TWM572986U - Bio-sensing apparatus - Google Patents

Bio-sensing apparatus Download PDF

Info

Publication number
TWM572986U
TWM572986U TW107209623U TW107209623U TWM572986U TW M572986 U TWM572986 U TW M572986U TW 107209623 U TW107209623 U TW 107209623U TW 107209623 U TW107209623 U TW 107209623U TW M572986 U TWM572986 U TW M572986U
Authority
TW
Taiwan
Prior art keywords
light
layer
sensing
detecting device
spatial filtering
Prior art date
Application number
TW107209623U
Other languages
Chinese (zh)
Inventor
王炯翰
林伯駿
巫仁杰
鐘煒竣
Original Assignee
金佶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/989,123 external-priority patent/US10181069B2/en
Priority claimed from US16/008,037 external-priority patent/US10460188B2/en
Priority claimed from US16/008,057 external-priority patent/US10551310B2/en
Application filed by 金佶科技股份有限公司 filed Critical 金佶科技股份有限公司
Publication of TWM572986U publication Critical patent/TWM572986U/en

Links

Abstract

A bio-sensing apparatus adapted to sense biopolymers is provided. The bio-sensing apparatus includes a sensing device, a translucent device and a surface plasmon resonance layer. The translucent device is disposed on the sensing device. The surface plasmon resonance layer is disposed on the translucent device and is adapted to receive the biopolymers. The translucent device is disposed between the surface plasmon resonance layer and the sensing device.

Description

檢測裝置Testing device

本新型創作是有關於一種檢測裝置,且特別是有關於用以感測生物高聚物的一種檢測裝置。The present invention relates to a detection device, and more particularly to a detection device for sensing biopolymers.

以往的身份辨識技術例如是利用將生物特徵(例如:手指)按壓墨水後轉印到紙張上形成指紋圖形,接著再利用光學掃描輸入電腦作建檔或比對。上述的身份辨識具有無法即時處理的缺點,也無法符合現今社會中對於即時身份認證的需求。因此,電子式的生物特徵辨識裝置成為了目前科技發展的主流之一。然而,一般而言,生物特徵辨識裝置僅具備生物特徵辨識的功能。因此,如何增加生物特徵辨識裝置的其它功能,以提升生物特徵辨識裝置的附加價值也是目前開發的方向之一。In the past, the identification technology used, for example, to press a biometric feature (for example, a finger) to transfer ink onto a sheet of paper to form a fingerprint pattern, and then use an optical scan input computer to create a file or compare. The above identification has the disadvantage that it cannot be processed immediately, and it cannot meet the demand for instant identity authentication in today's society. Therefore, the electronic biometric identification device has become one of the mainstream of current technological development. However, in general, the biometric device only has the function of biometric identification. Therefore, how to increase the other functions of the biometric device to enhance the added value of the biometric device is also one of the current development directions.

本新型創作提供一種檢測裝置,能感測生物高聚物。The novel creation provides a detection device that senses biopolymers.

本新型創作一實施例的檢測裝置包括感測元件、空間濾波元件、透光元件以及表面電漿共振層。感測元件具有感測面,且包括多個空間濾波片。每一空間濾波片包括透光層以及設置於透光層上的空間濾波層。空間濾波層具有多個透光部及多個遮光部,每一透光部被多個遮光部所包圍。多個空間濾波片的多個透光層與多個空間濾波片的多個空間濾波層在感測面之法線方向上交替堆疊。透光元件配置於空間濾波元件上。空間濾波元件配置於透光元件與感測元件之間。表面電漿共振層設置於透光元件上,且用以接收生物高聚物。透光元件配置於表面電漿共振層與空間濾波元件之間。The detecting device of an embodiment of the present invention includes a sensing element, a spatial filtering element, a light transmitting element, and a surface plasma resonance layer. The sensing element has a sensing surface and includes a plurality of spatial filters. Each spatial filter includes a light transmissive layer and a spatial filter layer disposed on the light transmissive layer. The spatial filter layer has a plurality of light transmitting portions and a plurality of light blocking portions, and each of the light transmitting portions is surrounded by the plurality of light blocking portions. A plurality of light transmissive layers of the plurality of spatial filters and a plurality of spatial filter layers of the plurality of spatial filters are alternately stacked in a normal direction of the sensing surface. The light transmissive element is disposed on the spatial filter element. The spatial filter component is disposed between the light transmissive element and the sensing element. The surface plasma resonant layer is disposed on the light transmissive element and is configured to receive the biopolymer. The light transmissive element is disposed between the surface plasma resonant layer and the spatial filter element.

本新型創作一實施例的檢測裝置包括導光元件、第一反射元件、感測元件、發光元件以及表面電漿共振層。導光元件包括頂面以及相對於頂面的底面。第一反射元件設置於導光元件的底面上。感測元件配置於導光元件的底面旁。發光元件用以發出一感測光束。光束被第一反射元件反射而傳遞至感測元件。表面電漿共振層設置於導光元件上,且用以接收生物高聚物。導光元件位於表面電漿共振層與感測元件之間。The detecting device of an embodiment of the present invention includes a light guiding element, a first reflecting element, a sensing element, a light emitting element, and a surface plasma resonance layer. The light guiding element includes a top surface and a bottom surface opposite to the top surface. The first reflective element is disposed on a bottom surface of the light guiding element. The sensing element is disposed beside the bottom surface of the light guiding element. The illuminating element is configured to emit a sensing beam. The light beam is reflected by the first reflective element and transmitted to the sensing element. The surface plasma resonant layer is disposed on the light guiding element and is configured to receive the biopolymer. The light guiding element is located between the surface plasma resonant layer and the sensing element.

本新型創作提出另一種檢測裝置,包括導光元件、感測元件、表面電漿共振層及空間濾波元件。導光元件具有頂面與相對於頂面的底面。感測元件配置於導光元件的底面旁。表面電漿共振層配置於導光元件的頂面上,且用以接收生物高聚物。空間濾波元件配置於導光元件的底面與感測元件之間,其中空間濾波元件具有多個第一光通道及多個第二光通道,多個第一光通道在第一斜向方向上延伸,多個第二光通道在第二斜向方向上延伸,第一斜向方向與第二斜向方向交錯,導光元件的頂面的法線方向與第二斜向方向具有夾角β,且夾角β對應表面電漿共振層的共振角γ。The novel creation proposes another detection device comprising a light guiding element, a sensing element, a surface plasma resonance layer and a spatial filtering element. The light guiding element has a top surface and a bottom surface opposite to the top surface. The sensing element is disposed beside the bottom surface of the light guiding element. The surface plasma resonant layer is disposed on the top surface of the light guiding element and is configured to receive the biopolymer. The spatial filtering component is disposed between the bottom surface of the light guiding component and the sensing component, wherein the spatial filtering component has a plurality of first optical channels and a plurality of second optical channels, and the plurality of first optical channels extend in the first oblique direction a plurality of second optical channels extending in a second oblique direction, the first oblique direction being staggered with the second oblique direction, the normal direction of the top surface of the light guiding element having an angle β with the second oblique direction, and The angle β corresponds to the resonance angle γ of the surface plasma resonance layer.

在本新型創作的一實施例中,上述的多個第一光通道與多個第二光通道交替排列。In an embodiment of the present invention, the plurality of first optical channels and the plurality of second optical channels are alternately arranged.

在本新型創作的一實施例中,上述導光元件的頂面的法線方向與第一斜向方向具有一夾角α。In an embodiment of the present invention, the normal direction of the top surface of the light guiding element has an angle α with the first oblique direction.

在本新型創作的一實施例中,上述的夾角α及β滿足:α<β。In an embodiment of the novel creation, the angles α and β described above satisfy: α < β.

在本新型創作的一實施例中,上述的檢測裝置還包括第一反射元件,設置於導光元件的底面上,其中光束被表面電漿共振層及第一反射元件反射後傳遞至感測元件。In an embodiment of the present invention, the detecting device further includes a first reflective component disposed on a bottom surface of the light guiding component, wherein the light beam is reflected by the surface plasma resonant layer and the first reflective component and transmitted to the sensing component. .

在本新型創作的一實施例中,上述的第一反射元件包括多個第一反射部,間隔排列於導光元件的底面上。In an embodiment of the present invention, the first reflective element includes a plurality of first reflective portions spaced apart from each other on a bottom surface of the light guiding element.

在本新型創作的一實施例中,上述的檢測裝置還包括第二反射元件,設置於導光元件的頂面上,且與表面電漿共振層間隔排列,其中光束被表面電漿共振層、第一反射元件及第二反射元件反射後傳遞至感測元件。In an embodiment of the present invention, the detecting device further includes a second reflective component disposed on a top surface of the light guiding component and spaced apart from the surface plasma resonant layer, wherein the light beam is surface-plasma resonant layer, The first reflective element and the second reflective element are reflected and transmitted to the sensing element.

在本新型創作的一實施例中,上述的光束被表面電漿共振層反射後,傳遞至第一反射元件。In an embodiment of the present invention, the light beam is reflected by the surface plasma resonance layer and transmitted to the first reflective element.

在本新型創作的一實施例中,上述的空間濾波元件還具有多個第三光通道及多個第四光通道,多個第三光通道在第三斜向方向上延伸,多個第四光通道在第四斜向方向上延伸,第三斜向方向與第四斜向方向交錯,導光元件的頂面的法線方向與第三斜向方向具有夾角β2,導光元件的頂面的法線方向與第四斜向方向具有夾角β3,夾角β2及夾角β3滿足:α<β2, β3<β。In an embodiment of the present invention, the spatial filtering component further includes a plurality of third optical channels and a plurality of fourth optical channels, and the plurality of third optical channels extend in a third oblique direction, and the plurality of fourth The optical channel extends in a fourth oblique direction, and the third oblique direction is staggered with the fourth oblique direction, and a normal direction of the top surface of the light guiding element has an angle β2 with the third oblique direction, and a top surface of the light guiding element The normal direction has an angle β3 with the fourth oblique direction, and the angle β2 and the angle β3 satisfy: α<β2, β3<β.

在本新型創作的一實施例中,上述的第一光通道、第二光通道、第三光通道及第四光通道依序排列於感測元件上。In an embodiment of the present invention, the first optical channel, the second optical channel, the third optical channel, and the fourth optical channel are sequentially arranged on the sensing element.

在本新型創作的一實施例中,上述的夾角β2及夾角β3滿足:α<β2<β3<β。In an embodiment of the present invention, the angle β2 and the angle β3 described above satisfy: α<β2<β3<β.

在本新型創作的一實施例中,在感測面之法線方向上交替堆疊的多個空間濾波層的多個透光部形成分別對應多個感測單元的多個光通道,多個光通道的至少兩個光通道彼此不相平行。In an embodiment of the present invention, the plurality of light transmitting portions of the plurality of spatial filtering layers alternately stacked in the normal direction of the sensing surface form a plurality of light channels respectively corresponding to the plurality of sensing units, and the plurality of light At least two of the light channels of the channel are not parallel to each other.

基於上述,本新型創作一實施例的檢測裝置包括導光元件、感測元件、表面電漿共振層以及空間濾波元件。空間濾波元件設置多個第一光通道以及與第二光通道,其中第一光通道沿著第一斜向方向延伸、第二光通道沿著第二斜向方向延伸,且第一斜向方向與第二斜向方向交錯,第二斜向方向與導光元件的頂面的法線方向具有夾角β,夾角β對應表面電漿共振層的共振角γ。多個第一光通道用以讓被生物特徵反射的感測光束通過,進而使感測元件取得生物特徵的影像。多個第二光通道用以讓被表面電漿共振層反射的感測光束通過,進而判斷表面電漿共振層上是否有欲檢測種類之生物高聚物。本新型創作一實施例的檢測裝置兼具生物特徵辨識及感測生物高聚物的多重功能,附加價值高。Based on the above, the detecting device of the present invention includes a light guiding element, a sensing element, a surface plasma resonance layer, and a spatial filtering element. The spatial filtering component is provided with a plurality of first optical channels and a second optical channel, wherein the first optical channel extends along the first oblique direction, the second optical channel extends along the second oblique direction, and the first oblique direction Interlaced with the second oblique direction, the second oblique direction has an angle β with the normal direction of the top surface of the light guiding element, and the angle β corresponds to the resonance angle γ of the surface plasma resonance layer. The plurality of first optical channels are configured to pass the sensing beam reflected by the biometric feature, thereby causing the sensing element to acquire an image of the biometric feature. The plurality of second optical channels are used to pass the sensing beam reflected by the surface plasma resonance layer, thereby determining whether there is a biopolymer of the type to be detected on the surface plasma resonance layer. The detecting device of the present invention has the dual functions of biometric identification and sensing biopolymer, and has high added value.

為讓本新型創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will become more apparent and understood from the following description.

有關本新型創作之前述及其他技術內容、特點與功效,在以下配合參考圖式之各實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明,而並非用來限制本新型創作。並且,在下列任一實施例中,相同或相似的元件將採用相同或相似的標號。The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the embodiments. The directional terms mentioned in the following embodiments, such as "upper", "lower", "front", "back", "left", "right", etc., are only directions referring to the additional schema. Therefore, the directional terminology used is for illustrative purposes and is not intended to limit the novel creation. Also, in any of the following embodiments, the same or similar elements will be given the same or similar reference numerals.

圖1為本新型創作一實施例的檢測裝置的示意圖以及局部放大示意圖。圖2為本新型創作一實施例的檢測裝置的俯視示意圖。圖3為圖1的檢測裝置的局部R的放大示意圖。請參照圖1至圖3,檢測裝置100適於感測待測者50的手指的指紋60,且檢測裝置100包括感測元件110、透光元件130以及配置於透光元件130與感測元件110之間的空間濾波元件120。感測元件110具有感測面111,且空間濾波元件120設置於感測面111上。換句話說,在本實施例的檢測裝置100中,一感測光束適於自透光元件130往感測元件110傳遞,且上述感測光束需經過空間濾波元件120方能傳遞至感測元件110。1 is a schematic view and a partially enlarged schematic view of a detecting device according to an embodiment of the present invention. 2 is a top plan view of a detecting device according to an embodiment of the present invention. 3 is an enlarged schematic view of a portion R of the detecting device of FIG. 1. Referring to FIG. 1 to FIG. 3 , the detecting device 100 is adapted to sense the fingerprint 60 of the finger of the test subject 50 , and the detecting device 100 includes the sensing component 110 , the light transmitting component 130 , and the light transmitting component 130 and the sensing component. Spatial filtering element 120 between 110. The sensing element 110 has a sensing surface 111 and the spatial filtering component 120 is disposed on the sensing surface 111. In other words, in the detecting device 100 of the present embodiment, a sensing beam is adapted to be transmitted from the light transmitting element 130 to the sensing element 110, and the sensing beam needs to pass through the spatial filtering component 120 to be transmitted to the sensing component. 110.

本實施例的空間濾波元件120包括多個遮光部124以及多個透光部122,且每個透光部122由部分這些遮光部124包圍,亦即每個透光部122的四周都有多個遮光部124相鄰。本實施例的透光元件130配置於空間濾波元件120上,且透光元件130適於接觸待測者50的手指,進而讓待測者50的指紋60可以按壓於透光元件130上。The spatial filter component 120 of the present embodiment includes a plurality of light shielding portions 124 and a plurality of light transmitting portions 122, and each of the light transmitting portions 122 is surrounded by a portion of the light shielding portions 124, that is, there are many surrounding portions of each of the light transmitting portions 122. The light shielding portions 124 are adjacent to each other. The light transmissive element 130 of the present embodiment is disposed on the spatial filter component 120, and the light transmissive component 130 is adapted to contact the finger of the test subject 50, so that the fingerprint 60 of the test subject 50 can be pressed against the light transmissive component 130.

本實施例的透光元件130適於自待測者50的手指傳遞感測光束L1、L2及L3至空間濾波元件120,且空間濾波元件120的這些遮光部124適於遮蔽部分感測光束(此處以感測光束L2為例),另一部分感測光束(此處以感測光束L1及L3為例)適於經由這些透光部122傳遞至感測面111。The light transmissive element 130 of the present embodiment is adapted to transmit the sensing beams L1, L2, and L3 from the finger of the subject 50 to the spatial filtering element 120, and the light blocking portions 124 of the spatial filtering element 120 are adapted to shield a portion of the sensing beam ( Here, the sensing beam L2 is taken as an example), and another part of the sensing beam (herein, the sensing beams L1 and L3 are exemplified) is adapted to be transmitted to the sensing surface 111 via the light transmitting portions 122.

在本實施例的檢測裝置100中,由於空間濾波元件120的每個透光部122都有被遮光部124包圍,因此包圍透光部122的遮光部124可以控制其所包圍的透光部122下的部分感測面111所接收的感測光束,並避免來自指紋60的其他地方的散射光束傳遞至上述的透光部122下的部分感測面111。換句話說,若感測光束以過大的入射角進入本實施例的空間濾波元件120,則空間濾波元件120的遮光部124會遮擋上述入射角過大的感測光束,進而使感測元件110可以更精確得接收來自指紋60的不同位置的影像,並提升檢測裝置100的感測精度。進一步來說,待測者50的指紋60具有多個波峰62,本實施例的檢測裝置100可以讓每個透光部122下的感測面111接收到來自兩個以下的指紋60的波峰62的感測光束L1、L3,進而讓感測元件110可以感測到一個可以輕易辨析的指紋影像或指紋資訊。In the detecting device 100 of the present embodiment, since each of the light transmitting portions 122 of the spatial filtering element 120 is surrounded by the light blocking portion 124, the light shielding portion 124 surrounding the light transmitting portion 122 can control the light transmitting portion 122 surrounded by the light transmitting portion 122. The lower portion senses the sensing beam received by the surface 111 and prevents the scattered light beam from other portions of the fingerprint 60 from being transmitted to the portion of the sensing surface 111 below the light transmitting portion 122. In other words, if the sensing beam enters the spatial filtering component 120 of the embodiment at an excessive angle of incidence, the light shielding portion 124 of the spatial filtering component 120 blocks the sensing beam having an excessive incident angle, thereby allowing the sensing component 110 to It is more accurate to receive images from different positions of the fingerprint 60 and to improve the sensing accuracy of the detecting device 100. Further, the fingerprint 60 of the test subject 50 has a plurality of peaks 62. The detecting device 100 of the present embodiment can allow the sensing surface 111 under each of the light transmitting portions 122 to receive the peaks 62 from the two lower fingerprints 60. The sensing beams L1, L3, in turn, allow the sensing component 110 to sense a fingerprint image or fingerprint information that can be easily discerned.

具體來說,請參照圖1中的局部放大示意圖,本實施例的感測元件110包括多個感測單元112,這些感測單元112排列於感測面111,每個透光部122對應於這些感測單元112的其中之一。換句話說,本實施例的透光部122覆蓋於這些感測單元112上,進而讓感測單元112可以經透光部122接收感測光束。另一方面,遮光部124可以避免感測單元112接收到來自較遠區域的指紋60的感測光束,進而確保感測單元112可以接受到來自其正上方的鄰近區域的指紋的感測光束,進而使檢測裝置100可以精確的感測待測者50的指紋60的影像訊號。Specifically, referring to the partially enlarged schematic diagram in FIG. 1 , the sensing component 110 of the present embodiment includes a plurality of sensing units 112 , and the sensing units 112 are arranged on the sensing surface 111 , and each of the transparent portions 122 corresponds to One of these sensing units 112. In other words, the light transmitting portion 122 of the embodiment covers the sensing unit 112, so that the sensing unit 112 can receive the sensing beam through the light transmitting portion 122. On the other hand, the light shielding portion 124 can prevent the sensing unit 112 from receiving the sensing beam from the fingerprint 60 of the farther region, thereby ensuring that the sensing unit 112 can receive the sensing beam from the fingerprint of the adjacent region directly above it, Further, the detecting device 100 can accurately sense the image signal of the fingerprint 60 of the subject 50.

請參照圖1,詳細來說,本實施例的檢測裝置100更包括發光元件140,發光元件140適於往待測者50的手指的表面(亦即指紋60)發出感測光束。本實施例的發光元件140例如適於往待測者50的指紋60發出波長位於可見光波段或不可見光波段的感測光束,而感測元件110適於接收波長與感測光束的波長相同或相近的光束。Referring to FIG. 1, in detail, the detecting device 100 of the present embodiment further includes a light emitting element 140, and the light emitting element 140 is adapted to emit a sensing beam to the surface of the finger of the subject 50 (ie, the fingerprint 60). The illuminating element 140 of the present embodiment is, for example, adapted to emit a sensing beam having a wavelength in the visible light band or the invisible light band to the fingerprint 60 of the subject 50, and the sensing element 110 is adapted to receive the same or similar wavelength as the wavelength of the sensing beam. Beam.

進一步來說,本實施例的空間濾波元件120的遮光部124適於吸收感測光束,亦即遮光部124適於吸收波長與感測光束波長相同或相近的光束,進而讓檢測裝置100可以提供準確的指紋感測。此外,本申請中所提及的空間濾波元件120可以是由準直元件、微結構、光纖、光柵等所構成,在此不加以侷限。Further, the light shielding portion 124 of the spatial filtering component 120 of the present embodiment is adapted to absorb the sensing beam, that is, the light shielding portion 124 is adapted to absorb a light beam having the same or similar wavelength as the wavelength of the sensing beam, thereby allowing the detecting device 100 to provide Accurate fingerprint sensing. Furthermore, the spatial filtering component 120 referred to in this application may be comprised of collimating components, microstructures, optical fibers, gratings, etc., and is not limited herein.

具體來說,上述實施例中的感測元件110例如是感光耦合元件(Charged-Coupled Device, CCD)或互補式金屬氧化物半導體(Complementary Metal-Oxide Semiconductor, CMOS)等圖像感測器,而感光單元112例如是上述圖像感測器的感測畫素,但本新型創作不限於此。在其他實施例中,這些感光單元112更可以緊密排列於空間濾波元件120所覆蓋的感測面111,亦即本新型創作的實施例的空間濾波元件120可以與各種圖像感測器搭配,並提供良好的指紋感測效果。Specifically, the sensing element 110 in the above embodiment is, for example, an image sensor such as a Charged-Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (CMOS). The photosensitive unit 112 is, for example, a sensing pixel of the above-described image sensor, but the novel creation is not limited thereto. In other embodiments, the photosensitive cells 112 can be closely arranged on the sensing surface 111 covered by the spatial filtering component 120. That is, the spatial filtering component 120 of the presently-created embodiment can be matched with various image sensors. And provide good fingerprint sensing results.

圖2為了清楚說明本實施例的各元件位置及相對關係,省略繪示了檢測裝置的透光元件。請參照圖2,在本新型創作的一實施例中,空間濾波元件120的這些遮光部124及這些透光部122沿著第一方向n1、及第二方向n2在感測面111上交替排列,第一方向n1垂直於第二方向n2,且第一方向n1與第二方向n2均垂直於感測面111的法線方向N。換句話說,本實施例的每個透光部122在第一方向n1上均位於兩個遮光部124之間,且每個透光部122在第二方向n2上均位於兩個遮光部124之間,因此這些遮光部124和這些透光部122以棋盤式的排列方式排列。由於本實施例的空間濾波元件120的每個透光部122都被四個遮光部124包圍,因此可以讓感測光束更準確地自指紋60傳遞至感測面111,進而提供良好的指紋感測效果。In order to clearly explain the position and relative relationship of the components of the present embodiment, the light transmitting elements of the detecting device are omitted. Referring to FIG. 2 , in an embodiment of the present invention, the light shielding portions 124 of the spatial filtering component 120 and the transparent portions 122 are alternately arranged on the sensing surface 111 along the first direction n1 and the second direction n2 . The first direction n1 is perpendicular to the second direction n2, and the first direction n1 and the second direction n2 are both perpendicular to the normal direction N of the sensing surface 111. In other words, each of the light transmitting portions 122 of the present embodiment is located between the two light blocking portions 124 in the first direction n1, and each of the light transmitting portions 122 is located at the two light blocking portions 124 in the second direction n2. Therefore, the light shielding portions 124 and the light transmitting portions 122 are arranged in a checkerboard arrangement. Since each of the light transmitting portions 122 of the spatial filtering component 120 of the present embodiment is surrounded by the four light blocking portions 124, the sensing light beam can be more accurately transmitted from the fingerprint 60 to the sensing surface 111, thereby providing a good fingerprint feeling. Measure the effect.

請參照圖2,本實施例的發光元件140例如配置於空間濾波元件120、透光元件130和感光元件110的兩側,但本新型創作不限於此。在其他實施例中,發光元件140更可以配置於空間濾波元件120、透光元件130和感光元件110的角落、四周、或上述的組合。Referring to FIG. 2, the light-emitting element 140 of the present embodiment is disposed, for example, on both sides of the spatial filter element 120, the light-transmitting element 130, and the light-receiving element 110. However, the novel creation is not limited thereto. In other embodiments, the light-emitting element 140 may be disposed at a corner, a periphery, or a combination of the spatial filter element 120, the light-transmitting element 130, and the photosensitive element 110.

另一方面,本實施例的透光元件130的材質的折射率與空間濾波元件120的這些透光部122的材質的折射率相同,因此這些透光部122可以在空間濾波元件120和感測元件110之間提供良好地光學傳遞效果。On the other hand, the refractive index of the material of the light transmissive element 130 of the present embodiment is the same as the refractive index of the material of the light transmissive portion 122 of the spatial filter element 120. Therefore, the transparent portions 122 can be in the spatial filter element 120 and sensed. Good optical transmission between elements 110 is provided.

請參照圖2,本實施例的這些透光部122在第一方向n1上的寬度W1小於等於感測單元112在第一方向n1上的寬度,且這些透光部122在第二方向n2上的寬度W2小於等於感測單元112在第二方向n2上的寬度。請再一併參照圖1,因此,本實施例的檢測裝置100的空間濾波元件120可以良好地與待測者50的指紋60寬度匹配。進一步來說,本實施例的相鄰二遮光部124之間的節距實質上相同於感測元件110的感測單元112欲解析的距離R es(亦即所欲感測的指紋中相鄰二波峰之間的寬度),且本實施例的檢測裝置100符合 ,其中h1為透光元件130在平行於感測面111的法線方向N上的高度,h2為空間濾波元件120在平行於感測面111的法線方向N上的高度,W為每個透光部122在垂直於感測面111的法線方向N上的最小寬度。因此,本實施例的空間濾波元件120的遮光部124可以提供良好地遮光效果,避免大角度的散射光形成雜訊,進而提升檢測裝置100的感測精度。 Referring to FIG. 2, the width W1 of the light transmitting portions 122 in the first direction n1 of the present embodiment is less than or equal to the width of the sensing unit 112 in the first direction n1, and the light transmitting portions 122 are in the second direction n2. The width W2 is less than or equal to the width of the sensing unit 112 in the second direction n2. Referring to FIG. 1 together, therefore, the spatial filtering component 120 of the detecting apparatus 100 of the present embodiment can well match the width of the fingerprint 60 of the subject 50. Further, the pitch between the adjacent two light shielding portions 124 of the present embodiment is substantially the same as the distance R es that the sensing unit 112 of the sensing element 110 is to analyze (that is, adjacent to the fingerprint to be sensed). The width between the two peaks), and the detecting device 100 of the present embodiment is identical, wherein h1 is the height of the light transmitting element 130 in the normal direction N parallel to the sensing surface 111, and h2 is the spatial filtering element 120 is parallel to The height of the sensing surface 111 in the normal direction N, W is the minimum width of each of the light transmitting portions 122 in the normal direction N perpendicular to the sensing surface 111. Therefore, the light shielding portion 124 of the spatial filter component 120 of the present embodiment can provide a good light shielding effect, avoiding the formation of noise by the scattered light of a large angle, thereby improving the sensing accuracy of the detecting device 100.

另一方面,本實施例的空間濾波元件120符合: ,其中h1和h2各自為透光元件130以及空間濾波元件120在平行於感測面111的法線方向N上的高度。因此,本實施例的檢測裝置100的空間濾波元件120中的透光部122的大小可以良好地與所欲偵測的指紋60寬度匹配,進而提供良好的指紋檢測效果。 On the other hand, the spatial filtering component 120 of the present embodiment conforms to: , wherein h1 and h2 are each a height of the light transmissive element 130 and the spatial filter element 120 in a direction parallel to the normal direction N of the sensing surface 111. Therefore, the size of the light transmitting portion 122 in the spatial filtering component 120 of the detecting device 100 of the present embodiment can be well matched with the width of the fingerprint 60 to be detected, thereby providing a good fingerprint detecting effect.

請參照圖1,在本實施例中,透光元件130更包括連接面131以及表面133。表面133適於接觸待測者50的手指,連接面131連接空間濾波元件120,空間濾波元件120與感測元件110的感測面111連接,且表面133、連接面131及感測面111互相平行。因此,空間濾波元件120的這些遮光部124和透光部122沿著垂直於感測面111的法線方向N交替排列於感測面111及連接面131之間,因此可以讓感測面111上所感測到的感測光束準確對應到表面133上的指紋60。Referring to FIG. 1 , in the embodiment, the light transmitting component 130 further includes a connecting surface 131 and a surface 133 . The surface 133 is adapted to contact the finger of the test subject 50. The connection surface 131 is connected to the spatial filter component 120. The spatial filter component 120 is coupled to the sensing surface 111 of the sensing component 110, and the surface 133, the connection surface 131 and the sensing surface 111 are mutually connected. parallel. Therefore, the light shielding portion 124 and the light transmitting portion 122 of the spatial filter element 120 are alternately arranged between the sensing surface 111 and the connecting surface 131 along the normal direction N perpendicular to the sensing surface 111, so that the sensing surface 111 can be made The sensed beam sensed above corresponds exactly to the fingerprint 60 on the surface 133.

請參照圖1及圖3,本實施例的空間濾波元件120包括多個空間濾波片120a。每一空間濾波片120a包括透光層126及設置於透光層126上的空間濾波層128,空間濾波層128具有多個透光部128a及多個遮光部128b,每一透光部128a被多個遮光部128b所包圍。空間濾波層128可視為具有特定圖案的遮光層,遮光部128b即所述遮光層的遮光材料部,透光部128a即所述遮光層的透光開口。多個空間濾波片120a的多個透光層126與多個空間濾波片120a的多個空間濾波層128在感測面111之法線方向N上交替堆疊。多個空間濾波片120a之多個空間濾波層128的多個遮光部128b定義空間濾波元件120的遮光部124。多個空間濾波片120a之多個空間濾波層128的多個透光部128a定義空間濾波元件120的透光部128a。Referring to FIG. 1 and FIG. 3, the spatial filter component 120 of the present embodiment includes a plurality of spatial filters 120a. Each spatial filter 120a includes a light transmissive layer 126 and a spatial filter layer 128 disposed on the light transmissive layer 126. The spatial filter layer 128 has a plurality of transparent portions 128a and a plurality of light blocking portions 128b, and each of the transparent portions 128a is The plurality of light blocking portions 128b are surrounded. The spatial filter layer 128 can be regarded as a light-shielding layer having a specific pattern, the light-shielding portion 128b is a light-shielding material portion of the light-shielding layer, and the light-transmitting portion 128a is a light-transmitting opening of the light-shielding layer. The plurality of light transmissive layers 126 of the plurality of spatial filters 120a and the plurality of spatial filter layers 128 of the plurality of spatial filters 120a are alternately stacked in the normal direction N of the sensing faces 111. The plurality of light blocking portions 128b of the plurality of spatial filter layers 128 of the plurality of spatial filters 120a define the light blocking portions 124 of the spatial filter elements 120. The plurality of light transmitting portions 128a of the plurality of spatial filter layers 128 of the plurality of spatial filters 120a define the light transmitting portions 128a of the spatial filter elements 120.

請參照圖1及圖3,值得注意的是,本實施例的檢測裝置100更包括表面電漿共振(Surface Plasmon Resonance)層SPR。表面電漿共振層SPR設置於透光元件130的表面133上。透光元件130配置於表面電漿共振層SPR與空間濾波元件120之間。在本實施例中,表面電漿共振層SPR的材質例如包括金屬,表面電漿共振層SPR的厚度例如約50奈米(nm),但本新型創作不以此為限。Referring to FIG. 1 and FIG. 3, it is noted that the detecting apparatus 100 of the embodiment further includes a surface plasmon resonance layer SPR. The surface plasma resonance layer SPR is disposed on the surface 133 of the light transmissive element 130. The light transmissive element 130 is disposed between the surface plasma resonance layer SPR and the spatial filter element 120. In the present embodiment, the material of the surface plasma resonance layer SPR includes, for example, a metal, and the thickness of the surface plasma resonance layer SPR is, for example, about 50 nanometers (nm), but the present invention is not limited thereto.

表面電漿共振層SPR用以接收生物高聚物(Biopolymers)80,例如:汗水、血液、尿液、細菌、病毒等,但本新型創作不以此為限。至少一發光元件140用以向表面電漿共振層SPR發出感測光束L4。被表面電漿共振層SPR反射的感測光束L4具有各種反射角θr;生物高聚物80形成於表面電漿共振層SPR上時,具有各種反射角θr中特定角度(即共振角)之部分感測光束L4的反射率會驟降;感測元件110接收被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4;分析感測元件110接收到之感測光束L4的光分佈便可推知所述特定角度(即共振角)為何。藉由所述特定角度,便能辨識出設置於表面電漿共振層SPR上的生物高聚物80是否為特定的一種生物高聚物80。以下配合圖4舉例說明之。The surface plasma resonance layer SPR is used to receive biopolymers 80, such as sweat, blood, urine, bacteria, viruses, etc., but the novel creation is not limited thereto. The at least one light emitting element 140 is configured to emit the sensing light beam L4 to the surface plasma resonant layer SPR. The sensing beam L4 reflected by the surface plasma resonance layer SPR has various reflection angles θr; when the biopolymer 80 is formed on the surface plasma resonance layer SPR, it has a specific angle (ie, resonance angle) among various reflection angles θr The reflectance of the sensing beam L4 may drop; the sensing element 110 receives the sensing beam L4 having various reflection angles θr reflected by the surface plasma resonance layer SPR; and the light of the sensing beam L4 received by the sensing element 110 is analyzed. The distribution can infer why the particular angle (ie, the resonance angle) is. From the specific angle, it can be recognized whether the biopolymer 80 disposed on the surface plasma resonance layer SPR is a specific biopolymer 80. The following is exemplified in conjunction with FIG. 4.

圖4示出被表面電漿共振層SPR反射之感測光束L4的各種反射角θr及其反射率的關係。請參照圖3及圖4,舉例而言,第一種生物高聚物80形成於表面電漿共振層SPR上時,被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4於特定角度θr1的反射率會驟降,分析感測元件110所接收之被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4便可推知特定角度θr1為何,藉由特定角度θr1,便能辨識設置於表面電漿共振層SPR上的生物高聚物80為第一種生物高聚物80;第二種生物高聚物80形成於表面電漿共振層SPR上時,被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4於特定角度θr2的反射率會驟降,分析感測元件110所接收之被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4便可推知特定角度θr2為何,藉由特定角度θr2,便能辨識設置於表面電漿共振層SPR上的生物高聚物80為第二種生物高聚物80;第三種生物高聚物80形成於表面電漿共振層SPR上時,被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4於特定角度θr3的反射率會驟降,分析感測元件110所接收之被表面電漿共振層SPR反射之具有各種反射角θr的感測光束L4便可推知特定角度θr3為何,藉由特定角度θr3,便能辨識設置於表面電漿共振層SPR上的生物高聚物80為第三種生物高聚物80。4 shows the relationship between various reflection angles θr of the sensing light beam L4 reflected by the surface plasma resonance layer SPR and its reflectance. Referring to FIG. 3 and FIG. 4, for example, when the first biopolymer 80 is formed on the surface plasma resonance layer SPR, the sensing beam L4 having various reflection angles θr is reflected by the surface plasma resonance layer SPR. The reflectance at a specific angle θr1 is diminished, and the sensing beam L4 having various reflection angles θr reflected by the surface plasma resonance layer SPR received by the sensing element 110 can be used to infer the specific angle θr1 by a specific angle. Θr1, it can be recognized that the biopolymer 80 disposed on the surface plasma resonance layer SPR is the first biopolymer 80; when the second biopolymer 80 is formed on the surface plasma resonance layer SPR, The reflectance of the sensing beam L4 having various reflection angles θr reflected by the surface plasma resonance layer SPR at a certain angle θr2 is abruptly decreased, and the analysis of the sensing element 110 is reflected by the surface plasma resonance layer SPR having various reflection angles. The sensing beam L4 of θr can infer why the specific angle θr2, by the specific angle θr2, can identify the biopolymer 80 disposed on the surface plasma resonance layer SPR as the second biopolymer 80; Biopolymer 80 is formed on the surface On the slurry resonance layer SPR, the reflectance of the sensing beam L4 having various reflection angles θr reflected by the surface plasma resonance layer SPR at a specific angle θr3 is abruptly decreased, and the surface resist resonance received by the sensing element 110 is analyzed. The sensing beam L4 having various reflection angles θr reflected by the layer SPR can infer why the specific angle θr3, and by the specific angle θr3, the biopolymer 80 disposed on the surface plasma resonance layer SPR can be identified as the third type. Biopolymer 80.

圖5是本新型創作一實施例的檢測裝置的剖面示意圖。圖6是圖1中的空間濾波元件的俯視示意圖。請參照圖5及圖6,本新型創作一實施例的檢測裝置100A具有擷取待測者50之生物特徵的功能。舉例而言,生物特徵可為指紋或靜脈,但不以此為限。Fig. 5 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Figure 6 is a top plan view of the spatial filtering component of Figure 1. Referring to FIG. 5 and FIG. 6, the detecting apparatus 100A of the present invention has the function of extracting the biological features of the person to be tested 50. For example, the biometric feature can be a fingerprint or a vein, but is not limited thereto.

檢測裝置100A包括透光元件130、發光元件140、感測元件110以及空間濾波元件120A。感測元件110配置在發光元件140旁。發光元件140與感測元件110位於透光元件130的同一側。空間濾波元件。The detecting device 100A includes a light transmitting element 130, a light emitting element 140, a sensing element 110, and a spatial filtering element 120A. The sensing element 110 is disposed beside the light emitting element 140. The light emitting element 140 and the sensing element 110 are located on the same side of the light transmitting element 130. Spatial filtering components.

120A配置在透光元件130與感測元件110之間,且空間濾波元件120A可藉由黏著層(未繪示)或固定機構(未繪示)而固定在透光元件130與感測元件110之間。The 120A is disposed between the light transmitting component 130 and the sensing component 110, and the spatial filtering component 120A can be fixed to the light transmitting component 130 and the sensing component 110 by an adhesive layer (not shown) or a fixing mechanism (not shown). between.

透光元件130適於保護位於其下的元件,其可以是玻璃基板或塑膠基板。玻璃基板可以是經化學強化或物理強化的玻璃基板,也可以是未經強化的玻璃基板。塑膠基板可以是聚碳酸酯(polycarbonate, PC)、聚對苯二甲酸乙二酯(polyethylene terephthalate, PET)、聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)或聚醯亞胺(polyimide, PI)等,但不以此為限。The light transmissive element 130 is adapted to protect an element located thereunder, which may be a glass substrate or a plastic substrate. The glass substrate may be a chemically strengthened or physically strengthened glass substrate or an unreinforced glass substrate. The plastic substrate may be polycarbonate (PC), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA) or polyimide (PI), etc. , but not limited to this.

透光元件130具有內表面SI以及與內表面SI相對的表面133。透光元件130的內表面SI為透光元件130面向感測元件110的表面,而透光元件130的表面133為待測者50的接觸面。也就是說,待測者50碰觸透光元件130的表面133以進行生物特徵識別。The light transmissive element 130 has an inner surface SI and a surface 133 opposite the inner surface SI. The inner surface SI of the light transmissive element 130 is the surface of the light transmissive element 130 facing the sensing element 110, and the surface 133 of the light transmissive element 130 is the contact surface of the subject 50. That is, the subject 50 touches the surface 133 of the light transmitting member 130 for biometric recognition.

發光元件140適於提供照射待測者50的光束B。發光元件140可以包括多個發光元件142。各發光元件142朝向待測者50發出光束B。多個發光元件142可以包括發光二極體、雷射二極體或上述兩者的組合。此外,光束B可以包括可見光、非可見光或上述兩者的組合。非可見光可為紅外光,但不以此為限。The illuminating element 140 is adapted to provide a beam B that illuminates the subject 50. Light emitting element 140 can include a plurality of light emitting elements 142. Each of the light-emitting elements 142 emits a light beam B toward the person to be tested 50. The plurality of light emitting elements 142 may include a light emitting diode, a laser diode, or a combination of the two. Further, the light beam B may include visible light, non-visible light, or a combination of the two. The non-visible light may be infrared light, but is not limited thereto.

感測元件110適於接收光束B被待測者50反射的部分(即帶有指紋圖案資訊的光束B1)。在一實施例中,感測元件110內可整合有脈寬調變電路。藉由脈寬調變電路控制多個發光元件142的發光時間與感測元件110的取像時間,使多個發光元件142的發光時間與感測元件110的取像時間同步,可達到精確控制的效果,但不以此為限。Sensing element 110 is adapted to receive a portion of beam B that is reflected by subject 50 (ie, beam B1 with fingerprint pattern information). In an embodiment, a pulse width modulation circuit can be integrated into the sensing component 110. The illuminating time of the plurality of illuminating elements 142 and the taking time of the sensing element 110 are controlled by the pulse width modulation circuit, so that the illuminating time of the plurality of illuminating elements 142 is synchronized with the taking time of the sensing element 110, and the precision can be achieved. The effect of the control, but not limited to this.

空間濾波元件120A適於將光束B被待測者50反射且朝感測元件110傳遞的部分準直化。空間濾波元件120A包括多個彼此重疊的空間濾波片120a。在本實施例中,空間濾波元件120A包括第一空間濾波片120a-1以及第二空間濾波片120a-2等兩個空間濾波片,且第一空間濾波片120a-1配置在第二空間濾波片120a-2與感測元件110之間。然而,空間濾波元件120A中空間濾波片的數量及多個空間濾波片之間的相互配置關係可依需求改變,而不以圖5所顯示的為限。The spatial filtering component 120A is adapted to collimate the portion of the beam B that is reflected by the subject 50 and that is transmitted toward the sensing element 110. Spatial filter element 120A includes a plurality of spatial filters 120a that overlap each other. In this embodiment, the spatial filtering component 120A includes two spatial filters such as the first spatial filter 120a-1 and the second spatial filter 120a-2, and the first spatial filter 120a-1 is configured in the second spatial filtering. The sheet 120a-2 is between the sensing element 110. However, the number of spatial filters in the spatial filter component 120A and the mutual configuration relationship between the plurality of spatial filters may vary as desired, and are not limited to those shown in FIG.

多個空間濾波片120a的每一個包括透光層126以及配置在透光層126上的空間濾波層128。舉例而言,第一空間濾波片120a-1包括透光層126以及空間濾波層128,其中空間濾波層128配置在透光層126面向感測元件110的表面S1421S上且位於透光層126與感測元件110之間。第二空間濾波片120a-2包括透光層126、第一空間濾波層128-1以及第二空間濾波層128-2,其中第一空間濾波層128-1配置在透光層126面向感測元件110的表面S1441S上且位於第一空間濾波片120a-1的透光層126與第二空間濾波片120a-2的透光層126之間,而第二空間濾波層128-2配置在透光層126面向透光元件130的表面S1441C上且位於透光元件130與第二空間濾波片120a-2的透光層126之間。Each of the plurality of spatial filters 120a includes a light transmissive layer 126 and a spatial filter layer 128 disposed on the light transmissive layer 126. For example, the first spatial filter 120a-1 includes a light transmissive layer 126 and a spatial filter layer 128, wherein the spatial filter layer 128 is disposed on the surface S1421S of the light transmissive layer 126 facing the sensing element 110 and located at the transparent layer 126 and Between the sensing elements 110. The second spatial filter 120a-2 includes a light transmissive layer 126, a first spatial filter layer 128-1, and a second spatial filter layer 128-2, wherein the first spatial filter layer 128-1 is disposed on the light transmissive layer 126 facing the sensing The surface S1441S of the element 110 is located between the light transmissive layer 126 of the first spatial filter 120a-1 and the light transmissive layer 126 of the second spatial filter 120a-2, and the second spatial filter layer 128-2 is disposed in the surface. The light layer 126 faces the surface S1441C of the light transmitting element 130 and is located between the light transmitting element 130 and the light transmitting layer 126 of the second spatial filter 120a-2.

應說明的是,各空間濾波片120a中的透光層126的數量、空間濾波層128的數量、透光層126與空間濾波層128的相對配置關係及空間濾波層128的形成方法可以根據需求而改變,並不以圖5所顯示的為限。在本實施例中,透光層126的表面S1441S上形成有多個凹陷C,且空間濾波層128配置在透光層126的多個凹陷C中,使得空間濾波層128的外表面T1442與表面S1441S未形成有多個凹陷C的部分齊平。形成空間濾波層128的方法可包括以下步驟。首先,在透光層126的表面S1441S上形成多個凹陷C。其次,於多個凹陷C中形成吸光材料。然後,固化吸光材料以形成空間濾波層128。在一實施例中,透光層126及其多個凹陷C可以利用模鑄成型,而可省略形成多個凹陷C的步驟。It should be noted that the number of the light transmissive layers 126, the number of the spatial filter layers 128, the relative arrangement relationship between the light transmissive layer 126 and the spatial filter layer 128, and the formation method of the spatial filter layer 128 in each spatial filter 120a can be determined according to requirements. The change is not limited to the one shown in Figure 5. In the present embodiment, a plurality of recesses C are formed on the surface S1441S of the light transmissive layer 126, and the spatial filter layer 128 is disposed in the plurality of recesses C of the light transmissive layer 126 such that the outer surface T1442 and the surface of the spatial filter layer 128 S1441S is not formed with a plurality of recesses C partially flush. The method of forming the spatial filter layer 128 can include the following steps. First, a plurality of recesses C are formed on the surface S1441S of the light transmissive layer 126. Next, a light absorbing material is formed in the plurality of depressions C. The light absorbing material is then cured to form a spatial filter layer 128. In an embodiment, the light transmissive layer 126 and its plurality of depressions C may be formed by die casting, and the step of forming a plurality of depressions C may be omitted.

在各空間濾波片120a中,透光層126提供空間濾波層128的承載面,其可以是玻璃基板或塑膠基板。空間濾波層128用以吸收光束B被待測者50反射的部分中的大角度光束(如光束B2及光束B3),以達到將傳遞至感測元件110的光束準直化的效果。空間濾波層128具有高吸收率以及低反射率,以降低傳遞至空間濾波層128的光束被空間濾波層128反射的比例以及光束被空間濾波層128反射的次數,進而有效降低大角度光束被感測元件110接收到的比例。所述低反射率是指反射率在可見光波段及紅外光波段低於10%。舉例而言,空間濾波層128可以是低反射率的油墨,但不以此為限。In each of the spatial filters 120a, the light transmissive layer 126 provides a bearing surface of the spatial filtering layer 128, which may be a glass substrate or a plastic substrate. The spatial filtering layer 128 is used to absorb large angle beams (such as the beam B2 and the beam B3) in the portion of the beam B that is reflected by the subject 50 to achieve the effect of collimating the beam transmitted to the sensing element 110. The spatial filter layer 128 has a high absorption rate and a low reflectance to reduce the proportion of the light beam transmitted to the spatial filter layer 128 being reflected by the spatial filter layer 128 and the number of times the light beam is reflected by the spatial filter layer 128, thereby effectively reducing the sense of the large angle beam. The ratio received by component 110 is measured. The low reflectance means that the reflectance is less than 10% in the visible light band and the infrared light band. For example, the spatial filter layer 128 can be a low reflectivity ink, but is not limited thereto.

此外,為了使光束B被待測者50反射的部分(如光束B1)能夠被感測元件110接收,空間濾波層包括多個透光部128a。多個透光部128a暴露出感測元件110的多個感測單元112。具體地,空間濾波層128的多個透光部128a對應感測元件110的多個感測單元112設置。Further, in order to enable the portion of the beam B that is reflected by the subject 50 (such as the beam B1) to be received by the sensing element 110, the spatial filtering layer includes a plurality of light transmitting portions 128a. The plurality of light transmitting portions 128a expose the plurality of sensing units 112 of the sensing element 110. Specifically, the plurality of transparent portions 128a of the spatial filter layer 128 are disposed corresponding to the plurality of sensing units 112 of the sensing element 110.

多個透光部128a的間距為S。多個透光部128a的每一個的寬度為W,且0.3W<S。第一空間濾波片120a-1的透光層126的厚度為T1。第二空間濾波片120a-2的透光層126的厚度為T2。檢測裝置100A滿足: 。此處,空間濾波片120a的透光層126的厚度是指空間濾波片120a中所有的透光層126的厚度總合。在本實施例中,第一空間濾波片120a-1僅包括一個透光層126,且第二空間濾波片120a-2僅包括一個透光層126。因此,第一空間濾波片120a-1的透光層厚度T1即一個透光層126的厚度,而第二空間濾波片120a-2的透光層厚度T2即一個透光層126的厚度,但不以此為限。 The pitch of the plurality of light transmitting portions 128a is S. Each of the plurality of light transmitting portions 128a has a width W and 0.3 W < S. The thickness of the light transmissive layer 126 of the first spatial filter 120a-1 is T1. The thickness of the light transmissive layer 126 of the second spatial filter 120a-2 is T2. The detecting device 100A satisfies: . Here, the thickness of the light transmissive layer 126 of the spatial filter 120a refers to the total thickness of all the light transmissive layers 126 in the spatial filter 120a. In the present embodiment, the first spatial filter 120a-1 includes only one light transmissive layer 126, and the second spatial filter 120a-2 includes only one light transmissive layer 126. Therefore, the thickness T1 of the transparent layer of the first spatial filter 120a-1 is the thickness of one transparent layer 126, and the thickness T2 of the transparent layer of the second spatial filter 120a-2 is the thickness of one transparent layer 126, but Not limited to this.

藉由 的設計,可使大角度的光束(如光束B2及光束B3)在多個空間濾波片120a之間經由多次反射而被空間濾波層128吸收,進而有效改善串擾問題,使檢測裝置100A具有良好的辨識能力。在一實施例中,檢測裝置100A若滿足 的設計,可進一步降低大角度光束被感測元件110接收的比例,使訊噪比有效提升,而有助於後端辨識訊號與雜訊,進而提升辨識的成功率。在又一實施例中,檢測裝置100A若滿足 ,訊噪比可趨近於0。 By The design enables the large-angle beam (such as the beam B2 and the beam B3) to be absorbed by the spatial filtering layer 128 between the plurality of spatial filters 120a via multiple reflections, thereby effectively improving the crosstalk problem and making the detecting device 100A good. Identification ability. In an embodiment, if the detecting device 100A is satisfied The design can further reduce the proportion of the large-angle beam received by the sensing component 110, so that the signal-to-noise ratio can be effectively improved, and the back-end can identify the signal and the noise, thereby improving the recognition success rate. In still another embodiment, the detecting device 100A is satisfied The signal-to-noise ratio can approach zero.

請參照圖5,本實施例的檢測裝置100A更包括表面電漿共振(Surface Plasmon Resonance)層SPR。檢測裝置100A之表面電漿共振層SPR的功能與前述檢測裝置100之表面電漿共振層SPR的功能相同,於此便不再重述。Referring to FIG. 5, the detecting device 100A of the present embodiment further includes a Surface Plasmon Resonance layer SPR. The function of the surface plasma resonance layer SPR of the detecting device 100A is the same as that of the surface plasma resonance layer SPR of the detecting device 100, and will not be repeated here.

圖7是本新型創作一實施例的檢測裝置的剖面示意圖。圖8及圖9分別是圖7的實施例的檢測裝置100B在無製程公差及有製程公差的情況下的上視示意圖。Fig. 7 is a cross-sectional view showing the detecting device of the embodiment of the present invention. 8 and 9 are schematic top views of the detecting device 100B of the embodiment of FIG. 7 in the absence of process tolerances and process tolerances, respectively.

請先參照圖7及圖8,檢測裝置100B適於擷取待測物的生物特徵。舉例而言,待測物可為手指或手掌,而生物特徵可為指紋、掌紋或靜脈,但不以此為限。Referring first to FIG. 7 and FIG. 8, the detecting device 100B is adapted to capture the biological characteristics of the object to be tested. For example, the object to be tested may be a finger or a palm, and the biological feature may be a fingerprint, a palm print or a vein, but is not limited thereto.

檢測裝置100B包括透光元件130、感測元件110以及空間濾波元件120B。The detecting device 100B includes a light transmitting element 130, a sensing element 110, and a spatial filtering element 120B.

空間濾波元件120B配置在透光元件130與感測元件110之間,其適於準直化被待測物反射且朝感測元件110傳遞的光束。進一步而言,空間濾波元件120B包括彼此重疊的第一空間濾波層128-1、第二空間濾波層128-2以及第三空間濾波層128-3。The spatial filter element 120B is disposed between the light transmissive element 130 and the sensing element 110 and is adapted to collimate a light beam that is reflected by the object under test and that is transmitted toward the sensing element 110. Further, the spatial filtering component 120B includes a first spatial filtering layer 128-1, a second spatial filtering layer 128-2, and a third spatial filtering layer 128-3 that overlap each other.

為了使被待測物反射的光束能夠被感測元件110接收,第一空間濾波層128-1、第二空間濾波層128-2以及第三空間濾波層128-3分別具有多個第一透光部128a1、多個第二透光部128a2以及多個第三透光部128a3。各第一透光部128a1重疊於其中一個第二透光部128a2、其中一個第三透光部128a3以及對應的一個感測單元112,以使朝感測單元112傳遞的小角度光束可經由彼此重疊的一個第一透光部128a1、一個第二透光部128a2以及一個第三透光部128a3而傳遞至對應的一個感測單元112。In order to enable the light beam reflected by the object to be tested to be received by the sensing element 110, the first spatial filtering layer 128-1, the second spatial filtering layer 128-2, and the third spatial filtering layer 128-3 respectively have a plurality of first transparent The light portion 128a1, the plurality of second light transmitting portions 128a2, and the plurality of third light transmitting portions 128a3. Each of the first light transmitting portions 128a1 is overlapped with one of the second light transmitting portions 128a2, one of the third light transmitting portions 128a3, and the corresponding one of the sensing units 112, so that the small angle light beams transmitted to the sensing unit 112 can pass through each other. One of the first light transmitting portions 128a1, one second light transmitting portion 128a2, and one third light transmitting portion 128a3 are transferred to the corresponding one of the sensing units 112.

空間濾波元件120B滿足:各第三透光部128a3的尺寸SO3大於或等於各第二透光部128a2的尺寸SO2,且各第二透光部128a2的尺寸SO2大於各第一透光部128a1的尺寸SO1;或各第三透光部128a3的尺寸SO3大於各第二透光部128a2的尺寸SO2,且各第二透光部128a2的尺寸SO2大於或等於各第一透光部128a1的尺寸SO1。在上述透光部的形狀為圓形的架構下,所述透光部的尺寸是指透光部的直徑。在上述透光部的形狀為方形、其他多邊形或上述形狀的結合的架構下,所述透光部的尺寸是指透光部的其中一邊的寬度。The spatial filtering element 120B satisfies that the size SO3 of each of the third light transmitting portions 128a3 is greater than or equal to the size SO2 of each of the second light transmitting portions 128a2, and the size SO2 of each of the second light transmitting portions 128a2 is greater than that of each of the first light transmitting portions 128a1. The size SO1 of the third light transmitting portion 128a3 is larger than the size SO2 of each of the second light transmitting portions 128a2, and the size SO2 of each of the second light transmitting portions 128a2 is greater than or equal to the size of each of the first light transmitting portions 128a1. . In the structure in which the shape of the light transmitting portion is circular, the size of the light transmitting portion refers to the diameter of the light transmitting portion. In the structure in which the shape of the light transmitting portion is a square, another polygon, or a combination of the above shapes, the size of the light transmitting portion refers to the width of one side of the light transmitting portion.

在多個空間濾波層128的多個透光部的尺寸皆相同的情況下,多個透光部的尺寸越大,則感測單元112的進光量越大,但容易有串擾問題。相反地,多個透光部的尺寸越小,雖然能有效改善串擾問題,但容易造成進光量過小。此外,不同空間濾波層的多個透光部的中心可能因製程公差而無法對齊。也就是說,較靠近感測單元112的空間濾波層可能遮蔽到其上方的透光部(遮孔現象),使得各感測單元112所對應的有效開口值(不同空間濾波層的多個透光部的交集區域)比預設的有效開口值(即透光部的尺寸)小,進而造成各感測單元112的實際進光量小於各感測單元112的預設進光量。In the case where the sizes of the plurality of light transmitting portions of the plurality of spatial filter layers 128 are the same, the larger the size of the plurality of light transmitting portions, the larger the amount of light entering the sensing unit 112, but the crosstalk problem is likely to occur. Conversely, the smaller the size of the plurality of light transmitting portions, although the crosstalk problem can be effectively improved, the amount of light entering is easily caused to be too small. In addition, the centers of the plurality of light transmissive portions of the different spatial filter layers may not be aligned due to process tolerances. That is to say, the spatial filtering layer closer to the sensing unit 112 may shield the light transmitting portion (the hole blocking phenomenon) above it, so that the effective opening values corresponding to the sensing units 112 (the multiple spatial filtering layers are transparent) The intersection of the light portions is smaller than the preset effective opening value (ie, the size of the light transmitting portion), thereby causing the actual light input amount of each sensing unit 112 to be smaller than the preset light input amount of each sensing unit 112.

有鑑於上述,本實施例在設計不同空間濾波層的多個透光部的尺寸時,將串擾問題、進光量以及製程公差所造成的遮孔現象皆納入考量。舉例而言,依據各感測單元112的尺寸、相鄰兩感測單元112的橫向距離D以及相鄰兩空間濾波層之間的縱向距離(包括縱向距離D’及縱向距離D’’)設計第一空間濾波層128-1的第一透光部128a1的尺寸SO1,以同時改善串擾及進光量過小的問題。此外,還藉由使其餘空間濾波層128中的至少一層(如第二空間濾波層128-2及第三空間濾波層128-3的其中至少一個)的透光部的尺寸大於第一空間濾波層128-1的第一透光部128a1的尺寸SO1。如此,即使因為製程公差使得不同空間濾波層的多個透光部的中心無法對齊(參見圖9),也可有效避免較靠近感測單元112的空間濾波層遮蔽到其上方的透光部,使得各感測單元112所對應的有效開口值等於或近似於預設的有效開口值(即第一透光部128a1的尺寸SO1),進而在改善串擾的同時,避免過度限縮感測元件110的進光量。In view of the above, in the embodiment, when designing the sizes of the plurality of transparent portions of the different spatial filter layers, the crosstalk problem, the amount of light entering, and the hole blocking phenomenon caused by the process tolerances are all taken into consideration. For example, according to the size of each sensing unit 112, the lateral distance D of two adjacent sensing units 112, and the longitudinal distance between adjacent two spatial filtering layers (including the longitudinal distance D' and the longitudinal distance D'') The size of the first light transmitting portion 128a1 of the first spatial filter layer 128-1 is SO1 to simultaneously improve the problem of crosstalk and excessive light input. In addition, the size of the light transmitting portion of at least one of the remaining spatial filtering layers 128 (such as at least one of the second spatial filtering layer 128-2 and the third spatial filtering layer 128-3) is greater than the first spatial filtering. The size of the first light transmitting portion 128a1 of the layer 128-1 is SO1. In this way, even if the centers of the plurality of light transmitting portions of the different spatial filtering layers cannot be aligned due to the process tolerance (see FIG. 9), the light transmitting portion closer to the upper portion of the sensing unit 112 can be effectively prevented from being shielded. The effective opening value corresponding to each sensing unit 112 is equal to or approximates a preset effective opening value (ie, the size SO1 of the first light transmitting portion 128a1), thereby avoiding excessively limiting the sensing element 110 while improving crosstalk. The amount of light entering.

在本實施例中,各第三透光部128a3的尺寸SO3大於各第二透光部128a2的尺寸SO2,且各第二透光部128a2的尺寸SO2大於各第一透光部128a1的尺寸SO1。此外,第一空間濾波層128-1、第二空間濾波層128-2以及第三空間濾波層128-3從感測元件110朝透光元件130排列。然而,不同透光部的尺寸相對關係以及不同空間濾波層的排列方式可依需求改變,而不以圖7所顯示的為限。In this embodiment, the size SO3 of each of the third light transmitting portions 128a3 is larger than the size SO2 of each of the second light transmitting portions 128a2, and the size SO2 of each of the second light transmitting portions 128a2 is larger than the size of each of the first light transmitting portions 128a1. . Further, the first spatial filter layer 128-1, the second spatial filter layer 128-2, and the third spatial filter layer 128-3 are arranged from the sensing element 110 toward the light transmissive element 130. However, the relative size relationship of the different light transmitting portions and the arrangement of the different spatial filtering layers may be changed as needed, and are not limited to those shown in FIG.

依據不同的需求,空間濾波元件100B可進一步包括其他元件。舉例而言,空間濾波元件100B可進一步包括第一透光層126-1以及第二透光層126-2,以承載上述空間濾波層。第一透光層126-1以及第二透光層126-2適於讓光束穿透。舉例而言,上述透光層可以是玻璃基板、塑膠基板或透明光阻等等,但不以此為限。The spatial filtering component 100B may further include other components depending on different needs. For example, the spatial filter component 100B can further include a first light transmissive layer 126-1 and a second light transmissive layer 126-2 to carry the spatial filter layer described above. The first light transmissive layer 126-1 and the second light transmissive layer 126-2 are adapted to pass light beams. For example, the light transmissive layer may be a glass substrate, a plastic substrate, a transparent photoresist, or the like, but is not limited thereto.

第一透光層126-1位於感測元件110與透光元件130之間,而第二透光層126-2位於第一透光層126-1與透光元件130之間。第二空間濾波層128-2位於第一透光層126-1與第二透光層126-2之間。第一空間濾波層128-1位於感測元件110與第一透光層126-1之間。第三空間濾波層128-3位於第二透光層126-2與透光元件130之間。在本實施例中,第一空間濾波層128-1配置在第一透光層126-1面向感測元件110的表面S131上,第二空間濾波層128-2嵌入於第二透光層126-2面向第一透光層126-1的表面S133A中,且第三空間濾波層128-3配置在第二透光層126-2面向透光元件130的表面S133B上,但不以此為限。在一實施例中,第一空間濾波層128-1可內嵌於第一透光層126-1面向感測元件110的表面S131中。此外,第二空間濾波層128-2可配置在第二透光層126-2面向第一透光層126-1的表面S133A上。再者,第三空間濾波層128-3可內嵌於第二透光層126-2面向透光元件130的表面S133B中。The first light transmissive layer 126-1 is located between the sensing element 110 and the light transmissive element 130, and the second light transmissive layer 126-2 is located between the first light transmissive layer 126-1 and the light transmissive element 130. The second spatial filter layer 128-2 is located between the first light transmissive layer 126-1 and the second light transmissive layer 126-2. The first spatial filter layer 128-1 is located between the sensing element 110 and the first light transmissive layer 126-1. The third spatial filter layer 128-3 is located between the second light transmissive layer 126-2 and the light transmissive element 130. In this embodiment, the first spatial filter layer 128-1 is disposed on the surface S131 of the first light transmissive layer 126-1 facing the sensing element 110, and the second spatial filter layer 128-2 is embedded in the second light transmissive layer 126. -2 facing the surface S133A of the first light transmissive layer 126-1, and the third spatial filter layer 128-3 is disposed on the surface S133B of the second light transmissive layer 126-2 facing the light transmissive element 130, but not limit. In an embodiment, the first spatial filter layer 128-1 may be embedded in the surface S131 of the first light transmissive layer 126-1 facing the sensing element 110. Further, the second spatial filter layer 128-2 may be disposed on the surface S133A of the second light transmissive layer 126-2 facing the first light transmissive layer 126-1. Furthermore, the third spatial filter layer 128-3 can be embedded in the surface S133B of the second light transmissive layer 126-2 facing the light transmissive element 130.

透光元件130與第二透光層126-2之間、第二透光層126-2與第一透光層126-1之間以及第一透光層126-1與感測元件110之間可藉由黏著層(未繪示)或固定機構(未繪示)而固定在一起。黏著層可以是光學膠粘劑(Optical Clear Adhesive, OCA)或芯片附著薄膜(Die Attach Film, DAF),但不以此為限。當透光元件130與第二透光層126-2之間藉由黏著層而固定在一起,黏著層可位於透光元件130與第二透光層126-2之間的第三透光部128a3(即第三空間濾波層128-3的透光開口)中、第三空間濾波層128-3與透光元件130之間或上述兩個的組合。換句話說,透光元件130與第二透光層126-2之間的第三透光部128a3中的光傳遞介質可以是空氣或黏著層。此外,當第二透光層126-2與第一透光層126-1之間藉由黏著層而固定在一起,黏著層可位於第二透光層126-2與第一透光層126-1之間、第二空間濾波層128-2與第一透光層126-1之間或上述兩個的組合。另外,當第一透光層126-1與感測元件110之間藉由黏著層而固定在一起,黏著層可位於第一透光層126-1與感測元件110之間的第一透光部128a1(即第一空間濾波層128-1的透光開口)中、第一空間濾波層128-1與感測元件110之間或上述兩個的組合。換句話說,第一透光層126-1與感測元件110之間的第一透光部128a1(即第一空間濾波層128-1的透光開口)中的光傳遞介質可以是空氣或黏著層。Between the transparent component 130 and the second transparent layer 126-2, between the second transparent layer 126-2 and the first transparent layer 126-1, and between the first transparent layer 126-1 and the sensing component 110 The spaces may be fixed together by an adhesive layer (not shown) or a fixing mechanism (not shown). The adhesive layer may be an Optical Clear Adhesive (OCA) or a Die Attach Film (DAF), but is not limited thereto. When the light transmissive element 130 and the second light transmissive layer 126-2 are fixed together by an adhesive layer, the adhesive layer may be located in the third light transmissive portion between the light transmissive element 130 and the second light transmissive layer 126-2. 128a3 (ie, the light transmissive opening of the third spatial filter layer 128-3), the third spatial filter layer 128-3 and the light transmissive element 130, or a combination of the two. In other words, the light transmitting medium in the third light transmitting portion 128a3 between the light transmitting member 130 and the second light transmitting layer 126-2 may be an air or an adhesive layer. In addition, when the second light transmissive layer 126-2 and the first light transmissive layer 126-1 are fixed together by the adhesive layer, the adhesive layer may be located at the second light transmissive layer 126-2 and the first light transmissive layer 126. -1, between the second spatial filter layer 128-2 and the first light transmissive layer 126-1 or a combination of the two. In addition, when the first light transmissive layer 126-1 and the sensing element 110 are fixed together by an adhesive layer, the adhesive layer may be located between the first light transmissive layer 126-1 and the sensing element 110. The light portion 128a1 (ie, the light transmissive opening of the first spatial filter layer 128-1), the first spatial filter layer 128-1 and the sensing element 110, or a combination of the two. In other words, the light transmitting medium in the first light transmitting portion 128a1 between the first light transmitting layer 126-1 and the sensing element 110 (ie, the light transmitting opening of the first spatial filtering layer 128-1) may be air or Adhesive layer.

圖10是本新型創作一實施例的檢測裝置的剖面示意圖。請參照圖10,檢測裝置100C與圖7的檢測裝置100B的主要差異如下所述。在圖7的檢測裝置100B中,不同的空間濾波層128的多個透光部的尺寸是從感測元件110朝透光元件130逐步遞增。另一方面,在圖10的檢測裝置100C中,不同的空間濾波層128的多個透光部的尺寸是從感測元件110朝透光元件130遞減。Figure 10 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Referring to Fig. 10, the main differences between the detecting device 100C and the detecting device 100B of Fig. 7 are as follows. In the detecting device 100B of FIG. 7, the sizes of the plurality of light transmitting portions of the different spatial filtering layers 128 are gradually increased from the sensing element 110 toward the light transmitting element 130. On the other hand, in the detecting device 100C of FIG. 10, the sizes of the plurality of light transmitting portions of the different spatial filtering layers 128 are decreased from the sensing element 110 toward the light transmitting element 130.

進一步而言,第一空間濾波層128-1、第二空間濾波層128-2以及第三空間濾波層128-3從透光元件130朝感測元件110排列,使得第三空間濾波層128-3位於感測元件110與第一透光層126-1之間,且第一空間濾波層128-1位於第二透光層126-2與透光元件130之間。在本實施例中,第三空間濾波層128-3配置在第一透光層126-1面向感測元件110的表面S131上,且第一空間濾波層128-1配置在第二透光層126-2面向透光元件130的表面S133B上,但不以此為限。在一實施例中,第三空間濾波層128-3可內嵌於第一透光層126-1面向感測元件110的表面S131中,而第一空間濾波層128-1可內嵌於第二透光層126-2面向透光元件130的表面S133B中。Further, the first spatial filter layer 128-1, the second spatial filter layer 128-2, and the third spatial filter layer 128-3 are arranged from the light transmissive element 130 toward the sensing element 110 such that the third spatial filter layer 128- 3 is located between the sensing element 110 and the first light transmissive layer 126-1, and the first spatial filter layer 128-1 is located between the second light transmissive layer 126-2 and the light transmissive element 130. In this embodiment, the third spatial filter layer 128-3 is disposed on the surface S131 of the first light transmissive layer 126-1 facing the sensing element 110, and the first spatial filter layer 128-1 is disposed on the second light transmissive layer. 126-2 faces the surface S133B of the light transmitting element 130, but is not limited thereto. In an embodiment, the third spatial filter layer 128-3 may be embedded in the surface S131 of the first light transmissive layer 126-1 facing the sensing element 110, and the first spatial filter layer 128-1 may be embedded in the first surface. The two light transmissive layers 126-2 face the surface S133B of the light transmissive element 130.

請參照圖7及圖10,檢測裝置100B及檢測裝置100C均包括各自的表面電漿共振(Surface Plasmon Resonance)層SPR。檢測裝置100B及檢測裝置100C之表面電漿共振層SPR的功能與前述檢測裝置100之表面電漿共振層SPR的功能相同,於此便不再重述。Referring to FIGS. 7 and 10 , each of the detecting device 100B and the detecting device 100C includes a surface Plasmon Resonance layer SPR. The functions of the surface plasma resonance layer SPR of the detecting device 100B and the detecting device 100C are the same as those of the surface plasma resonance layer SPR of the detecting device 100, and will not be repeated here.

圖11為本新型創作一實施例之檢測裝置的剖面示意圖。請參照圖11,檢測裝置100D用以取得指紋12影像。檢測裝置100D包括透光元件130、設置於透光元件130對向的感測元件110以及設置於透光元件130與感測元件110之間的空間濾波元件120D。Figure 11 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Referring to FIG. 11, the detecting device 100D is configured to acquire a fingerprint 12 image. The detecting device 100D includes a light transmitting element 130, a sensing element 110 disposed opposite the light transmitting element 130, and a spatial filtering element 120D disposed between the light transmitting element 130 and the sensing element 110.

檢測裝置100D還包括用以發出感測光束L1、L2的發光元件(未繪示)。在本實施例中,感測光束L1、L2可經由透光元件130傳遞至表面133。位於表面133上之待測者50的指紋12具有波谷12a及波峰12b。部分感測光束L1入射至對應波谷12a的部分表面133時,部分感測光束L1的全反射不會被破壞,進而斜向地入射至對應的感測單元112。部分感測光束L2入射至對應波峰12b的部分表面133時,部分感測光束L2的全反射會被破壞且被散射,進而入射至對應的感測單元112。入射至感測單元112且對應波谷12a的部分感測光束L1的能量強,入射至感測單元112對應波峰12b的感測光束L2的能量弱,進而使得感測元件110能擷取明暗相間的指紋12影像。The detecting device 100D further includes a light emitting element (not shown) for emitting the sensing light beams L1, L2. In the present embodiment, the sensing beams L1, L2 may be transmitted to the surface 133 via the light transmissive element 130. The fingerprint 12 of the subject 50 located on the surface 133 has a trough 12a and a crest 12b. When part of the sensing light beam L1 is incident on the partial surface 133 of the corresponding valley 12a, the total reflection of the partial sensing light beam L1 is not destroyed, and is incident obliquely to the corresponding sensing unit 112. When part of the sensing light beam L2 is incident on the partial surface 133 of the corresponding peak 12b, the total reflection of the partial sensing light beam L2 is destroyed and scattered, and is incident on the corresponding sensing unit 112. The energy of the portion of the sensing beam L1 incident on the sensing unit 112 and corresponding to the valley 12a is strong, and the energy of the sensing beam L2 incident on the corresponding peak 12b of the sensing unit 112 is weak, thereby enabling the sensing element 110 to capture light and dark. Fingerprint 12 image.

空間濾波元件120D包括多個空間濾波層128及多個透光層126。多個空間濾波層128與多個透光層126交替堆疊。每一空間濾波層128具有分別對應感測元件110之多個感測單元112的多個透光部128a。舉例而言,在本實施例中,空間濾波元件120D可選擇性地包括第一空間濾波層128-1、第二空間濾波層128-2、第三空間濾波層128-3、第一個第一透光層126-1及第二個第二透光層126-2,其中第一空間濾波層128-1、第一透光層126-1、第二空間濾波層128-2、第二透光層126-2及第三空間濾波層128-3由感測元件110朝透光元件130依序排列。The spatial filtering component 120D includes a plurality of spatial filtering layers 128 and a plurality of light transmissive layers 126. A plurality of spatial filtering layers 128 and a plurality of light transmissive layers 126 are alternately stacked. Each spatial filtering layer 128 has a plurality of light transmitting portions 128a corresponding to the plurality of sensing units 112 of the sensing elements 110, respectively. For example, in this embodiment, the spatial filtering component 120D can selectively include a first spatial filtering layer 128-1, a second spatial filtering layer 128-2, a third spatial filtering layer 128-3, and a first a light transmissive layer 126-1 and a second second light transmissive layer 126-2, wherein the first spatial filter layer 128-1, the first light transmissive layer 126-1, the second spatial filter layer 128-2, and the second The light transmissive layer 126-2 and the third spatial filter layer 128-3 are sequentially arranged by the sensing element 110 toward the light transmissive element 130.

需說明的是,上述及圖式所繪的空間濾波層128數量及透光層126數量僅是用以舉例說明本新型創作而非用以限制本新型創作。根據其它實施例,空間濾波元件120D所包括的空間濾波層128數及透光層126數量也可視實際需求設計為其它適當數量。It should be noted that the number of spatial filter layers 128 and the number of light transmissive layers 126 as described above and in the drawings are only used to illustrate the novel creation and not to limit the novel creation. According to other embodiments, the number of spatial filtering layers 128 and the number of light transmissive layers 126 included in the spatial filtering component 120D may also be designed to other suitable quantities depending on actual needs.

值得注意的是,多個第一空間濾波層128-1、128-2、128-3之對應同一感測單元112的多個透光部128a沿著斜向方向d排列,斜向方向d與表面133的法線方向N具有夾角θ,而0 o< θ < 90 o。舉例而言,在本實施例中,較佳地是,35 o< θ <85 o。具體而言,在本實施例中,θ可等於60 o,但本新型創作不以此為限。 It should be noted that the plurality of transparent portions 128a of the plurality of first spatial filter layers 128-1, 128-2, and 128-3 corresponding to the same sensing unit 112 are arranged along the oblique direction d, and the oblique direction d and The normal direction N of the surface 133 has an included angle θ, and 0 o < θ < 90 o . For example, in the present embodiment, it is preferable that 35 o < θ < 85 o . Specifically, in the embodiment, θ may be equal to 60 o , but the novel creation is not limited thereto.

在本實施例中,空間濾波元件120D之多個空間濾波層128中最靠近感測元件110的一個第一空間濾波層128-1的多個透光部128a分別與感測元件110的多個感測單元112對齊,空間濾波元件120D之其它第二空間濾波層128-2及第三空間濾波層128-3的多個透光部128a則不與感測元件110的多個感測單元112對齊且向同一側(例如:向左側)偏移,其中離感測元件110越遠的第二空間濾波層128-2及第三空間濾波層128-3的多個透光部128a相對於對應之多個感測單元112的偏移程度越大。從本新型創作的另一實施手段中,所述空間濾波元件120D之多個空間濾波層128中最靠近感測元件110的一個第一空間濾波層128-1的多個透光部128a分別與感測元件110的多個感測單元112非對齊方式配置(例如:第一空間濾波層128-1的透光部128a略小於感測單元112),本新型創作並不加以侷限。In this embodiment, the plurality of light transmissive portions 128a of one of the plurality of spatial filtering layers 128 of the spatial filtering component 120D closest to the sensing element 110 and the plurality of sensing elements 110 are respectively The sensing unit 112 is aligned, and the plurality of transparent portions 128a of the second spatial filtering layer 128-2 and the third spatial filtering layer 128-3 of the spatial filtering component 120D are not coupled to the plurality of sensing units 112 of the sensing component 110. Aligned and offset toward the same side (eg, to the left), wherein the second spatial filtering layer 128-2 and the plurality of transparent portions 128a of the third spatial filtering layer 128-3 that are further away from the sensing element 110 are corresponding to each other The degree of offset of the plurality of sensing units 112 is greater. In another implementation manner of the novel creation, the plurality of transparent portions 128a of the first spatial filtering layer 128-1 of the plurality of spatial filtering layers 128 of the spatial filtering component 120D that are closest to the sensing component 110 are respectively associated with The plurality of sensing units 112 of the sensing element 110 are non-aligned (eg, the light transmitting portion 128a of the first spatial filtering layer 128-1 is slightly smaller than the sensing unit 112), and the novel creation is not limited.

值得一提的是,沿著斜向方向d排列的多個第一空間濾波層128-1、128-2、128-3的多個透光部128a形成多個光通道,由於光通道是斜向設置,因此大致上垂直入射表面133的環境光束L0(例如:太陽光)不易穿過光通道而傳遞至感測元件110。藉此,環境光束L0不易干擾感測光束L1、L2所攜帶的指紋12資訊,而有助於顯著地提升指紋12影像品質。It is worth mentioning that the plurality of light transmitting portions 128a of the plurality of first spatial filtering layers 128-1, 128-2, and 128-3 arranged along the oblique direction d form a plurality of optical channels, since the optical channel is oblique To the arrangement, the ambient light beam L0 (eg, sunlight) that is substantially perpendicular to the incident surface 133 is not easily transmitted through the optical channel to the sensing element 110. Thereby, the ambient light beam L0 does not easily interfere with the fingerprint 12 information carried by the sensing light beams L1, L2, and contributes to significantly improving the image quality of the fingerprint 12.

在本實施例中,不同之多個空間濾波層128的多個透光部128a以相同的間距排列。詳言之,第一空間濾波層128-1的多個透光部128a以間距P1排列,第二空間濾波層128-2的多個透光部128a以間距P2排列,第三空間濾波層128-3的多個透光部128a以間距P3排列,而間距P1、間距P2及間距P3實質上可相等。舉例而言,在本實施例中,間距P1、間距P2及間距P3可皆是50μm,但本新型創作不以此為限。In this embodiment, the plurality of light transmitting portions 128a of the plurality of spatial filtering layers 128 are arranged at the same pitch. In detail, the plurality of transparent portions 128a of the first spatial filter layer 128-1 are arranged at a pitch P1, and the plurality of transparent portions 128a of the second spatial filter layer 128-2 are arranged at a pitch P2, and the third spatial filter layer 128 The plurality of light transmitting portions 128a of -3 are arranged at a pitch P3, and the pitch P1, the pitch P2, and the pitch P3 are substantially equal. For example, in the embodiment, the pitch P1, the pitch P2, and the pitch P3 may both be 50 μm, but the novel creation is not limited thereto.

在本實施例中,對應同一感測單元112的多個透光部128a的直徑實質上可相同。換句話說,第一空間濾波層128-1的一個透光部128a、第二空間濾波層128-2的一個透光部128a及第三空間濾波層128-3的一個透光部128a對應對應同一感測單元112,第一空間濾波層128-1的一個透光部128a具有直徑K1,第二空間濾波層128-2的一個透光部128a具有直徑K2,第三空間濾波層128-3的一個透光部128a具有直徑K3,而直徑K1、直徑K2及直徑K3實質上相等,但本新型創作不以此為限。舉例而言,直徑K1、直徑K2及直徑K3可以是15μm,但本新型創作不以此為限。此外,在本實施例中,第一透光層126-1的厚度H1與第二透光層126-2的厚度H2可相等。舉例而言,第一透光層126-1的厚度H1與第二透光層128-2的厚度H2可以皆是50μm,但本新型創作不以此為限。In this embodiment, the diameters of the plurality of light transmitting portions 128a corresponding to the same sensing unit 112 may be substantially the same. In other words, one light transmissive portion 128a of the first spatial filter layer 128-1, one light transmissive portion 128a of the second spatial filter layer 128-2, and one light transmissive portion 128a of the third spatial filter layer 128-3 correspond to each other. The same sensing unit 112, one light transmitting portion 128a of the first spatial filtering layer 128-1 has a diameter K1, and one light transmitting portion 128a of the second spatial filtering layer 128-2 has a diameter K2, and the third spatial filtering layer 128-3 One of the light transmitting portions 128a has a diameter K3, and the diameter K1, the diameter K2, and the diameter K3 are substantially equal, but the present invention is not limited thereto. For example, the diameter K1, the diameter K2, and the diameter K3 may be 15 μm, but the novel creation is not limited thereto. In addition, in the embodiment, the thickness H1 of the first light transmissive layer 126-1 and the thickness H2 of the second light transmissive layer 126-2 may be equal. For example, the thickness H1 of the first light transmissive layer 126-1 and the thickness H2 of the second light transmissive layer 128-2 may both be 50 μm, but the novel creation is not limited thereto.

圖12為本新型創作一實施例之檢測裝置的剖面示意圖。請參照圖11及圖2,檢測裝置100E與前述的檢測裝置100D類似,兩者相同或相似處,請參照前述說明,於此便不再重述。檢測裝置100E與檢測裝置100D的主要差異在於,檢測裝置100E還包括第三透光層126-3及空間濾波層128-4,其中第一空間濾波層128-1、第一透光層126-1、第二空間濾波層128-2、第二透光層126-2、第三空間濾波層128-3、第三透光層126-3及空間濾波層128-4由感測元件110朝透光元件130依序排列。Figure 12 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Referring to FIG. 11 and FIG. 2, the detecting device 100E is similar to the detecting device 100D described above. If the two are the same or similar, please refer to the above description, and thus will not be repeated here. The main difference between the detecting device 100E and the detecting device 100D is that the detecting device 100E further includes a third light transmitting layer 126-3 and a spatial filtering layer 128-4, wherein the first spatial filtering layer 128-1 and the first light transmitting layer 126- 1. The second spatial filter layer 128-2, the second light transmissive layer 126-2, the third spatial filter layer 128-3, the third light transmissive layer 126-3, and the spatial filter layer 128-4 are directed by the sensing element 110 The light transmitting members 130 are arranged in order.

在本實施例中,第一空間濾波層128-1的多個透光部128a以間距P1排列,第二空間濾波層128-2的多個透光部128a以間距P2排列,第三空間濾波層128-3的多個透光部128a以間距P3排列,空間濾波層128-4的多個透光部128a以間距P4排列,而間距P1、間距P2、間距P3及間距P4實質上可相等。舉例而言,在本實施例中,間距P1、間距P2、間距P3及間距P4可皆是50μm,但本新型創作不以此為限。In this embodiment, the plurality of transparent portions 128a of the first spatial filter layer 128-1 are arranged at a pitch P1, and the plurality of transparent portions 128a of the second spatial filter layer 128-2 are arranged at a pitch P2, and the third spatial filtering The plurality of transparent portions 128a of the layer 128-3 are arranged at a pitch P3, and the plurality of transparent portions 128a of the spatial filter layer 128-4 are arranged at a pitch P4, and the pitch P1, the pitch P2, the pitch P3, and the pitch P4 are substantially equal. . For example, in the embodiment, the pitch P1, the pitch P2, the pitch P3, and the pitch P4 may all be 50 μm, but the novel creation is not limited thereto.

在本實施例中,第一空間濾波層128-1的一個透光部128a具有直徑K1,第二空間濾波層128-2的一個透光部128a具有直徑K2,第三空間濾波層128-3的一個透光部128a具有直徑K3,空間濾波層128-4的一個透光部128a具有直徑K4,而直徑K1、直徑K2、直徑K3及直徑K4實質上可相等。舉例而言,在本實施例中,直徑K1、直徑K2直徑K3及直徑K4可皆是15μm,但本新型創作不以此為限。In this embodiment, one light transmitting portion 128a of the first spatial filtering layer 128-1 has a diameter K1, and one light transmitting portion 128a of the second spatial filtering layer 128-2 has a diameter K2, and the third spatial filtering layer 128-3 One of the light transmitting portions 128a has a diameter K3, and one of the light transmitting portions 128a of the spatial filter layer 128-4 has a diameter K4, and the diameter K1, the diameter K2, the diameter K3, and the diameter K4 are substantially equal. For example, in the present embodiment, the diameter K1, the diameter K2, the diameter K3, and the diameter K4 may both be 15 μm, but the novel creation is not limited thereto.

在本實施例中,第一透光層126-1的厚度H1與第二透光層126-2的厚度H2及第三透光層126-3的厚度H3不相等。舉例而言,第一透光層126-1的厚度H1、第二透光層126-2的厚度H2及第三透光層126-3的厚度H3可以分別50μm、25μm及25μm,但本新型創作不以此為限。此外,在本實施例中,θ可等於60 o,但本新型創作不以此為限。 In the present embodiment, the thickness H1 of the first light transmissive layer 126-1 and the thickness H2 of the second light transmissive layer 126-2 and the thickness H3 of the third light transmissive layer 126-3 are not equal. For example, the thickness H1 of the first light transmissive layer 126-1, the thickness H2 of the second light transmissive layer 126-2, and the thickness H3 of the third light transmissive layer 126-3 may be 50 μm, 25 μm, and 25 μm, respectively. Creation is not limited to this. In addition, in the embodiment, θ may be equal to 60 o , but the novel creation is not limited thereto.

圖13為本新型創作一實施例之檢測裝置的剖面示意圖。請參照圖12及圖13,檢測裝置100F與前述檢測裝置100E類似,兩者相同或相似處,請參照前述說明,於此便不再重述。檢測裝置100F與檢測裝置100E的主要差異在於,檢測裝置100F還包括透光層126-4及空間濾波層128-5,其中第一空間濾波層128-1、第一透光層126-1、第二空間濾波層128-2、第二透光層126-2、第三空間濾波層128-3、第三透光層126-3、空間濾波層128-4、透光層126-4及空間濾波層128-5由感測元件110朝透光元件130依序排列。Figure 13 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Referring to FIG. 12 and FIG. 13 , the detecting device 100F is similar to the detecting device 100E. If the two are the same or similar, please refer to the above description, and thus will not be repeated here. The main difference between the detecting device 100F and the detecting device 100E is that the detecting device 100F further includes a light transmitting layer 126-4 and a spatial filtering layer 128-5, wherein the first spatial filtering layer 128-1, the first transparent layer 126-1, a second spatial filter layer 128-2, a second light transmissive layer 126-2, a third spatial filter layer 128-3, a third light transmissive layer 126-3, a spatial filter layer 128-4, a light transmissive layer 126-4, and The spatial filter layer 128-5 is sequentially arranged by the sensing element 110 toward the light transmissive element 130.

在本實施例中,第一空間濾波層128-1的多個透光部128a以間距P1排列,第二空間濾波層128-2的多個透光部128a以間距P2排列,第三空間濾波層128-3的多個透光部128a以間距P3排列,空間濾波層128-4的多個透光部128a以間距P4排列,空間濾波層128-5的多個透光部128a以間距P5排列,而間距P1、間距P2、間距P3、間距P4及間距P5實質上相等,但本新型創作不以此為限。舉例而言,間距P1、間距P2、間距P3、間距P4及間距P5可皆是50μm,但本新型創作不以此為限。In this embodiment, the plurality of transparent portions 128a of the first spatial filter layer 128-1 are arranged at a pitch P1, and the plurality of transparent portions 128a of the second spatial filter layer 128-2 are arranged at a pitch P2, and the third spatial filtering The plurality of transparent portions 128a of the layer 128-3 are arranged at a pitch P3, and the plurality of transparent portions 128a of the spatial filter layer 128-4 are arranged at a pitch P4, and the plurality of transparent portions 128a of the spatial filter layer 128-5 are spaced by a pitch P5. Arrangement, and the pitch P1, the pitch P2, the pitch P3, the pitch P4, and the pitch P5 are substantially equal, but the novel creation is not limited thereto. For example, the pitch P1, the pitch P2, the pitch P3, the pitch P4, and the pitch P5 may all be 50 μm, but the novel creation is not limited thereto.

在本實施例中,第一空間濾波層128-1的一個透光部128a具有直徑K1,第二空間濾波層128-2的一個透光部128a具有直徑K2,第三空間濾波層128-3的一個透光部128a具有直徑K3,空間濾波層128-4的一個透光部128a具有直徑K4,空間濾波層128-5的一個透光部128a具有直徑K5,而直徑K1、直徑K2、直徑K3、直徑K4及直徑K5實質上可相等。舉例而言,直徑K1、直徑K2直徑K3、直徑K4及直徑K5可皆是15μm,但本新型創作不以此為限。In this embodiment, one light transmitting portion 128a of the first spatial filtering layer 128-1 has a diameter K1, and one light transmitting portion 128a of the second spatial filtering layer 128-2 has a diameter K2, and the third spatial filtering layer 128-3 A light transmitting portion 128a has a diameter K3, a light transmitting portion 128a of the spatial filtering layer 128-4 has a diameter K4, and a light transmitting portion 128a of the spatial filtering layer 128-5 has a diameter K5, and a diameter K1, a diameter K2, and a diameter K3, diameter K4 and diameter K5 are substantially equal. For example, the diameter K1, the diameter K2, the diameter K3, the diameter K4, and the diameter K5 may all be 15 μm, but the novel creation is not limited thereto.

在本實施例中,第一透光層126-1的厚度H1、第二透光層126-2的厚度H2、第三透光層126-3的厚度H3及透光層126-4的厚度H4可以分別為50μm、25μm、12.5μm及12.5μm,但本新型創作不以此為限。此外,在本實施例中,θ可等於60 o,但本新型創作不以此為限。 In this embodiment, the thickness H1 of the first light transmissive layer 126-1, the thickness H2 of the second light transmissive layer 126-2, the thickness H3 of the third light transmissive layer 126-3, and the thickness of the light transmissive layer 126-4. H4 can be 50 μm, 25 μm, 12.5 μm, and 12.5 μm, respectively, but the novel creation is not limited thereto. In addition, in the embodiment, θ may be equal to 60 o , but the novel creation is not limited thereto.

值得注意的是,在本實施例中,空間濾波層128-5的多個透光部128a以間距P(例如:50μm)排列,空間濾波層128-5的一個透光部128a具有直徑K(例如:15μm),空間濾波層128-5設置於透光層126-4上,透光層126-4具有厚度H(例如:12.5μm),直徑K、間距P及厚度H滿足下式(1): 。在本實施例中,式(1)之直徑K可指空間濾波層128-5之一個透光部128a的直徑K5,式(1)之間距P可指空間濾波層128-5之多個透光部128a的間距P5,式(1)之厚度H可指透光層126-4的厚度H4,其中空間濾波層128-5為空間濾波元件120F之多個些第一空間濾波層128-1、第二空間濾波層128-2、第三空間濾波層128-3、空間濾波層128-4、128-5中最靠近表面133的一個空間濾波層,而透光層126-4為空間濾波元件120F之多個第一透光層126-1、第二透光層126-2、第三透光層126-3、透光層126-4中最靠近表面133的一個透光層。然而,本新型創作不限於此,在其它實施例中,式(1)之直徑K也可指最靠近感測元件110的一個第一空間濾波層128-1之一個透光部128a的直徑K1,式(1)之間距P也可指最靠近感測元件110的一個第一空間濾波層128-1之多個透光部128a的間距P1,且式(1)之厚度H也可指最靠近感測元件110的一個第一透光層126-1的厚度H1。 It should be noted that, in this embodiment, the plurality of transparent portions 128a of the spatial filter layer 128-5 are arranged at a pitch P (for example, 50 μm), and one of the transparent portions 128a of the spatial filter layer 128-5 has a diameter K ( For example: 15 μm), the spatial filter layer 128-5 is disposed on the light transmissive layer 126-4, and the light transmissive layer 126-4 has a thickness H (for example, 12.5 μm), and the diameter K, the pitch P, and the thickness H satisfy the following formula (1). ): . In this embodiment, the diameter K of the formula (1) may refer to the diameter K5 of one of the transparent portions 128a of the spatial filter layer 128-5, and the distance P between the formulas (1) may refer to a plurality of transparent filter layers 128-5. The pitch P5 of the light portion 128a, the thickness H of the formula (1) may refer to the thickness H4 of the light transmitting layer 126-4, wherein the spatial filtering layer 128-5 is a plurality of first spatial filtering layers 128-1 of the spatial filtering component 120F. a spatial filtering layer closest to the surface 133 of the second spatial filtering layer 128-2, the third spatial filtering layer 128-3, the spatial filtering layers 128-4, 128-5, and the transparent layer 126-4 is spatially filtered. One of the first light transmissive layer 126-1, the second light transmissive layer 126-2, the third light transmissive layer 126-3, and the light transmissive layer 126-4 of the element 120F is closest to the surface 133. However, the novel creation is not limited thereto. In other embodiments, the diameter K of the formula (1) may also refer to the diameter K1 of one of the light transmitting portions 128a of the first spatial filtering layer 128-1 closest to the sensing element 110. The distance P between the formulas (1) may also refer to the pitch P1 of the plurality of light transmitting portions 128a of the first spatial filter layer 128-1 closest to the sensing element 110, and the thickness H of the formula (1) may also refer to the most The thickness H1 of a first light transmissive layer 126-1 of the sensing element 110 is adjacent.

當直徑K、間距P及厚度H滿足上式(1)時,檢測裝置100F能改善串音(cross-talk)問題,進而取得品質良好的指紋12影像。以下配合圖14至圖16舉例說明之。When the diameter K, the pitch P, and the thickness H satisfy the above formula (1), the detecting device 100F can improve the cross-talk problem and obtain a good-quality fingerprint 12 image. The following is exemplified in conjunction with FIGS. 14 to 16.

圖14示出模擬之圖11的檢測裝置100D的多個感測單元120a上的光分佈。圖15示出模擬之圖12的檢測裝置100E的多個感測單元112上的光分佈。圖16示出模擬之圖13的檢測裝置100F的多個感測單元112上的光分佈。用以模擬圖14、圖15及圖16的發光元件的具有相同的發散角,例如:180 o。比較圖14、圖15及圖16可知,圖16所對應之圖14的檢測裝置100F之直徑K、間距P及厚度H滿足上式(1)時,檢測裝置100F的串音問題明顯改善。 FIG. 14 shows the light distribution on the plurality of sensing units 120a of the detecting device 100D of FIG. 11 which is simulated. FIG. 15 shows the light distribution on the plurality of sensing units 112 of the detecting device 100E of FIG. 12 simulated. FIG. 16 shows the light distribution on the plurality of sensing units 112 of the detecting device 100F of FIG. 13 which is simulated. The light-emitting elements used to simulate Figures 14, 15 and 16 have the same divergence angle, for example: 180 o . 14 and FIG. 15 and FIG. 16, it can be seen that when the diameter K, the pitch P, and the thickness H of the detecting device 100F of FIG. 14 corresponding to FIG. 16 satisfy the above formula (1), the crosstalk problem of the detecting device 100F is remarkably improved.

請參照圖11、圖12及圖13,檢測裝置100D、檢測裝置100E及檢測裝置100F均包括各自的表面電漿共振(Surface Plasmon Resonance)層SPR。檢測裝置100D、檢測裝置100E及檢測裝置100F之表面電漿共振層SPR的功能與前述檢測裝置100之表面電漿共振層SPR的功能相同,於此便不再重述。Referring to FIGS. 11 , 12 , and 13 , each of the detecting device 100D, the detecting device 100E, and the detecting device 100F includes a surface plasmon resonance layer SPR. The functions of the surface plasma resonance layer SPR of the detecting device 100D, the detecting device 100E, and the detecting device 100F are the same as those of the surface plasma resonant layer SPR of the detecting device 100, and will not be repeated here.

圖17為本新型創作一實施例之檢測裝置的剖面示意圖。圖18為圖17之檢測裝置的反射元件與空間濾波元件的上視示意圖。請參照圖17,檢測裝置100G用以感測手指(掌)的指(掌)紋F,檢測裝置100G包括感測元件110、導光元件160、至少一發光元件140、空間濾波元件120以及反射元件150。導光元件160位於感測元件110上。至少一發光元件140設置於導光元件160旁,且用以發出感測光束L。Figure 17 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 18 is a top plan view of the reflective element and spatial filter element of the detection device of Figure 17. Referring to FIG. 17, the detecting device 100G is configured to sense a finger (palm) F of a finger (palm). The detecting device 100G includes a sensing component 110, a light guiding component 160, at least one light emitting component 140, a spatial filtering component 120, and a reflection. Element 150. The light guiding element 160 is located on the sensing element 110. At least one light emitting element 140 is disposed beside the light guiding element 160 and configured to emit the sensing light beam L.

空間濾波元件120位於導光元件160與感測元件110之間,其中空間濾波元件120具有多個透光部122以及具有設置於相鄰兩透光部122之間的遮光部124。在本實施例中,舉例而言,空間濾波元件120的每一透光部122與遮光部124可以分別是,多個透光層(未繪示)與遮光層(未繪示)沿著斜向方向d以非對齊方式堆疊而成,其中多個透光層、多遮光層及其可行的堆疊方式,請參照美國專利申請第15/989,123號所述。導光元件160具有上表面160a、相對於上表面160a的下表面160b以及連接於上表面160a與下表面160b之間的側面160c,每一透光部122在斜向方向d上延伸,斜向方向d與導光元件160之上表面160a的法線方向N具有夾角θ,而0 o< θ <90 o。舉例而言,在本實施例中,較佳地是,30 o< θ <85 o。具體而言,在本實施例中,θ可等於42 o,但本新型創作不以此為限。 The spatial filtering component 120 is located between the light guiding component 160 and the sensing component 110. The spatial filtering component 120 has a plurality of transparent portions 122 and a light blocking portion 124 disposed between the adjacent two transparent portions 122. In this embodiment, for example, each of the transparent portion 122 and the light shielding portion 124 of the spatial filtering component 120 may be a plurality of light transmissive layers (not shown) and a light shielding layer (not shown) along the oblique direction. The direction d is stacked in a non-aligned manner, wherein a plurality of light transmissive layers, multiple light shielding layers, and a possible stacking manner thereof are described in U.S. Patent Application Serial No. 15/989,123. The light guiding element 160 has an upper surface 160a, a lower surface 160b opposite to the upper surface 160a, and a side surface 160c connected between the upper surface 160a and the lower surface 160b. Each of the light transmitting portions 122 extends in the oblique direction d, obliquely The direction d has an angle θ with the normal direction N of the upper surface 160a of the light guiding element 160, and 0 o < θ < 90 o . For example, in the present embodiment, it is preferable that 30 o < θ < 85 o . Specifically, in the embodiment, θ may be equal to 42 o , but the novel creation is not limited thereto.

反射元件150位於導光元件160的下表面160b與空間濾波元件120之間,其中反射元件具有多個透光部152以及至少一反射部154。空間濾波元件120的每一透光部122與反射元件150的至少一透光部152重疊,而反射元件150的至少一反射部154設置於空間濾波元件120的遮光部124上。發光元件140發出的感測光束L傳遞至手指的指紋F後,感測光束L依序被手指的指紋F漫射、穿過導光元件160、穿過反射元件150的透光部152且穿過空間濾波元件120的透光部122,以傳遞至感測元件110。在本實施例中,反射元件150的透光部152可為反射層150r的多個孔洞152h,而反射層150r的孔洞152h分別與空間濾波元件120的多個透光部122重疊。The reflective element 150 is located between the lower surface 160b of the light guiding element 160 and the spatial filtering element 120, wherein the reflective element has a plurality of light transmitting portions 152 and at least one reflecting portion 154. Each of the transparent portions 122 of the spatial filter element 120 overlaps with at least one of the transparent portions 152 of the reflective element 150 , and at least one of the reflective portions 154 of the reflective element 150 is disposed on the light blocking portion 124 of the spatial filter element 120 . After the sensing light beam L emitted by the light-emitting element 140 is transmitted to the fingerprint F of the finger, the sensing light beam L is sequentially diffused by the fingerprint F of the finger, passes through the light guiding element 160, passes through the light transmitting portion 152 of the reflective element 150, and passes through. The light transmitting portion 122 of the spatial filter element 120 passes through the sensing element 110. In this embodiment, the light transmitting portion 152 of the reflective element 150 may be a plurality of holes 152h of the reflective layer 150r, and the holes 152h of the reflective layer 150r overlap with the plurality of light transmitting portions 122 of the spatial filter element 120, respectively.

請參考圖17及圖18,空間濾波元件120的多個透光部122排列於感測元件110上,而每一透光部122分別對應於感測元件110的每一感測單元(未繪示)。遮光部124分佈於多個透光部122之間,反射元件150的反射部154設置於遮光部124上。每一透光部122在方向X(標示於圖18)上具有寬度W3,其中方向X垂直於導光元件160之上表面160a的法線方向N。反射元件150(反射層150r)的每一透光部152(孔洞152h)在方向X上具有一寬度W4。在本實施例中,W3=W4,但本新型創作不以此為限,在其他實施例中,也可以是W3<W4或是W3>W4。Referring to FIG. 17 and FIG. 18 , the plurality of transparent portions 122 of the spatial filter component 120 are arranged on the sensing component 110 , and each of the transparent portions 122 respectively corresponds to each sensing unit of the sensing component 110 (not drawn Show). The light blocking portion 124 is distributed between the plurality of light transmitting portions 122 , and the reflecting portion 154 of the reflective element 150 is disposed on the light blocking portion 124 . Each of the light transmitting portions 122 has a width W3 in a direction X (indicated in FIG. 18), wherein the direction X is perpendicular to the normal direction N of the upper surface 160a of the light guiding element 160. Each of the light transmitting portions 152 (holes 152h) of the reflecting member 150 (reflecting layer 150r) has a width W4 in the direction X. In this embodiment, W3=W4, but the novel creation is not limited thereto. In other embodiments, W3<W4 or W3>W4 may also be used.

值得一提的是,透過設置位於遮光部124之上的至少一反射部154,可以將發光元件140所發出的感測光束L有效地引導至導光元件160的各個位置,因而感測光束L可以均勻地分佈在導光元件160中,不容易出現導光元件160靠近發光元件140的區域的光強度較強,而遠離發光元件140的區域的光強度較弱之情形。藉此,由導光元件160之上表面160a出射的光束L能均勻地照射手指的指紋F,感測元件110的取像品質得以提升。It is to be noted that the sensing light beam L emitted by the light emitting element 140 can be effectively guided to each position of the light guiding element 160 by providing at least one reflecting portion 154 located above the light shielding portion 124, thereby sensing the light beam L. It can be uniformly distributed in the light guiding element 160, and the light intensity of the region of the light guiding element 160 close to the light emitting element 140 is less likely to occur, and the light intensity of the area away from the light emitting element 140 is weak. Thereby, the light beam L emitted from the upper surface 160a of the light guiding element 160 can uniformly illuminate the fingerprint F of the finger, and the image capturing quality of the sensing element 110 is improved.

在本實施例中,檢測裝置100G還可包括第一黏著層AD1以及第二黏著層AD2,其中第一黏著層AD1設置於導光元件160與反射元件150之間,第二黏著層AD2設置於空間濾波元件120與感測元件110之間。在本實施例中,導光元件160透過第一黏著層AD1與反射元件150接合,且空間濾波元件120透過第二黏著層AD2與感測元件110接合,第一黏著層AD1與第二黏著層AD2的材料例如是具有高透光率的光學膠(Optical Clear Adhesive;OCA),但本新型創作不以此為限。在其他實施例中,第一黏著層AD1與第二黏著層AD2的材料是其它適當材料,及/或第一黏著層AD1與第二黏著層AD2的材料也可以不相同。In this embodiment, the detecting device 100G may further include a first adhesive layer AD1 and a second adhesive layer AD2, wherein the first adhesive layer AD1 is disposed between the light guiding component 160 and the reflective component 150, and the second adhesive layer AD2 is disposed on the first adhesive layer AD2. Between the spatial filtering component 120 and the sensing component 110. In this embodiment, the light guiding component 160 is bonded to the reflective component 150 through the first adhesive layer AD1, and the spatial filter component 120 is bonded to the sensing component 110 through the second adhesive layer AD2, and the first adhesive layer AD1 and the second adhesive layer. The material of AD2 is, for example, Optical Clear Adhesive (OCA) having high light transmittance, but the novel creation is not limited thereto. In other embodiments, the materials of the first adhesive layer AD1 and the second adhesive layer AD2 are other suitable materials, and/or the materials of the first adhesive layer AD1 and the second adhesive layer AD2 may also be different.

在本實施例中,檢測裝置100G更可包括透光元件130,設置於導光元件160的上表面160a上,其中透光元件130具有供手指按壓的表面133。在本實施例中,手指的指紋F置放於透光元件130的表面133上,發光元件140發出感測光束L,依序經過反射元件150的反射、穿過導光元件160、穿過透光元件130的表面133抵達手指的指紋F的所在位置。In this embodiment, the detecting device 100G further includes a light transmitting component 130 disposed on the upper surface 160a of the light guiding component 160, wherein the light transmitting component 130 has a surface 133 for finger pressing. In this embodiment, the fingerprint F of the finger is placed on the surface 133 of the light transmitting element 130, and the light emitting element 140 emits the sensing light beam L, which is sequentially reflected by the reflective element 150, passes through the light guiding element 160, and passes through The surface 133 of the light element 130 reaches the location of the fingerprint F of the finger.

圖19為本新型創作一實施例之檢測裝置的剖面示意圖。圖20為圖19之檢測裝置的反射元件與空間濾波元件的上視示意圖。參照圖19,檢測裝置100H與前述的檢測裝置100G類似,兩者相同或相似處,請參照前述說明,於此便不再重述。檢測裝置100H與檢測裝置100G的主要差異在於:檢測裝置100H中的反射元件150為反射式繞射元件150d。反射式繞射元件150d可包括透光膜150d1以及設置於透光膜150d1上的反射圖案層150d2。在本實施例中,透光膜150d1可以設置於反射圖案層150d2與空間濾波元件120之間,但本新型創作不以此為限。在其他實施例中,透光膜150d1也可以設置於導光元件160與反射圖案層150d2之間。Figure 19 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 20 is a top plan view of the reflective element and spatial filtering element of the detecting device of Figure 19. Referring to Fig. 19, the detecting device 100H is similar to the detecting device 100G described above. If the two are the same or similar, please refer to the above description, and the description will not be repeated here. The main difference between the detecting device 100H and the detecting device 100G is that the reflecting element 150 in the detecting device 100H is a reflective diffractive element 150d. The reflective diffraction element 150d may include a light transmissive film 150d1 and a reflective pattern layer 150d2 disposed on the light transmissive film 150d1. In the present embodiment, the transparent film 150d1 may be disposed between the reflective pattern layer 150d2 and the spatial filter component 120, but the novel creation is not limited thereto. In other embodiments, the light transmissive film 150d1 may also be disposed between the light guiding element 160 and the reflective pattern layer 150d2.

在本實施例中,空間濾波元件120的透光部122在方向X上排列,每一透光部122在方向X上具有寬度W3,反射式繞射元件150d的每一透光部152在方向X上具有寬度W5,而W5≤ W3。舉例而言,感測光束L的波長為λ,而(0.01)λ≤W5 ≤(100)λ;亦即,反射式繞射元件150d的透光部152的尺寸與感測光束L的波長是可相比的(comparable),而感測光束L經過反射式繞射元件150d的透光部152時會產生繞射。In the present embodiment, the light transmitting portions 122 of the spatial filter element 120 are arranged in the direction X, each of the light transmitting portions 122 has a width W3 in the direction X, and each of the light transmitting portions 152 of the reflective diffraction element 150d is in the direction X has a width W5 and W5 ≤ W3. For example, the wavelength of the sensing beam L is λ, and (0.01) λ ≤ W5 ≤ (100) λ; that is, the size of the light transmitting portion 152 of the reflective diffractive element 150d and the wavelength of the sensing beam L are It is comparable, and the sensing beam L passes through the light transmitting portion 152 of the reflective diffractive element 150d to cause diffraction.

請參照圖17及圖19,檢測裝置100G及檢測裝置100H均包括各自的表面電漿共振(Surface Plasmon Resonance)層SPR。檢測裝置100G及檢測裝置100H之表面電漿共振層SPR的功能與前述檢測裝置100之表面電漿共振層SPR的功能相同,於此便不再重述。Referring to FIGS. 17 and 19, each of the detecting device 100G and the detecting device 100H includes a surface Plasmon Resonance layer SPR. The functions of the surface plasma resonance layer SPR of the detecting device 100G and the detecting device 100H are the same as those of the surface plasma resonance layer SPR of the detecting device 100, and will not be repeated here.

請參見圖19及圖20,在本實施例中,反射式繞射元件150d的多個透光部152可以是多個微孔u,其中透光部152具有的寬度W5,寬度W5即微孔u的直徑。微孔u重疊於於空間濾波元件120的透光部122以及空間濾波元件120的遮光部124,但本新型創作不以此為限。在其他實施例中,反射式繞射元件150d的透光部152,也可以是寬度W5與感測光束L的波長λ接近的狹縫結構,其中狹縫結構不限定只具有單一寬度W5,多個狹縫結構的設置方向也不限制為互相平行;多個狹縫結構可以具有不同寬度,多個狹縫結構可互相平行或交錯設置。Referring to FIG. 19 and FIG. 20, in the embodiment, the plurality of transparent portions 152 of the reflective diffractive element 150d may be a plurality of micro holes u, wherein the transparent portion 152 has a width W5 and a width W5 is a micro hole. The diameter of u. The micro hole u overlaps the light transmitting portion 122 of the spatial filter element 120 and the light blocking portion 124 of the spatial filter element 120, but the novel creation is not limited thereto. In other embodiments, the transparent portion 152 of the reflective diffractive element 150d may also be a slit structure having a width W5 close to the wavelength λ of the sensing beam L, wherein the slit structure is not limited to have a single width W5, and more The arrangement direction of the slit structures is also not limited to be parallel to each other; the plurality of slit structures may have different widths, and the plurality of slit structures may be arranged in parallel or staggered with each other.

在本實施例中,感測光束L在反射式繞射元件150d的表面產生繞射現象,並以反射式繞射的方式傳遞至手指的指紋F。指紋辨識裝置100H具有與前述之指紋辨識裝置100G類似的功效及優點,於此便不再重述。In the present embodiment, the sensing beam L produces a diffraction phenomenon on the surface of the reflective diffractive element 150d and is transmitted to the fingerprint F of the finger in a reflective diffraction manner. The fingerprint identification device 100H has similar functions and advantages as the fingerprint identification device 100G described above, and will not be repeated here.

圖21為本新型創作一實施例之檢測裝置的反射元件與空間濾波元件的上視示意圖。請參照圖20及圖21,圖21的反射式繞射元件150d’與圖20的反射式繞射元件150d的差異在於:圖21的反射式繞射元件150d’的反射部154為多個反射微點u’,而圖21的反射式繞射元件150d’的透光部152’為多個反射微點u’之間的透光部。圖21的反射式繞射元件150d’具有與圖20的反射式繞射元件150d相同或相似的功能,圖21的反射式繞射元件150d’可用以取代圖19之反射式繞射元件150d,以此方式構成的檢測裝置也在本新型創作所欲保護的範疇內。Figure 21 is a top plan view showing a reflective element and a spatial filter element of a detecting device according to an embodiment of the present invention. Referring to FIGS. 20 and 21, the reflective diffractive element 150d' of FIG. 21 differs from the reflective diffractive element 150d of FIG. 20 in that the reflective portion 154 of the reflective diffractive element 150d' of FIG. 21 is a plurality of reflections. The micro point u', and the light transmitting portion 152' of the reflective diffractive element 150d' of Fig. 21 is a light transmitting portion between the plurality of reflecting microdots u'. The reflective diffractive element 150d' of Figure 21 has the same or similar function as the reflective diffractive element 150d of Figure 20, and the reflective diffractive element 150d' of Figure 21 can be used in place of the reflective diffractive element 150d of Figure 19. The detection device constructed in this way is also within the scope of the novel creation.

圖22為本新型創作另一實施例之指紋辨識裝置之剖面示意圖。本實施例之檢測裝置100I與前述之檢測裝置100D類似,兩者的差異在於:空間濾波元件120I具有多個光通道LC5以及多個光通道LC6。多個光通道LC5相平行且在斜向方向d5上延伸,其中斜向方向d5與表面133的法線方向N具有夾角θ1,而0 o< θ1 < 90 o。多個光通道LC6在斜向方向d6上延伸,斜向方向d6與表面133的法線方向N具有夾角θ2,而0 o< θ2 < 90 o。斜向方向d5與斜向方向d6交錯。光通道LC5及光通道LC6可以是互相交叉而互相連通。檢測裝置100I具有與前述之檢測裝置100D類似的功效及優點,於此便不再重述。 FIG. 22 is a cross-sectional view showing the fingerprint identification device of another embodiment of the present invention. The detecting device 100I of the present embodiment is similar to the aforementioned detecting device 100D, and the difference is that the spatial filtering component 120I has a plurality of optical channels LC5 and a plurality of optical channels LC6. The plurality of light channels LC5 are parallel and extend in the oblique direction d5, wherein the oblique direction d5 has an angle θ1 with the normal direction N of the surface 133, and 0 o < θ1 < 90 o . The plurality of light channels LC6 extend in the oblique direction d6, and the oblique direction d6 has an angle θ2 with the normal direction N of the surface 133, and 0 o < θ2 < 90 o . The oblique direction d5 is staggered with the oblique direction d6. The optical channel LC5 and the optical channel LC6 may cross each other and communicate with each other. The detecting device 100I has similar functions and advantages as the aforementioned detecting device 100D, and will not be repeated here.

在本實施例中,35 o< θ1 <85 o,35 o< θ2 <85 o,θ1與θ2可不相同,但本新型創作不以此為限。在本實施例中,感測元件110包括具有多個像素區PR的透光載板110S以及配置於透光載板110S之多個像素區PR的多個光電轉換結構110C。舉例而言,感測元件110可以是玻璃基底的感測器(Glass Based Sensor)。 In the present embodiment, 35 o < θ1 <85 o , 35 o < θ2 <85 o , θ1 and θ2 may be different, but the novel creation is not limited thereto. In the present embodiment, the sensing element 110 includes a light transmissive carrier 110S having a plurality of pixel regions PR and a plurality of photoelectric conversion structures 110C disposed in the plurality of pixel regions PR of the transparent carrier 110S. For example, the sensing element 110 can be a glass based sensor.

在本實施例中,光通道LC5是在不平行於表面133之法線方向N的方向(即斜向方向d5)上延伸,且光通道LC6也是在不平行於表面133之法線方向N的方向(即斜向方向d6)上延伸。然而,本新型創作不限於此,於另一實施例中,光通道LC5與光通道LC6的一者可在平行於表面133之法線方向N的方向上延伸,而光通道LC5與光通道LC6的另一者可在不平行於表面133之法線方向N的方向上延伸。簡言之,於另一實施例中,光通道LC5與光通道LC6的一者可以是直向配置,光通道LC5與光通道LC6的另一者可以是斜向配置,其中直向配置的光通道例如是配置在非指紋辨識區(或稱,非可視區)。In the present embodiment, the light tunnel LC5 extends in a direction that is not parallel to the normal direction N of the surface 133 (i.e., the oblique direction d5), and the light tunnel LC6 is also in a direction N which is not parallel to the normal direction of the surface 133. The direction (ie, the oblique direction d6) extends. However, the novel creation is not limited thereto. In another embodiment, one of the light channel LC5 and the light channel LC6 may extend in a direction parallel to the normal direction N of the surface 133, and the light channel LC5 and the light channel LC6 The other of the others may extend in a direction that is not parallel to the normal direction N of the surface 133. In short, in another embodiment, one of the optical channel LC5 and the optical channel LC6 may be a straight configuration, and the other of the optical channel LC5 and the optical channel LC6 may be an oblique configuration, wherein the light is configured directly The channel is, for example, configured in a non-fingerprint recognition area (or non-visible area).

圖23是本新型創作一實施例的檢測裝置的剖面示意圖。請參見圖23,檢測裝置100J包括導光元件160、感測元件110、表面電漿共振層SPR及空間濾波元件120。導光元件160具有頂面162與相對於頂面112的底面164。在本實施例中,導光元件160例如是光學膠層。然而,本新型創作不限於此,在另一實施例中,導光元件160也可以是透光基板,其材料可以是選自玻璃、聚甲基丙烯酸甲酯(PMMA,Polymethylmethacrylate)、聚碳酸酯(PC,Polycarbonate)或其他適當的透光材質。在本實施例中,檢測裝置100可包括發光元件140,用以發出感測光束L。在本實施例中,發光元件140可埋入導光元件160(例如:光學膠層)中。然而,本新型創作不限於此,在另一實施例中,發光元件140也可配置於導光元件160外。在本實施例中,發光元件140可為發光二極體(Light-Emitting Diode,LED),但本新型創作不限於此,在其他實施例中,發光元件140也可以其他適當種類的發光元件。Figure 23 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Referring to FIG. 23, the detecting device 100J includes a light guiding element 160, a sensing element 110, a surface plasma resonance layer SPR, and a spatial filtering element 120. Light directing element 160 has a top surface 162 and a bottom surface 164 opposite top surface 112. In the present embodiment, the light guiding element 160 is, for example, an optical adhesive layer. However, the novel creation is not limited thereto. In another embodiment, the light guiding element 160 may also be a light transmissive substrate, and the material thereof may be selected from the group consisting of glass, polymethylmethacrylate (PMMA), and polycarbonate. (PC, Polycarbonate) or other suitable light-transmissive material. In the present embodiment, the detecting device 100 may include a light emitting element 140 for emitting the sensing light beam L. In the present embodiment, the light emitting element 140 may be buried in the light guiding element 160 (for example, an optical adhesive layer). However, the novel creation is not limited thereto, and in another embodiment, the light-emitting element 140 may also be disposed outside the light guiding element 160. In this embodiment, the light-emitting element 140 may be a Light-Emitting Diode (LED), but the novel creation is not limited thereto. In other embodiments, the light-emitting element 140 may be other suitable types of light-emitting elements.

感測元件110配置於導光元件160的底面164旁。舉例而言,在本實施例中,感測元件110例如是電荷耦合元件(Charge Coupled Device,CCD)或互補式金屬氧化物半導體元件(Complementary Metal-Oxide Semiconductor,CMOS)。然而,本新型創作不限於此,在其他實施例中,感測元件110也可為其他適當種類的影像感測器。The sensing element 110 is disposed beside the bottom surface 164 of the light guiding element 160. For example, in the embodiment, the sensing element 110 is, for example, a Charge Coupled Device (CCD) or a Complementary Metal-Oxide Semiconductor (CMOS). However, the novel creation is not limited thereto. In other embodiments, the sensing component 110 may also be other suitable types of image sensors.

表面電漿共振層SPR配置於導光元件160的頂面162上,且用以接收生物高聚物BP。在本實施例中,檢測裝置100J也可以選擇性地包括蓋板170,位於導光元件110的頂面162上方,且具有供手指F可按壓的按壓面172上。在本實施例中,表面電漿共振層SPR也可配置於蓋板170的按壓面172上。然而,本新型創作不限於此,在其它實施例中,也可省略蓋板170,而將表面電漿共振層SPR直接設置於導光元件160的頂面162上。The surface plasma resonant layer SPR is disposed on the top surface 162 of the light guiding element 160 and is configured to receive the biopolymer BP. In the present embodiment, the detecting device 100J may also optionally include a cover plate 170 above the top surface 162 of the light guiding element 110 and having a pressing surface 172 on which the finger F can be pressed. In the present embodiment, the surface plasma resonance layer SPR may also be disposed on the pressing surface 172 of the cover plate 170. However, the novel creation is not limited thereto, and in other embodiments, the cover plate 170 may be omitted, and the surface plasma resonance layer SPR may be directly disposed on the top surface 162 of the light guiding element 160.

在本實施例中,生物高聚物(Biopolymers)BP可以是汗水、唾液、血液、是尿液、細菌、病毒或其它欲檢測的生物高聚物。圖24示出入射至表面電漿共振層130之光束L的入射角θ i(亦可視為反射角)及其反射率的關係。請參照圖23及圖24,當發光元件140發出的感測光束L傳遞至表面電漿共振層SPR時,感測光束L會在表面電漿共振層SPR的表面SPRa發生全內反射(Total Internal Reflection,TIR),而在光疏介質(例如是環境介質)形成消逝波(Evanescent Wave),在光密介質(例如是表面電漿共振層SPR)形成表面電漿波(Surface Plasma Wave)。此時,消逝波與表面電漿波相遇會產生共振。當消逝波與表面電漿波發生共振時,入射至表面電漿共振層SPR的感測光束L的大部分能量被表面電漿波所吸收,因而被表面電漿共振層SPR的反射的感測光束L在特定方向上的強度將大幅地減弱,此時的特定角度稱為共振角γ(Resonant Angle)。在本實施例中,共振角γ與表面電漿共振層SPR之表面SPRa的折射率變化有關,亦即,與附著於表面電漿共振層SPR之表面SPRa的生物高聚物BP的性質(例如:介電常數)有關。透過分析形成於感測元件110上的反射的感測光束L的分佈,能推知上述共振角γ為何,進而推知附著於表面電漿共振層SPR之表面SPRa的生物高聚物BP種類為何。此外,在本實施例中,表面電漿共振層SPR的表面SPRa可選擇性地為表面改質層,以使生物高聚物BP能更容易附著在表面電漿共振層SPR上,進而提升檢測靈敏度。 In this embodiment, the Biopolymers BP may be sweat, saliva, blood, urine, bacteria, viruses or other biopolymers to be detected. Fig. 24 shows the relationship between the incident angle θ i (which can also be regarded as a reflection angle) of the light beam L incident on the surface plasma resonance layer 130 and its reflectance. Referring to FIG. 23 and FIG. 24, when the sensing light beam L emitted from the light-emitting element 140 is transmitted to the surface plasma resonance layer SPR, the sensing light beam L is totally internally reflected on the surface SPRa of the surface plasma resonance layer SPR (Total Internal Reflection, TIR), an Evanescent Wave is formed in a light-diffusing medium (for example, an environmental medium), and a Surface Plasma Wave is formed in a light-tight medium (for example, a surface plasma resonance layer SPR). At this time, the evanescent wave and the surface plasma wave meet to resonate. When the evanescent wave resonates with the surface plasma wave, most of the energy of the sensing beam L incident on the surface plasma resonance layer SPR is absorbed by the surface plasma wave, and thus is sensed by the reflection of the surface plasma resonance layer SPR. The intensity of the light beam L in a particular direction will be greatly diminished, and the specific angle at this time is called the resonance angle γ (Resonant Angle). In the present embodiment, the resonance angle γ is related to the change in the refractive index of the surface SPRa of the surface plasma resonance layer SPR, that is, the property of the biopolymer BP attached to the surface SPRa of the surface plasma resonance layer SPR (for example) : Dielectric constant) related. By analyzing the distribution of the reflected sensing light beam L formed on the sensing element 110, it is possible to infer why the resonance angle γ is, and to infer the type of the biopolymer BP attached to the surface SPRa of the surface plasma resonance layer SPR. In addition, in the embodiment, the surface SPRa of the surface plasma resonance layer SPR may be selectively a surface modification layer, so that the biopolymer BP can be more easily attached to the surface plasma resonance layer SPR, thereby improving detection. Sensitivity.

空間濾波元件120配置於導光元件160的底面164與感測元件110之間。空間濾波元件120具有多個第一光通道LC1及多個第二光通道LC2,分別對應感測元件110的多個像素區PR1及多個像素區PR2。多個第一光通道LC1在第一斜向方向d1延伸,多個第四光通道144在第二斜向方向d2上延伸,第一斜向方向d1與第二斜向方向d2交錯。亦即,導光元件160的頂面162的法線方向N與第一光通道LC1的延伸方向(即第一斜向方向d1)具有夾角α,導光元件160的頂面162的法線方向N與第二光通道LC2的延伸方向(即第二斜向方向d2)具有夾角β,而夾角α不等於夾角β。The spatial filter component 120 is disposed between the bottom surface 164 of the light guide component 160 and the sensing component 110. The spatial filter component 120 has a plurality of first optical channels LC1 and a plurality of second optical channels LC2 respectively corresponding to the plurality of pixel regions PR1 and the plurality of pixel regions PR2 of the sensing element 110. The plurality of first light channels LC1 extend in the first oblique direction d1, and the plurality of fourth light channels 144 extend in the second oblique direction d2, and the first oblique direction d1 and the second oblique direction d2 are staggered. That is, the normal direction N of the top surface 162 of the light guiding element 160 has an angle α with the extending direction of the first light channel LC1 (ie, the first oblique direction d1), and the normal direction of the top surface 162 of the light guiding element 160 N has an angle β with the extending direction of the second light channel LC2 (ie, the second oblique direction d2), and the angle α is not equal to the angle β.

值得注意的是,夾角β對應表面電漿共振層SPR的共振角γ。也就是說,第二光通道LC2具有適當的傾斜角度(即夾角β),以使具有共振角γ的部分反射的感測光束L易通過第二光通道LC2而傳遞至對應第二光通道LC2的像素區PR2。在本實施例中,藉由偵測傳遞至對應第二光通道LC2之像素區PR2的部分反射的感測光束L與傳遞至對應第一光通道LC1之像素區PR1的部分反射的感測光束L的強度差異的變化,便能得知表面電漿共振層SPR之表面SPRa上是否有欲檢測之生物高聚物BP。舉例而言,若傳遞至對應第二光通道LC2之像素區PR2的部分反射的感測光束L的強度變小,而傳遞至對應第一光通道LC1之像素區PR1的部分反射的感測光束L與傳遞至對應第二光通道LC2之像素區PR2的部分反射的感測光束L的強度差異變大,便能得知表面電漿共振層SPR之表面SPRa上有欲檢測之種類的生物高聚物BP。簡言之,由於空間濾波元件120的第二光通道LC2的傾斜角度(即夾角β)對應於表面電漿共振層SPR的共振角γ,因此,檢測裝置100J能簡易地偵測出表面電漿共振層SPR的表面SPRa上是否有欲檢測之種類的生物高聚物BP。It is worth noting that the angle β corresponds to the resonance angle γ of the surface plasma resonance layer SPR. That is, the second light channel LC2 has an appropriate tilt angle (ie, the angle β), so that the partially reflected sensing beam L having the resonance angle γ is easily transmitted to the corresponding second light channel LC2 through the second light channel LC2. Pixel area PR2. In this embodiment, the partially reflected reflected light beam transmitted to the pixel region PR1 corresponding to the second light channel LC2 and the partially reflected sensing beam transmitted to the pixel region PR1 corresponding to the first light channel LC1 are detected. It is known whether there is a biopolymer BP to be detected on the surface SPRa of the surface plasma resonance layer SPR by the change in the intensity difference of L. For example, if the intensity of the partially reflected sensing beam L transmitted to the pixel region PR2 corresponding to the second optical channel LC2 becomes small, the portion of the sensing beam that is reflected to the pixel region PR1 corresponding to the first optical channel LC1 is reflected. The difference in intensity between the L and the partially reflected sensing beam L transmitted to the pixel region PR2 of the corresponding second optical channel LC2 becomes larger, and it can be known that the surface SPRa of the surface plasma resonance layer SPR has a biological height of the type to be detected. Polymer BP. In short, since the tilt angle (ie, the angle β) of the second light channel LC2 of the spatial filter element 120 corresponds to the resonance angle γ of the surface plasma resonance layer SPR, the detecting device 100J can easily detect the surface plasma. Whether or not the biopolymer BP of the type to be detected is present on the surface SPRa of the resonance layer SPR.

在本實施例中,多個第一光通道LC1與多個第二光通道LC2可交替排列於感測元件110上。多個第一光通道LC1與多個第二光通道LC2彼此分離而不互相連通。然而,本新型創作不以此為限,在其他實施例中,第一光通道LC1與第二光通道LC2也可以是相連通的。In this embodiment, the plurality of first light channels LC1 and the plurality of second light channels LC2 are alternately arranged on the sensing element 110. The plurality of first light channels LC1 and the plurality of second light channels LC2 are separated from each other without being in communication with each other. However, the novel creation is not limited thereto. In other embodiments, the first optical channel LC1 and the second optical channel LC2 may also be in communication.

在本實施例中,夾角α的範圍可介於0 o到90 o之間,即第一光通道LC1的延伸方向(即第一斜向方向d1)可不平行於頂面162的法線方向N。然而,本新型創作不限於此,在其它實施例中,第一光通道LC1的延伸方向(即第一斜向方向d1)也可平行於頂面162的法線方向N。在本實施例中,夾角β的範圍可介於0 o到90 o之間,即第二光通道LC2的延伸方向(即第二斜向方向d2)可不平行於頂面162的法線方向N。舉例而言,在本實施例中,夾角α及β可滿足:α<β。然而,本新型創作不以此為限,由於第一光通道LC1是用以讓被生物特徵(例如:指紋)反射的部分感測光束L通過,因此夾角α可根據被生物特徵(例如:指紋)反射之大部分感測光束L的反射角度的範圍來決定;由於第二光通道LC2是用以讓被表面電漿共振層SPR反射且具共振角γ的部分感測光束L通過,因此夾角β可根據欲檢測之生物高聚物BP的性質及表面電漿共振層SPR的共振角γ來決定;夾角β不一定要大於夾角α。 In this embodiment, the angle α may range from 0 o to 90 o , that is, the extending direction of the first optical channel LC1 (ie, the first oblique direction d1) may not be parallel to the normal direction N of the top surface 162. . However, the novel creation is not limited thereto, and in other embodiments, the extending direction of the first light tunnel LC1 (ie, the first oblique direction d1) may also be parallel to the normal direction N of the top surface 162. In this embodiment, the angle β may range between 0 o and 90 o , that is, the extending direction of the second optical path LC2 (ie, the second oblique direction d2) may not be parallel to the normal direction N of the top surface 162. . For example, in the present embodiment, the angles α and β can satisfy: α < β. However, the novel creation is not limited thereto. Since the first light channel LC1 is used to pass a portion of the sensing beam L reflected by the biometric feature (eg, fingerprint), the angle α may be based on the biometric feature (eg, fingerprint). The range of the reflection angle of most of the reflected light beam L is determined; since the second light channel LC2 is used to pass a portion of the sensing light beam L reflected by the surface plasma resonance layer SPR and having the resonance angle γ, the angle is β can be determined according to the nature of the biopolymer BP to be detected and the resonance angle γ of the surface plasma resonance layer SPR; the angle β does not have to be larger than the angle α.

在本實施例中,檢測裝置100J還可進一步包括第一反射元件R1,設置於導光元件160的底面164。感測光束L被表面電漿共振層SPR及第一反射元件R1反射後傳遞至感測元件110。亦即,表面電漿共振層SPR除了用以感測生物高聚物BP外,表面電漿共振層SPR還可用以反射具有共振角γ以外之角度的感測光束L,以增加感測光束L能照射生物特徵(例如:手指F)的面積。在本實施例中,第一反射元件R1與表面電漿共振層SPR在法線方向N部分重疊,然而,本新型創作不以此為限。In the embodiment, the detecting device 100J may further include a first reflective element R1 disposed on the bottom surface 164 of the light guiding element 160. The sensing beam L is reflected by the surface plasma resonance layer SPR and the first reflective element R1 and transmitted to the sensing element 110. That is, the surface plasma resonance layer SPR can be used to sense the biopolymer BP, and the surface plasma resonance layer SPR can also be used to reflect the sensing beam L having an angle other than the resonance angle γ to increase the sensing beam L. The area that can illuminate a biological feature (eg, finger F). In the present embodiment, the first reflective element R1 and the surface plasma resonance layer SPR partially overlap in the normal direction N. However, the novel creation is not limited thereto.

圖25是本新型創作另一實施例檢測裝置的剖面示意圖。圖25的檢測裝置100K與圖23的檢測裝置100J類似,相同的技術特徵在此不多加贅述,其差別在於,第一反射元件R1包括多個第一反射部R1-1,間隔排列於導光元件160的底面164上;檢測裝置100K還包括第二反射元件R2,設置於導光元件160的頂面162上,且與表面電漿共振層SPR間隔排列。感測光束L被表面電漿共振層SPR、第一反射元件R1及第二反射元件R2反射後傳遞至感測元件110。在圖25的實施例中,第二反射元件R2為單一個反射圖案。然而,本新型創作不限於此,在其他實施例中,第二反射元件R2也可包括多個第二反射部(未繪示),間隔排列於導光元件160的頂面162上。Figure 25 is a cross-sectional view showing the detecting device of another embodiment of the present invention. The detecting device 100K of FIG. 25 is similar to the detecting device 100J of FIG. 23, and the same technical features are not described herein again, except that the first reflecting element R1 includes a plurality of first reflecting portions R1-1 spaced apart from each other in the light guiding manner. The detecting device 100K further includes a second reflective element R2 disposed on the top surface 162 of the light guiding element 160 and spaced apart from the surface plasma resonant layer SPR. The sensing beam L is reflected by the surface plasma resonance layer SPR, the first reflective element R1 and the second reflective element R2 and transmitted to the sensing element 110. In the embodiment of Figure 25, the second reflective element R2 is a single reflective pattern. However, the present invention is not limited thereto. In other embodiments, the second reflective element R2 may also include a plurality of second reflective portions (not shown) spaced apart from the top surface 162 of the light guiding element 160.

圖26是本新型創作又一實施例的檢測裝置的剖面示意圖。圖26的檢測裝置100L與圖23的檢測裝置100J類似,相同的技術特徵在此不多加贅述,其差別在於,空間濾波元件120還具有多個第三光通道LC3及多個第四光通道LC4,分別對應感測元件110的多個像素區PR3及多個像素區PR4。多個第三光通道LC3在第三斜向方向d3延伸,多個第四光通道LC4在第四斜向方向d4上延伸,第三斜向方向d3與第四斜向方向d4交錯。亦即,導光元件160的頂面162的法線方向N與第三光通道LC3的延伸方向(即第三斜向方向d3)具有夾角β2,導光元件160的頂面162的法線方向N與第四光通道LC4的延伸方向(即第四斜向方向d4)具有夾角β3,而夾角β2不等於β3。在本實施例中,第一光通道LC1、第二光通道LC2、第三光通道LC3及第四光通道LC4依序排列於感測元件110上。然而,本新型創作不以此為限,在其他實施例中,第一光通道LC1、第二光通道LC2、第三光通道LC3及第四光通道LC4排列的次序也可依實際情況作調整。在本實施例中,夾角β2及β3可位於夾角α及夾角β之間,即滿足α<β2, β3<β,且夾角α、β、β2及β3的角度大小可漸增,即滿足α<β2<β3<β。然而,本新型創作不以此為限。在本實施例中,除空間濾波元件120具有多個第一光通道LC1、多個第二光通道LC2、多個第三光通道LC3及多個第四光通道LC4外,空間濾波元件120還可具有多個不同於夾角α、β、β2及β3的光通道,例如具有第五光通道(未繪示)、第六光通道(未繪示)等不同夾角的光通道,不同夾角的光通量的數量可適應性增加。Figure 26 is a cross-sectional view showing a detecting device of still another embodiment of the present invention. The detecting device 100L of FIG. 26 is similar to the detecting device 100J of FIG. 23, and the same technical features are not described herein again. The difference is that the spatial filtering component 120 further has a plurality of third optical channels LC3 and a plurality of fourth optical channels LC4. Corresponding to the plurality of pixel regions PR3 and the plurality of pixel regions PR4 of the sensing element 110, respectively. The plurality of third light channels LC3 extend in the third oblique direction d3, the plurality of fourth light channels LC4 extend in the fourth oblique direction d4, and the third oblique direction d3 is staggered with the fourth oblique direction d4. That is, the normal direction N of the top surface 162 of the light guiding element 160 has an angle β2 with the extending direction of the third light channel LC3 (ie, the third oblique direction d3), and the normal direction of the top surface 162 of the light guiding element 160 N has an angle β3 with the extending direction of the fourth optical path LC4 (ie, the fourth oblique direction d4), and the included angle β2 is not equal to β3. In this embodiment, the first optical channel LC1, the second optical channel LC2, the third optical channel LC3, and the fourth optical channel LC4 are sequentially arranged on the sensing element 110. However, the novel creation is not limited thereto. In other embodiments, the order of arranging the first optical channel LC1, the second optical channel LC2, the third optical channel LC3, and the fourth optical channel LC4 may also be adjusted according to actual conditions. . In this embodiment, the angles β2 and β3 may be located between the angle α and the angle β, that is, α<β2, β3<β, and the angles of the angles α, β, β2, and β3 may be gradually increased, that is, α< 22<β3<β. However, this new creation is not limited to this. In this embodiment, in addition to the spatial filtering component 120 having a plurality of first optical channels LC1, a plurality of second optical channels LC2, a plurality of third optical channels LC3, and a plurality of fourth optical channels LC4, the spatial filtering component 120 further There may be a plurality of optical channels different from the angles α, β, β2, and β3, for example, optical channels having different angles such as a fifth optical channel (not shown) and a sixth optical channel (not shown), and different angles of light flux. The amount of adaptability increases.

值得注意的是,由於表面電漿共振層SPR的共振角γ會因為不同種類的生物高聚物BP而改變,因此,在空間濾波元件120設置多個不同夾角α、β、β2及β3的光通道,可分別對應於多個種類的生物高聚物BP所產生的共振角γ,因此,檢測裝置100L能偵測出不只一種的生物高聚物BP,使檢測裝置100B的適用範圍更具多樣性。It is worth noting that since the resonance angle γ of the surface plasma resonance layer SPR changes due to different kinds of biopolymers BP, a plurality of light beams of different angles α, β, β2, and β3 are disposed in the spatial filter element 120. The channels can respectively correspond to the resonance angle γ generated by the plurality of kinds of biopolymers BP. Therefore, the detecting device 100L can detect more than one kind of biopolymer BP, so that the application range of the detecting device 100B is more diverse. Sex.

綜上所述,本新型創作一實施例的檢測裝置包括導光元件、感測元件、表面電漿共振層以及空間濾波元件。空間濾波元件設置多個第三光通道以及與第四光通道,其中第三光通道沿著第一斜向方向延伸、第四光通道沿著第二斜向方向延伸,且第三斜向方向與第四斜向方向交錯,第四斜向方向與導光元件的頂面的法線方向具有夾角β,夾角β對應表面電漿共振層的共振角γ。多個第三光通道用以讓被生物特徵反射的感測光束通過,進而使感測元件取得生物特徵的影像。多個第四光通道用以讓被表面電漿共振層反射的感測光束通過,進而判斷表面電漿共振層上是否有欲檢測種類之生物高聚物。本新型創作一實施例的檢測裝置兼具生物特徵辨識及生物檢測的多重功能。In summary, the detecting device of the present invention includes a light guiding element, a sensing element, a surface plasma resonance layer, and a spatial filtering element. The spatial filtering component is provided with a plurality of third optical channels and a fourth optical channel, wherein the third optical channel extends along the first oblique direction, the fourth optical channel extends along the second oblique direction, and the third oblique direction Interlaced with the fourth oblique direction, the fourth oblique direction has an angle β with the normal direction of the top surface of the light guiding element, and the angle β corresponds to the resonance angle γ of the surface plasma resonance layer. A plurality of third optical channels are used to pass the sensing beam reflected by the biometric feature, thereby enabling the sensing component to acquire an image of the biometric feature. A plurality of fourth optical channels are used to pass the sensing beam reflected by the surface plasma resonance layer, thereby determining whether there is a biopolymer of the type to be detected on the surface plasma resonance layer. The detection device of one embodiment of the present invention has multiple functions of biometric identification and biological detection.

雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新型創作的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the novel creation, and any person skilled in the art can make some changes without departing from the spirit and scope of the novel creation. Retouching, the scope of protection of this new creation is subject to the definition of the scope of the patent application attached.

50‧‧‧待測者50‧‧‧Testees

12、60、F‧‧‧指紋 12, 60, F‧‧‧ fingerprints

12a‧‧‧波谷 12a‧‧‧Valley

12b、62‧‧‧波峰 12b, 62‧‧‧ crest

80、BP‧‧‧生物高聚物 80, BP‧‧‧ biopolymer

100、100A、100B‧‧‧檢測裝置 100, 100A, 100B‧‧‧ detection devices

100C、100D、100E‧‧‧檢測裝置 100C, 100D, 100E‧‧‧ detection devices

100F、100G、100H‧‧‧檢測裝置 100F, 100G, 100H‧‧‧ detection devices

100I、100J、100K‧‧‧檢測裝置 100I, 100J, 100K‧‧‧ detection devices

100L‧‧‧檢測裝置 100L‧‧‧Detection device

110‧‧‧感測元件 110‧‧‧Sensor components

110C‧‧‧光電轉換結構 110C‧‧‧ photoelectric conversion structure

110S‧‧‧透光載板 110S‧‧‧Transparent carrier board

111‧‧‧感測面 111‧‧‧Sense surface

112‧‧‧感測單元 112‧‧‧Sensor unit

120、120A、120B‧‧‧空間濾波元件 120, 120A, 120B‧‧‧ spatial filter components

120D、120F、120I‧‧‧空間濾波元件 120D, 120F, 120I‧‧‧ spatial filter components

120a‧‧‧空間濾波片 120a‧‧‧ Spatial Filter

120a-1‧‧‧第一空間濾波片 120a-1‧‧‧First Space Filter

120a-2‧‧‧第二空間濾波片 120a-2‧‧‧Second space filter

122、128a‧‧‧透光部 122, 128a‧‧‧Transmission Department

152、152’‧‧‧透光部 152, 152'‧‧‧Transmission Department

124、128b‧‧‧遮光部 124, 128b‧‧‧Lighting Department

126、126-4‧‧‧透光層 126, 126-4‧‧ ‧ light transmissive layer

126-1‧‧‧第一透光層 126-1‧‧‧First light transmission layer

126-2‧‧‧第二透光層 126-2‧‧‧Second light transmission layer

126-3‧‧‧第三透光層 126-3‧‧‧The third light transmission layer

128、128-4、128-5‧‧‧空間濾波層 128, 128-4, 128-5‧‧‧ spatial filtering layer

128-1‧‧‧第一空間濾波層 128-1‧‧‧First spatial filter layer

128-2‧‧‧第二空間濾波層 128-2‧‧‧Second spatial filter layer

128-3‧‧‧第三空間濾波層 128-3‧‧‧ third spatial filter layer

128a1‧‧‧第一透光部 128a1‧‧‧First light transmission department

128a2‧‧‧第二透光部 128a2‧‧‧Second light transmission department

128a3‧‧‧第三透光部 128a3‧‧‧The third light transmission department

130‧‧‧透光元件 130‧‧‧Lighting components

131‧‧‧連接面 131‧‧‧ Connection surface

133、S131、S133A‧‧‧表面 133, S131, S133A‧‧‧ surface

S133B、S1421S‧‧‧表面 S133B, S1421S‧‧‧ surface

S1441S、SPRa‧‧‧表面 S1441S, SPRa‧‧‧ surface

140、142‧‧‧發光元件 140, 142‧‧‧Lighting elements

150‧‧‧反射元件 150‧‧‧reflecting elements

150d、150d’‧‧‧反射式繞射元件 150d, 150d'‧‧‧reflective diffractive components

150d1‧‧‧透光膜 150d1‧‧·transparent film

150d2‧‧‧反射圖案層 150d2‧‧‧reflective pattern layer

152h‧‧‧孔洞 152h‧‧‧ hole

152r‧‧‧反射層 152r‧‧‧reflective layer

154‧‧‧反射部 154‧‧‧Reflection Department

160‧‧‧導光元件 160‧‧‧Light guiding elements

160a‧‧‧上表面 160a‧‧‧ upper surface

160b‧‧‧下表面 160b‧‧‧ lower surface

160c‧‧‧側面 160c‧‧‧ side

162‧‧‧頂面 162‧‧‧ top surface

164‧‧‧底面 164‧‧‧ bottom

170‧‧‧蓋板 170‧‧‧ cover

172‧‧‧按壓面 172‧‧‧ Pressing surface

AD1‧‧‧第一黏著層 AD1‧‧‧ first adhesive layer

AD2‧‧‧第二黏著層 AD2‧‧‧Second Adhesive Layer

B、B1、B2、B3‧‧‧光束 B, B1, B2, B3‧‧‧ beams

C‧‧‧凹陷 C‧‧‧ dent

D‧‧‧橫向距離 D‧‧‧ lateral distance

d、d5、d6‧‧‧斜向方向 d, d5, d6‧‧‧ oblique direction

d1‧‧‧第一斜向方向 D1‧‧‧first oblique direction

d2‧‧‧第二斜向方向 D2‧‧‧second oblique direction

d3‧‧‧第三斜向方向 D3‧‧‧ third oblique direction

d4‧‧‧第四斜向方向 D4‧‧‧4th oblique direction

D’、D’’‧‧‧縱向距離 D’, D’’‧‧‧ longitudinal distance

H、H1、H2、H3、H4‧‧‧厚度 H, H1, H2, H3, H4‧‧‧ thickness

T1、T2‧‧‧厚度 T1, T2‧‧‧ thickness

h1、h2‧‧‧高度 H1, h2‧‧‧ height

K、K1~K5‧‧‧直徑 K, K1~K5‧‧‧ diameter

L、L1~L4‧‧‧感測光束 L, L1~L4‧‧‧ Sense beam

L0‧‧‧環境光束 L0‧‧‧Environmental beam

LC1‧‧‧第一光通道 LC1‧‧‧first light channel

LC2‧‧‧第二光通道 LC2‧‧‧Second light channel

LC3‧‧‧第三光通道 LC3‧‧‧ third optical channel

LC4‧‧‧第四光通道 LC4‧‧‧fourth optical channel

LC5、LC6‧‧‧光通道 LC5, LC6‧‧‧ light channel

N‧‧‧法線方向 N‧‧‧ normal direction

n1‧‧‧第一方向 N1‧‧‧ first direction

n2‧‧‧第二方向 N2‧‧‧second direction

R1‧‧‧第一反射元件 R1‧‧‧first reflective element

R1-1‧‧‧第一反射部 R1-1‧‧‧First reflection

R2‧‧‧第二反射元件 R2‧‧‧ second reflective element

Res‧‧‧距離R es ‧‧‧distance

S、P、P1~P5‧‧‧間距 S, P, P1~P5‧‧‧ spacing

SO1、SO2、SO3‧‧‧尺寸 SO1, SO2, SO3‧‧‧ size

SI‧‧‧內表面 SI‧‧‧ inner surface

SPR‧‧‧表面電漿共振層 SPR‧‧‧ surface plasma resonance layer

PR、PR1~PR4‧‧‧像素區 PR, PR1~PR4‧‧‧ pixel area

T1442‧‧‧外表面 T1442‧‧‧ outer surface

u‧‧‧微孔 U‧‧‧micropores

u’‧‧‧反射微點 U’‧‧·reflection micro point

W、W1~W5‧‧‧寬度 W, W1~W5‧‧‧Width

X‧‧‧方向 X‧‧‧ direction

θ、θ1、θ2‧‧‧夾角 θ, θ1, θ2‧‧‧ angle

α、β、β2、β3‧‧‧夾角 α, β, β2, β3‧‧‧ angle

θi‧‧‧入射角 Θi‧‧‧ incident angle

θr‧‧‧反射角 Θr‧‧·reflection angle

θr1、θr2、θr3‧‧‧角度 Θr1, θr2, θr3‧‧‧ angle

γ‧‧‧共振角 Γ‧‧‧resonance angle

圖1為本新型創作一實施例的檢測裝置的示意圖以及局部放大示意圖。 圖2為本新型創作一實施例的檢測裝置的俯視示意圖。 圖3為圖1的檢測裝置的局部R的放大示意圖。 圖4示出被表面電漿共振層SPR反射之感測光束L4的各種反射角θr及其反射率的關係。 圖5是本新型創作一實施例的檢測裝置的剖面示意圖。 圖6是圖1中的空間濾波元件的俯視示意圖。 圖7是本新型創作一實施例的檢測裝置的剖面示意圖。 圖8及圖9分別是圖7的實施例的檢測裝置在無製程公差及有製程公差的情況下的上視示意圖。 圖10是本新型創作一實施例的檢測裝置的剖面示意圖。 圖11為本新型創作一實施例之檢測裝置的剖面示意圖。 圖12為本新型創作一實施例之檢測裝置的剖面示意圖。 圖13為本新型創作一實施例之檢測裝置的剖面示意圖。 圖14示出模擬之圖11的檢測裝置100D的多個感測單元112上的光分佈。 圖15示出模擬之圖12的檢測裝置100E的多個感測單元112上的光分佈。 圖16示出模擬之圖13的檢測裝置100F的多個感測單元112上的光分佈。 圖17為本新型創作一實施例之檢測裝置的剖面示意圖。 圖18為圖17之檢測裝置的反射元件與空間濾波元件的上視示意圖。 圖19為本新型創作一實施例之檢測裝置的剖面示意圖。 圖20為圖19之檢測裝置的反射元件與空間濾波元件的上視示意圖。 圖21為本新型創作一實施例之檢測裝置的反射元件與空間濾波元件的上視示意圖。 圖22為本新型創作另一實施例之檢測裝置之剖面示意圖。 圖23是本新型創作一實施例的檢測裝置的剖面示意圖。 圖24示出入射至表面電漿共振層130之光束L的入射角θi(亦可視為反射角)及其反射率的關係。 圖25是本新型創作另一實施例的檢測裝置的剖面示意圖。 圖26是本新型創作又一實施例的檢測裝置的剖面示意圖。1 is a schematic view and a partially enlarged schematic view of a detecting device according to an embodiment of the present invention. 2 is a top plan view of a detecting device according to an embodiment of the present invention. 3 is an enlarged schematic view of a portion R of the detecting device of FIG. 1. 4 shows the relationship between various reflection angles θr of the sensing light beam L4 reflected by the surface plasma resonance layer SPR and its reflectance. Fig. 5 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Figure 6 is a top plan view of the spatial filtering component of Figure 1. Fig. 7 is a cross-sectional view showing the detecting device of the embodiment of the present invention. 8 and 9 are schematic top views of the detecting device of the embodiment of FIG. 7 with no process tolerances and process tolerances, respectively. Figure 10 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Figure 11 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 12 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 13 is a cross-sectional view showing the detecting device of an embodiment of the present invention. FIG. 14 shows the light distribution on the plurality of sensing units 112 of the detecting device 100D of FIG. 11 which is simulated. FIG. 15 shows the light distribution on the plurality of sensing units 112 of the detecting device 100E of FIG. 12 simulated. FIG. 16 shows the light distribution on the plurality of sensing units 112 of the detecting device 100F of FIG. 13 which is simulated. Figure 17 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 18 is a top plan view of the reflective element and spatial filter element of the detection device of Figure 17. Figure 19 is a cross-sectional view showing the detecting device of an embodiment of the present invention. Figure 20 is a top plan view of the reflective element and spatial filtering element of the detecting device of Figure 19. Figure 21 is a top plan view showing a reflective element and a spatial filter element of a detecting device according to an embodiment of the present invention. Figure 22 is a cross-sectional view showing the detecting device of another embodiment of the present invention. Figure 23 is a cross-sectional view showing the detecting device of the embodiment of the present invention. Fig. 24 shows the relationship between the incident angle θi (which can also be regarded as a reflection angle) of the light beam L incident on the surface plasma resonance layer 130 and its reflectance. Figure 25 is a cross-sectional view showing the detecting device of another embodiment of the present invention. Figure 26 is a cross-sectional view showing a detecting device of still another embodiment of the present invention.

Claims (28)

一種檢測裝置,用以感測一生物高聚物,該檢測裝置包括: 一感測元件,具有一感測面,以及配置於該感測面上的多個感測單元; 一空間濾波元件,設置於該感測面上,且包括多個空間濾波片,其中每一該些空間濾波片包括: 一透光層;以及 一空間濾波層,設置於該透光層上,具有多個透光部及多個遮光部,每一該些透光部被該些遮光部所包圍,其中該些空間濾波片的該些透光層與該些空間濾波片的該些空間濾波層在該感測面之法線方向上交替堆疊; 一透光元件,配置於該空間濾波元件上,該空間濾波元件配置於該透光元件與該感測元件之間;以及 一表面電漿共振層,設置於該透光元件上,且用以接收該生物高聚物,該透光元件配置於該表面電漿共振層與該空間濾波元件之間。A detecting device for sensing a biopolymer, the detecting device comprising: a sensing component having a sensing surface and a plurality of sensing units disposed on the sensing surface; a spatial filtering component, And disposed on the sensing surface, and comprising a plurality of spatial filters, wherein each of the spatial filters comprises: a light transmissive layer; and a spatial filtering layer disposed on the light transmissive layer and having a plurality of light transmissive layers And the plurality of light-shielding portions, each of the light-transmitting portions being surrounded by the light-shielding portions, wherein the light-transmitting layers of the plurality of spatial filters and the spatial filtering layers of the spatial filters are in the sensing Stacking alternately in the normal direction of the surface; a light transmissive element disposed on the spatial filter element, the spatial filter element being disposed between the light transmissive element and the sensing element; and a surface plasma resonant layer disposed on The light transmissive element is configured to receive the biopolymer, and the light transmissive element is disposed between the surface plasma resonance layer and the spatial filter element. 如申請專利範圍第1項所述的檢測裝置,其中該些遮光部及該些透光部沿著一第一方向及一第二方向在該感測面上交替排列,該第一方向垂直於該第二方向,且該第一方向與該第二方向均垂直於該感測面的該法線方向。The detecting device of claim 1, wherein the light shielding portions and the light transmitting portions are alternately arranged on the sensing surface along a first direction and a second direction, the first direction being perpendicular to The second direction, and the first direction and the second direction are both perpendicular to the normal direction of the sensing surface. 如申請專利範圍第1項所述的檢測裝置,其中該些空間濾波層的該些透光部暴露出該感測元件的該些感測單元,每一該空間濾波層的該些透光部的間距為S,該些透光部的每一個的寬度為W,且0.3W<S,該些空間濾波片中的一第一空間濾波片的透光層的厚度為T1,該些空間濾波片中的一第二空間濾波片的透光層的厚度為T2,該檢測裝置滿足: The detecting device of claim 1, wherein the light transmitting portions of the spatial filtering layers expose the sensing units of the sensing elements, and the light transmitting portions of each of the spatial filtering layers The spacing is S, the width of each of the light transmitting portions is W, and 0.3W<S, and the thickness of the light transmitting layer of a first spatial filter in the spatial filter is T1, and the spatial filtering The thickness of the light transmissive layer of a second spatial filter in the sheet is T2, and the detecting device satisfies: . 如申請專利範圍第3項所述的檢測裝置,更滿足: The detecting device described in claim 3 of the patent application further satisfies: . 如申請專利範圍第3項所述的檢測裝置,更滿足: The detecting device described in claim 3 of the patent application further satisfies: . 如申請專利範圍第1項所述的檢測裝置,其中該些空間濾波層包括一第一空間濾波層、一第二空間濾波層以及一第三空間濾波層,該第一空間濾波層、該第二空間濾波層以及該第三空間濾波層彼此重疊,該第一空間濾波層的多個透光部包括多個第一透光部,該第二空間濾波層的多個透光部包括多個第二透光部,該第三空間濾波層的多個透光部包括多個第三透光部,且該空間濾波元件滿足: 各該第三透光部的尺寸大於或等於各該第二透光部的尺寸,且各該第二透光部的尺寸大於各該第一透光部的尺寸;或 各該第三透光部的尺寸大於各該第二透光部的尺寸,且各該第二透光部的尺寸大於或等於各該第一透光部的尺寸。The detecting device of claim 1, wherein the spatial filtering layer comprises a first spatial filtering layer, a second spatial filtering layer and a third spatial filtering layer, the first spatial filtering layer, the first The two spatial filtering layers and the third spatial filtering layer overlap each other, and the plurality of transparent portions of the first spatial filtering layer include a plurality of first light transmitting portions, and the plurality of light transmitting portions of the second spatial filtering layer include a plurality of a second light transmitting portion, the plurality of light transmitting portions of the third spatial filtering layer include a plurality of third light transmitting portions, and the spatial filtering component satisfies: each of the third light transmitting portions has a size greater than or equal to each of the second light transmitting portions The size of the light transmitting portion, and the size of each of the second light transmitting portions is larger than the size of each of the first light transmitting portions; or the size of each of the third light transmitting portions is larger than the size of each of the second light transmitting portions, and each The size of the second light transmitting portion is greater than or equal to the size of each of the first light transmitting portions. 如申請專利範圍第6項所述的檢測裝置,其各該第三透光部的尺寸大於各該第二透光部的尺寸,各該第二透光部的尺寸大於各該第一透光部的尺寸,且該第一空間濾波層、該第二空間濾波層以及該第三空間濾波層從該感測元件朝該透光元件排列或從該透光元件朝該感測元件排列。The detecting device of claim 6, wherein each of the third light transmitting portions has a size larger than a size of each of the second light transmitting portions, and each of the second light transmitting portions has a size larger than each of the first light transmitting portions. a size of the portion, and the first spatial filter layer, the second spatial filter layer, and the third spatial filter layer are arranged from the sensing element toward the light transmissive element or from the light transmissive element toward the sensing element. 如申請專利範圍第1項所述的檢測裝置,其中該些空間濾波層之對應該感測元件之同一感測單元的該些透光部沿著一斜向方向排列,該斜向方向與該透光元件之一表面的法線方向具有一夾角θ,而0 o< θ < 90 oThe detecting device of claim 1, wherein the light transmitting portions of the spatial sensing layer corresponding to the sensing unit of the sensing element are arranged along an oblique direction, the oblique direction and the The normal direction of the surface of one of the light transmissive elements has an included angle θ, and 0 o < θ < 90 o . 如申請專利範圍第8項所述的檢測裝置,其中該空間濾波層的該些透光部以一間距P排列,該空間濾波層的至少一透光部具有一直徑K,該透光層具有一厚度H,該直徑K、該間距P及該厚度H滿足: The detecting device of claim 8, wherein the light transmitting portions of the spatial filtering layer are arranged at a pitch P, and at least one of the light transmitting portions of the spatial filtering layer has a diameter K, the light transmitting layer having a thickness H, the diameter K, the spacing P and the thickness H satisfy: . 如申請專利範圍第8項所述的檢測裝置,其中該空間濾波元件之該些空間濾波層中最靠近該感測元件的一個空間濾波層的多個透光部分別與該感測元件的該些感測單元對齊,而該空間濾波元件之其它空間濾波層的多個透光部不與該感測元件的該些感測單元對齊。The detecting device of claim 8, wherein the plurality of light transmitting portions of the spatial filtering layer closest to the sensing element of the spatial filtering layer are respectively associated with the sensing element The sensing units are aligned, and the plurality of light transmissive portions of the other spatial filtering layers of the spatial filtering component are not aligned with the sensing units of the sensing element. 如申請專利範圍第1項所述的檢測裝置,更包括: 一導光元件,位於該感測元件上; 至少一發光元件,設置於該導光元件旁,且用以發出一光束;以及 一反射元件,位於該導光元件與該空間濾波元件之間,其中該反射元件具有多個透光部,該空間濾波元件的每一該透光部與該反射元件的至少一該透光部重疊; 該光束依序被一手指的一指紋漫射、穿過該導光元件、穿過該反射元件的至少一該透光部且穿過該空間濾波元件的每一該透光部,以傳遞至該感測元件。The detecting device of claim 1, further comprising: a light guiding component disposed on the sensing component; at least one light emitting component disposed adjacent to the light guiding component and configured to emit a light beam; a reflective element, located between the light guiding element and the spatial filtering component, wherein the reflective component has a plurality of transparent portions, each of the transparent portions of the spatial filtering component overlapping at least one of the transparent portions of the reflective component The light beam is sequentially diffused by a fingerprint of a finger, passes through the light guiding element, passes through at least one of the light transmitting portions of the reflective element, and passes through each of the light transmitting portions of the spatial filtering element to transmit To the sensing element. 如申請專利範圍第11項所述的檢測裝置,其中該反射元件具有至少一反射部,而該反射元件的該至少一反射部設置於該空間濾波元件的該些遮光部上。The detecting device of claim 11, wherein the reflecting element has at least one reflecting portion, and the at least one reflecting portion of the reflecting element is disposed on the light shielding portions of the spatial filtering element. 如申請專利範圍第11項所述的檢測裝置,其中該反射元件的該些透光部為一反射層的多個孔洞,而該反射層的該些孔洞分別與該空間濾波元件的多個透光部重疊。The detecting device of claim 11, wherein the transparent portions of the reflective element are a plurality of holes of a reflective layer, and the holes of the reflective layer are respectively transparent to the plurality of spatial filtering elements The light parts overlap. 如申請專利範圍第11項所述的檢測裝置,其中該反射元件為一反射式繞射元件。The detecting device of claim 11, wherein the reflecting element is a reflective diffractive element. 如申請專利範圍第14項所述的檢測裝置,其中該空間濾波元件的該些透光部在一方向上排列,每一該透光部在該方向上具有一寬度W3,該反射式繞射元件的每一該透光部在該方向上具有一寬度W5,而W5≤W3。The detecting device of claim 14, wherein the light transmitting portions of the spatial filtering component are arranged in a direction, each of the light transmitting portions having a width W3 in the direction, the reflective diffractive component Each of the light transmitting portions has a width W5 in the direction, and W5 ≤ W3. 如申請專利範圍第14項所述的檢測裝置,其中該反射式繞射元件包括: 一透光膜;以及 一反射圖案層,設置於該透光膜上。The detecting device of claim 14, wherein the reflective diffractive element comprises: a light transmissive film; and a reflective pattern layer disposed on the light transmissive film. 如申請專利範圍第1至16項中任一項的檢測裝置,其中在該感測面之該法線方向上交替堆疊的該些空間濾波層的該些透光部形成分別對應該些感測單元的多個光通道,該些光通道的至少兩個光通道彼此不相平行。The detecting device according to any one of claims 1 to 16, wherein the light transmitting portions of the spatial filtering layers alternately stacked in the normal direction of the sensing surface are respectively formed to correspond to the sensing a plurality of light channels of the unit, at least two of the light channels being non-parallel to each other. 一種檢測裝置,包括: 一導光元件,具有一頂面與相對於該頂面的一底面; 一感測元件,配置於該導光元件的該底面旁; 一表面電漿共振層,配置於該導光元件的該頂面上,且用以接收一生物高聚物;以及 一空間濾波元件,配置於該導光元件的該底面與該感測元件之間,其中該空間濾波元件具有多個第一光通道及多個第二光通道,該些第一光通道在一第一斜向方向上延伸,該些第二光通道在一第二斜向方向上延伸,該第一斜向方向與該第二斜向方向交錯,該導光元件的該頂面的法線方向與該第二斜向方向具有一夾角β,且該夾角β對應該表面電漿共振層的一共振角γ。A detecting device comprising: a light guiding element having a top surface and a bottom surface opposite to the top surface; a sensing element disposed beside the bottom surface of the light guiding element; a surface plasma resonance layer disposed on The top surface of the light guiding element is configured to receive a biopolymer; and a spatial filtering component is disposed between the bottom surface of the light guiding component and the sensing component, wherein the spatial filtering component has a plurality of a first optical channel and a plurality of second optical channels, wherein the first optical channels extend in a first oblique direction, and the second optical channels extend in a second oblique direction, the first oblique direction The direction is staggered with the second oblique direction, the normal direction of the top surface of the light guiding element has an angle β with the second oblique direction, and the angle β corresponds to a resonance angle γ of the surface plasma resonance layer . 如申請專利範圍第18項所述的檢測裝置,其中該些第一光通道與該些第二光通道交替排列。The detecting device of claim 18, wherein the first optical channels and the second optical channels are alternately arranged. 如申請專利範圍第18項所述的檢測裝置,其中該導光元件的該頂面的該法線方向與該第一斜向方向具有一夾角α。The detecting device of claim 18, wherein the normal direction of the top surface of the light guiding element has an angle α with the first oblique direction. 如申請專利範圍第20項所述的檢測裝置,其中該夾角α及該夾角β滿足:α<β。The detecting device according to claim 20, wherein the angle α and the angle β satisfy: α<β. 如申請專利範圍第18項所述的檢測裝置,還包括: 一第一反射元件,設置於該導光元件的該底面上,其中一光束被該表面電漿共振層及該第一反射元件反射後傳遞至該感測元件。The detecting device of claim 18, further comprising: a first reflective element disposed on the bottom surface of the light guiding element, wherein a light beam is reflected by the surface plasma resonant layer and the first reflective element It is then passed to the sensing element. 如申請專利範圍第22項所述的檢測裝置,其中該第一反射元件包括: 多個第一反射部,間隔排列於該導光元件的該底面上。The detecting device of claim 22, wherein the first reflective element comprises: a plurality of first reflecting portions spaced apart on the bottom surface of the light guiding element. 如申請專利範圍第22項所述的檢測裝置,還包括: 一第二反射元件,設置於該導光元件的該頂面上,且與該表面電漿共振層間隔排列,其中該光束被該表面電漿共振層、該第一反射元件及第二反射元件反射後傳遞至該感測元件。The detecting device of claim 22, further comprising: a second reflective element disposed on the top surface of the light guiding element and spaced apart from the surface plasma resonant layer, wherein the light beam is The surface plasma resonant layer, the first reflective element and the second reflective element are reflected and transmitted to the sensing element. 如申請專利範圍第22項所述的檢測裝置,其中該光束被該表面電漿共振層反射後,傳遞至該第一反射元件。The detecting device of claim 22, wherein the light beam is reflected by the surface plasma resonance layer and transmitted to the first reflective element. 如申請專利範圍第18項所述的檢測裝置,其中該空間濾波元件還具有多個第三光通道及多個第四光通道,該些第三光通道在一第三斜向方向上延伸,該些第四光通道在一第四斜向方向上延伸,該第三斜向方向與該第四斜向方向交錯,該導光元件的該頂面的該法線方向與該第三斜向方向具有一夾角β2,該導光元件的該頂面的該法線方向與該第四斜向方向具有一夾角β3,該夾角β2及該夾角β3滿足:α<β2, β3<β。The detecting device of claim 18, wherein the spatial filtering component further has a plurality of third optical channels and a plurality of fourth optical channels, the third optical channels extending in a third oblique direction, The fourth optical channels extend in a fourth oblique direction, the third oblique direction is interlaced with the fourth oblique direction, the normal direction of the top surface of the light guiding element and the third oblique direction The direction has an angle β2, and the normal direction of the top surface of the light guiding element has an angle β3 with the fourth oblique direction, and the angle β2 and the angle β3 satisfy: α<β2, β3<β. 如申請專利範圍第26項所述的檢測裝置,其中該第一光通道、該第二光通道、該第三光通道及該第四光通道依序排列於該感測元件上。The detecting device of claim 26, wherein the first optical channel, the second optical channel, the third optical channel, and the fourth optical channel are sequentially arranged on the sensing element. 如申請專利範圍第27項所述的檢測裝置,其中該夾角β2及該夾角β3滿足:α<β2<β3<β。The detecting device according to claim 27, wherein the angle β2 and the angle β3 satisfy: α<β2<β3<β.
TW107209623U 2017-07-17 2018-07-17 Bio-sensing apparatus TWM572986U (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US201762533632P 2017-07-17 2017-07-17
US62/533,632 2017-07-17
??106126793 2017-08-08
TW106126793 2017-08-08
US201762574222P 2017-10-19 2017-10-19
US62/574,222 2017-10-19
US201862620985P 2018-01-23 2018-01-23
US62/620,985 2018-01-23
US15/989,123 2018-05-24
US15/989,123 US10181069B2 (en) 2015-12-11 2018-05-24 Fingerprint identification apparatus
US16/008,057 2018-06-14
US16/008,037 US10460188B2 (en) 2014-08-26 2018-06-14 Bio-sensing apparatus
US16/008,057 US10551310B2 (en) 2017-10-19 2018-06-14 Detection device
US16/008,037 2018-06-14

Publications (1)

Publication Number Publication Date
TWM572986U true TWM572986U (en) 2019-01-11

Family

ID=65804860

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107209623U TWM572986U (en) 2017-07-17 2018-07-17 Bio-sensing apparatus

Country Status (1)

Country Link
TW (1) TWM572986U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692857B (en) * 2019-01-25 2020-05-01 世界先進積體電路股份有限公司 Semiconductor device and biometric identification apparatus
EP3800579A4 (en) * 2019-08-06 2021-09-08 Shenzhen Goodix Technology Co., Ltd. Optical fingerprint apparatus and electronic device
TWI741812B (en) * 2019-12-09 2021-10-01 大陸商廣州印芯半導體技術有限公司 Biometric sensing system and sensing method thereof
TWI742555B (en) * 2019-07-22 2021-10-11 神亞科技股份有限公司 Imaging system
US11176348B2 (en) 2019-08-06 2021-11-16 Shenzhen GOODIX Technology Co., Ltd. Optical fingerprint apparatus and electronic device
US11335717B2 (en) 2019-03-22 2022-05-17 Vanguard International Semiconductor Corporation Semiconductor device including light-collimating layer
TWI792016B (en) * 2019-12-11 2023-02-11 神盾股份有限公司 Fingerprint sensing system and using method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692857B (en) * 2019-01-25 2020-05-01 世界先進積體電路股份有限公司 Semiconductor device and biometric identification apparatus
US11335717B2 (en) 2019-03-22 2022-05-17 Vanguard International Semiconductor Corporation Semiconductor device including light-collimating layer
US11637139B2 (en) 2019-03-22 2023-04-25 Vanguard International Semiconductor Corporation Semiconductor device including light-collimating layer and biometric device using the same
TWI742555B (en) * 2019-07-22 2021-10-11 神亞科技股份有限公司 Imaging system
EP3800579A4 (en) * 2019-08-06 2021-09-08 Shenzhen Goodix Technology Co., Ltd. Optical fingerprint apparatus and electronic device
US11176348B2 (en) 2019-08-06 2021-11-16 Shenzhen GOODIX Technology Co., Ltd. Optical fingerprint apparatus and electronic device
TWI741812B (en) * 2019-12-09 2021-10-01 大陸商廣州印芯半導體技術有限公司 Biometric sensing system and sensing method thereof
TWI792016B (en) * 2019-12-11 2023-02-11 神盾股份有限公司 Fingerprint sensing system and using method thereof
US11600097B2 (en) 2019-12-11 2023-03-07 Egis Technology Inc. Fingerprint sensing system and operation method thereof

Similar Documents

Publication Publication Date Title
TWM572986U (en) Bio-sensing apparatus
CN109271834B (en) Detection device
CN107480584B (en) Scanning type fingerprint identification and touch control integrated screen
WO2020181493A1 (en) Under-screen fingerprint recognition apparatus and electronic device
US11474394B2 (en) Electronic device with pattern detection function
TWI633494B (en) Image capturing apparatus
US20170169273A1 (en) Fingerprint sensing module
KR102079140B1 (en) A sheet and an optical fingerprint scanner
TWM568428U (en) Fingerprint identification module
US20090122020A1 (en) Touch pad system
KR102101576B1 (en) Integration of optical components within nested optical paths
KR20180003702A (en) Flat Panel Display Embedding Optical Imaging Sensor
KR20170124160A (en) Flat Panel Display Embedding Optical Imaging Sensor
TWM553019U (en) Biological feature identification device
TWM592604U (en) Sensing module and image capturing apparatus
US10735634B2 (en) Image capture apparatus
KR20180122508A (en) Flat Panel Display Embedding Optical Imaging Sensor
WO2021035622A1 (en) Fingerprint recognition apparatus and electronic device
CN109271831B (en) Image capturing device
JP2012520546A (en) Light guide device
TWM570473U (en) Image capturing module
WO2018113126A1 (en) Biometric identification device
WO2018113102A1 (en) Biometric identification device
KR20190018972A (en) Display Device
KR20180122509A (en) Flat Panel Display Having Optical Imaging Sensor