TWM567616U - High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness - Google Patents

High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness Download PDF

Info

Publication number
TWM567616U
TWM567616U TW106215393U TW106215393U TWM567616U TW M567616 U TWM567616 U TW M567616U TW 106215393 U TW106215393 U TW 106215393U TW 106215393 U TW106215393 U TW 106215393U TW M567616 U TWM567616 U TW M567616U
Authority
TW
Taiwan
Prior art keywords
micro
composite
filling
ingot
ingot structure
Prior art date
Application number
TW106215393U
Other languages
Chinese (zh)
Inventor
黃慶成
Original Assignee
巴斯特製藥科技顧問股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巴斯特製藥科技顧問股份有限公司 filed Critical 巴斯特製藥科技顧問股份有限公司
Priority to TW106215393U priority Critical patent/TWM567616U/en
Publication of TWM567616U publication Critical patent/TWM567616U/en

Links

Abstract

本創作揭示一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體,其中包含一填補錠狀結構主體;以及分散設置於該填補錠狀結構主體內的複數個微孔球,複數個高生物相容性微支架以及複數個非定向微通道;其中該微孔球包含有複數個微孔球孔洞;及該非定向微通道連接該微孔球以及該高生物相容性微支架,並與外部環境通連,該非定向微通道,該微孔球以及該高生物相容性微支架透過該非定向微通道彼此相互通連而在該填補錠狀結構主體內部形成一容置空間,在該容置空間可用來容置複數個機能性結構體。 The present invention discloses a composite regeneration-filled ingot-like structure for minimally invasive biocompatible micro-scaffolds comprising a filling ingot-like structure body; and a plurality of discretely disposed in the body of the filling ingot-shaped structure a microporous sphere, a plurality of highly biocompatible microscaffolds and a plurality of non-directional microchannels; wherein the microporous spheres comprise a plurality of microporous spherical pores; and the non-directional microchannels connect the microporous spheres and the high organism a compatible micro-scaffold and communicating with an external environment, the non-directional microchannel, the micro-porous sphere and the highly biocompatible micro-framelet being connected to each other through the non-directional microchannel to form inside the filling ingot-shaped structure body An accommodating space is provided for accommodating a plurality of functional structures in the accommodating space.

Description

用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體 For the minimally invasive bioreactive microscaffold of bone dental implants to fill the ingot structure

本創作係有關於一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體。特別是本創作複合再生填補錠狀結構體包含有一種具有多層次生長促進功能層微孔洞結構,可以用於齒科、骨科、醫美顏面整型修飾整形外科重建修復延緩降解之複合再生填補錠狀結構體。 The present invention relates to a composite regeneration filling ingot-like structure for minimally invasive micro-invasive bioscaffolds with high biocompatibility. In particular, the composite regenerative filling ingot structure comprises a multi-layer growth promoting functional layer micro-cavity structure, which can be used for dental, orthopedics, medical beauty facial modification, orthopedic reconstruction, delayed degradation, composite regeneration filling. Ingot structure.

本創作係指一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體,尤指一種可以用於齒科、骨科、醫美顏面整型修飾整形外科重建修復延緩降解之複合再生填補錠狀結構體。在骨科臨床手術中,常需對骨缺損進行修補,然而自體移植的有限來源,而異體與異種移植則具高傳染風險。因此,現今有越來越多不同的有機、無機、金屬材料應用於骨組織工程。此外為了避免二次手術,使用生物可降解材料有其必要性。目前所使用之不同材料皆有其優缺點,為了解決醫療上不同問題,開發新的功能性複合材料仍是研究重點之一。組織工程是連接工程和生物學的一個跨學科領域。組織工程發展生物基材,它可以修復,恢復或改善組織之 功能。其中組織工程涉及三個主要策略:利用體外細胞或細胞替代物,取代有限的組織功能;誘導組織生成,例如生長因子(growth factors)的利用;發展生物支架(scaffold)有利於組織修補與再生。因此,支架的發展關鍵因素是模仿細胞外基質(ECM)的物理和生物功能設計而成之生長環境,是在細胞培養基材重要發展技術。應用於骨外科手術中,不同形式的缺損以不同修補方式,開發不同功能性支架應用於外科臨床是必要的。另一方面,以往患者牙齒因外力斷裂、蛀牙、牙周病或牙根尖周圍病變等造成牙齒無法維持原有功用時,則拔除該牙齒並針對拔牙後所造成的空洞創傷區域,以無菌纖維紗布進行止血與修復傷口。不過,使用纖維紗布的缺點在於僅能止血、不被患者所吸收、容易包埋食物殘渣,故容易造成傷口感染,使傷口需更長的修復時間。近幾年來,出現膠原蛋白牙填補材產品,此類膠原蛋白牙填補材僅由膠原蛋白所組成,其可被生物體完全吸收而且具有立體多孔結構,可提供支撐與細胞生長空間與吸收血液。雖然此類產品對於齒槽骨再生也有幫助,但此類產品植入齒槽缺損患處後會於兩星期甚至更短的時間內完全被患者吸收。然而,在如此短暫的時間內,患者齒槽中的骨細胞無法生長出足夠的骨頭組織,致使新生的齒槽骨無法恢復至原始完整狀態,且因為新生的齒槽骨組織周圍已無需支持的牙齒,故這些組織會隨著時間而被患者體內自行吸收,即所謂的齒槽骨萎縮,如此則更加劇齒槽骨高度或寬度不足,可能造成缺損牙齒周圍的正常牙齒歪斜。拔牙後缺損區域的齒槽骨充足與否,除了影響缺損牙旁的正常牙齒穩定性外,現在也成為人工植牙手術成功與否的關鍵。由於人工植牙駐體需藉由充足的齒槽骨來固定,所以齒槽骨的再生即成為人工植牙手術前必要的措施。習知技 藝中也有透過交鏈的產品,但此類產品上有交鏈劑殘留的風險。因此,現在急需一種可供齒槽骨修復用之生物可分解性填補物,使其在植入患者缺損牙齒的孔洞時,可供骨細胞附著生長,且填補物降解速率接近齒槽中的骨細胞生長的速率,因此可讓新生的齒槽骨接近原始完整狀態,減少齒槽骨萎縮同時避免周圍的正常牙齒發生歪斜。申請人有鑑於此,乃秉持從事生物醫學工程及材料之多年經驗,經不斷研究、實驗,遂研發創作一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體及其材料,祈使供應用於臨床使用。 This creation refers to a composite regeneration-filled ingot-like structure for minimally invasive micro-invasive micro-stents, especially for orthopedics, orthopedics, medical beauty and facial modification. The composite regeneration that delays degradation fills the ingot structure. In orthopedic surgery, it is often necessary to repair bone defects, but the limited source of autologous transplantation, while allogeneic and xenotransplantation have a high risk of infection. Therefore, more and more different organic, inorganic and metallic materials are used in bone tissue engineering today. In addition, in order to avoid secondary surgery, it is necessary to use biodegradable materials. The different materials currently used have their advantages and disadvantages. In order to solve different medical problems, the development of new functional composite materials is still one of the research priorities. Tissue engineering is an interdisciplinary field that connects engineering and biology. Tissue engineering develops biological substrates that can repair, restore or improve tissue Features. Among them, tissue engineering involves three main strategies: the use of in vitro cells or cell substitutes to replace limited tissue functions; the induction of tissue production, such as the utilization of growth factors; the development of biological scaffolds for tissue repair and regeneration. Therefore, the key factor in the development of scaffolds is the growth environment designed by mimicking the physical and biological functions of extracellular matrix (ECM), which is an important development technique in cell culture media. In the application of orthopedic surgery, different forms of defects are differently repaired, and it is necessary to develop different functional stents for surgical use. On the other hand, in the past, when the teeth of the patient were unable to maintain the original function due to external force fracture, tooth decay, periodontal disease or lesions around the root tip, the tooth was removed and the fibrous wound area caused by the tooth extraction was made of sterile fiber gauze. Stop bleeding and repair wounds. However, the disadvantage of using fiber gauze is that it can only stop bleeding, is not absorbed by the patient, and easily bury the food residue, so it is easy to cause wound infection, and the wound needs a longer repair time. In recent years, collagen tooth filling products have emerged. These collagen tooth filling materials are composed only of collagen, which can be completely absorbed by the organism and have a stereoscopic porous structure, which can provide support and cell growth space and absorb blood. Although such products are also helpful for alveolar bone regeneration, such products are completely absorbed by the patient within two weeks or even less after implantation in the affected area of the alveolar defect. However, in such a short period of time, the bone cells in the patient's alveolar can not grow enough bone tissue, so that the new alveolar bone can not return to the original intact state, and because there is no need for support around the new alveolar bone tissue. Teeth, so these tissues will be absorbed by the patient's body over time, the so-called alveolar bone atrophy, so that the height or width of the alveolar bone is more insufficient, which may cause the normal teeth around the missing teeth to be skewed. Adequate orbital bone in the defect area after tooth extraction, in addition to affecting the normal tooth stability of the missing tooth, is now the key to the success of artificial implant surgery. Since the artificial implants need to be fixed by sufficient alveolar bone, the regeneration of the alveolar bone becomes a necessary measure before the artificial dental implant surgery. Traditional technology Art also has products that are cross-linked, but there is a risk of cross-linking agent residue on such products. Therefore, there is an urgent need for a biodegradable filling for the repair of alveolar bone, which allows bone cells to adhere and grow when implanted in a hole in a patient's missing tooth, and the rate of filling degradation is close to that in the alveolar bone. The rate of cell growth, thus allowing the new alveolar bone to approach the original intact state, reducing atrophy of the alveolar bone while avoiding skewing of the surrounding normal teeth. In view of this, the applicant has been engaged in biomedical engineering and materials for many years of experience. Through continuous research and experimentation, he has developed a composite regeneration filling ingot structure for minimally invasive micro-invasive bioscaffolds with high biocompatibility. Body and its materials, pray for supply for clinical use.

本創作係提供一種用於重建修復之複合再生填補錠狀結構體。特別是本創作涉及一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體,其中該複合再生填補錠狀結構體包含一填補錠狀結構主體;以及分散設置於該填補錠狀結構主體上的複數個微孔球,複數個高生物相容性微支架以及複數個非定向微通道;其中該微孔球包含有複數個微孔球孔洞;及該非定向微通道串接該微孔球以及該高生物相容性微支架並加以固定於該填補錠狀結構主體中,並透過複數個非定向微通道外通孔與外部環境通連,該非定向微通道,該微孔球以及該高生物相容性微支架透過該非定向微通道彼此相互通連而在該填補錠狀結構主體內部形成一容置空間,在該容置空間可用來容置複數個機能性結構體。 意即本創作所涉及一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體,其中該複合再生填補錠狀結構體包含複數個微孔球;複數個高生物相容性微支架;以及一非定向微通道,其中該非定向微通道用以串接該微孔球以及該高生物相容性微支架,並使該微孔球與該高生物相容性微支架混合與該非定向微通道共構成一填補錠狀結構主體,其中該填補錠狀結構主體包含有一頂面、一底面及一介於該頂面與底面間,而與該頂面及底面相連接之環周面,且其內部為為實心之實體。 The present invention provides a composite regeneration filled ingot structure for reconstruction and repair. In particular, the present invention relates to a composite regenerative filled ingot structure for minimally invasive microbiocide containing microbioscaffolds, wherein the composite regenerative filled ingot structure comprises a body that fills the ingot structure; And a plurality of micro-biospheres on the body of the ingot-shaped structure, a plurality of highly biocompatible micro-frames and a plurality of non-directional microchannels; wherein the micro-pore ball comprises a plurality of micro-pore ball holes; and the non-directional micro-hole Channels are connected in series with the microporous sphere and the high biocompatible micro-frame and fixed in the body of the filling ingot structure, and communicate with the external environment through a plurality of non-directional microchannel outer through holes, the non-directional microchannel, The microporous ball and the highly biocompatible micro-stent are connected to each other through the non-directional microchannel to form an accommodating space inside the filling ingot structure body, and the accommodating space can be used for accommodating a plurality of functions. Structure. That is, the present invention relates to a composite regeneration filling ingot structure for a minimally invasive microbiocide containing a highly biocompatible microscaffold, wherein the composite regenerative filling ingot structure comprises a plurality of microporous spheres; a biocompatible microscaffold; and a non-directional microchannel, wherein the non-directional microchannel is used to concatenate the microporous sphere and the highly biocompatible microscaffold, and to make the micropore sphere compatible with the biocompatibility The micro-stent mixing and the non-directional micro-channel together form a filling ingot-shaped structure body, wherein the filling ingot-shaped structure body comprises a top surface, a bottom surface and a bottom surface and a bottom surface, and is connected to the top surface and the bottom surface The circumference of the ring, and the inside is a solid entity.

優選地,該微孔球係由一生醫陶瓷所組成,其中該生醫陶瓷係選自由鈣磷酸鹽,磷酸鈣,磷酸二鈣,磷酸三鈣,磷酸四鈣,磷酸八鈣,羥基磷灰石,β-磷酸三鈣,羥基磷灰石/β-磷酸三鈣複合材及其組合所組群組中之一。 Preferably, the microporous sphere is composed of a biomedical ceramic selected from the group consisting of calcium phosphate, calcium phosphate, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, hydroxyapatite. One of the group of β-tricalcium phosphate, hydroxyapatite/β-tricalcium phosphate composite and combinations thereof.

優選地,該羥基磷灰石的粒徑係介於0.075至0.150mm的範圍;該β-磷酸三鈣的粒徑係介於0.5至2.0mm的範圍;且該羥基磷灰石/β-磷酸三鈣複合材的粒徑係介於0.5至1.0mm的範圍。 Preferably, the hydroxyapatite has a particle size ranging from 0.075 to 0.150 mm; the β-tricalcium phosphate has a particle size ranging from 0.5 to 2.0 mm; and the hydroxyapatite/β-phosphate The particle size of the tricalcium composite is in the range of 0.5 to 1.0 mm.

優選地,該填補錠狀結構主體係選自由膠原蛋白、膠原胜肽、海藻酸鈉,纖維素,多醣體,甲殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。 Preferably, the main system for filling the ingot structure is selected from the group consisting of biodegradable polymers of collagen, collagen peptide, sodium alginate, cellulose, polysaccharide, chitin, polylactic acid, polylactic acid ester and combinations thereof. .

優選地,該高生物相容性微支架係由一選自由膠原蛋白,膠原胜肽,明膠,海藻酸鈉,纖維素,多醣體,甲殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。 Preferably, the highly biocompatible microscaffold is composed of an organism selected from the group consisting of collagen, collagen peptide, gelatin, sodium alginate, cellulose, polysaccharide, chitin, polylactic acid, polylactate and combinations thereof. It can be composed of decomposable polymers.

優選地,該高生物相容性微支架係由一選自由膠原蛋白,膠原胜肽,明膠及其組合之生物可分解高分子所組成。 Preferably, the highly biocompatible microscaffold consists of a biodegradable polymer selected from the group consisting of collagen, collagen peptide, gelatin and combinations thereof.

更優選地,該高生物相容性微支架為一種利用親水性震動切削動物真皮及超臨界二氧化碳脫脂,酶處理所得的膠原蛋白結構體。 More preferably, the highly biocompatible microscaffold is a collagen structure obtained by hydrolyzing animal dermis and supercritical carbon dioxide degreasing and enzymatic treatment.

1‧‧‧複合再生填補錠狀結構體 1‧‧‧Composite regeneration to fill the ingot structure

10‧‧‧高生物相容性微支架 10‧‧‧High biocompatible micro scaffold

20‧‧‧微孔球 20‧‧‧Micropore ball

25‧‧‧微孔球孔洞 25‧‧‧Microporous Ball Holes

30‧‧‧填補錠狀結構主體 30‧‧‧ Filling the main body of the ingot

35‧‧‧非定向微通道 35‧‧‧Non-directional microchannels

37‧‧‧非定向微通道外通孔 37‧‧‧Non-directional microchannel outer through hole

301‧‧‧頂面 301‧‧‧ top surface

303‧‧‧底面 303‧‧‧ bottom

305‧‧‧環周面 305‧‧‧ Around the circumference

1000‧‧‧病灶 1000‧‧‧ lesions

第1圖係為本創作之用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體(A)透明示意圖,及(B)切口剖面示意圖。 The first picture is a transparent schematic diagram of the composite regeneration filling ingot-shaped structure (A) for the minimally invasive micro-invasive micro-scaffold of the orthopedics, and (B) a schematic view of the incision section.

第2圖係為本創作之用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體臨床應用示意圖。 The second figure is a schematic diagram of the clinical application of the composite regenerative filling ingot structure for the minimally invasive micro-invasive micro-stent with bone biopsy.

第1實施例-一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體 First Embodiment - A composite regeneration filling ingot structure for minimally invasive microbiosynthesis containing microbiota

本創作用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體1之較佳實施方式將參閱第1圖加以說明。本創作係提供一種用於重建修復之複合再生填補錠狀結構體1,其中該複合再生填補錠狀結構體1包含複數個微孔球20;複數個高生物相容性微支架10;以及一非定向微通道35,其中該非定向微通道用以串接該微孔球20以及該高生物相容性微支架10,並使該微孔球20與該高生物相容性微支架10混合與該非定向微通道35共構成一填補錠狀結構主體30,其中該填補錠狀結構主體包含有一頂面301、一底面303及一介於該頂面301 與該底面303間而與該頂面301及該底面303相連接之環周面305,且其內部為為實心之實體。。特別是本創作涉及一種含高生物相容性微支架10所衍生之複合再生填補錠狀結構體1,其中該複合再生填補錠狀結構體1包含一填補錠狀結構主體30;以及分散設置於該填補錠狀結構主體30內的複數個微孔球20,複數個高生物相容性微支架以及複數個非定向微通道;其中該微孔球20具有複數個微孔球孔洞25,該非定向微通道35連接該微孔球20以及該高生物相容性微支架10,並並透過複數個非定向微通道外通孔37與外部環境通連,該非定向微通道35,該微孔球20以及該高生物相容性微支架10透過該非定向微通道35彼此相互通連而在該填補錠狀結構主體30內部形成一容置空間,在該容置空間可用來容置複數個機能性結構體。優選地,該微孔球20係由一生醫陶瓷所組成,其中該生醫陶瓷係選自由鈣磷酸鹽,磷酸鈣,磷酸二鈣,磷酸三鈣,磷酸四鈣,磷酸八鈣,羥基磷灰石,β-磷酸三鈣,羥基磷灰石/β-磷酸三鈣複合材及其組合所組群組中之一。優選地,該羥基磷灰石的粒徑係介於0.075至0.150mm的範圍;該β-磷酸三鈣的粒徑係介於0.5至2.0mm的範圍;且該羥基磷灰石/β-磷酸三鈣複合材的粒徑係介於0.5至1.0mm的範圍。優選地,該填補錠狀結構主體30係選自由膠原蛋白、膠原胜肽、海藻酸鈉,纖維素,多醣體,甲殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。優選地,該高生物相容性微支架10係由一選自由膠原蛋白,膠原胜肽,明膠,海藻酸鈉,纖維素,多醣體,甲殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。優選地,該高生物相容性微支架係由一選自由膠原蛋白,膠原胜肽,明膠及其組合之生物可分解高分子所組成。更優選地,該高生物相容性微支架為一種利用親水性震動切削動物真皮及超臨界二氧化碳脫脂,酶處理所得的膠原蛋白結構 體。本創作之用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體1臨床應用示意圖如第2圖所示,該非定向微通道外通孔37可直接接觸病灶1000連通,因該高生物相容性微支架10高生物相容性不會產生刺激性、細胞毒性及致敏性,該非定向微通道35,該微孔球20以及該高生物相容性微支架10透過該非定向微通道35彼此相互通連而在該填補錠狀結構主體30內部所形成容置空間可用來容置機能性結構體,例如組織癒合的細胞結構體或其他分泌物質。 The present invention is described in detail with reference to Fig. 1 for a preferred embodiment of a composite regeneration-filled ingot-like structure 1 for minimally invasive hyperplastic invasive micro-stents. The present invention provides a composite regeneration-filled ingot-like structure 1 for reconstruction and repair, wherein the composite regeneration-filled ingot-shaped structure 1 comprises a plurality of micro-pore spheres 20; a plurality of highly biocompatible micro-scaffolds 10; a non-directional microchannel 35, wherein the non-directional microchannel is used to serially connect the micropore ball 20 and the high biocompatible micro-scaffold 10, and mix the micro-pore ball 20 with the high biocompatibility micro-scaffold 10 The non-directional microchannels 35 collectively form a filled ingot-like structure body 30, wherein the filling ingot-shaped structure body comprises a top surface 301, a bottom surface 303 and a top surface 301 A circumferential surface 305 connected to the bottom surface 303 and connected to the top surface 301 and the bottom surface 303, and the inside thereof is a solid body. . In particular, the present invention relates to a composite regenerated pad-shaped structure 1 derived from a highly biocompatible microscaffold 10, wherein the composite regenerated pad-shaped structure 1 comprises a filled ingot-like structure body 30; The plurality of microporous spheres 20 in the ingot-like structure body 30, the plurality of highly biocompatible micro-frames and the plurality of non-directional microchannels; wherein the micro-pore ball 20 has a plurality of micro-pore ball holes 25, the non-directional The microchannel 35 connects the micropore ball 20 and the high biocompatibility micro-stent 10, and communicates with the external environment through a plurality of non-directional microchannel outer through holes 37, the non-directional microchannel 35, the micropore ball 20 The accommodating space can be used to accommodate a plurality of functional structures in the accommodating space 30. body. Preferably, the microporous ball 20 is composed of a biomedical ceramic selected from the group consisting of calcium phosphate, calcium phosphate, dicalcium phosphate, tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, hydroxyapatite. One of the group of stone, β-tricalcium phosphate, hydroxyapatite/β-tricalcium phosphate composite and combinations thereof. Preferably, the hydroxyapatite has a particle size ranging from 0.075 to 0.150 mm; the β-tricalcium phosphate has a particle size ranging from 0.5 to 2.0 mm; and the hydroxyapatite/β-phosphate The particle size of the tricalcium composite is in the range of 0.5 to 1.0 mm. Preferably, the filling ingot-like structure body 30 is selected from the group consisting of collagen, collagen peptide, sodium alginate, cellulose, polysaccharide, chitin, polylactic acid, polylactate and combinations thereof. composition. Preferably, the highly biocompatible microscaffold 10 is selected from the group consisting of collagen, collagen peptide, gelatin, sodium alginate, cellulose, polysaccharide, chitin, polylactic acid, polylactate and combinations thereof. Biodegradable polymer. Preferably, the highly biocompatible microscaffold consists of a biodegradable polymer selected from the group consisting of collagen, collagen peptide, gelatin and combinations thereof. More preferably, the highly biocompatible microscaffold is a collagen structure obtained by enzymatically treating the dermis of the animal and the supercritical carbon dioxide degreasing by hydrophilic vibration. body. The present invention is a clinical application diagram of a composite regeneration filling ingot-shaped structure 1 for minimally invasive micro-invasive micro-stents of bone dental implants. As shown in Fig. 2, the non-directional microchannel outer through-hole 37 can directly contact the lesion 1000. Connected, the highly biocompatible microscaffold 10 does not produce irritation, cytotoxicity and sensitization due to high biocompatibility, the non-directional microchannel 35, the micropore 20 and the highly biocompatible microscaffold The accommodating space formed inside the filling ingot-like structure body 30 through the non-directional microchannels 35 can be used to accommodate a functional structure such as a tissue healing cell structure or other secretory material.

上所述者,僅為本創作之較佳實施例,當不能以此限定本創作實施之範圍,即大凡依本創作申請專利範圍及新型說明書內容所作之等效變化與修飾,皆應仍屬本創作專利涵蓋之範圍內。綜觀上述,本創作之構造特徵確實具有實用價值及進步性,以其整體結構而言,誠已符合專利法之法定要件,爰依法提出新型專利申請。 The above description is only a preferred embodiment of the present invention. When it is not possible to limit the scope of the creation of the present invention, the equivalent changes and modifications made by the applicant in accordance with the scope of the patent application and the contents of the new manual should remain This creative patent covers the scope. Looking at the above, the structural features of this creation do have practical value and progressiveness. In terms of its overall structure, Cheng has already complied with the statutory requirements of the Patent Law and has filed a new type of patent application according to law.

Claims (7)

一種用於骨齒科微創含高生物相容性微支架之複合再生填補錠狀結構體,其中該複合再生填補錠狀結構體包含複數個微孔球;複數個高生物相容性微支架;以及串接該微孔球以及該高生物相容性微支架之一非定向微通道,並使該微孔球與該高生物相容性微支架混合與該非定向微通道共構成一填補錠狀結構主體,其中該填補錠狀結構主體包含有一頂面、一底面及一介於該頂面與底面間,而與該頂面及底面相連接之環周面,且其內部為為實心之實體。 A composite regeneration filling ingot structure for minimally invasive biocompatible micro-scaffolds, wherein the composite regeneration filling ingot structure comprises a plurality of microporous spheres; and a plurality of high biocompatibility micro-scaffolds And concatenating the microporous sphere and one of the highly biocompatible micro-stent non-directional microchannels, and mixing the micro-pore sphere with the high biocompatibility micro-stent to form a filled ingot with the non-directional microchannel The body of the structural body, wherein the body of the filling ingot structure comprises a top surface, a bottom surface and a circumferential surface connected between the top surface and the bottom surface, and connected to the top surface and the bottom surface, and the interior thereof is a solid entity . 如申請專利範圍第1項所述之複合再生填補錠狀結構體,其中該微孔球係由一生醫陶瓷所組成,其中該生醫陶瓷係選自由鈣磷酸鹽,磷酸鈣,磷酸二鈣,磷酸三鈣,磷酸四鈣,磷酸八鈣,羥基磷灰石,β-磷酸三鈣,羥基磷灰石/β-磷酸三鈣複合材及其組合所組群組中之一。 The composite regenerated filling ingot structure according to claim 1, wherein the microporous sphere is composed of a biomedical ceramic selected from the group consisting of calcium phosphate, calcium phosphate, and dicalcium phosphate. One of the group consisting of tricalcium phosphate, tetracalcium phosphate, octacalcium phosphate, hydroxyapatite, β-tricalcium phosphate, hydroxyapatite/β-tricalcium phosphate composite and combinations thereof. 如申請專利範圍第2項所述之複合再生填補錠狀結構體,其中該羥基磷灰石的粒徑係介於0.075至0.150mm的範圍;該β-磷酸三鈣的粒徑係介於0.5至2.0mm的範圍;且該羥基磷灰石/β-磷酸三鈣複合材的粒徑係介於0.5至1.0mm的範圍。 The composite regenerated filling ingot structure according to claim 2, wherein the hydroxyapatite has a particle size ranging from 0.075 to 0.150 mm; and the β-tricalcium phosphate has a particle diameter of 0.5 To a range of 2.0 mm; and the particle size of the hydroxyapatite/β-tricalcium phosphate composite is in the range of 0.5 to 1.0 mm. 如申請專利範圍第1項所述之複合再生填補錠狀結構體,其中該填補錠狀結構主體係選自由膠原蛋白、膠原胜肽、海藻酸鈉,纖維素,多醣體,甲 殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。 The composite regeneration filling ingot structure according to claim 1, wherein the main system for filling the ingot structure is selected from the group consisting of collagen, collagen peptide, sodium alginate, cellulose, polysaccharide, and It is composed of a biodegradable polymer of chitin, polylactic acid, polylactic acid ester and combinations thereof. 如申請專利範圍第1項所述之複合再生填補錠狀結構體,其中該高生物相容性微支架係由一選自由膠原蛋白,膠原胜肽,明膠,海藻酸鈉,纖維素,多醣體,甲殼素,聚乳酸,聚乳酸酯及其組合之生物可分解高分子所組成。 The composite regeneration filling ingot structure according to claim 1, wherein the high biocompatibility microscaffold is selected from the group consisting of collagen, collagen peptide, gelatin, sodium alginate, cellulose, and polysaccharide. , a composition of biodegradable polymers of chitin, polylactic acid, polylactic acid ester and combinations thereof. 如申請專利範圍第5項所述之複合再生填補錠狀結構體,其中該高生物相容性微支架係由一選自由膠原蛋白,膠原胜肽,明膠及其組合之生物可分解高分子所組成。 The composite regenerative filling ingot structure according to claim 5, wherein the highly biocompatible microscaffold is composed of a biodegradable polymer selected from the group consisting of collagen, collagen peptide, gelatin and combinations thereof. composition. 如申請專利範圍第6項所述之複合再生填補錠狀結構體,其中該高生物相容性微支架為一種利用親水性震動切削動物真皮及超臨界二氧化碳脫脂,酶處理所得的膠原蛋白結構體。 The composite regeneration filling ingot structure according to claim 6, wherein the high biocompatibility micro-scaffold is a collagen structure obtained by enzymatically treating animal dermis and supercritical carbon dioxide degreasing by hydrophilic vibration. .
TW106215393U 2017-10-19 2017-10-19 High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness TWM567616U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106215393U TWM567616U (en) 2017-10-19 2017-10-19 High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106215393U TWM567616U (en) 2017-10-19 2017-10-19 High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness

Publications (1)

Publication Number Publication Date
TWM567616U true TWM567616U (en) 2018-10-01

Family

ID=64870845

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106215393U TWM567616U (en) 2017-10-19 2017-10-19 High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness

Country Status (1)

Country Link
TW (1) TWM567616U (en)

Similar Documents

Publication Publication Date Title
Xue et al. Bone tissue engineering in the treatment of bone defects
ES2959245T3 (en) Preparation and applications of bioinks for 3D bioprinting for the repair of bone defects, based on cellulose nanofibril hydrogels with natural or synthetic calcium phosphate particles
JP6412601B2 (en) Bioactive bone substitute bone graft
TWI436779B (en) Biodegradable filler for restoration of alveolar bones
CN101785873A (en) Biocompatible bleed-stopping and bone healing promoting material and preparation method thereof
ES2501965T3 (en) Preparation for the regeneration of postoperative and posttraumatic bone defects
Grecchi et al. Reconstruction of the zygomatic bone with smartbone®: Case report
Fricain et al. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation
Vasilyev et al. Development prospects of curable osteoplastic materials in dentistry and maxillofacial surgery
CN103007358A (en) Cartilage tissue engineering fiber scaffold material and preparation method thereof
US20160089477A1 (en) Porous foams derived from extracellular matrix, porous foam ecm medical devices, and methods of use and making thereof
Sa et al. Bone response to porous poly (methyl methacrylate) cement loaded with hydroxyapatite particles in a rabbit mandibular model
CN102327643A (en) Biological scaffold used for bone tissue regeneration
US6884518B2 (en) Material suitable for an individual's tissue reconstruction
TWM567616U (en) High biocompatible microscaffold-containing composite regenerative filling caplet structure used in orthopedic or dental minimal invasiveness
JP2006116212A (en) Regeneration inductive sheet for mesenchymal tissue and production process thereof
TWI405593B (en) Hydrogel dressing
Kesharwani et al. Tissue Engineering: Applications and Advancements
ES2846923T3 (en) Composition to regenerate bone tissue, preparation procedure and use of it
TWI615136B (en) Intervertebral implant and preparation method thereof
TWM555211U (en) Bone/tooth tissue filling membrane net containing highly-biocompatible micro scaffold used in minimally invasive orthopedic and dental surgery
Fernández Nanofibrous Membranes Obtained by Electrospinning for Bone Tissue Engineering and Wound Dressing Applications
Tayebi et al. Application of 3D Printing in Reconstruction of Oral and Maxillofacial Multi-and Interfacial Tissue Defects
TWM514853U (en) Active bone fillings for repairment/reconstruction of nuclear structure having growth promoting function
Ding et al. Advanced construction strategies to obtain nanocomposite hydrogels for bone repair and regeneration