TWM586193U - Grinding machine - Google Patents

Grinding machine Download PDF

Info

Publication number
TWM586193U
TWM586193U TW108208796U TW108208796U TWM586193U TW M586193 U TWM586193 U TW M586193U TW 108208796 U TW108208796 U TW 108208796U TW 108208796 U TW108208796 U TW 108208796U TW M586193 U TWM586193 U TW M586193U
Authority
TW
Taiwan
Prior art keywords
grinding wheel
grinding
value
map
point
Prior art date
Application number
TW108208796U
Other languages
Chinese (zh)
Inventor
蕭博仁
Original Assignee
新代科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新代科技股份有限公司 filed Critical 新代科技股份有限公司
Priority to TW108208796U priority Critical patent/TWM586193U/en
Publication of TWM586193U publication Critical patent/TWM586193U/en

Links

Abstract

A grinding machine with a grinding wheel includes a grinding wheel and a controller, in which the controller is used to control the wheel speed and the cutting depth that is generated by the grinding wheel, wherein the controller has an optimization module for obtaining a reference grinding map from a data platform and for operating to obtain a magnification to form an optimized grinding map.

Description

具有砂輪之磨床 Grinder with grinding wheel

本創作提供一種具有砂輪之磨床,特別是針對於磨床中以特定砂輪進行研磨時所採用參數的最佳化,以及運用砂輪加工地圖進行研磨的最佳化方法。 This creation provides a grinding machine with a grinding wheel, especially for the optimization of parameters used when grinding with a specific grinding wheel in a grinding machine, and an optimization method for grinding using a grinding wheel processing map.

磨削加工是精密的加工手法之一,它的精度要求高,例如精度要求誤差在正負1μm之內,表面品質的要求也高,因此,對終端客戶在進行磨削時,對應於不同的待加工件材料需要有合適的砂輪種類,以及配合適當的機台特性下使用合適的加工參數,才能達到精度與品質的要求。然而,加工參數,例如磨削加工所使用的砂輪尺寸、砂輪轉速、砂輪於待加工工件的切深等等,往往需要花上大量時間進行調適與尋找,而使用新的待加工工件與新種類砂輪的搭配需要耗費短則數天、長則數周的時間進行調整,以達成較佳精度的工藝成品。再者,若是使用既有的、長時間使用的待加工工件與既有的砂輪搭配之加工參數,也會因砂輪片所設置的機台特性不同而需要調整,調整時間短則數小時、長則數天,仍需耗費較長的時間,這樣都造成了製作工件的成本增加。 Grinding is one of the precise machining methods. It requires high accuracy. For example, the accuracy requires an error within plus or minus 1 μm, and the surface quality is also high. Therefore, when grinding the end customer, it corresponds to different requirements. The material of the machined part needs to have the right kind of grinding wheel, and use the proper processing parameters with the proper machine characteristics in order to meet the requirements of accuracy and quality. However, processing parameters, such as the size of the grinding wheel used for grinding, the speed of the grinding wheel, and the depth of cut of the grinding wheel to the workpiece to be processed, etc., often take a lot of time to adjust and find, and use new workpieces and new types The matching of the grinding wheel needs to be adjusted in a few days and a few weeks in order to achieve a better precision finished product. In addition, if the existing and long-term workpieces to be processed are used with the existing grinding wheels, the processing parameters will also need to be adjusted due to the different machine characteristics of the grinding wheel. The adjustment time is a few hours and a long time. For a few days, it will still take a long time, which will increase the cost of manufacturing the workpiece.

另外,這調校工藝的操作者多是須要具備深厚的加工經驗,亦即須要資深的磨削加工師父來進行調整才能達成較好的精度與表面品質,一般新 手操作人員進行調校後也難以達到精度與品質的要求;就算達成標準,所花費的時間是遠超過資深的磨削加工師父進行調適所需要的時間。而且,進行調適時,加工工藝參數調整只憑藉著加工人員所稱的「手感」,沒有量化的結果,使得資深的磨削加工師父教導或是將經驗傳承給新手操作人員時無所本,讓一般工廠磨削加工調適工藝傳承困難。 In addition, most operators of this adjustment process need to have deep processing experience, that is, they need to be adjusted by a senior grinding master to achieve better accuracy and surface quality. Generally new After manual adjustment, it is difficult to meet the requirements of accuracy and quality; even if the standard is reached, the time it takes is far longer than the time required for a senior grinding master to adjust. Moreover, when making adjustments, the process parameters are adjusted only by the "feel" of the processing staff. There is no quantified result, which makes the senior grinding processing master teach or pass on the experience to novice operators. It is difficult to adjust the process of grinding process in general factories.

為改善現有技術的缺失,本創作提供一種具有砂輪之磨床,其包括:砂輪及控制器,其中,控制器用以控制砂輪的砂輪研磨線速度以及砂輪研磨切深值,控制器包含最佳化模組,用以由資料平台取得參考加工地圖,以及運算生成縮放倍率值以形成最佳化的加工地圖。 In order to improve the lack of existing technology, the present invention provides a grinding machine with a grinding wheel, which includes: a grinding wheel and a controller, wherein the controller is used to control the grinding wheel speed of the grinding wheel and the grinding depth of the grinding wheel. The group is used to obtain a reference processing map from a data platform, and to generate a zoom factor value to form an optimized processing map.

又,本創作提供一種砂輪加工地圖的最佳化方法,包括:利用磨床之控制器從資料平台取得砂輪之參考加工地圖,參考加工地圖包含理想負載率下,砂輪研磨線速度值、砂輪研磨切深值所形成之參考研磨參數區間;取得參考研磨參數區間中,理想負載率下之起始點,起始點具有第一砂輪研磨線速度值以及第一砂輪研磨最大切深值;以使用砂輪之磨床進行研磨,利用控制器將砂輪設定於第一砂輪研磨線速度值;記錄待加工工件研磨到第一砂輪研磨切深值時,磨床輸出第一負載率;利用控制器將第一負載率與理想負載率進行比較,其中當第一負載率小於理想負載率時,則選擇估計點(qr),且估計點(qr)與起始點具有相同第一砂輪研磨線速度值及大於第一砂輪研磨最大切深值的第(r+1)砂輪研磨最大切深值,當第一負載率大於該理想負載率時,則選擇估計點qr與起始點具有相同第一砂輪研磨線速度,及小於該第一砂輪研磨最大切深值的第(r+1)砂輪研磨最大切深值,藉此得到第(r+1)負載率等於該理想負載率,其中r為 大於1的正整數;運用控制器將第(r+1)砂輪研磨最大切深值除以第一砂輪研磨最大切深值,以獲得縮放倍率值;以及根據縮放倍率值來縮放參考研磨參數區間,以獲得最佳化的加工地圖。 In addition, this creation provides a method for optimizing grinding wheel maps, including: using the controller of the grinding machine to obtain a reference processing map of the grinding wheel from a data platform. The reference processing map includes the value of the grinding line speed of the grinding wheel and the grinding and cutting of the grinding wheel under the ideal load rate The reference grinding parameter interval formed by the depth value; obtain the starting point at the ideal load rate in the reference grinding parameter interval. The starting point has the value of the first grinding wheel speed and the maximum cutting depth of the first grinding wheel; to use the grinding wheel The grinder is used for grinding, and the controller is used to set the grinding wheel to the first grinding wheel speed value. When the workpiece to be processed is ground to the first grinding wheel cutting depth value, the grinding machine outputs the first load factor; the controller is used to set the first load factor. Compared with the ideal load rate, when the first load rate is less than the ideal load rate, the estimated point (q r ) is selected, and the estimated point (q r ) has the same value of the first grinding wheel speed and greater than the starting point. The (r + 1) th grinding wheel maximum cutting depth value of the first grinding wheel maximum cutting depth value is selected when the first load ratio is greater than the ideal load ratio. q r having the same starting point of the first polishing grinding wheel line speed, and smaller than the (r + 1) abrasive grinding wheel to the maximum value of the maximum depth of cut of the cutting depth value of the first grinding wheel, whereby to obtain a first (r + 1) Load Rate is equal to the ideal load factor, where r is a positive integer greater than 1; the controller is used to divide the maximum cutting depth of the (r + 1) th grinding wheel by the maximum cutting depth of the first grinding wheel to obtain a zoom magnification value; and The reference grinding parameter interval is scaled according to the zoom magnification value to obtain an optimized processing map.

本創作的優點在於:使用本創作所提供的砂輪磨削工藝的最佳化方法,可以藉由量化的參考加工工藝參數,進行有系統的調校,以快速獲得精確的加工工藝參數,而且此加工工藝參數又可以儲存在控制器中或是上傳到資料平台,可為相同型號的砂輪對同樣種類的待加工工件進行加工時的依據。 The advantage of this creation is that using the optimization method of grinding wheel grinding technology provided by this creation, you can make systematic adjustments by quantifying the reference processing process parameters to quickly obtain accurate processing process parameters. Processing technology parameters can be stored in the controller or uploaded to the data platform, which can be the basis for the same type of workpieces to be processed for the same type of grinding wheel.

本創作的另一優點在於:不同的加工機台(磨床)只要針對同種類的待加工工件、使用同型號砂輪片,便能夠快速建立此待加工工件、砂輪與機台組合的加工工藝參數。另外,操作者也可以隨時讀取先前任一次的加工工藝參數,如同資深的磨削加工師父隨時在場,讓磨削加工調適工藝傳承方便簡單且智慧化。 Another advantage of this creation is that as long as different processing machines (grinding machines) target the same type of workpiece to be processed and use the same type of wheel disc, the processing technology parameters of the combined workpiece, wheel and machine can be quickly established. In addition, the operator can also read the previous process parameters at any time, just like a senior grinding master is present at any time, making it easier, simpler and smarter to adjust the inheritance of grinding processes.

1‧‧‧磨床 1‧‧‧ grinder

10‧‧‧基座 10‧‧‧ base

12‧‧‧第一滑軌 12‧‧‧ the first slide

14‧‧‧傳送件 14‧‧‧ transport

16‧‧‧砂輪組件 16‧‧‧Grinding wheel assembly

18‧‧‧砂輪 18‧‧‧ Grinding wheel

20‧‧‧第二滑軌 20‧‧‧Second slide

22‧‧‧控制器 22‧‧‧Controller

201‧‧‧最佳化模組 201‧‧‧ Optimization Module

202‧‧‧儲存裝置 202‧‧‧Storage device

203‧‧‧比較器 203‧‧‧ Comparator

204‧‧‧讀取器 204‧‧‧ Reader

205‧‧‧運算器 205‧‧‧ Operator

206‧‧‧輸入介面 206‧‧‧Input interface

30‧‧‧加工工件 30‧‧‧Processed workpiece

40‧‧‧資料平台 40‧‧‧ Data Platform

a,b,c,d,e,f‧‧‧參考加工地圖的邊界參考點 a, b, c, d, e, f

g,h,i,j,k,l‧‧‧最佳化加工地圖的邊界參考點 g, h, i, j, k, l‧‧‧ Optimize the boundary reference points of the processed map

m‧‧‧臨界砂輪研磨切深值 m‧‧‧Critical grinding wheel cutting depth

s‧‧‧臨界砂輪研磨線速度值 s‧‧‧Critical grinding wheel speed

p‧‧‧臨界砂輪研磨線速度值與臨界研磨砂輪切深值之交點 p‧‧‧ Intersection point of critical grinding wheel speed value and critical grinding wheel cutting depth

n‧‧‧對應於c點X座標的臨界砂輪研磨線速度值 n‧‧‧Corresponds to the critical grinding wheel linear velocity value of point c and X coordinate

q‧‧‧估計值 q‧‧‧estimate

R‧‧‧參考加工地圖之砂輪研磨線速度的中間值 R‧‧‧ Median value of grinding wheel speed of reference grinding map

F1~F9、J1~J2‧‧‧獲得縮放倍率值所進行的步驟 F1 ~ F9, J1 ~ J2‧‧‧Steps to get zoom value

G1~G4‧‧‧獲得最佳化加工地圖所進行的步驟 G1 ~ G4‧‧‧Steps to obtain optimized processing map

圖1是根據本創作所揭露的技術,表示加工地圖示意圖;圖2是根據本創作所揭露的技術,表示具有砂輪的磨床的示意圖;圖3是根據本創作所揭露的技術,表示具有砂輪的磨床中,最佳化模組構造的內部示意圖;圖4是根據本創作所揭露的技術,表示獲得縮放倍率值所進行的演算流程圖;以及圖5是根據本創作所揭露的技術,表示進行縮放程序以獲得最佳化加工地圖的流程圖。 Fig. 1 is a schematic diagram showing a map processed according to the technique disclosed in this creation; Fig. 2 is a schematic diagram showing a grinding machine with a grinding wheel according to the technique disclosed in this creation; An internal schematic diagram of the optimized module structure in a grinder; Figure 4 is a flowchart of the calculation performed to obtain the zoom ratio value according to the technology disclosed in this creation; and Figure 5 is a diagram of the calculation performed according to the technology disclosed in this creation Flow chart to zoom the program to optimize the map.

為使貴審查委員對於本創作之結構目的和功效有更進一步之瞭解與認同,茲配合圖示詳細說明如後。以下將參照圖式來描述為達成本創作目的所使用的技術手段與功效,而以下圖式所列舉之實施例僅為輔助說明,以利貴審查委員瞭解,但本案之技術手段並不限於所列舉圖式。 In order for your reviewers to have a better understanding and approval of the structural purpose and effectiveness of this creation, we will explain it in detail with the illustrations below. The following will describe the technical means and effects used to achieve the purpose of cost creation with reference to the drawings, and the examples listed in the following drawings are only for the purpose of explanation for the benefit of the review members, but the technical means in this case are not limited to the enumeration Schema.

在本創作中,所示之坐標系是採用二維的笛卡爾坐標系(Cartesian coordinate system)。二維的笛卡爾坐標系是採用(X,Y)的資料格式表示,二維的笛卡爾坐標系具有兩個值,一個是X值,另一個是Y值。其中X值是指X座標值,Y值是指Y座標值。 In this creation, the coordinate system shown is a two-dimensional Cartesian coordinate system. The two-dimensional Cartesian coordinate system is represented by the (X, Y) data format. The two-dimensional Cartesian coordinate system has two values, one is the X value and the other is the Y value. The X value refers to the X coordinate value, and the Y value refers to the Y coordinate value.

首先請參考圖1,圖1是本創作所提供的加工地圖(包含參考加工地圖以及最佳化加工地圖)示意圖。此加工地圖是一個X軸為砂輪研磨線速度值(單位是m/min)、Y軸為砂輪研磨切深值(單位是μm)所構成的XY折線圖。加工地圖(即研磨參數區)的範圍為由多條折線與X軸構成的多邊形區域,界定研磨參數區間以讓使用者在此多邊形區域中選擇可用的研磨參數。圖1中,將邊界參考點a、b、c、d、e、f以直線連結所圍繞的區域稱為參考研磨參數區間。根據本創作之實施例,此參考研磨參數區間在加工地圖中是一個六邊形,具有六個邊界參考點g、h、i、j、k、l以直線連結所圍繞的區域稱為最佳化研磨參數區間。最佳化研磨參數區間是根據研磨參數區間經過運算得到的縮放倍率值所形成的。 Please refer to FIG. 1 first. FIG. 1 is a schematic diagram of a processing map (including a reference processing map and an optimized processing map) provided by the author. This processing map is an XY line chart composed of X-axis grinding wheel speed value (unit is m / min) and Y-axis grinding wheel cutting depth value (unit is μm). The scope of the processing map (that is, the grinding parameter area) is a polygonal area composed of multiple polylines and the X axis. The grinding parameter interval is defined so that the user can select the available grinding parameters in this polygonal area. In FIG. 1, the area surrounded by the boundary reference points a, b, c, d, e, and f in a straight line is referred to as a reference polishing parameter interval. According to the embodiment of this creation, the reference grinding parameter interval is a hexagon in the processing map, and the area surrounded by six reference points g, h, i, j, k, l connected by a straight line is called the best Chemical grinding parameter interval. The optimized grinding parameter interval is formed according to the zoom factor value obtained through calculation of the grinding parameter interval.

根據本創作之實施例,砂輪供應廠商(以下簡稱砂輪廠)販售不同規格的砂輪予工件加工廠時,可一併將其該砂輪的參考加工地圖提供給工件加工廠。在一實施例中,砂輪廠可將出廠的砂輪之參考加工地圖上傳於資料平台,並隨砂輪提供QR code,加工廠時進行加工前可藉由掃描砂輪的QR code掃描從 資料平台取得參考加工地圖,直接傳進磨床的控制器中。相同的砂輪對應不同材質的加工工件,或是不同規格的砂輪對應相同材質的加工工件,應有不同的對應參考加工地圖。 According to the embodiment of the present invention, when a grinding wheel supplier (hereinafter referred to as a grinding wheel factory) sells grinding wheels of different specifications to a workpiece processing plant, the reference processing map of the grinding wheel can be provided to the workpiece processing plant. In one embodiment, the grinding wheel factory can upload the reference processing map of the manufactured wheel on the data platform, and provide the QR code with the grinding wheel. Before processing in the processing factory, the QR code can be scanned by scanning the grinding wheel. The data platform obtains the reference processing map and directly transfers it to the controller of the grinder. The same grinding wheel corresponds to processing workpieces of different materials, or different specifications of grinding wheels correspond to processing workpieces of the same material, and there should be different corresponding reference processing maps.

請繼續參考圖1。以下簡述加工地圖的形成過程。砂輪廠可將出廠前的同一規格砂輪,先裝到磨床上進行試磨,且會使用砂輪對不同材料的加工工件進行測試。圖1上的p點是砂輪製造時的規格。根據砂輪所使用的粒徑大小、尺寸、黏著劑等可以決定在最理想負載率(即磨床輸出的切削力/磨床馬達額定扭力)下,此砂輪理論的臨界砂輪研磨線速度值以及臨界砂輪研磨切深值,並以此點分別作出平行於加工地圖中X軸與Y軸的兩線段。此兩線段分別交X軸與Y軸於s點和m點。此m、p、s三點構成的直線與加工地圖中X軸與Y軸所圍繞的區域是該砂輪的臨界加工範圍。以下根據本創作之一實施例說明參考加工地圖的完成方法,砂輪對工件物料(例如模具鋼)的臨界砂輪研磨線速度值為2000m/min、臨界砂輪研磨切深值為30μm,以及理想負載率為50%(切削力10N.m/馬達額定扭力為20N.m)。當超過臨界砂輪研磨切深值時,砂輪上的顆粒會直接剝落,砂輪也會有破碎的危險。試磨時,以臨界砂輪研磨線速度值的一半,即1000m/min開始對特定加工工件30(例如模具鋼)進行研磨,並記錄於1000m/min的砂輪研磨線速度值下當機台負載率達到50%(即切削力達到10N.m/馬達額定扭力20N.m)時的砂輪研磨最大切深值(即圖1上c點的Y座標)。磨床1操作者繼續逐漸增加以及減低砂輪研磨線速度值,測試在不同砂輪研磨線速度值下,當機台負載率達到50%(即切削力達到10N.m/馬達額定扭力20N.m)時的砂輪研磨最大切深值,藉此得到如圖1之a、b、c、d、e、f點連接線所形成的參考研磨參數區間,即砂輪對工件30的參考加工地圖;a點是此砂輪對此工件的砂輪研磨最小線速度值800m/min,b點是對應砂輪研磨最小線速度值的砂輪研磨最大切深值10μm,當砂輪研磨線速度值提升時,砂輪研磨最大切深值也隨之提升, 直到超過c點的X座標(1000m/min)之後,砂輪研磨最大切深值(15μm)會維持相同值到d點,當砂輪研磨線速度值增加到超過d點的X座標(1400m/min)之後,砂輪研磨最大切深值反而會隨X軸數值的增加而下降,直到e點到達極限11μm,該砂輪對工件30的砂輪研磨最大線速度值為f點1800m/min。不同規格的砂輪針對不同材料的加工工件會有不同的加工地圖以及不同面積大小的研磨參數區間。 Please continue to refer to Figure 1. The following briefly describes the process of forming a processed map. The grinding wheel factory can put the same specifications of the grinding wheel before leaving the factory to the grinding machine for trial grinding, and will use the grinding wheel to test the workpieces of different materials. The p point in Fig. 1 is the specification when the grinding wheel is manufactured. According to the particle size, size, adhesive, etc. used by the grinding wheel, under the optimal load rate (that is, the cutting force output by the grinding machine / rated torque of the grinding machine motor), the critical grinding wheel linear speed value of the grinding wheel theory and critical grinding wheel Cut the depth value and use this point to make two line segments parallel to the X and Y axes in the processing map. The two line segments intersect the X and Y axes at points s and m, respectively. The line formed by the three points m, p, and s and the area surrounded by the X and Y axes in the machining map are the critical machining ranges of the grinding wheel. The following describes a method for completing a reference processing map according to an embodiment of the present invention. The critical wheel grinding linear speed value of the wheel to the workpiece material (such as mold steel) is 2000 m / min, the critical grinding wheel cutting depth value is 30 μm, and the ideal load factor. 50% (cutting force 10N.m / motor rated torque 20N.m). When the cutting depth of the critical grinding wheel is exceeded, the particles on the grinding wheel will be directly peeled off, and the grinding wheel may be broken. During trial grinding, start grinding at a specific processing workpiece 30 (such as mold steel) at half the critical line speed of the critical wheel, ie 1000m / min, and record the load rate of the machine at the line speed of 1000m / min When the cutting force reaches 50% (that is, the cutting force reaches 10N.m / the rated torque of the motor is 20N.m), the maximum cutting depth of the grinding wheel (that is, the Y coordinate of point c on Fig. 1). The operator of Grinder 1 continued to gradually increase and decrease the value of the grinding wheel's linear speed. Tested at different values of the grinding wheel's linear speed, when the machine load rate reached 50% (ie, the cutting force reached 10N.m / motor rated torque 20N.m) The maximum cutting depth of the grinding wheel is obtained, so as to obtain the reference grinding parameter interval formed by the connecting lines of points a, b, c, d, e, and f in FIG. 1, that is, the reference processing map of the workpiece 30 by the grinding wheel; point a is The minimum linear speed of the grinding wheel for this workpiece is 800m / min. Point b is the maximum cutting depth of the grinding wheel corresponding to the minimum linear speed of the grinding wheel. The maximum cutting depth of the wheel is 10μm. With it, Until the X coordinate (1000m / min) of point c is exceeded, the maximum cutting depth of the grinding wheel (15 μm) will maintain the same value to point d. When the grinding line speed of the wheel increases to the X coordinate (1400m / min) of point d After that, the maximum cutting depth of the grinding wheel will decrease as the value of the X axis increases until the point e reaches the limit of 11 μm. The maximum linear grinding speed of the grinding wheel for the workpiece 30 is 1800 m / min at the f point. Grinding wheels of different specifications have different processing maps and different grinding parameter intervals for different materials.

請繼續參考圖1,由g、h、i、j、k、l所圍成的六邊形是利用本創作的砂輪磨削工藝最佳化方法後,所獲得的最佳化的研磨參數區間,即最佳化的加工地圖。使用者利用本創作所提到的砂輪磨削工藝最佳化方法,可以獲得縮放倍率值。後續將此縮放倍率值對參考研磨參數區間進行縮放,以形成最佳化的研磨參數區間。在本實施例中,相同的砂輪使用於不同的磨床,因機台的剛性不同,在相同的負載率下,該機台的最佳化加工地圖會與出廠時的參考加工地圖呈現縮放的倍率關係。 Please continue to refer to FIG. 1. The hexagon surrounded by g, h, i, j, k, l is the optimized grinding parameter interval obtained after using the grinding wheel optimization method optimized by this creation. , That is, the optimized processing map. The user can obtain the zoom ratio value by using the optimization method of the grinding wheel grinding process mentioned in this creation. The reference grinding parameter interval is subsequently scaled by this zoom factor value to form an optimized grinding parameter interval. In this embodiment, the same grinding wheel is used for different grinding machines. Due to the different rigidity of the machine, under the same load factor, the optimized processing map of the machine will show a zoom ratio with the reference processing map at the factory. relationship.

接著請繼續參考圖2,圖2為本創作的一個實施例,表示具有砂輪的磨床的示意圖。本實施例的磨床1包括了基座10,基座10上設有第一滑軌12以及傳送件14,傳送件14可沿著滑軌12水平地推送待磨的加工工件30,到砂輪組件16正下方的待磨位置。砂輪組件16裝設有砂輪18,砂輪組件16可沿著第二滑軌20垂直移動,以接觸加工工件達成研磨加工。磨床1並具有控制器22,可控制砂輪18且與資料平台40進行資訊連接,以取得特定砂輪對應特定加工工件之參考加工地圖。該資料平台40可由砂輪廠、加工廠或是提供平台服務的第三方廠商建構以及提供。控制器22更包含了資料運算用的最佳化模組201(如圖3所示)。磨床1的砂輪18,可依照操作者的不同需求進行替換,例如需要研磨不同材料的工件時。 Please continue to refer to FIG. 2, which is an embodiment of the present invention, and illustrates a schematic diagram of a grinding machine with a grinding wheel. The grinding machine 1 of this embodiment includes a base 10, and the base 10 is provided with a first slide rail 12 and a conveying member 14. The conveying member 14 can push the processing workpiece 30 to be ground horizontally along the slide rail 12 to the grinding wheel assembly. The position to be ground just below 16. The grinding wheel assembly 16 is provided with a grinding wheel 18, and the grinding wheel assembly 16 can be vertically moved along the second slide rail 20 to contact the processing workpiece to achieve a grinding process. The grinding machine 1 also has a controller 22, which can control the grinding wheel 18 and perform information connection with the data platform 40 to obtain a reference processing map of a specific grinding wheel corresponding to a specific processing workpiece. The data platform 40 may be constructed and provided by a grinding wheel factory, a processing factory, or a third party manufacturer that provides platform services. The controller 22 further includes an optimization module 201 for data calculation (as shown in FIG. 3). The grinding wheel 18 of the grinding machine 1 can be replaced according to different needs of the operator, for example, when a workpiece of different materials needs to be ground.

接著請繼續參考圖3,圖3表示在具有砂輪的磨床1中,最佳化模組構造的內部示意圖。最佳化模組201中包括了儲存裝置202、比較器203、讀取 器204以及運算器205。最佳化模組201利用儲存裝置202儲存砂輪廠所提供的參考加工地圖,並利用比較器203、讀取器204以及運算器205,根據參考加工地圖運算出最佳化的縮放倍率值,藉此生成最佳化加工地圖。在本實施例中,最佳化模組201一般是微處理器(microprocessor)或是嵌入式系統。再者,儲存裝置202是非揮發性記憶體或是硬碟,讓磨床1斷電時能繼續保存加工地圖。參見圖2,控制器22亦可將最佳化加工地圖上傳至資料平台40,以構建更完整的參考加工地圖資料庫。 Please continue to refer to FIG. 3, which shows an internal schematic diagram of the optimized module structure in the grinding machine 1 with a grinding wheel. The optimization module 201 includes a storage device 202, a comparator 203, and a read 器 204 和 operative calculator 205. The optimization module 201 uses the storage device 202 to store the reference processing map provided by the grinding wheel factory, and uses the comparator 203, the reader 204, and the computing unit 205 to calculate an optimized zoom ratio value according to the reference processing map. This generates an optimized processing map. In this embodiment, the optimization module 201 is generally a microprocessor or an embedded system. Furthermore, the storage device 202 is a non-volatile memory or a hard disk, so that the grinding machine 1 can continue to save the processing map when the power of the grinder 1 is turned off. Referring to FIG. 2, the controller 22 may also upload the optimized processing map to the data platform 40 to build a more complete reference processing map database.

接著說明如何獲得縮放倍率值的詳細進行流程。請同時參考圖1與圖4,其中,圖4表示獲得縮放倍率值所進行的演算流程圖。以下詳細敘述演算流程中的各個步驟F1~F9以及步驟J1~J2。 Next, a detailed process flow of how to obtain the zoom factor is explained. Please refer to FIG. 1 and FIG. 4 at the same time, wherein FIG. 4 shows a calculation flowchart for obtaining a zoom ratio value. The steps F1 to F9 and steps J1 to J2 in the calculation process are described in detail below.

步驟F1:利用磨床1之控制器22從資料平台40取得砂輪18之參考加工地圖,以及該砂輪18對工件30的臨界砂輪研磨線速度值、臨界砂輪研磨切深值,以及理想負載率(即磨床的輸出切削力/馬達額定扭力)三個參數。根據本創作之實施例,該砂輪18對工件30的臨界砂輪研磨線速度值為2000m/min、臨界砂輪研磨切深值為30μm,以及理想負載率(即機台輸出之切削力/機台的馬達額定扭力)為50%(馬達額定扭力為20N.m,機台輸出之切削力為10N.m)。步驟F1的三個參數都是砂輪廠所提供。以最佳化模組201中的讀取器204獲得,藉此取得該參考研磨參數區間中,在該理想負載率下之起始點,例如砂輪工作區間的砂輪研磨中間線速度值為1000m/min(第一砂輪研磨線速度值),以進行步驟F2。 Step F1: Use the controller 22 of the grinder 1 to obtain the reference processing map of the grinding wheel 18 from the data platform 40, and the critical grinding wheel linear velocity value, critical grinding wheel cutting depth value of the grinding wheel 18 to the workpiece 30, and the ideal load rate (i.e. Grinder output cutting force / motor rated torque) three parameters. According to the embodiment of the present creation, the critical grinding wheel linear velocity value of the grinding wheel 18 to the workpiece 30 is 2000 m / min, the critical grinding wheel cutting depth value is 30 μm, and the ideal load factor (that is, the cutting force output by the machine / the The rated torque of the motor is 50% (the rated torque of the motor is 20N.m, and the cutting force output by the machine is 10N.m). The three parameters of step F1 are provided by the wheel factory. Obtained by the reader 204 in the optimization module 201, so as to obtain the starting point of the reference grinding parameter interval under the ideal load rate, for example, the intermediate linear speed value of the grinding wheel in the grinding wheel working area is 1000 m / min (the value of the first grinding wheel linear velocity) to perform step F2.

步驟F2:砂輪研磨中間線速度值對應參考加工地圖c點的X座標,以c點為起始點。在此步驟中,利用最佳化模組201中的讀取器204獲得取得參考加工地圖中,c點的座標值為第一砂輪研磨線速度值1000m/min(X座標),第一砂輪研磨最大切深值為15μm(Y座標)、磨床負載率(即為理想負載率)為50%(切削力為10N.m/馬達額定扭力20N.m)。後續進行步驟F3。 Step F2: The intermediate linear velocity value of the grinding wheel corresponds to the X coordinate of point c of the reference processing map, and point c is the starting point. In this step, the reader 204 in the optimization module 201 is used to obtain the reference processing map. The coordinate value of point c is the first grinding wheel linear velocity value of 1000 m / min (X coordinate), and the first grinding wheel is ground. The maximum cutting depth is 15 μm (Y coordinate), and the load rate of the grinder (that is, the ideal load rate) is 50% (the cutting force is 10N.m / the rated torque of the motor is 20N.m). Followed by step F3.

步驟F3:以c點的座標值,即砂輪研磨線速度值1000m/min(X座標),砂輪研磨最大切深值為15μm(Y座標)在磨床1上進行試磨,以控制器22記錄此時的負載率(即為第一負載率)。 Step F3: Perform the trial grinding on the grinder 1 with the coordinate value of point c, that is, the grinding wheel linear speed value of 1000 m / min (X coordinate), and the maximum cutting depth of the grinding wheel is 15 μm (Y coordinate), and record this with the controller 22. Load rate at the time (that is, the first load rate).

步驟J1:利用控制器中最佳化模組201中的比較器203,將F3步驟得到的第一負載率與c座標的理想負載率進行比較。若是第一負載率小於理想負載率,表示此機台的剛性較大,相同的砂輪研磨線速度以及負載率可達成較大的砂輪研磨切深值;該機台的最佳化加工地圖會較參考加工地圖的範圍更大,可進行F4步驟。同理,若是第一負載率大於理想負載率,表示此機台的剛性較小,相同的砂輪研磨線速度值以及負載率只能達成較小切深值;該機台的其最佳化加工地圖會較參考加工地圖的範圍更小,進行F5步驟。 Step J1: Use the comparator 203 in the optimization module 201 in the controller to compare the first load rate obtained in step F3 with the ideal load rate of the c-coordinate. If the first load rate is less than the ideal load rate, it means that the machine has greater rigidity, and the same grinding wheel linear speed and load rate can achieve a larger value of the grinding wheel cut depth; the optimized processing map of the machine will be relatively The range of the reference processing map is larger, and step F4 can be performed. Similarly, if the first load rate is greater than the ideal load rate, it means that the machine has less rigidity, and the same grinding wheel speed and load rate can only achieve a small depth of cut; the machine's optimized processing The map will be smaller than the reference processed map. Go to step F5.

步驟F4:該機台的最佳化加工地圖會較參考加工地圖的範圍更大,因此將與c點有相同X值,且Y值為該砂輪的臨界砂輪研磨切深值的n點找出,利用最佳化模組201中的運算器205,運算出n點與c點座標的中心點,獲得第一估計點q1,其砂輪研磨切深值大於該第一最大砂輪研磨切深值,在此實施例中q1點的座標為(1000,22.5),後續進行步驟F6。 Step F4: The optimized processing map of the machine will have a larger range than the reference processing map, so the point X with the same X value and the Y value of the critical wheel grinding depth of the wheel will be found. Using the calculator 205 in the optimization module 201 to calculate the center points of the n and c coordinates to obtain a first estimated point q 1 , the grinding wheel cutting depth value is greater than the first largest grinding wheel cutting depth value In this embodiment, the coordinate of the q 1 point is (1000, 22.5), and then step F6 is performed.

步驟F5:該機台的最佳化加工地圖會較參考加工地圖的範圍更小,因此將與c點有相同X值,且砂輪研磨切深值為0的點找出,利用最佳化模組201中的運算器205,運算出c點與(Xc,0)座標的中心點,獲得第一估計點q1,其砂輪研磨切深值小於第一砂輪研磨最大切深值,在此時,施力中q1點的座標為(1000,7.5),後續進行步驟F6。 Step F5: The optimized processing map of this machine will have a smaller range than the reference processing map, so the point with the same X value as point c and the grinding depth of the grinding wheel will be 0. Use the optimization model The arithmetic unit 205 in the group 201 calculates the center point of the point c and the (Xc, 0) coordinate to obtain the first estimated point q 1. The grinding wheel cutting depth value is smaller than the maximum grinding depth of the first grinding wheel. , The coordinate of the q 1 point in the force is (1000, 7.5), and then step F6 is performed.

步驟F6:經過r次選擇以及比對後(其中r為大於1的正整數),得到估計點qr的砂輪研磨線速度值及砂輪研磨切深值進行磨削,得到第(r+1)負載率,接著進行步驟J2。 Step F6: After r selections and comparisons (where r is a positive integer greater than 1), obtain the grinding wheel grinding linear velocity value and grinding wheel cutting depth value of the estimated point q r to obtain the (r + 1) th The load factor is followed by step J2.

步驟J2:利用最佳化模組201中的比較器203,將步驟F6得到的第(r+1)負載率與c點的座標的理想負載率進行比較,確認第(r+1)負載率是否等於理想負載率。因注意的是,根據使用者的設定,該第(r+1)負載率與該理想負載率之差值可有容許誤差值,讓控制器22可以更快速地完成最佳化加工地圖的運算。而容許誤差值是使用者根據所需運算時間長短而自行設定的數值,通常該容許誤差值為理想負載率的正負1~2%。例如,若是使用者想較快速獲得縮放倍率值,可將誤差值設定得較大。在此實施例中,容許誤差值為正負0.15N.m(1.5%)。若是估計點的第(r+1)負載率與c座標的負載率差值小於容許誤差值,則可進行步驟F7。若是估計點的負載率與c座標的負載率差值大於容許誤差值,則需要進行步驟F8。 Step J2: Using the comparator 203 in the optimization module 201, comparing the (r + 1) th load rate obtained in step F6 with the ideal load rate of the coordinates of point c to confirm the (r + 1) th load rate Whether it is equal to the ideal load rate. It is noted that according to the setting of the user, the difference between the (r + 1) th load rate and the ideal load rate may have an allowable error value, so that the controller 22 can complete the calculation of the optimized processing map more quickly. . The allowable error value is a value set by the user according to the required calculation time. Usually, the allowable error value is 1 to 2% of the ideal load factor. For example, if the user wants to obtain the zoom ratio value faster, the error value can be set larger. In this embodiment, the allowable error value is plus or minus 0.15N. m (1.5%). If the difference between the (r + 1) th load factor of the estimated point and the load factor of the c-coordinate is smaller than the allowable error value, step F7 may be performed. If the difference between the load factor of the estimated point and the load factor of the c-coordinate is greater than the allowable error value, step F8 is required.

步驟F7:利用最佳化模組201中的運算器205,將估計點qr的Y值(第(r+1)砂輪研磨切深值)與c點的Y值(第一砂輪研磨切深值)相除,得到縮放倍率值,並將該縮放倍率值儲存於最佳化模組201中的儲存裝置202。進行步驟F9,結束此流程。 Step F7: Using the calculator 205 in the optimization module 201, the Y value of the estimated point q r (the (r + 1) th grinding wheel cutting depth value) and the c value of the c point (the first grinding wheel cutting depth value) Value) to obtain a zoom ratio value, and store the zoom ratio value in the storage device 202 in the optimization module 201. Go to step F9 to end this process.

步驟F8:利用最佳化模組201中的運算器205,於前述估計點qr與c點之間再取一個中心點,此中心點為下一個估計點,再進行步驟F6以及步驟J2,之後則是不斷重複二分逼近法,直到估計點qr之負載率(第r+1負載率)與c點的座標的差值小於容許誤差值。 Step F8: optimization module 201 using the arithmetic unit 205, to then take the estimated points q and r c between the center point a point, this estimation center point for the next point, and then step F6 Step J2, After that, the binary approximation method is repeated repeatedly until the difference between the load factor at the estimated point q r (the r + 1th load factor) and the coordinates of the point c is less than the allowable error value.

根據以上流程得到該磨床的最佳化加工地圖的縮放倍率值以後,可由使用者自行設定或是由磨床1的控制器22自動設定將參考加工地圖進行縮放,以得到最佳化加工地圖。最後說明縮放圖形的詳細進行流程。請參考圖5,圖5表示進行縮放程序以獲得最佳化加工地圖的流程圖。後續詳述演算流程中的各個步驟G1~G4。 After obtaining the zoom magnification value of the optimized processing map of the grinding machine according to the above process, the reference processing map can be scaled by the user or the controller 22 of the grinding machine 1 to obtain the optimized processing map. Finally, the detailed process of scaling graphics will be explained. Please refer to FIG. 5, which illustrates a flowchart of performing a zooming procedure to obtain an optimized processing map. Each step G1 ~ G4 in the calculation process will be detailed later.

步驟G1:控制器22之運算器205以參考加工地圖的最大砂輪研磨線速度值(在本創作所提供的實施例中為1800m/min)及最小砂輪研磨線速度值(此實施例為800m/min),計算出參考加工地圖的中心參考點R的座標為(1300,0)(如圖1所示),並以讀取器204取得此中心參考點R。將R點設定為圖形縮放的中心點,後續進行步驟G2。 Step G1: The computing unit 205 of the controller 22 refers to the maximum grinding wheel linear velocity value (1800 m / min in the embodiment provided by the author) and the minimum grinding wheel linear velocity value (800 m / min), calculate the coordinates of the center reference point R of the reference processing map as (1300,0) (as shown in FIG. 1), and obtain this center reference point R with the reader 204. Set the R point as the center point of the graphic scaling, and then proceed to step G2.

步驟G2:以運算器205計算參考加工地圖邊界參考點a、b、c、d、e、f各點到中心參考點R的向量。例如a-R的向量為(-500,0),c-R的向量為(-300,15),以此類推,後續進行步驟G3。 Step G2: Calculate a vector from each of the reference processing map boundary reference points a, b, c, d, e, and f to the central reference point R by the operator 205. For example, the vector of a-R is (-500,0), the vector of c-R is (-300,15), and so on, and then step G3 is performed.

步驟G3:以運算器205將上述各向量乘上圖4流程所得到的縮放倍率值,並加上R的座標值,即可得到最佳化加工地圖的各邊界參考點座標值。例如,g點的座標值為a-R之向量(-500,0)乘上縮放倍率值9/5,並加上R的座標(1300,0),得到g點的座標為(400,0),以此類推得到最佳化加工地圖的g、h、i、j、k、l點座標,以界定出最佳化加工地圖的範圍。後續進行步驟G4。 Step G3: Multiply the above vectors by the calculator 205 by the zoom ratio value obtained in the flow of FIG. 4 and add the coordinate value of R to obtain the coordinate value of each boundary reference point of the optimized processing map. For example, the coordinate value of point g is a vector of aR (-500,0) multiplied by the zoom factor value of 9/5, and the coordinate of R is (1300,0). The coordinate of point g is (400,0). By analogy, the coordinates of points g, h, i, j, k, and l of the optimized processing map are obtained to define the scope of the optimized processing map. Followed by step G4.

步驟G4:利用控制器22的儲存裝置202將上述座標值以及最佳化加工地圖進行儲存,供後續進一步調整用。運算器205可採用電子試算表軟體,包含Microsoft Excel®、蘋果II型控制器的儲存裝置中的VisiCalc®、Mac OS X作業系統中附的Numbers®等等。任何具有資料輸入功能以及圖表製作功能的電子試算表都可以使用。 Step G4: Use the storage device 202 of the controller 22 to store the above coordinate values and the optimized processing map for further adjustment later. The calculator 205 can use electronic spreadsheet software, including Microsoft Excel®, VisiCalc® in the storage device of the Apple II controller, Numbers® included in the Mac OS X operating system, and the like. Any electronic spreadsheet with data entry and charting functions can be used.

在本創作的一實施例中,使用者可以磨床1的控制器22的輸入介面206或是使用外部裝置(未示於圖中)控制控制器22。外部裝置可以是個人行動助理(PDA)、智慧型手機或是電腦。 In an embodiment of the present invention, the user can control the controller 22 by using the input interface 206 of the controller 22 of the grinder 1 or by using an external device (not shown). The external device can be a personal mobile assistant (PDA), a smartphone, or a computer.

上述進行縮放流程的實施例,即是利用前述所獲得的縮放倍率值進行縮放,透過加工地圖中參考參數,使最佳化的研磨參數區間能根據砂輪廠的參考加工地圖,且可根據磨床的特性快速最佳化,不斷更新並補強資料平台, 使得最佳化的加工地圖更具實用性。較於傳統上只能依據資深人員經驗傳承、無量化的資料與較慢的調整工件參數,本創作所提供的獲得縮放倍率值與縮放流程所構成的砂輪磨削工藝的最佳化方法能夠快速且量化地獲得可進行的最佳研磨參數,並且可將資料儲存並重複的最佳化,讓經驗得以傳承,並且根據實際加工狀況不斷更新資料。 The above-mentioned embodiment of performing the zooming process is to use the obtained zoom magnification value to perform zooming. By processing the reference parameters in the map, the optimized grinding parameter interval can be processed according to the reference of the grinding wheel factory, and can be based on the grinding machine's reference. Quickly optimize features, constantly update and strengthen the data platform, Make the optimized processed map more practical. Compared with traditionally based on the experience of senior personnel, without quantitative data and slower adjustment of workpiece parameters, the optimization method of the grinding wheel grinding process composed of the obtained zoom magnification value and zooming process provided by this creation can be fast It can quantify the best grinding parameters that can be performed, and can store and repeat the optimization of the data, so that the experience can be passed on and the data can be continuously updated according to the actual processing conditions.

上述僅為本創作之較佳實施例,並非用以限定本創作之權利範圍;同時以上的描述,對於相關技術領域之專門人士應可明瞭及實施,因其他未脫離本創作所揭示之精神下所完成的等效改變或修飾,均應包含在申請專利範圍中。 The above is only a preferred embodiment of this creation, and is not intended to limit the scope of rights of this creation. At the same time, the above description should be clear and practicable to those skilled in the relevant technical field, because others do not depart from the spirit disclosed by this creation. Equivalent changes or modifications should be included in the scope of patent application.

Claims (4)

一種具有砂輪之磨床,包括:該砂輪;以及一控制器用以控制該砂輪的一砂輪研磨線速度以及一砂輪研磨切深值,其中該控制器包含一最佳化模組,用以由一資料平台取得一參考加工地圖,以及運算生成一縮放倍率值以形成一最佳化的加工地圖。A grinding machine with a grinding wheel includes: the grinding wheel; and a controller for controlling a grinding line speed and a grinding depth of the grinding wheel of the grinding wheel, wherein the controller includes an optimization module for obtaining data from The platform obtains a reference processing map, and calculates a zoom factor to generate an optimized processing map. 如請求項1所述的具有砂輪之磨床,其中該最佳化模組包含一儲存裝置用以儲存該參考加工地圖以及該縮放倍率值。The grinding machine with a grinding wheel according to claim 1, wherein the optimization module includes a storage device for storing the reference processing map and the zoom factor. 如請求項1所述的具有砂輪之磨床,其中該最佳化模組包含一運算器用以運算出該縮放倍率值。The grinding machine with a grinding wheel according to claim 1, wherein the optimization module includes an arithmetic unit for calculating the zoom ratio value. 如請求項1所述的具有砂輪之磨床,其中該最佳化模組包含一讀取器用以讀取該參考加工地圖。The grinding machine with a grinding wheel according to claim 1, wherein the optimization module includes a reader for reading the reference processing map.
TW108208796U 2019-07-05 2019-07-05 Grinding machine TWM586193U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108208796U TWM586193U (en) 2019-07-05 2019-07-05 Grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108208796U TWM586193U (en) 2019-07-05 2019-07-05 Grinding machine

Publications (1)

Publication Number Publication Date
TWM586193U true TWM586193U (en) 2019-11-11

Family

ID=69189691

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108208796U TWM586193U (en) 2019-07-05 2019-07-05 Grinding machine

Country Status (1)

Country Link
TW (1) TWM586193U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722478B (en) * 2019-07-05 2021-03-21 新代科技股份有限公司 Grinding machine and optimization method for grinding map

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722478B (en) * 2019-07-05 2021-03-21 新代科技股份有限公司 Grinding machine and optimization method for grinding map

Similar Documents

Publication Publication Date Title
TWI414376B (en) A five axis flank milling system for machining curved surface and the toolpath planning method thereof
Márquez et al. Process modeling for robotic polishing
Chakraborty Applications of the MOORA method for decision making in manufacturing environment
US20220379380A1 (en) Hybrid additive and subtractive manufacturing
Hu et al. Five-axis tool path generation based on machine-dependent potential field
Chen et al. Manufacturability analysis and process planning for additive and subtractive hybrid manufacturing of Quasi-rotational parts with columnar features
He et al. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA
CN102445922A (en) Method and device for composite machining
Xiao et al. A model-based trajectory planning method for robotic polishing of complex surfaces
CN104460525B (en) Method and system for building method of processing parts
Wu et al. A material removal model for robotic belt grinding process
Lin et al. Path planning of mechanical polishing process for freeform surface with a small polishing tool
Wang et al. Tool path generation with global interference avoidance for the robotic polishing of blisks
TWM586193U (en) Grinding machine
Wang et al. A study of the fabrication of v-groove structure in ultra-precision milling
Kim et al. A study on the precision machinability of ball end milling by cutting speed optimization
JP2008018495A (en) Working condition acquisition device and its program
Sulitka et al. Integrated force interaction simulation model for milling strategy optimization of thin-walled blisk blade machining
TWI722478B (en) Grinding machine and optimization method for grinding map
Takasugi et al. A Surface Parameter-Based Method for Accurate and Efficient Tool Path Generation
KR101570359B1 (en) system and method for generating flank milling tool path
CN210849444U (en) Grinding machine with grinding wheel
US20180246490A1 (en) Method for Providing a Travel Profile, Control Device, Machine, and Computer Program
Akintseva et al. Diagnostics of Internal-Grinding Cycles at the Design Stage
CN111176214A (en) Tool path generation method and device and milling robot