TWM583089U - 智慧型信用風險評估系統 - Google Patents

智慧型信用風險評估系統 Download PDF

Info

Publication number
TWM583089U
TWM583089U TW108204285U TW108204285U TWM583089U TW M583089 U TWM583089 U TW M583089U TW 108204285 U TW108204285 U TW 108204285U TW 108204285 U TW108204285 U TW 108204285U TW M583089 U TWM583089 U TW M583089U
Authority
TW
Taiwan
Prior art keywords
data
risk assessment
assessment system
refers
module
Prior art date
Application number
TW108204285U
Other languages
English (en)
Inventor
高銘淞
楊雅薇
陳子立
Original Assignee
輔仁大學學校財團法人輔仁大學
香港商錢匯發展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 輔仁大學學校財團法人輔仁大學, 香港商錢匯發展有限公司 filed Critical 輔仁大學學校財團法人輔仁大學
Priority to TW108204285U priority Critical patent/TWM583089U/zh
Publication of TWM583089U publication Critical patent/TWM583089U/zh

Links

Landscapes

  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

一種包括智慧型信用風險評估系統,係利用分析模型建構模組持續地由內部或外部的資料庫進行數據資料蒐集與整理從而利用機器學習方法建構出複數個評估模型,並利用接收模組接收資金申請者提供的初始申請資料,且利用搜尋模組搜尋對應的數據資料以形成關聯申請資料,再由運算模組挑選出最適模型進而進行綜合性運算以得到風險評估值。

Description

智慧型信用風險評估系統
本案係關於一種藉由軟硬體協同運作以提供風險評估值的智慧型信用風險評估系統。
隨著電子商務的演進,尋求資金的管道不再限於金融行庫種傳統路徑而已,各類型的個人對個人、個人對法人的數位借貸平台的使用者人數,年年履創新高,連帶地讓傳統的金融行庫在這波浪潮中需要不斷調整營運模式。
然而,無論資金貸與方的角色定位為何,對資金貸與方不變的是仍然需要追求精準、快速地對資金需求者進行風險評估,惟傳統的評估模式多借重於資金需求者的動產與不動產紀錄,在現在的電子商務環境與數位借貸平台中無法避免的有諸多窒礙難行處。
因此,如何提供一種不但可供傳統的金融行庫使用,亦能同時讓各種新興的數位借貸平台或其它業者使用的風險評估系統,即為各界急需要克服的課題。
為了解決習知技術的種種問題,本案係提供一種能同時供傳統的金融行庫及新興的數位借貸平台使用的智慧型信用風險評估系統。
為了達到前述及其它目的,本案提供的智慧型信用風險評估系統,係包括分析模型建構模組、接收模組、搜尋模組及運算模組。分析模型建構模組係持續地由內部或外部的資料庫進行結構型及非結構型的數據資料蒐集,並選擇性地定義、清理、轉換該些數據資料為特定的形式,從而利用機器學習方法建構出複數個評估模型;接收模組係接收資金申請者提供的初始申請資料;搜尋模組係依據該初始申請資料自內部或外部的資料庫搜尋對應的結構型及非結構型的數據資料,以形成關聯申請資料;運算模組係藉由該關聯申請資料自該複數個評估模型中挑選出最適模型,進而利用該最適模型對該初始及關聯申請資料進行綜合性運算,以得到風險評估值。
相較於習知技術,由於本案的智慧型信用風險評估系統能藉由分析模型建構模組、接收模組、搜尋模組及運算模組間的協同運作,持續地由內部或外部的資料庫進行結構型及非結構型的數據資料蒐集並利用機器學習方法建構出複數個評估模型,且藉由該關聯申請資料自該複數個評估模型中挑選出最適模型,故有效提供了能同時供傳統的金融行庫及新興的數位借貸平台使用的風險評估值。
1‧‧‧智慧型信用風險評估系統
10‧‧‧分析模型建構模組
11‧‧‧接收模組
12‧‧‧搜尋模組
13‧‧‧運算模組
2‧‧‧資料庫
3‧‧‧輸入裝置
4‧‧‧伺服器
第1圖係為本案的智慧型信用風險評估系統的結構示意圖; 以及第2圖係為本案的智慧型信用風險評估系統的作動流程示意圖。
以下是通過特定的具體實施例來說明本案所公開的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本案的優點與效果。本案可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不悖離本案的構思下進行各種修改與變更。另外,本案的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本案的相關技術內容,但所公開的內容並非用以限制本案的保護範圍。
請先參閱第1圖,係為本案的智慧型信用風險評估系統的結構示意圖。如圖所示,智慧型信用風險評估系統1包括分析模型建構模組10、接收模組11、搜尋模組12、運算模組13。
分析模型建構模組10係持續地由內部的資料庫(未圖示)或外部的資料庫2進行結構型及非結構型的數據資料蒐集,並選擇性地定義、清理、轉換該些數據資料為特定的形式,從而利用機器學習方法建構出複數個評估模型。
接收模組11係接收資金申請者利用輸入裝置3提供的初始申請資料,搜尋模組12係依據該初始申請資料自內部的資料庫或外部的資料庫2搜尋對應的結構型及非結構型的數據資料以形成關聯申請資料,而運算 模組13係藉由該關聯申請資料自該複數個評估模型中挑選出最適模型,進而利用該最適模型對該初始申請資料及關聯申請資料進行綜合性運算,以得到風險評估值並提供給外部的伺服器4。而所述風險評估值可係違約機率及與此對應的建議利率與額度。
於一實施例中,所述結構型的數據資料,係可指個人特徵、信用資料、及/或平台交易資料;所述非結構型的數據資料,係可指社群網路的社團分類、文字紀錄與圖片紀錄。其次,該個人特徵係可指經常性或非經常性收入值、債務支出比例、生活支出比例;該信用資料係可指金融帳戶資料、信用卡資料、銀行放款資料、聯徵評分、違規紀錄;該平台交易資料係可指貸款特性、認證資訊、擔保資訊;該社團分類、文字紀錄與圖片紀錄係指藉由圖形特徵、語意分析、模糊字比率獲得者。
於一實施例中,所述機器學習方法係可指羅吉斯回歸法(Logistic regression)、區別分析法(Discriminant Analysis)、極限梯度提升法(XGBoost)及/或深度學習法(deep learning)。
具體言之,羅吉斯回歸是用來分析與解釋一個名義尺度的被解釋變數與一個以上的預測變項間之關係,被解釋變數(Y)非為連續型的數值型變數,而是二元類別資料(例如:男或女、存活或死亡、違約與不違約)的型態。而區別分析可在已知分類的情況下,根據樣本資料推導出一個或一組區別函數,同時指定一種區別規則,用於確定待判別樣本的所屬類別,使誤判率降低。極限梯度提升法藉由增量訓練的方式,每次皆在原有模型基礎上新增一棵樹(新的函數)來修復上一棵樹,有利目標函數的提升。而深度學習法是一種模仿人類神經元的網路結構的演算法,能夠彼此 分享使得整體結構具有自我學習的能力。
為進一步了解本案的智慧型信用風險評估系統1的實際上的軟硬體協同運作,可一併參照第1圖及第2圖。第2圖係為第1圖的智慧型信用風險評估系統1的作動流程示意圖。
首先分析模型建構模組10及/或運算模組13可協同運作以進行資料變數定義,亦即定義內部的資料庫或外部的資料庫2的變數並了解其內涵,並根據將變數定義整理成相關表格;接著,係可將蒐集的原始資料進行轉換,以滿足各分析方法所需要的資料格式,例如,若某變數有超過50%的遺失值,則將該變數剔除(遺失定義包括空格、Null,或N/A亂碼),將所有變數以數字型態表示而非字串,且分類變數要保留分類變數的特性,和連續變數要保留連續變數之特徵,以進行因素分析。
再者,分析模型建構模組10及/或運算模組13可採取的方式是傳統會用在違約信用貸款模型的羅吉斯迴歸和區別分析,以及分類式模型中的類神經網絡進行分析與模型訓練,以及績效驗證。爾後,藉由接收模組11及/或搜尋模組12協同運作得到的相關資訊,分析模型建構模組10及/或運算模組13可再透過不同的學習與驗證方式以降低模型出現過度擬合或擬合不足現象,以利更精準找出合適的預測模型,進而利用此最適模型對該初始及關聯申請資料進行綜合性運算,以得到風險評估值。
於一實施例中,可利用本系統及/或外部資料庫中的國際線上借貸公司的公開資料進行分析並捕捉資金需求者在個人特徵、信用資料和交易平台的相關數據資料,預測結果可放貸案件的違約率能有效提升精準度約5%至10%。同時,發現顯著變數主要分為個人特徵資料和信用資料, 在個人特徵資料這類包含性別、年齡、工作年資、其他收入等,而屬於信用資料的部分則有借款人目前延遲繳款的帳戶數量、個人財務狀況查詢的次數、最新的信用卡申辦至今的月份數等
綜上所述,由於本案的智慧型信用風險評估系統能藉由分析模型建構模組、接收模組、搜尋模組、運算模組、資料庫、輸入裝置及伺服器間的協同運作,故能持續地由內部或外部的資料庫進行結構型及非結構型的數據資料蒐集,並利用機器學習方法建構出複數個評估模型,進而自該複數個評估模型中挑選出最適模型,因此,能快速、精確地提供風險評估值予傳統的金融行庫及新興的數位借貸平台使用。
以上所公開的內容僅為本案的優選可行實施例,並非因此侷限本創作的申請專利範圍,所以凡是運用本案說明書及圖式內容所做的等效技術變化,均包含於本案的申請專利範圍內。另外,本案中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。

Claims (5)

  1. 一種智慧型信用風險評估系統,係包括:分析模型建構模組,係持續地由內部或外部的資料庫進行結構型及非結構型的數據資料蒐集,並選擇性地定義、清理、轉換該些數據資料為特定的形式,從而利用機器學習方法建構出複數個評估模型;接收模組,係接收資金申請者提供的初始申請資料;搜尋模組,係依據該初始申請資料自內部或外部的資料庫搜尋對應的結構型及非結構型的數據資料,以形成關聯申請資料;以及運算模組,係藉由該關聯申請資料自該複數個評估模型中挑選出最適模型,進而利用該最適模型對該初始及關聯申請資料進行綜合性運算以得到風險評估值。
  2. 如申請專利範圍第1項所述之智慧型信用風險評估系統,其中,所述結構型的數據資料,係指個人特徵、信用資料、及/或平台交易資料;所述非結構型的數據資料,係指社群網路的社團分類、文字紀錄與圖片紀錄。
  3. 如申請專利範圍第2項所述之智慧型信用風險評估系統,其中,該個人特徵係指經常性或非經常性收入值、債務支出比例、生活支出比例;該信用資料係指金融帳戶資料、信用卡資料、銀行放款資料、聯徵評分、違規紀錄;該平台交易資料係指貸款特性、認證資訊、擔保資訊;該社團分類、文字紀錄與圖片紀錄係指藉由圖形特徵、語意分析、模糊字比率獲得者。
  4. 如申請專利範圍第1項所述之智慧型信用風險評估系統,其中,所述機器學習方法係指羅吉斯回歸法、區別分析法、極限梯度提升法及/或深度學習法。
  5. 如申請專利範圍第1項所述之智慧型信用風險評估系統,其中,所述風險評估值係指違約機率及與此對應的建議利率與額度。
TW108204285U 2019-04-09 2019-04-09 智慧型信用風險評估系統 TWM583089U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW108204285U TWM583089U (zh) 2019-04-09 2019-04-09 智慧型信用風險評估系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108204285U TWM583089U (zh) 2019-04-09 2019-04-09 智慧型信用風險評估系統

Publications (1)

Publication Number Publication Date
TWM583089U true TWM583089U (zh) 2019-09-01

Family

ID=68620986

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108204285U TWM583089U (zh) 2019-04-09 2019-04-09 智慧型信用風險評估系統

Country Status (1)

Country Link
TW (1) TWM583089U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748402B (zh) * 2020-04-09 2021-12-01 臺灣土地銀行股份有限公司 土地建築融資資訊整合平台系統
TWI798550B (zh) * 2019-12-12 2023-04-11 大陸商支付寶(杭州)信息技術有限公司 多方聯合進行風險識別的方法和裝置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI798550B (zh) * 2019-12-12 2023-04-11 大陸商支付寶(杭州)信息技術有限公司 多方聯合進行風險識別的方法和裝置
TWI748402B (zh) * 2020-04-09 2021-12-01 臺灣土地銀行股份有限公司 土地建築融資資訊整合平台系統

Similar Documents

Publication Publication Date Title
TWI712981B (zh) 風險辨識模型訓練方法、裝置及伺服器
US20180260891A1 (en) Systems and methods for generating and using optimized ensemble models
Moudud-Ul-Huq The Role of Artificial Intelligence in the Development of Accounting Systems: A Review.
Xu et al. Loan default prediction of Chinese P2P market: a machine learning methodology
Gao The use of machine learning combined with data mining technology in financial risk prevention
Sing et al. Boosted tree ensembles for artificial intelligence based automated valuation models (AI-AVM)
CN109063921A (zh) 客户风险预警的优化处理方法、装置、计算机设备和介质
CN108492001A (zh) 一种用于担保贷款网络风险管理的方法
CN113989019A (zh) 识别风险的方法、装置、设备及存储介质
Zhang et al. An attention‐based Logistic‐CNN‐BiLSTM hybrid neural network for credit risk prediction of listed real estate enterprises
Ruyu et al. A comparison of credit rating classification models based on spark-evidence from lending-club
Wang Credit risk management of consumer finance based on big data
Lee et al. Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network
TWM583089U (zh) 智慧型信用風險評估系統
Wu et al. Adaptive Feature Interaction Model for Credit Risk Prediction in the Digital Finance Landscape
Susanto et al. Fuzzy based decision support model for health insurance claim
Yangyudongnanxin Financial credit risk control strategy based on weighted random forest algorithm
Chen et al. Financial distress prediction using data mining techniques
Kotti et al. Utilizing Big Data Technology for Online Financial Risk Management
Karpenko et al. A Study of Personal Finance Practices. The Case of Online Discussions on Reddit.
Kanimozhi et al. Predicting Mortgage-Backed Securities Prepayment Risk Using Machine Learning Models
Abdou et al. Gold Price Prediction using Sentiment Analysis
Mingyu et al. Study of Forecasting and Estimation Methodology of Oilfield Development Cost Based on Machine Learning
Liu Computer Method Research on Risk Control Identification System Based on Deep Learning
Popovych Application of AI in Credit Scoring Modeling

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees