted, that is, constant current mode control is performed by analog control circuit 204, constant voltage mode control is performed by digital control circuit 202, or constant voltage mode control is performed by analog control circuit 204, The digital control circuit 202 executes a constant current mode control strategy; at this time, only one of the battery current feedback signal V1 and the battery voltage feedback signal V2 needs to be input to the analog control circuit 204, so that the adder circuit 300 can be omitted. Or, the digital control circuit generates an inverted control voltage VC signal, and the adder circuit 300 is designed as an adder with three sets of inputs, so that the subtractor circuit 302 can be omitted; these design changes should belong to the present New category.

簡要說明本新型之效益,本新型之具有數位類比混合型控制器之電池充電器中,數位控制電路可操作於兩模式,其中開迴路模式可由其產生之控制電壓配合類比電路中的回授補償器,完成整個充電程序中的預充電模 式、快充電模式及定電壓充電模式;並且,依據不同的電池充電需求,數位控制電路可自由地切換至閉迴路模式,將充電器之迴路補償轉由數位控制器執行。因此,本新型之具有數位類比混合型控制器之電池充電器具有高度的設計彈性且兼具低成本的表現。 Briefly explain the benefits of this new model. In this new type of battery charger with a digital analog hybrid controller, the digital control circuit can operate in two modes, of which the open loop mode can be controlled by the control voltage generated by it and the feedback compensation in the analog circuit. Charger to complete the pre-charging mode in the entire charging process Type, fast charging mode and constant voltage charging mode; and, according to different battery charging requirements, the digital control circuit can freely switch to the closed loop mode, and the loop compensation of the charger is transferred to the digital controller. Therefore, the new type battery charger with digital analog hybrid controller has high design flexibility and low cost performance.

本新型一實施例之目的在於提供一種具有數位類比混合型控制器之電池充電器。藉以使充電器在不使用多級類比控制器之架構下,能運用低階微控制裝置與市售脈寬調變晶片達到定電壓與定電流充電功能。依據本新型一實施例,能夠改善上述習知技術之缺點, 依據本新型一實施例,一種具有數位類比混合型控制器之電池充電器包含:一數位控制電路、以及一類比控制電路;其中,該數位控制電路用以接收外部電子裝置寫入之定電壓與定電流充電等相關參數,並且依據電池之電壓與電流回授訊號,產生一類比電壓、電性連接於類比控制電路之輸入級;類比控制電路則將其輸入級之電壓訊號、電池之電壓與電流回授訊號做控制運算後,產生一脈波寬度調變訊號、驅動後級之電力轉換器。 The purpose of an embodiment of the present invention is to provide a battery charger with a digital analog hybrid controller. In this way, the charger can use a low-order micro-control device and a commercially available pulse width modulation chip to achieve constant voltage and constant current charging functions without using a multi-stage analog controller architecture. According to an embodiment of the present invention, the disadvantages of the conventional technology can be improved. According to an embodiment of the present invention, a battery charger with a digital analog hybrid controller includes a digital control circuit and an analog control circuit; wherein the digital control circuit is used to receive a constant voltage and Constant current charging and other related parameters, and based on the battery voltage and current feedback signals, generate an analog voltage, which is electrically connected to the input stage of the analog control circuit; the analog control circuit uses the voltage signal of its input stage, the battery voltage and After the current feedback signal is used for control calculation, a pulse width modulation signal is generated to drive the power converter in the subsequent stage.

此外,本新型之具有數位類比混合型控制器之電池充電器,其中的類比控制電路包含一運算放大器電路與一脈波寬度調變控制器。該運算放大器電路之功效係將電池之電壓、電池電流回授訊號與一特定的控制電壓做運算,透過此控制電壓之調整,可實現一般充電器所需之預充電模式、快速充電模式、定電壓充電模式及浮充電模式(Float charging mode)。 In addition, in the new battery charger with a digital analog hybrid controller, the analog control circuit includes an operational amplifier circuit and a pulse width modulation controller. The function of the operational amplifier circuit is to calculate the battery voltage, battery current feedback signal and a specific control voltage. Through the adjustment of this control voltage, the pre-charge mode, fast charge mode, Voltage charging mode and Float charging mode.

此外,本新型之具有數位類比混合型控制器之電池充電器,其中的數位控制電路具有兩種控制模式,即開迴路控制模式與閉迴路控制模式。在開迴路控制模式中,數位控制電路透過其內部的命令產生器,將電池電壓與電流回授訊號同充電命令做計算,該計算結果再經由數位類比轉換器產生一控制電壓,對後級類比控制電路做定電壓或定電流控制;而閉迴路控制模式中,數位控制電路係透過其內部的控制器,將電池電壓與電流回授訊號同充電命令相減,產生一誤差訊號輸入至其內部的回授補償器(Feedback compensator),該回授補償器之輸出再經由數位類比轉換器產生一控制電壓,對後級類比控制電路做定電壓或定電流控制。 In addition, in the new type of battery charger with a digital analog hybrid controller, the digital control circuit has two control modes, namely an open-loop control mode and a closed-loop control mode. In the open-loop control mode, the digital control circuit uses its internal command generator to calculate the battery voltage and current feedback signals with the charging command. The calculation result is then used by a digital analog converter to generate a control voltage. The control circuit performs constant voltage or constant current control. In the closed-loop control mode, the digital control circuit uses its internal controller to subtract the battery voltage and current feedback signals from the charging command, and generates an error signal to be input into the internal circuit. A feedback compensator. The output of the feedback compensator then generates a control voltage through a digital analog converter to perform constant voltage or constant current control on the subsequent analog control circuit.

如上所描述,本新型所揭露之優點在於,透過運算放大器電路做回授輸入之偏壓調整,使得充電器能彈性地運用多種脈寬調變控制器,實現單級電壓與電流控制器之架構。此外,數位控制電路僅作為充電命令參數調整及回授補償,故不需使用高階的數位訊號處理器,可有效降低電路成本。 As described above, the advantage disclosed by the new model is that the bias adjustment of the feedback input through the operational amplifier circuit allows the charger to flexibly use a variety of pulse width modulation controllers to implement a single-stage voltage and current controller architecture. . In addition, the digital control circuit is only used for charging command parameter adjustment and feedback compensation, so it does not need to use a high-order digital signal processor, which can effectively reduce the circuit cost.

Claims (6)

一種具有數位類比混合型控制器之電池充電器,其包括:一數位控制電路,用以接收一相關充電參數訊號、一電池電流回授訊號及一電池電壓回授訊號,並依據該相關充電參數訊號、該電池電流回授訊號及該電池電壓回授訊號產生一控制電壓;以及一類比控制電路,其係與該數位控制電路電性連接,用以接收該控制電壓、該電池電流回授訊號及該電池電壓回授訊號,以產生一脈波寬度調變訊號。A battery charger with a digital analog hybrid controller includes a digital control circuit for receiving a related charging parameter signal, a battery current feedback signal and a battery voltage feedback signal, and according to the related charging parameter. A signal, the battery current feedback signal and the battery voltage feedback signal generate a control voltage; and an analog control circuit, which is electrically connected to the digital control circuit to receive the control voltage and the battery current feedback signal And the battery voltage feedback signal to generate a pulse width modulation signal. 如申請專利範圍第1項所述之具有數位類比混合型控制器之電池充電器,其中該數位控制電路更包括:一微控制裝置,包含一命令產生器與一控制器,並且依據被寫入之該相關充電參數、該電池電流回授訊號,以及該電池電壓回授訊號,藉由該命令產生器與該控制器,分別產生兩種控制電壓訊號;並且,依據被寫入之該相關充電參數產生一模式選擇訊號。The battery charger with a digital analog hybrid controller as described in item 1 of the scope of patent application, wherein the digital control circuit further includes: a micro-control device, including a command generator and a controller, and written according to The related charging parameters, the battery current feedback signal, and the battery voltage feedback signal, respectively, generate two kinds of control voltage signals through the command generator and the controller; and, according to the related charging written The parameter generates a mode selection signal. 如申請專利範圍第2項所述之具有數位類比混合型控制器之電池充電器,其中該數位控制電路更包括:一二對一多工器,用以接收微控制裝置所產生的該兩種控制電壓訊號及該模式選擇訊號,依據該模式選擇訊號將該兩種控制電壓訊號擇一輸出。The battery charger with a digital analog hybrid controller as described in item 2 of the scope of the patent application, wherein the digital control circuit further includes a one-to-two multiplexer for receiving the two types generated by the micro-control device. The control voltage signal and the mode selection signal are output according to the mode selection signal. 如申請專利範圍第3項所述之具有數位類比混合型控制器之電池充電器,其中該數位控制電路更包括:一數位類比轉換器,其與該二對一多工器之輸出端電性連接,將該輸出之數位數值轉換為一類比之控制電壓訊號,作為該控制電壓。The battery charger with a digital analog hybrid controller as described in item 3 of the scope of patent application, wherein the digital control circuit further includes: a digital analog converter, which is electrically connected to the output end of the two-to-one multiplexer. Connected to convert the digital value of the output into an analog control voltage signal as the control voltage. 如申請專利範圍第1項所述之具有數位類比混合型控制器之電池充電器,其中該類比控制電路更包括:一加法器電路,用以接收該電池電流回授訊號及該電池電壓回授訊號,其將該電池電流回授訊號及該電池電壓回授訊號做加法運算後,產生一加法運算後電壓訊號。The battery charger with a digital analog hybrid controller as described in item 1 of the scope of the patent application, wherein the analog control circuit further includes: an adder circuit for receiving the battery current feedback signal and the battery voltage feedback Signal, which adds the battery current feedback signal and the battery voltage feedback signal to generate an addition voltage signal. 如申請專利範圍第5項所述之具有數位類比混合型控制器之電池充電器,其中該類比控制電路更包括:一脈波寬度調變控制器;一減法器電路,用以接收該加法器電路輸出之該加法運算後電壓訊號以及該控制電壓,並對該加法運算後電壓訊號以及該控制電壓進行減法運算後,產生一減法運算後類比電壓;以及一阻抗器,分別電性連接該減法器電路及該脈波寬度調變控制器,其中,該減法運算後類比電壓再經由該阻抗器輸入至該脈波寬度調變控制器,藉以利用該阻抗器及該脈波寬度調變控制器產生該脈波寬度調變訊號。The battery charger with a digital analog hybrid controller as described in item 5 of the scope of the patent application, wherein the analog control circuit further includes: a pulse width modulation controller; and a subtractor circuit for receiving the adder. The voltage signal after the addition and the control voltage output by the circuit, and after the subtraction operation is performed on the voltage signal after the addition and the control voltage, an analog voltage after the subtraction is generated; and a resistor, which is electrically connected to the subtraction respectively And the pulse width modulation controller, wherein the analog voltage after the subtraction operation is input to the pulse width modulation controller through the resistor, so as to use the resistor and the pulse width modulation controller. The pulse width modulation signal is generated.
TW108208048U 2019-06-24 2019-06-24 Battery charger with digital analog hybrid controller TWM586483U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108208048U TWM586483U (en) 2019-06-24 2019-06-24 Battery charger with digital analog hybrid controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108208048U TWM586483U (en) 2019-06-24 2019-06-24 Battery charger with digital analog hybrid controller

Publications (1)

Publication Number Publication Date
TWM586483U true TWM586483U (en) 2019-11-11

Family

ID=69190369

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108208048U TWM586483U (en) 2019-06-24 2019-06-24 Battery charger with digital analog hybrid controller

Country Status (1)

Country Link
TW (1) TWM586483U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773522B (en) * 2021-09-09 2022-08-01 立錡科技股份有限公司 Charger circuit and charging control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773522B (en) * 2021-09-09 2022-08-01 立錡科技股份有限公司 Charger circuit and charging control method

Similar Documents

Publication Publication Date Title
US9893623B2 (en) Windowless H-bridge buck-boost switching converter
US11031867B2 (en) Digital-to-analog converter with embedded minimal error adaptive slope compensation for digital peak current controlled switched mode power supply
US20230208303A1 (en) Efficient use of energy in a switching power converter
US10348201B2 (en) Voltage regulation circuit of single inductor and multiple outputs and control method
US11011991B1 (en) Regulation loop circuit
US10250141B2 (en) Control circuit for buck-boost power converter with seamless mode transition control
US9479060B2 (en) Control circuit, battery power supply device and control method
US8912769B2 (en) Current mode buck-boost converter
EP2350763B1 (en) A switch-mode voltage regulator
US7679343B2 (en) Power supply system and method for controlling output voltage
CN102017378B (en) Power converter, discharge lamp ballast and headlight ballast
US10972003B2 (en) Charge pump
CN103095127A (en) Charge pump circuit and electronic equipment
CN211127582U (en) Electronic converter and integrated circuit
CN102324846B (en) Numerical control sectional slope compensation circuit for switching power supply for current mode control
EP4142131A1 (en) Multi-level direct current converter and power supply system
TWI470908B (en) Control circuit, time calculating unit, and operating method for control circuit
TWM586483U (en) Battery charger with digital analog hybrid controller
US10833604B1 (en) Power converter device
CN210156945U (en) Battery charger with digital/analog hybrid controller
CN113949267B (en) Four-switch BUCKBOOST controller based on average current mode
CN105375778A (en) Composite multifunctional novel OCP control circuit
JP7275065B2 (en) power converter
CN102832817A (en) Method for controlling cross voltage of power switch of switching-type power converter, and circuit thereof
US20240186886A1 (en) Constant ripple algorithm in dcm for buck converter

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees