TWM566695U - Unmanned aerial vehicle, unmanned aerial vehicle control system - Google Patents
Unmanned aerial vehicle, unmanned aerial vehicle control system Download PDFInfo
- Publication number
- TWM566695U TWM566695U TW106208962U TW106208962U TWM566695U TW M566695 U TWM566695 U TW M566695U TW 106208962 U TW106208962 U TW 106208962U TW 106208962 U TW106208962 U TW 106208962U TW M566695 U TWM566695 U TW M566695U
- Authority
- TW
- Taiwan
- Prior art keywords
- drone
- controller
- signal
- directional antenna
- distance
- Prior art date
Links
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
本創作提供一種無人機控制系統。無人機控制系統包括無人機及控制器。無人機具有本體、第一定位器與第二定位器,第一定位器與第二定位器設置於本體上且分別朝向第一方向與第二方向設置。控制器用於發射定位訊號至第一定位器與第二定位器,無人機根據定位訊號控制無人機與控制器之間的距離以及本體的方向。 This creation provides a drone control system. The drone control system includes a drone and a controller. The drone has a body, a first positioner and a second positioner. The first positioner and the second positioner are disposed on the body and are respectively disposed toward the first direction and the second direction. The controller is configured to transmit the positioning signal to the first positioner and the second positioner, and the drone controls the distance between the drone and the controller and the direction of the body according to the positioning signal.
Description
本創作在於提供一種控制系統,尤指一種應用於追蹤控制器的無人機、無人機控制系統。 The present invention is to provide a control system, especially a drone, drone control system applied to a tracking controller.
無人機可以用於偵測天氣變化,以及在空中拍攝地面景色或是團體照。一般來說,操作方法為透過使用者來控制無人機的飛行方向以擷取較佳的地面場景、景色或是人像。在先前技術中,已經有提出透過影像辨識方法來自動控制飛行方向以擷取目標影像。然而,透過影像辨識方法的效率並不好,且需要較高的運算量。 Drones can be used to detect weather changes and to take ground or group photos in the air. Generally speaking, the operation method is to control the flight direction of the drone through the user to obtain a better ground scene, scenery or portrait. In the prior art, it has been proposed to automatically control the flight direction through the image recognition method to capture the target image. However, the efficiency of the image recognition method is not good and requires a high amount of computation.
為提升無人機在空中對地面擷取影像的效率以及有效降低運算量,本創作提出一種以無人機上的定位器接收控制器傳送的定位訊號,並透過微控制模組來控制無人機的飛行方向及/或飛行距離。 In order to improve the efficiency of the UAV capturing images on the ground and reducing the amount of computation, the present author proposes a positioning signal transmitted by the locator receiving controller on the UAV, and controls the flight of the UAV through the micro control module. Direction and / or flight distance.
本創作一實施例提供一種無人機控制系統。無人機控制系統包括無人機及控制器。無人機具有本體、第一定位器與第二定位器,第一定位器與第二定位器設置於本體上且分別朝向第一方向與第二方向設置。控制器用於發射定位訊號至第一定位器與第二定位器,無人機根據定位訊號控制無人機與該控制器之間的距離以及本體的方向。 An embodiment of the present invention provides a drone control system. The drone control system includes a drone and a controller. The drone has a body, a first positioner and a second positioner. The first positioner and the second positioner are disposed on the body and are respectively disposed toward the first direction and the second direction. The controller is configured to transmit the positioning signal to the first positioner and the second positioner, and the drone controls the distance between the drone and the controller and the direction of the body according to the positioning signal.
本創作一實施例提供一種無人機控制系統。無人機控制系統包 括無人機及控制器。無人機具有一本體、第一定位器與第二定位器,第一定位器與第二定位器設置於本體上且分別朝向第一方向與第二方向設置。控制器接收第一定位器所發射的第一發射訊號以及第二定位器所發射的第二發射訊號。控制器根據第一發射訊號的定位訊號與第二發射訊號的定位訊號發出定位訊號資料,無人機接收定位訊號資料並根據定位訊號資料調整無人機與控制器之間的距離以及本體的方向。 An embodiment of the present invention provides a drone control system. Drone control system package Includes drones and controllers. The drone has a body, a first positioner and a second positioner. The first positioner and the second positioner are disposed on the body and are respectively disposed toward the first direction and the second direction. The controller receives the first transmit signal transmitted by the first locator and the second transmit signal transmitted by the second locator. The controller sends the positioning signal data according to the positioning signal of the first transmitting signal and the positioning signal of the second transmitting signal, and the drone receives the positioning signal data and adjusts the distance between the drone and the controller and the direction of the body according to the positioning signal data.
本創作一實施例提供一種應用於無人機的無人機控制系統,適用於追蹤控制器並控制無人機的飛行方向及飛行距離。無人機控制系統包括微控制器模組、多個指向性天線、多個馬達控制器以及控制器。多個指向性天線至少包括第一指向性天線及第二指向性天線,第一指向性天線及第二指向性天線分別耦接微控制器模組。第一指向性天線接收控制器所傳送的第一接收訊號。第二指向性天線接收控制器所傳送的第二接收訊號。第一接收訊號及第二接收訊號分別具有相異的認證碼。微控制器模組透過認證碼來辨識第一接收訊號及第二接收訊號。多個馬達控制器至少包括第一馬達控制器及第二馬達控制器,第一馬達控制器及第二馬達控制器分別耦接微控制器模組。控制器無線連線無人機控制系統,控制器具有使用者介面,用於設定無人機與控制器的距離在預設距離。其中,微控制器模組根據第一接收訊號及第二接收訊號透過第一馬達控制器及第二馬達控制器來控制無人機的飛行方向及飛行距離,以令無人機與控制器的距離在預設距離。 An embodiment of the present invention provides a drone control system applied to a drone, which is suitable for tracking a controller and controlling a flight direction and a flight distance of the drone. The drone control system includes a microcontroller module, a plurality of directional antennas, a plurality of motor controllers, and a controller. The plurality of directional antennas include at least a first directional antenna and a second directional antenna, and the first directional antenna and the second directional antenna are respectively coupled to the microcontroller module. The first directional antenna receives the first received signal transmitted by the controller. The second directional antenna receives the second received signal transmitted by the controller. The first received signal and the second received signal respectively have different authentication codes. The microcontroller module identifies the first received signal and the second received signal through an authentication code. The plurality of motor controllers include at least a first motor controller and a second motor controller, and the first motor controller and the second motor controller are respectively coupled to the microcontroller module. The controller wirelessly connects the drone control system, and the controller has a user interface for setting the distance between the drone and the controller at a preset distance. The microcontroller module controls the flight direction and the flight distance of the drone according to the first receiving signal and the second receiving signal through the first motor controller and the second motor controller, so that the distance between the drone and the controller is Preset distance.
本創作一實施例提供一種無人機控制系統,適用於追蹤控制器並控制無人機的飛行方向及飛行距離。無人機控制系統包括微控制器模組、指向性天線、以及多個馬達控制器。指向性天線耦接微控制器模組,指向性天線接收控制器所傳送的定位訊號。多個馬達控制器至少包括第一馬達控制器及第二馬達控制器,第一馬達控制器及第二馬達控制器分別耦接微控制器模組。其中,微控制器模組根 據定位訊號透過第一馬達控制器及第二馬達控制器來控制無人機的飛行方向及飛行距離,以令無人機距離控制器在預設距離。 An embodiment of the present invention provides a drone control system suitable for tracking a controller and controlling a flight direction and a flight distance of the drone. The drone control system includes a microcontroller module, a directional antenna, and a plurality of motor controllers. The directional antenna is coupled to the microcontroller module, and the directional antenna receives the positioning signal transmitted by the controller. The plurality of motor controllers include at least a first motor controller and a second motor controller, and the first motor controller and the second motor controller are respectively coupled to the microcontroller module. Among them, the microcontroller module root According to the positioning signal, the first motor controller and the second motor controller are used to control the flight direction and flight distance of the drone so that the drone is at a preset distance from the controller.
綜上所述,無人機控制系統包括有無人機的本體、第一定位器及第二定位器,其中第一定位器及第二定位器的設置方向並不相同,以使控制器可以接收到不同的定位訊號,控制器並根據第一定位器的定位訊號及第二定位器的定位訊號來控制無人機與控制器之間的距離及本體的方向,可以有效增加無人機自動追蹤控制器的精確度。 In summary, the drone control system includes a body of the drone, a first positioner and a second positioner, wherein the first positioner and the second positioner are arranged in different directions so that the controller can receive the same. Different positioning signals, the controller controls the distance between the drone and the controller and the direction of the body according to the positioning signal of the first positioner and the positioning signal of the second positioner, which can effectively increase the automatic tracking controller of the drone. Accuracy.
綜上所述,本創作為利用第一指向性天線及第二指向性天線來接收第一接收訊號及第二接收訊號,微控制模組並判斷第一接收訊號及第二接收訊號的差異性來決定是否透過第一馬達控制器及第二馬達控制器來改變無人機的飛行方向且/或飛行距離。本創作可以有效降低製造成本以及提高追蹤靈敏度。 In summary, the present invention uses the first directional antenna and the second directional antenna to receive the first received signal and the second received signal, and the micro control module determines the difference between the first received signal and the second received signal. It is determined whether the flight direction and/or the flight distance of the drone is changed through the first motor controller and the second motor controller. This creation can effectively reduce manufacturing costs and improve tracking sensitivity.
為使能更進一步瞭解本創作之特徵及技術內容,請參閱以下有關本創作之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本創作,而非對本創作的權利範圍作任何的限制。 In order to further understand the features and technical contents of this creation, please refer to the following detailed description and drawings of this creation, but these descriptions and drawings are only used to illustrate this creation, not the right to this creation. The scope is subject to any restrictions.
1、3、10、500‧‧‧無人機控制系統 1, 3, 10, 500‧‧‧ drone control system
100、430‧‧‧無人機 100, 430‧‧‧ drones
150‧‧‧本體 150‧‧‧ body
151‧‧‧第一定位器 151‧‧‧First positioner
1511‧‧‧第一發送器 1511‧‧‧First Transmitter
152‧‧‧第二定位器 152‧‧‧Second positioner
1521‧‧‧第二發送器 1521‧‧‧Second transmitter
160‧‧‧螺旋槳 160‧‧‧propeller
170‧‧‧攝影機 170‧‧‧ camera
110、310‧‧‧微控制模組 110, 310‧‧‧Micro Control Module
1101、1211‧‧‧第一串行外接界面 1101, 1211‧‧‧ first serial external interface
1102、1222‧‧‧第二串行外接界面 1102, 1222‧‧‧Second serial external interface
121‧‧‧第一藍芽模組 121‧‧‧First Blue Bud Module
122‧‧‧第二藍芽模組 122‧‧‧Second Bluetooth module
131、431、1512‧‧‧第一指向性天線 131, 431, 1512‧‧‧ first directional antenna
132、432、1522‧‧‧第二指向性天線 132, 432, 1522‧‧‧second directional antenna
141、341‧‧‧第一馬達控制器 141, 341‧‧‧ first motor controller
142、342‧‧‧第二馬達控制器 142, 342‧‧‧ second motor controller
200‧‧‧控制器 200‧‧‧ controller
210‧‧‧使用者介面圖 210‧‧‧User interface diagram
3101、3201‧‧‧串行外接界面 3101, 3201‧‧‧ serial external interface
320‧‧‧藍芽模組 320‧‧‧Bluetooth Module
330‧‧‧指向性天線 330‧‧‧Directional antenna
341‧‧‧第一馬達控制器 341‧‧‧First Motor Controller
342‧‧‧第二馬達控制器 342‧‧‧Second motor controller
510‧‧‧第一控制器 510‧‧‧First controller
520‧‧‧第二控制器 520‧‧‧second controller
515‧‧‧第一無人機群組 515‧‧‧First drone group
525‧‧‧第二無人機群組 525‧‧‧Second drone group
圖1A為本創作之一實施例之無人機控制系統之實際操作圖。 FIG. 1A is a practical operation diagram of a drone control system according to an embodiment of the present invention.
圖1B為本創作之一實施例之第一定位器之方塊示意圖。 FIG. 1B is a block diagram of a first locator according to an embodiment of the present invention.
圖1C為本創作之一實施例之第二定位器之方塊示意圖。 1C is a block diagram of a second locator of one embodiment of the present invention.
圖1D為本創作之一實施例之無人機控制系統之實際操作圖。 FIG. 1D is a practical operation diagram of the drone control system of one embodiment of the present invention.
圖2A為本創作之一實施例之無人機控制系統之架構示意圖。 2A is a schematic structural diagram of a drone control system according to an embodiment of the present invention.
圖2B為本創作之另一實施例之無人機控制系統之架構示意圖。 2B is a schematic structural diagram of a drone control system according to another embodiment of the present invention.
圖2C為本創作之一實施例之控制器之使用者介面圖。 2C is a user interface diagram of a controller of one embodiment of the present invention.
圖3為本創作之又一實施例之無人機控制系統之架構示意圖。 FIG. 3 is a schematic structural diagram of a drone control system according to still another embodiment of the present invention.
圖4為本創作之另一實施例之無人機控制系統之實際操作圖。 4 is a diagram showing the actual operation of the drone control system of another embodiment of the present invention.
請同時參閱圖1A、圖1B及圖1C。圖1A為本創作之一實施例之無人機控制系統之實際操作圖。圖1B為本創作之一實施例之第一定位器之方塊示意圖。圖1C為本創作之一實施例之第二定位器之方塊示意圖。 Please also refer to FIG. 1A, FIG. 1B and FIG. 1C. FIG. 1A is a practical operation diagram of a drone control system according to an embodiment of the present invention. FIG. 1B is a block diagram of a first locator according to an embodiment of the present invention. 1C is a block diagram of a second locator of one embodiment of the present invention.
無人機控制系統10包括有無人機100及控制器200。無人機100可以透過WiFi模式或藍芽模式無線連線控制器200。在本實施例中,控制器200為智慧型手機,控制器200更可以為智慧型手錶或智慧型手環,本創作不以此為限。無人機100包括本體150、第一定位器151、第二定位器152、多個螺旋槳160及攝影機170。第一定位器151包括第一發送器1511及第一指向性天線1512。第一指向性天線1512耦接於第一發送器1511。第二定位器152包括第二發送器1521及第二指向性天線1522。第二指向性天線1522耦接於第一發送器1521。本領域所屬技術人員可以了解,定位器可以具有發射及傳送無線訊號的功能,在此不加以贅述。 The drone control system 10 includes a drone 100 and a controller 200. The drone 100 can wirelessly connect to the controller 200 via WiFi mode or Bluetooth mode. In this embodiment, the controller 200 is a smart phone, and the controller 200 can be a smart watch or a smart wristband. The present invention is not limited thereto. The drone 100 includes a body 150, a first positioner 151, a second positioner 152, a plurality of propellers 160, and a camera 170. The first locator 151 includes a first transmitter 1511 and a first directional antenna 1512. The first directional antenna 1512 is coupled to the first transmitter 1511. The second locator 152 includes a second transmitter 1521 and a second directional antenna 1522. The second directional antenna 1522 is coupled to the first transmitter 1521. Those skilled in the art can appreciate that the locator can have the function of transmitting and transmitting wireless signals, and details are not described herein.
進一步來說,第一定位器151、第二定位器152、螺旋槳160及攝影機170皆設置於本體上。第一定位器151的第一指向性天線1512朝向第一方向設置。第二定位器152的第二指向性天線1522朝向第二方向設置。本領域所屬技術人員可以知道,指向性天線發出的訊號具有主波瓣(main beam)及旁波瓣(side beam),主波瓣為相對較強的訊號,旁波瓣為相對較弱的訊號。另外,第一發射訊號包括第一認證碼,第二發射訊號包括第二認證碼,第一認證碼與第二認證碼不同。控制器200透過不同的認證碼來辨識是由第一定位器151所發出的第一發射訊號或是由第二定位器152所發出的第二發射訊號,控制器200比較第一發射訊號的定位訊號及第二發射訊號的定位訊號。第一定位器151依照一時間間隔連續發射第一發射訊號。第二定位器152依照第一定位器151的時間間隔連續發射第二發射訊號。時間間隔可以為1ms、5ms或10ms,本創作不以此為限。 Further, the first locator 151, the second locator 152, the propeller 160, and the camera 170 are all disposed on the body. The first directional antenna 1512 of the first locator 151 is disposed toward the first direction. The second directional antenna 1522 of the second locator 152 is disposed toward the second direction. Those skilled in the art will appreciate that the signal from the directional antenna has a main beam and a side beam, the main lobe is a relatively strong signal, and the side lobe is a relatively weak signal. . In addition, the first transmit signal includes a first authentication code, and the second transmit signal includes a second authentication code, the first authentication code being different from the second authentication code. The controller 200 identifies the first transmit signal sent by the first locator 151 or the second transmit signal sent by the second locator 152 through a different authentication code, and the controller 200 compares the location of the first transmit signal. The signal of the signal and the second transmitted signal. The first locator 151 continuously transmits the first transmit signal according to a time interval. The second locator 152 continuously transmits the second transmission signal according to the time interval of the first locator 151. The time interval can be 1ms, 5ms or 10ms, and this creation is not limited to this.
第一定位器151的主波瓣與第二定位器152的主波瓣朝向不同方向。控制器200可以接收到無人機100的第一定位器151所發射的第一發射訊號。控制器200可以接收到無人機100的第二定位器152所發射的第二發射訊號。再者,控制器200可以根據第一發射訊號的資訊及第二發射訊號的資訊來判斷訊號強弱。換句話說,控制器200根據第一發射訊號的定位訊號與第二發射訊號的定位訊號控制無人機100與控制器200之間的距離以及本體150的方向。 The main lobe of the first locator 151 and the main lobe of the second locator 152 are oriented in different directions. The controller 200 can receive the first transmit signal transmitted by the first locator 151 of the drone 100. The controller 200 can receive the second transmit signal transmitted by the second locator 152 of the drone 100. Moreover, the controller 200 can determine the strength of the signal according to the information of the first transmitted signal and the information of the second transmitted signal. In other words, the controller 200 controls the distance between the drone 100 and the controller 200 and the direction of the body 150 according to the positioning signal of the first transmitted signal and the positioning signal of the second transmitted signal.
請復參閱圖1A,本體150上的攝影機170可以根據本體150相對於控制器200的方向調整而改變以朝向控制器200。換句話說,本創作所提出的無人機控制系統10具有自動追縱控制器200的功能,控制器200可以根據第一定位器151所發出的第一發射訊號的定位訊號及第二定位器152所發出的第二發射訊號的定位訊號,來調整攝影機170的方向以朝向控制器200,以使攝影機170可以擷取到完整特定人物影像。 Referring to FIG. 1A, the camera 170 on the body 150 can be changed to face the controller 200 according to the direction adjustment of the body 150 relative to the controller 200. In other words, the UAV control system 10 proposed by the present invention has the function of the automatic tracking controller 200. The controller 200 can be based on the positioning signal of the first transmitting signal sent by the first locator 151 and the second locator 152. The emitted signal of the second transmitted signal is used to adjust the direction of the camera 170 to face the controller 200 so that the camera 170 can capture the complete specific person image.
無人機100包括多個螺旋槳160以及螺旋槳控制模組(圖未示),螺旋槳控制模組根據控制器200所發出的控制訊號以控制多個螺旋槳160,例如控制無人機100的本體150的飛行方向或飛行距離。其中控制器200比較第一發射訊號的定位訊號與第二發射訊號的定位訊號以輸出定位訊號資料。進一步來說,控制器200根據第一發射訊號的定位訊號與第二發射訊號的定位訊號發出定位訊號資料,無人機100接收定位訊號資料並根據定位訊號資料調整無人機100與控制器200之間的距離以及本體150的方向。 The drone 100 includes a plurality of propellers 160 and a propeller control module (not shown). The propeller control module controls the plurality of propellers 160 according to control signals issued by the controller 200, for example, controlling the flight direction of the body 150 of the drone 100. Or flight distance. The controller 200 compares the positioning signal of the first transmitting signal with the positioning signal of the second transmitting signal to output the positioning signal data. Further, the controller 200 sends the positioning signal data according to the positioning signal of the first transmitting signal and the positioning signal of the second transmitting signal, and the drone 100 receives the positioning signal data and adjusts between the drone 100 and the controller 200 according to the positioning signal data. The distance and the direction of the body 150.
在一實施例中,無人機控制系統10包括無人機100及控制器200。具體來說,無人機100具有本體150、第一定位器151與第二定位器152。第一定位器151與第二定位器152設置於本體150上且分別朝向第一方向與第二方向設置。控制器200用於發射定位訊號至第一定位器151與第二定位器152,無人機100內的微控制模組(圖未示)根據定位訊號控制無人機100與控制器200之間的距離 以及本體150的方向。無人機10用於調整攝影機170的方向以朝向控制器200,以使攝影機170可以擷取到完整特定人物影像。 In an embodiment, the drone control system 10 includes a drone 100 and a controller 200. Specifically, the drone 100 has a body 150, a first positioner 151, and a second positioner 152. The first positioner 151 and the second positioner 152 are disposed on the body 150 and disposed toward the first direction and the second direction, respectively. The controller 200 is configured to transmit a positioning signal to the first positioner 151 and the second positioner 152. The micro control module (not shown) in the drone 100 controls the distance between the drone 100 and the controller 200 according to the positioning signal. And the direction of the body 150. The drone 10 is used to adjust the direction of the camera 170 to face the controller 200 so that the camera 170 can capture a complete picture of a particular person.
請參閱圖1D,圖1D為本創作之一實施例之無人機控制系統之實際操作圖。無人機控制系統500包括多個無人機及多個控制器。多個控制器至少包括第一控制器510及一第二控制器520。多個無人機至少包括第一無人機群組515及第二無人機群組525。無人機及控制器的詳細說明請參閱圖1A的實施例說明,在此不在贅述。 Please refer to FIG. 1D. FIG. 1D is a practical operation diagram of the drone control system according to an embodiment of the present invention. The drone control system 500 includes a plurality of drones and a plurality of controllers. The plurality of controllers includes at least a first controller 510 and a second controller 520. The plurality of drones includes at least a first drone group 515 and a second drone group 525. For a detailed description of the drone and the controller, please refer to the description of the embodiment of FIG. 1A, and details are not described herein.
第一控制器510用於發射第一定位訊號至第一無人機群組515,並控制第一無人機群組515與第一控制器510之間的距離以及本體的方向,換句話說,第一控制器510可以同時控制第一無人機群組515中的所有無人機,在本實施例中,第一控制器510可以同時控制第一無人機群組515中的兩台無人機,在一實施例中,第一控制器510可以同時控制第一無人機群組515中的複數台無人機。第二控制器520用於發射第二定位訊號並控制第二無人機群組525與第二控制器520之間的距離以及本體的方向,本創作不以無人機與控制器的數量為限。 The first controller 510 is configured to transmit the first positioning signal to the first drone group 515, and control the distance between the first drone group 515 and the first controller 510 and the direction of the body, in other words, A controller 510 can simultaneously control all the drones in the first drone group 515. In this embodiment, the first controller 510 can simultaneously control two drones in the first drone group 515, in one In an embodiment, the first controller 510 can simultaneously control a plurality of drones in the first drone group 515. The second controller 520 is configured to transmit the second positioning signal and control the distance between the second drone group 525 and the second controller 520 and the direction of the body. The present invention is not limited to the number of the drone and the controller.
請參閱圖2A。圖2A為本創作之一實施例之無人機控制系統之架構示意圖。本實施例提出一種無人機控制系統1,適用於追蹤控制器(圖未示)並控制無人機(圖未示)的飛行方向及飛行距離。進一步來說,無人機控制系統1可以根據定位訊號的強弱來追蹤控制器的移動方向及移動距離。 Please refer to Figure 2A. 2A is a schematic structural diagram of a drone control system according to an embodiment of the present invention. The embodiment provides a drone control system 1 suitable for tracking a controller (not shown) and controlling the flight direction and flight distance of the drone (not shown). Further, the drone control system 1 can track the moving direction and the moving distance of the controller according to the strength of the positioning signal.
請參閱圖2A,無人機控制系統1包括微控制模組110、第一藍芽模組121、第二藍芽模組122、第一指向性天線131、第二指向性天線132、第一馬達控制器141及第二馬達控制器141。其中微控制模組110更包括第一串行外接介面1101及第二串行外接介面1102。第一藍芽模組121包括1211第一串行外接介面。第二藍芽模組122包括第二串行外接介面1222。 Referring to FIG. 2A, the UAV control system 1 includes a micro control module 110, a first Bluetooth module 121, a second Bluetooth module 122, a first directional antenna 131, a second directional antenna 132, and a first motor. The controller 141 and the second motor controller 141. The micro control module 110 further includes a first serial external interface 1101 and a second serial external interface 1102. The first Bluetooth module 121 includes a 1211 first serial external interface. The second Bluetooth module 122 includes a second serial external interface 1222.
微控制器模組110(Microcontroller Unit,MCU)可以為具有適當 軟體、韌體及硬體來完成運算的功能,適用於控制無人機的飛行方向及飛行距離。舉例來說,當無人機與持有控制器的使用者距離太過遙遠,微控制器模組110控制無人機飛行接近持有控制器的使用者;反之,當無人機與持有控制器的使用者距離太近,微控制器模組110控制無人機飛行遠離持有控制器的使用者。 Microcontroller Unit 110 (MCU) can be appropriate Software, firmware and hardware to complete the calculation function, suitable for controlling the flight direction and flight distance of the drone. For example, when the drone is too far away from the user holding the controller, the microcontroller module 110 controls the drone to fly close to the user holding the controller; otherwise, when the drone is holding the controller The user is too close, and the microcontroller module 110 controls the drone to fly away from the user holding the controller.
在本實施例中,無人機控制系統1具有多個指向性天線,至少包括第一指向性天線131及第二指向性天線132。第一指向性天線131傳送第一發射訊號至控制器,控制器並根據第一發射訊號計算出第一接收訊號。第二指向性天線132傳送第二發射訊號至控制器,控制器並根據第二發射訊號計算出第二接收訊號。微控制器模組110根據第一接收訊號及第二接收訊號的差異性來控制無人機的飛行方向及飛行距離。舉例來說,當第二指向性天線132所發出的第二發射訊號的資訊,其排序優於第一指向性天線131所發出的第一發射訊號的資訊時,經由控制器計算出的第二接收訊號的訊號強度會大於第一訊號的訊號強度。在一實施例中,無人機控制系統1可以具有複個指向性天線,本創作不以此為限。 In the present embodiment, the UAV control system 1 has a plurality of directional antennas including at least a first directional antenna 131 and a second directional antenna 132. The first directional antenna 131 transmits the first transmit signal to the controller, and the controller calculates the first received signal according to the first transmit signal. The second directional antenna 132 transmits the second transmit signal to the controller, and the controller calculates the second received signal according to the second transmit signal. The microcontroller module 110 controls the flight direction and flight distance of the drone according to the difference between the first received signal and the second received signal. For example, when the information of the second transmitted signal sent by the second directional antenna 132 is better than the information of the first transmitted signal sent by the first directional antenna 131, the second calculated by the controller The signal strength of the received signal will be greater than the signal strength of the first signal. In an embodiment, the UAV control system 1 may have multiple directional antennas, and the present invention is not limited thereto.
具體來說,指向性天線是指在一個或多個特定方向上發射及接收電磁波特較強(主波瓣),而在其他的方向上發射及接收電磁波則較小(旁波瓣)。若使用圓極化天線。第一指向性天線131及第二指向性天線132所發射的第一發射訊號及第二發射訊號可以解決控制器在移動時所造成的極化不匹配問題。 Specifically, a directional antenna refers to a strong electromagnetic port (main lobes) that emits and receives in one or more specific directions, and a small (side lobes) that emits and receives electromagnetic waves in other directions. If a circularly polarized antenna is used. The first transmit signal and the second transmit signal transmitted by the first directional antenna 131 and the second directional antenna 132 can solve the polarization mismatch problem caused by the controller when moving.
第一指向性天線131及第二指向性天線132分別透過第一藍芽模組121及第二藍芽模組122耦接微控制器模組110。第一指向性天線131接收控制器所傳送的第一接收訊號,第二指向性天線132接收控制器所傳送的第二接收訊號,第一接收訊號第二接收訊號分別具有相異的認證碼。其中微控制器模組110透過認證碼來辨識第一接收訊號及第二接收訊號。 The first directional antenna 131 and the second directional antenna 132 are coupled to the microcontroller module 110 through the first Bluetooth module 121 and the second Bluetooth module 122, respectively. The first directional antenna 131 receives the first received signal transmitted by the controller, and the second directional antenna 132 receives the second received signal transmitted by the controller. The first received signal and the second received signal respectively have different authentication codes. The microcontroller module 110 identifies the first received signal and the second received signal by using an authentication code.
在本實施例中,無人機控制系統1具有多個馬達控制器,至少 包括第一馬達控制器141及第二馬達控制器142,第一馬達控制器141及第二馬達控制器142分別耦接微控制器模組110。進一步來說,第一馬達控制器141用於控制無人機的飛行方向,第二馬達控制器142用於控制無人機的飛行距離。微控制器模組110可以控制無人機旋轉並改變其飛行方向,微控制器模組110也可以控制無人機朝控制器飛行,微控制器模組110也可以控制無人機遠離控制器飛行。 In this embodiment, the drone control system 1 has a plurality of motor controllers, at least The first motor controller 141 and the second motor controller 142 are coupled to the microcontroller module 110. Further, the first motor controller 141 is used to control the flight direction of the drone, and the second motor controller 142 is used to control the flight distance of the drone. The microcontroller module 110 can control the drone to rotate and change its flight direction. The microcontroller module 110 can also control the drone to fly toward the controller, and the microcontroller module 110 can also control the drone to fly away from the controller.
進一步來說,其中當微控制器模組110判斷第一接收訊號的定位訊號不等於第二接收訊號的定位訊號時,可能是第一指向性天線131與控制器間傳遞的資訊相異於第二指向性天線132與控制器間傳遞的資訊,微控制器模組110控制第一馬達控制器141旋轉無人機的飛行方向以使第一接收訊號的定位訊號近乎等於第二接收訊號的定位訊號。 Further, when the microcontroller module 110 determines that the positioning signal of the first received signal is not equal to the positioning signal of the second received signal, the information transmitted between the first directional antenna 131 and the controller may be different from the first The information transmitted between the directional antenna 132 and the controller, the microcontroller module 110 controls the first motor controller 141 to rotate the flight direction of the drone so that the positioning signal of the first received signal is nearly equal to the positioning signal of the second received signal. .
接著,當微控制器模組110判斷第一接收訊號的定位訊號及第二接收訊號的定位訊號相同且均小於第一距離定位訊號強度值時,微控制器模組110控制第二馬達控制器142令無人機的飛行距離為朝向控制器飛行至預設距離。其中當微控制器模組110判斷第一接收訊號的定位訊號及第二接收訊號的定位訊號相同且均大於第二距離定位訊號強度值時,微控制器模組110控制第二馬達控制器142令無人機的飛行距離為遠離控制器飛行至預設距離。其中第二距離定位訊號強度值大於第一距離定位訊號強度值。舉例來說,當微控制器模組110判斷無人機過於遠離控制器時,即控制第二馬達控制器142令無人機的飛行距離為朝向控制器飛行至預設距離;反之,當微控制器模組110判斷無人機過於接近控制器時,即控制第二馬達控制器142令無人機的飛行距離為遠離控制器飛行至預設距離。 Then, when the microcontroller module 110 determines that the positioning signals of the first received signal and the positioning signals of the second received signal are the same and are smaller than the first distance positioning signal strength value, the microcontroller module 110 controls the second motor controller. 142 causes the drone's flight distance to fly toward the controller to a preset distance. When the microcontroller module 110 determines that the positioning signals of the first received signal and the positioning signals of the second received signal are the same and are greater than the second distance positioning signal strength value, the microcontroller module 110 controls the second motor controller 142. Let the drone's flight distance be away from the controller to the preset distance. The second distance positioning signal intensity value is greater than the first distance positioning signal intensity value. For example, when the microcontroller module 110 determines that the drone is too far away from the controller, the second motor controller 142 is controlled to make the flight distance of the drone fly toward the controller to a preset distance; otherwise, when the microcontroller When the module 110 determines that the drone is too close to the controller, it controls the second motor controller 142 to make the flight distance of the drone fly away from the controller to a preset distance.
在本實施例中,無人機控制系統1具有多個藍芽模組,至少包括第一藍芽模組121及第二藍芽模組122。第一藍芽模組121具有 第一串行外接介面1211(Serial Peripheral Interface,SPI)。第二藍芽模組122具有第二串行外接介面1222。第一藍芽模組121的第一串行外接介面1211耦接於第一指向性天線131與微控制模組110的第一串行外接介面1101之間。第二藍芽模組122的第二串行外接介面1222耦接於第二指向性天線132與微控制模組110的第二串行外接介面1102之間。第一藍芽模組121及第二藍芽模組122皆具有儲存電路。第一藍芽模組121透過第一指向性天線131接收並儲存第一接收訊號。第二藍芽模組122透過第二指向性天線132接收並儲存第二接收訊號。在一實施例中,第一藍芽模組121及第二藍芽模組122與第一指向性天線131及第二指向性天線132間更具有切換器(圖未示),舉例來說,第一指向性天線131可以耦接第二藍芽模組122,第二指向性天線132可以耦接第一藍芽模組121。 In this embodiment, the UAV control system 1 has a plurality of Bluetooth modules, and includes at least a first Bluetooth module 121 and a second Bluetooth module 122. The first Bluetooth module 121 has The first serial external interface 1211 (Serial Peripheral Interface, SPI). The second Bluetooth module 122 has a second serial external interface 1222. The first serial external interface 1211 of the first Bluetooth module 121 is coupled between the first directional antenna 131 and the first serial external interface 1101 of the micro control module 110. The second serial external interface 1222 of the second Bluetooth module 122 is coupled between the second directional antenna 132 and the second serial external interface 1102 of the micro control module 110. Both the first Bluetooth module 121 and the second Bluetooth module 122 have storage circuits. The first Bluetooth module 121 receives and stores the first received signal through the first directional antenna 131. The second Bluetooth module 122 receives and stores the second received signal through the second directional antenna 132. In an embodiment, the first Bluetooth module 121 and the second Bluetooth module 122 and the first directional antenna 131 and the second directional antenna 132 further have a switch (not shown), for example, The first directional antenna 131 can be coupled to the second Bluetooth module 122 , and the second directional antenna 132 can be coupled to the first Bluetooth module 121 .
由前述可知,微控制器模組110根據第一接收訊號及第二接收訊號透過第一馬達控制器141及第二馬達控制器142來控制無人機的飛行方向及飛行距離,以令無人機與持有控制器的使用者的距離在預設距離。 As can be seen from the foregoing, the microcontroller module 110 controls the flight direction and flight distance of the drone through the first motor controller 141 and the second motor controller 142 according to the first receiving signal and the second receiving signal, so that the drone and the drone are The distance of the user holding the controller is at a preset distance.
請同時參閱圖2B及圖2C,圖2B為本創作之另一實施例之無人機控制系統之架構示意圖。圖2C為本創作之一實施例之控制器之使用者介面圖。請參閱圖2B,包括有無人機控制系統1及控制器200。關於無人機控制系統1,請參考圖2A的實施例說明,在此不再贅述。控制器200可以透過藍芽模式或是WiFi模式無線連線無人機控制系統1,控制器200具有使用者介面210,用於接收指令來設定無人機與控制器200的距離在預設距離。 Please refer to FIG. 2B and FIG. 2C simultaneously. FIG. 2B is a schematic structural diagram of a drone control system according to another embodiment of the present invention. 2C is a user interface diagram of a controller of one embodiment of the present invention. Please refer to FIG. 2B, which includes a drone control system 1 and a controller 200. For the UAV control system 1, please refer to the description of the embodiment of FIG. 2A, and details are not described herein again. The controller 200 can wirelessly connect the drone control system 1 through the Bluetooth mode or the WiFi mode. The controller 200 has a user interface 210 for receiving an instruction to set the distance between the drone and the controller 200 at a preset distance.
請參閱圖3,圖3為本創作之又一實施例之無人機控制系統之架構示意圖。無人機控制系統3包括微控制器模組310、藍芽模組320、指向性天線330、第一馬達控制器341及第二馬達控制器342。微控制器模組310包括串行外接介面3101。藍芽模組320包括串行外接介面3201。微控制器模組310的串行外接介面3101耦接藍芽 模組320的串行外接介面3201。指向性天線330透過藍芽模組320耦接微控制器模組310,指向性天線330接收控制器所傳送的接收訊號。在本實施例中,無人機控制系統3包括多個馬達控制器,至少包括第一馬達控制器341及第二馬達控制器342,第一馬達控制器341及第二馬達控制器342分別耦接微控制器模組310。 Please refer to FIG. 3. FIG. 3 is a schematic structural diagram of a drone control system according to still another embodiment of the present invention. The drone control system 3 includes a microcontroller module 310, a Bluetooth module 320, a directional antenna 330, a first motor controller 341, and a second motor controller 342. The microcontroller module 310 includes a serial external interface 3101. The Bluetooth module 320 includes a serial external interface 3201. The serial external interface 3101 of the microcontroller module 310 is coupled to the Bluetooth The serial external interface 3201 of the module 320. The directional antenna 330 is coupled to the microcontroller module 310 through the Bluetooth module 320, and the directional antenna 330 receives the received signal transmitted by the controller. In this embodiment, the UAV control system 3 includes a plurality of motor controllers, including at least a first motor controller 341 and a second motor controller 342. The first motor controller 341 and the second motor controller 342 are coupled respectively. Microcontroller module 310.
進一步來說,其中第一馬達控制器341用於控制無人機的飛行方向,第二馬達控制器342用於控制無人機的飛行距離。當微控制器模組310判斷定位訊號小於方向定位訊號強度值時,即控制器所接收到的主波瓣場型產生大量偏移,微控制器模組310控制第一馬達控制器341旋轉無人機的飛行方向。當微控制器模組310判斷定位訊號小於距離定位訊號強度值時,微控制器模組310控制第二馬達控制器342令無人機的飛行距離為朝向控制器飛行至預設距離。其中當微控制器模組310判斷定位訊號大於距離定位訊號強度值時,微控制器模組310控制第二馬達控制器342令無人機的飛行距離為遠離控制器飛行至預設距離。微控制器模組310根據定位訊號透過第一馬達控制器341及第二馬達控制器342來控制無人機的飛行方向及飛行距離,以令無人機距離持有控制器的使用者在預設距離。 Further, wherein the first motor controller 341 is used to control the flight direction of the drone, and the second motor controller 342 is used to control the flight distance of the drone. When the microcontroller module 310 determines that the positioning signal is smaller than the direction positioning signal strength value, that is, the main lobe field type received by the controller generates a large amount of offset, the microcontroller module 310 controls the first motor controller 341 to rotate. The flight direction of the machine. When the microcontroller module 310 determines that the positioning signal is less than the distance positioning signal intensity value, the microcontroller module 310 controls the second motor controller 342 to cause the flying distance of the drone to fly toward the controller to a preset distance. When the microcontroller module 310 determines that the positioning signal is greater than the distance positioning signal strength value, the microcontroller module 310 controls the second motor controller 342 to make the flying distance of the drone fly away from the controller to a preset distance. The microcontroller module 310 controls the flight direction and flight distance of the drone according to the positioning signal through the first motor controller 341 and the second motor controller 342, so that the drone is at a preset distance from the user holding the controller. .
請參閱圖4,圖4為本創作之一實施例之無人機控制系統之實際操作圖。無人機430包括有第一指向性天線431及第二指向性天線432,控制器400可以透過第一指向性天線431及第二指向性天線432發射的第一發射訊號及第二發射訊號,並計算出第一接收訊號及第二接收訊號,無人機430的微控制模組(圖未示)可以根據第一接收訊號及第二接收訊號的差異性來控制無人機430的飛行方向及飛行距離。 Please refer to FIG. 4. FIG. 4 is a practical operation diagram of the drone control system according to an embodiment of the present invention. The UAV 430 includes a first directional antenna 431 and a second directional antenna 432. The controller 400 can transmit the first transmit signal and the second transmit signal transmitted by the first directional antenna 431 and the second directional antenna 432, and The first receiving signal and the second receiving signal are calculated, and the micro control module (not shown) of the drone 430 can control the flying direction and the flying distance of the drone 430 according to the difference between the first receiving signal and the second receiving signal. .
綜上所述,本創作的無人機控制系統包括有無人機的本體、第一定位器及第二定位器,其中第一定位器及第二定位器的設置方向並不相同,以使控制器可以接收到不同的定位訊號,控制器並根據 第一定位器的定位訊號及第二定位器的定位訊號來控制無人機與控制器之間的距離及本體的方向,可以有效增加無人機自動追蹤控制器的精確度。 In summary, the drone control system of the present invention comprises a body of the drone, a first locator and a second locator, wherein the first locator and the second locator are arranged in different directions to enable the controller Can receive different positioning signals, controller and according to The positioning signal of the first positioner and the positioning signal of the second positioner control the distance between the drone and the controller and the direction of the body, which can effectively increase the accuracy of the automatic tracking controller of the drone.
綜上所述,本創作為利用第一指向性天線及第二指向性天線來接收第一接收訊號及第二接收訊號,微控制模組並判斷第一接收訊號及第二接收訊號的差異性來決定是否透過第一馬達控制器及第二馬達控制器來改變無人機的飛行方向且/或飛行距離。其中第一接收訊號及第二接收訊號具有相異的認證碼,以利微控制模組辨識第一指向性天線及第二指向性天線與控制器之間的通訊品質。本創作透過分辨訊號的強弱及其他資訊以控制無人機追蹤持有控制器的使用者在預設距離,可以有效降低製造成本以及提高追蹤靈敏度。另外,第一指向性天線及第二指向性天線所發射的第一發射訊號及第二發射訊號可以解決控制器在移動時所造成的極化不匹配問題。 In summary, the present invention uses the first directional antenna and the second directional antenna to receive the first received signal and the second received signal, and the micro control module determines the difference between the first received signal and the second received signal. It is determined whether the flight direction and/or the flight distance of the drone is changed through the first motor controller and the second motor controller. The first receiving signal and the second receiving signal have different authentication codes, so that the micro control module can identify the communication quality between the first directional antenna and the second directional antenna and the controller. This creation can effectively reduce the manufacturing cost and improve the tracking sensitivity by controlling the strength of the signal and other information to control the drone to track the user holding the controller at a preset distance. In addition, the first transmit signal and the second transmit signal transmitted by the first directional antenna and the second directional antenna can solve the polarization mismatch problem caused by the controller when moving.
以上該僅為本創作的實施例,其並非用以限定本創作的專利保護範圍。任何熟習相像技藝者,在不脫離本創作的精神與範圍內,所作的更動及潤飾的等效替換,仍為本創作的專利保護範圍內。 The above is only an embodiment of the present invention, and is not intended to limit the scope of patent protection of the present invention. Anyone who is familiar with the art of the artist, within the spirit and scope of the creation, the equivalent of the change and retouching is still within the scope of the patent protection of the creation.
Claims (23)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106208962U TWM566695U (en) | 2017-06-21 | 2017-06-21 | Unmanned aerial vehicle, unmanned aerial vehicle control system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106208962U TWM566695U (en) | 2017-06-21 | 2017-06-21 | Unmanned aerial vehicle, unmanned aerial vehicle control system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM566695U true TWM566695U (en) | 2018-09-11 |
Family
ID=64399479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106208962U TWM566695U (en) | 2017-06-21 | 2017-06-21 | Unmanned aerial vehicle, unmanned aerial vehicle control system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM566695U (en) |
-
2017
- 2017-06-21 TW TW106208962U patent/TWM566695U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11797009B2 (en) | Unmanned aerial image capture platform | |
WO2017211030A1 (en) | Communications control method and device for unmanned aerial vehicle | |
WO2017152865A1 (en) | Following method and device for unmanned aerial vehicle and wearable device | |
US20120221179A1 (en) | Unmanned aerial vehicle and method for adjusting flight direction of the same | |
US11924538B2 (en) | Target tracking method and apparatus and unmanned aerial vehicle | |
US20190007670A1 (en) | Estimation system and automobile | |
CN105100728A (en) | Unmanned aerial vehicle video tracking shooting system and method | |
CN111722646B (en) | Maritime search method and system based on cooperation of unmanned ship group and unmanned ship group | |
WO2018059398A1 (en) | Method, apparatus, and system for controlling multi-rotor aircraft | |
US20200180759A1 (en) | Imaging device, camera-equipped drone, and mode control method, and program | |
CN206235739U (en) | A kind of GPS Disturbance and deceits system | |
US20120221180A1 (en) | Unmanned aerial vehicle and control method thereof | |
JP6281720B2 (en) | Imaging system | |
CN106945835A (en) | A kind of unmanned vehicle | |
CN106094876A (en) | A kind of unmanned plane target locking system and method thereof | |
CN111766900A (en) | System and method for high-precision autonomous landing of unmanned aerial vehicle and storage medium | |
CN204287973U (en) | flight camera | |
US10412372B2 (en) | Dynamic baseline depth imaging using multiple drones | |
US8838290B2 (en) | Control device and method for adjusting flight direction of unmanned aerial vehicle using the same | |
TWM566695U (en) | Unmanned aerial vehicle, unmanned aerial vehicle control system | |
CN105807783A (en) | Flight camera | |
JP2023157917A (en) | Imaging method | |
KR101876829B1 (en) | Induction control system for indoor flight control of small drones | |
WO2020107393A1 (en) | Control method for gimbal, gimbal and unmanned aerial vehicle | |
WO2020220234A1 (en) | Unmanned aerial vehicle control method and unmanned aerial vehicle |