TWM563664U - Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency - Google Patents

Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency Download PDF

Info

Publication number
TWM563664U
TWM563664U TW107204163U TW107204163U TWM563664U TW M563664 U TWM563664 U TW M563664U TW 107204163 U TW107204163 U TW 107204163U TW 107204163 U TW107204163 U TW 107204163U TW M563664 U TWM563664 U TW M563664U
Authority
TW
Taiwan
Prior art keywords
layer
pcpdtbt
poly
conversion efficiency
photoelectric conversion
Prior art date
Application number
TW107204163U
Other languages
Chinese (zh)
Inventor
歐珍方
劉承軒
Original Assignee
國立勤益科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立勤益科技大學 filed Critical 國立勤益科技大學
Priority to TW107204163U priority Critical patent/TWM563664U/en
Publication of TWM563664U publication Critical patent/TWM563664U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本創作係提供一種可提升光電轉換效率之軟性高分子太陽能電池之結構,主要係令該(PEDOT:PSS)及該(MoO3)之體積比為1:3;該(P3HT)、(PCPDTBT)及(PC61BM)之重量比為1:0.04:1;藉此本創作將三氧化鉬以1:3體積比例混摻作為電洞傳輸層其PCE由1.97%提升至3.11%,提升了58%,JSC由8.57mA/cm2提升至9.61mA/cm2,提升了12%,填充因子由0.44提升至0.61,配合主動層加入PCPDTBT更能增進紅外光之吸收,因此開路電壓有明顯的提高,也使整體提高了較大的光電轉換效率者。 This creation is to provide a structure of a flexible polymer solar cell that can improve the photoelectric conversion efficiency. The main reason is that the volume ratio of the (PEDOT: PSS) and the (MoO 3 ) is 1: 3; the (P3HT), (PCPDTBT) And the weight ratio of (PC61BM) is 1: 0.04: 1; by this creation, molybdenum trioxide was mixed in a 1: 3 volume ratio as a hole transport layer, and its PCE was increased from 1.97% to 3.11%, an increase of 58%. JSC increased from 8.57mA / cm 2 to 9.61mA / cm 2, to enhance the 12% fill factor increased from 0.44 to 0.61, with the addition of the active layer can foster PCPDTBT absorbs infrared light, the open-circuit voltage and therefore significantly improved, but also Those who have improved the overall photoelectric conversion efficiency.

Description

可提升光電轉換效率之軟性高分子太陽能電池之結構 Structure of flexible polymer solar cell capable of improving photoelectric conversion efficiency

本創作係有關一種可提升光電轉換效率之軟性高分子太陽能電池之結構,尤其是一種尤其是一種具有較高的載子遷移率及較的化學及物理穩定度,達到提升太陽能電池的光電轉換效率之結構者。 This creation relates to the structure of a soft polymer solar cell that can improve the photoelectric conversion efficiency, especially a kind of especially having a higher carrier mobility and relatively chemical and physical stability, so as to improve the photoelectric conversion efficiency of the solar cell Structurer.

按,傳統太陽能電池第一代為矽晶的無機太陽能電池,其缺點為矽本身吸光的係數較低,導致電池稍嫌厚重、材料多,製備矽的過程需經冶煉、消耗很多能量,也要在真空中處理,使其製造成本偏高。因此,無機太陽能電池製作過程恐有高耗能、高污染的疑慮。相較於上述的無機太陽能電池價格昂貴而難以普及化,有機太陽能電池便有相當的優勢來取代無機太陽能電池,高分子有機太陽能電池的發展潛力讓人驚豔,尤其在生產成本低、可撓曲、輕薄、製程簡單等等優勢下,相信未來可以用於改善人類的生活。目前高分子有機太陽能電池在光電轉換效率值上仍無法與無機太陽能電池相提並論,但經過許多學者的努力研究後,我們可以發現高分子有機太陽能電池的光學轉換效率正慢慢地提升,目前研究的方法包含:合成低能隙材料增加光吸收、運用疊層結構(tandem cell)、不同製程條件……等。當材料進入奈米尺度後,材料的特性會依其尺寸大小的不同而有所不同,其光性、電性、磁性、導熱性和機械性質與巨觀相(bulk phase)相比更是明顯不一樣,無機奈米材料具有較高的載子遷移率且可提高光的吸收率以及有較好的化學及物理穩定性,使用無機奈米材料可以保有原有元件特性,也可擁有無機奈米材料的特性,所以將無機奈米材料應用於高分子有機太陽能電池也是目前一大趨勢。 According to the first generation of traditional solar cells, silicon crystal inorganic solar cells have the disadvantage that the coefficient of light absorption of silicon itself is relatively low, which results in the battery being slightly thicker and more materials. The process of preparing silicon requires smelting and consumes a lot of energy. Processing in a vacuum makes it expensive to manufacture. Therefore, there are doubts about high energy consumption and high pollution in the manufacturing process of inorganic solar cells. Compared with the above-mentioned inorganic solar cells, which are expensive and difficult to popularize, organic solar cells have considerable advantages to replace inorganic solar cells. The development potential of polymer organic solar cells is amazing, especially in terms of low production costs and flexibility. Under the advantages of light weight, light weight, and simple process, I believe that it can be used to improve human life in the future. At present, the photoelectric conversion efficiency value of polymer organic solar cells is still not comparable to that of inorganic solar cells. However, after the efforts of many scholars, we can find that the optical conversion efficiency of polymer organic solar cells is slowly improving. Methods include: synthesizing low energy gap materials to increase light absorption, using tandem cells, different process conditions, etc. When the material enters the nanometer scale, the characteristics of the material will be different according to its size. Its optical, electrical, magnetic, thermal and mechanical properties are more obvious than the bulk phase. Not the same, inorganic nanomaterials have higher carrier mobility and can improve light absorption and have better chemical and physical stability. Using inorganic nanomaterials can retain the original element characteristics and also possess inorganic nanomaterials. The characteristics of rice materials, so the application of inorganic nano materials in polymer organic solar cells is also a major trend.

是以,針對上述無機太陽能電池所存在之問題點,如何開發一種更具理想實用性之創新結構,實使用消費者所殷切企盼,亦係相關業者須努力 研發突破之目標及方向。有鑑於此,創作人本於多年從事相關產品之製造開發與設計經驗,針對上述之目標,詳加設計與審慎評估後,終得一確具實用性之本創作。 Therefore, in view of the problems of the above-mentioned inorganic solar cells, how to develop an innovative structure with more ideal and practicality, which is actually used by consumers, is also a must for related industries. R & D breakthrough goals and directions. In view of this, the creators have been engaged in the manufacturing development and design of related products for many years. In view of the above-mentioned goals, after detailed design and careful evaluation, the author can finally have a practical original creation.

即,本創作之主要目的,係在提供一種可提升光電轉換效率之軟性高分子太陽能電池之結構;其所欲解決之問題點,係針對習知無機太陽能電池製造過程需經冶煉、消耗很多能量,也要在真空中處理,使其製造成本偏高問題點加以改良突破;而其解決問題之技術特點,主要係藉由包括:一陽極層(ITO PET),該陽極層係為一ITO軟塑性玻璃材質製成;一電洞傳輸層(PEDOT:PSS:MoO3),係覆設於該陽極層之上端面,該電洞傳輸層係包含有複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)及複數三氧化鉬(MoO3)混合而成;其中該複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)及該複數三氧化鉬(MoO3)之體積比為1:3;一主動層(P3HT:PCPDTBT:PC61BM),係覆設於該電洞傳輸層之上端面,該主動層係包含有複數聚3-己基噻吩(poly(3-hexylthiophene),P3HT(p型材料))聚合物半導體、複數低能帶隙聚合物(PCPDTBT)及複數苯基-C61丁酸甲酯(phenyl-C61-butyric acid methylester,PC61BM(n型材料))混合而成;其中該複數聚3-己基噻吩(P3HT)、複數低能帶隙聚合物(PCPDTBT)及複數苯基-C61丁酸甲酯(PC61BM)之重量比為1:0.04:1;一陰極層(Ca/Al),該陰極層係覆設於該主動層之上端面,該陰極層係包含一鈣質層(Ca)及一鋁質層(Al)所構成;藉此創新獨特設計,使本創作將三氧化鉬以1:3體積比例混摻作為電洞傳輸層其PCE由1.97%提升至3.11%,提升了58%,JSC由8.57mA/cm2提升至9.61mA/cm2,提升了12%,填充因子由0.44提升至0.61,配合主動層加入PCPDTBT更能增進紅外光之吸收,因此開路電壓有明顯的提高,也使整體提高了較大的光電轉換效率者。 That is, the main purpose of this creation is to provide a structure of a flexible polymer solar cell that can improve the photoelectric conversion efficiency; the problem it wants to solve is to address the need for smelting and consuming a lot of energy in the manufacturing process of conventional inorganic solar cells. It must also be processed in a vacuum to improve the manufacturing cost of the problem of high manufacturing costs. The technical characteristics of the problem are mainly including: an anode layer (ITO PET), which is an ITO soft layer. Made of plastic glass material; a hole transport layer (PEDOT: PSS: MoO 3 ) is arranged on the end face of the anode layer, and the hole transport layer contains a plurality of poly (3,4-dioxyethylene thiophenes) ) -Polystyrene sulfonic acid (PEDOT: PSS) and a plurality of molybdenum trioxide (MoO 3 ); wherein the plurality of poly (3,4-dioxyethylene thiophene) -polystyrene sulfonic acid (PEDOT: PSS ) And the volume ratio of the plurality of molybdenum trioxide (MoO 3 ) is 1: 3; an active layer (P3HT: PCPDTBT: PC61BM) is disposed on the upper end surface of the hole transmission layer, and the active layer includes Poly (3-hexylthiophene), P3HT (p-type material) polymer semiconductor, A mixture of a plurality of low-energy band gap polymers (PCPDTBT) and a plurality of phenyl-C61-butyric acid methylester (PC61BM (n-type material)); wherein the plurality of poly 3-hexylthiophenes (P3HT) The weight ratio of multiple low-energy band gap polymers (PCPDTBT) and multiple phenyl-C61 methyl butyrate (PC61BM) is 1: 0.04: 1; a cathode layer (Ca / Al), which is overlaid on the The upper end face of the active layer. The cathode layer is composed of a calcareous layer (Ca) and an aluminum layer (Al). With this innovative and unique design, this creation mixes molybdenum trioxide in a volume ratio of 1: 3. as the hole transport layer PCE which increased from 1.97 to 3.11%, improved 58%, JSC of 8.57mA / cm 2 to lift 9.61mA / cm 2, to enhance the 12% fill factor increased from 0.44 to 0.61, with the active Adding PCPDTBT to the layer can enhance the absorption of infrared light, so the open circuit voltage is significantly increased, and the overall photoelectric conversion efficiency is also improved.

〔本創作〕 [This creation]

10‧‧‧陽極層 10‧‧‧Anode layer

20‧‧‧電洞傳輸層 20‧‧‧ Hole Transmission Layer

21‧‧‧聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS) 21‧‧‧Poly (3,4-dioxyethylenethiophene) -polystyrenesulfonic acid (PEDOT: PSS)

22‧‧‧三氧化鉬 22‧‧‧Molybdenum trioxide

30‧‧‧主動層 30‧‧‧Active Level

31‧‧‧聚3-己基噻吩(poly(3-hexylthiophene),P3HT(p型材料))聚合物半導體 31‧‧‧ poly (3-hexylthiophene), P3HT (p-type material) polymer semiconductor

32‧‧‧低能帶隙聚合物(PCPDTBT) 32‧‧‧ Low Energy Band Gap Polymer (PCPDTBT)

33‧‧‧苯基-C61丁酸甲酯(phenyl-C61-butyric acid methylester,PC61BM(n型材料)) 33‧‧‧phenyl-C61-butyric acid methylester (PC61BM (n-type material))

40‧‧‧陰極層 40‧‧‧ cathode layer

41‧‧‧鈣質層 41‧‧‧ calcareous layer

42‧‧‧鋁質層 42‧‧‧ aluminum layer

第1圖:係本創作之剖視圖。 Figure 1: A cross-sectional view of this creation.

第2圖:係本實施例之紫外線光可見圖。 FIG. 2 is a visible view of ultraviolet light in this embodiment.

第3圖:係本實施例之PL螢光光譜圖。 FIG. 3 is a PL fluorescence spectrum chart of this embodiment.

第4圖:係本實施例之J-V曲線圖。 Figure 4: J-V curve diagram of this embodiment.

本創作提供一種可提升光電轉換效率之軟性高分子太陽能電池之結構,包括:一陽極層(ITO PET)(10),該陽極層(10)係為一ITO軟塑性玻璃材質製成;一電洞傳輸層(PEDOT:PSS:MoO3)(20),係覆設於該陽極層(10)之上端面,該電洞傳輸層(20)係包含有複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)(21)及複數三氧化鉬(MoO3)(22)混合而成;其中該複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)(21)及該複數三氧化鉬(MoO3)(22)之體積比為1:3;一主動層(P3HT:PCPDTBT:PC61BM)(30),係覆設於該電洞傳輸層(20)之上端面,該主動層(30)係包含有複數聚3-己基噻吩(poly(3-hexylthiophene),P3HT(p型材料))(31)聚合物半導體、複數低能帶隙聚合物(PCPDTBT)(32)及複數苯基-C61丁酸甲酯(phenyl-C61-butyric acid methylester,PC61BM(n型材料))(33)混合而成;其中該複數聚3-己基噻吩(P3HT)(31)、複數低能帶隙聚合物(PCPDTBT)(32)及複數苯基-C61丁酸甲酯(PC61BM)(33)之重量比為1:0.04:1;一陰極層(Ca/Al)(40),該陰極層(40)係覆設於該主動層(30)之上端面,該陰極層(40)係包含一鈣質層(Ca)(41)及一鋁質層(Al)(42)所構成者。 This creation provides a structure of a flexible polymer solar cell capable of improving photoelectric conversion efficiency, including: an anode layer (ITO PET) (10), which is made of an ITO soft plastic glass material; The hole transport layer (PEDOT: PSS: MoO 3 ) (20) is provided on the end face of the anode layer (10). The hole transport layer (20) contains a plurality of poly (3,4-dioxyethylene) Thiophene) -polystyrenesulfonic acid (PEDOT: PSS) (21) and plural molybdenum trioxide (MoO 3 ) (22); wherein the plural poly (3,4-dioxyethylenethiophene) -polybenzene The volume ratio of ethylene sulfonic acid (PEDOT: PSS) (21) and the plurality of molybdenum trioxide (MoO 3 ) (22) is 1: 3; an active layer (P3HT: PCPDTBT: PC61BM) (30), which is superposed On the end face above the hole transport layer (20), the active layer (30) contains a plurality of poly (3-hexylthiophene), P3HT (p-type material)) (31) polymer semiconductor, PCPDTBT (32) and plural phenyl-C61-butyric acid methylester (PC61BM (n-type material)) (33) are mixed; wherein the plural poly 3 -Hexylthiophene (P3HT) (31), plural low energy band gap polymers (PCPDT The weight ratio of BT) (32) and plural phenyl-C61 methyl butyrate (PC61BM) (33) is 1: 0.04: 1; a cathode layer (Ca / Al) (40), and the cathode layer (40) is Covered on the end surface of the active layer (30), the cathode layer (40) comprises a calcareous layer (Ca) (41) and an aluminum layer (Al) (42).

本創作之製造方法,包括:一陽極層(ITO PET)(10),該陽極層(10)係為一ITO軟塑性玻璃材質製成,經蝕刻後清洗備用,並放入該紫外線光表面處理10分鐘; 一電洞傳輸層(PEDOT:PSS:MoO3)(20),係覆設於該陽極層(10)之上端面,該電洞傳輸層(20)係包含有複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)(21)及複數三氧化鉬(MoO3)(22)混合而成混合液;所述之覆設方式係藉由將上述混合液以5000rpm、50秒的轉速旋轉塗佈不同體積比例之該複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)(21)及該複數三氧化鉬(MoO3)(22)為1:3混合液於該陽極層(10)表面,塗佈完成後於120℃下將該陽極層(10)及該電洞傳輸層(20)烘烤10分鐘,令該電洞傳輸層(20)呈固化狀;一主動層(P3HT:PCPDTBT:PC61BM)(30),係覆設於該電洞傳輸層(20)之上端面,該主動層(30)係包含有複數聚3-己基噻吩(poly(3-hexylthiophene),P3HT(p型材料))(31)聚合物半導體、複數低能帶隙聚合物(PCPDTBT)(32)及複數苯基-C61丁酸甲酯(phenyl-C61-butyric acid methylester,PC61BM(n型材料))(33)混合而成混合液;所述之覆設方式係藉由將上述混合液以二段轉速:(500rpm、60秒;1600rpm、1秒)的轉速旋轉塗佈不同重量比例之該複數聚3-己基噻吩(P3HT)(31)、複數低能帶隙聚合物(PCPDTBT)(32)及複數苯基-C61丁酸甲酯(PC61BM)(33)為1:0.04:1混合液於該電洞傳輸層(20)表面,經過溶劑退火10分鐘後,再將該陽極層(10)及所覆設結合之該電洞傳輸層(20)及該主動層(30)置於加熱裝置以120℃、30分鐘烤乾,令該主動層呈固化狀;一陰極層(Ca/Al)(40),該陰極層(40)係覆設於該主動層(30)之上端面,該陰極層(40)係包含一鈣質層(Ca)(41)及一鋁質層(Al)(42)所構成,所述之覆設方式係將該鈣質層(Ca)(41)及該鋁質層(Al)(42)熱蒸鍍於該主動層(30)表面,即完成元件製作者。 The manufacturing method of this creation includes: an anode layer (ITO PET) (10), which is made of an ITO soft plastic glass material, cleaned after etching, and put into the ultraviolet light surface treatment 10 minutes; a hole transmission layer (PEDOT: PSS: MoO 3 ) (20), which is arranged on the end face of the anode layer (10), and the hole transmission layer (20) contains a complex polymer (3, 4-dioxyethylenethiophene) -polystyrenesulfonic acid (PEDOT: PSS) (21) and a plurality of molybdenum trioxide (MoO 3 ) (22) are mixed to form a mixed liquid; The above mixed solution was spin-coated at 5000 rpm and 50 seconds with different volume ratios of the complex poly (3,4-dioxyethylenethiophene) -polystyrenesulfonic acid (PEDOT: PSS) (21) and the complex trioxide. Molybdenum (MoO 3 ) (22) is a 1: 3 mixed solution on the surface of the anode layer (10). After coating, the anode layer (10) and the hole transport layer (20) are baked at 120 ° C. 10 Minutes, making the hole transmission layer (20) to be solidified; an active layer (P3HT: PCPDTBT: PC61BM) (30) is arranged on the end face of the hole transmission layer (20), and the active layer (30 ) Is a poly (3-hexylthiophe) ne), P3HT (p-type material)) (31) polymer semiconductors, multiple low energy band gap polymers (PCPDTBT) (32), and multiple phenyl-C61-butyric acid methylester, PC61BM ( n-type material)) (33) mixed into a mixed liquid; the above-mentioned installation method is to spin-coat the mixed liquid at two rotation speeds: (500 rpm, 60 seconds; 1600 rpm, 1 second) with different weights. The proportion of the complex poly 3-hexylthiophene (P3HT) (31), the complex low energy band gap polymer (PCPDTBT) (32), and the complex phenyl-C61 methyl butyrate (PC61BM) (33) is 1: 0.04: 1 The mixed liquid is on the surface of the hole transport layer (20). After the solvent is annealed for 10 minutes, the anode layer (10) and the hole transport layer (20) and the active layer (30) combined are disposed. Bake in a heating device at 120 ° C for 30 minutes to make the active layer solidify; a cathode layer (Ca / Al) (40), the cathode layer (40) is overlaid on the active layer (30) On the end surface, the cathode layer (40) is composed of a calcareous layer (Ca) (41) and an aluminum layer (Al) (42), and the covering method is the calcareous layer (Ca) ( 41) and the aluminum layer (Al) (42) are thermally vapor-deposited on the surface of the active layer (30). maker.

請參閱第2圖所示,其係本創作實施例之實驗數據所產生之紫外線光可見圖,其中本創作最大吸收度為0.98,主動層之吸收波長約在450~650nm,藉此,本創作將三氧化鉬混摻作為電洞傳輸層可形成核心-殼結構能使成膜性更佳,配合主動層加入PCPDTBT更能增進紅外光之吸收,並提高吸光度,吸收更多的光就能使更多的電子電洞對在主動層中產生,增加光電流;請參閱第3圖所示,其係本創作實施例之實驗數據所產生之 PL螢光光譜圖,由圖示中可發現將三氧化鉬混摻作為電洞傳輸層可形成核心-殼結構能使成膜性更佳,配合主動層加入PCPDTBT更能增進紅外光之吸收,能產生較佳的放射光強度;請參閱第4圖所示,其係本創作實施例之實驗數據所產生之J-V曲線圖,可發現將三氧化鉬以1:3體積比例混摻作為電洞傳輸層其PCE由1.97%提升至3.11%,提升了58%,JSC由8.57mA/cm2提升至9.61mA/cm2,提升了12%,填充因子由0.44提升至0.61,配合主動層加入PCPDTBT更能增進紅外光之吸收,因此開路電壓有明顯的提高,也使整體提高了較大的光電轉換效率。 Please refer to FIG. 2, which is a visible view of ultraviolet light generated from the experimental data of this creative example. The maximum absorption of this creative is 0.98, and the absorption wavelength of the active layer is about 450 ~ 650nm. The core-shell structure can be formed by mixing molybdenum trioxide as the hole transport layer, which can form better film formation. Adding PCPDTBT with the active layer can increase the absorption of infrared light and increase the absorbance. Absorbing more light can make More electron hole pairs are generated in the active layer, which increases the photocurrent. Please refer to Figure 3, which is the PL fluorescence spectrum diagram generated from the experimental data of this creative example. Molybdenum trioxide mixed as a hole transport layer can form a core-shell structure to make film formation better. Adding PCPDTBT with the active layer can increase the absorption of infrared light and produce better radiation light intensity; see section 4 As shown in the figure, it is a JV curve generated from the experimental data of this creative example. It can be found that when the molybdenum trioxide is mixed in a 1: 3 volume ratio as the hole transport layer, the PCE is increased from 1.97% to 3.11%. of 58%, JSC of 8.57mA / cm 2 mentioned To 9.61mA / cm 2, to enhance the 12% fill factor increased from 0.44 to 0.61, with the addition of the active layer can foster PCPDTBT absorbs infrared light, the open-circuit voltage and therefore significantly improved, but also the greater overall improvement of photoelectric Conversion efficiency.

藉此,本創作將三氧化鉬以1:3體積比例混摻作為電洞傳輸層其PCE由1.97%提升至3.11%,提升了58%,JSC由8.57mA/cm2提升至9.61mA/cm2,提升了12%,填充因子由0.44提升至0.61,配合主動層加入PCPDTBT更能增進紅外光之吸收,因此開路電壓有明顯的提高,也使整體提高了較大的光電轉換效率者。 Based on this, the creation of molybdenum trioxide in a 1: 3 volume ratio as the hole transport layer increased the PCE from 1.97% to 3.11%, an increase of 58%, and JSC from 8.57mA / cm 2 to 9.61mA / cm 2 , which has increased by 12%, the fill factor has been increased from 0.44 to 0.61, and the addition of PCPDTBT with the active layer can enhance the absorption of infrared light, so the open-circuit voltage has been significantly improved, and the overall photoelectric conversion efficiency has been greatly improved.

歸納上述的說明,藉由本創作上述結構的設計,可有效克服習式新型所面臨的缺失,進一步具有上述眾多的優點及實用價值,因此本創作為一創意極佳之新型創作,且在相同的技術領域中未見相同或近似的產品創作或公開使用,故本創作已符合新型專利有關『新穎性』與『進步性』的要件,乃依法提出申請。 Summarizing the above descriptions, through the design of the above structure, this design can effectively overcome the shortcomings of the new style of practice, and further has the above-mentioned many advantages and practical values. Therefore, this creation is a very creative new style creation, and in the same No identical or similar product creation or public use has been seen in the technical field, so this creation has met the requirements of "newness" and "progressiveness" of the new patent, and an application is filed in accordance with the law.

Claims (1)

一種可提升光電轉換效率之軟性高分子太陽能電池之結構,包括:一陽極層(ITO PET),該陽極層係為一ITO軟塑性玻璃材質製成;一電洞傳輸層(PEDOT:PSS:MoO3),係覆設於該陽極層之上端面,該電洞傳輸層係包含有複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)及複數三氧化鉬(MoO3)混合而成;其中該複數聚(3,4-二氧乙烯噻吩)-聚苯乙烯磺酸(PEDOT:PSS)及該複數三氧化鉬(MoO3)之體積比為1:3;一主動層(P3HT:PCPDTBT:PC61BM),係覆設於該電洞傳輸層之上端面,該主動層係包含有複數聚3-己基噻吩(poly(3-hexylthiophene),P3HT(p型材料))聚合物半導體、複數低能帶隙聚合物(PCPDTBT)及複數苯基-C61丁酸甲酯(phenyl-C61-butyric acid methylester,PC61BM(n型材料))混合而成;其中該複數聚3-己基噻吩(P3HT)、複數低能帶隙聚合物(PCPDTBT)及複數苯基-C61丁酸甲酯(PC61BM)之重量比為1:0.04:1;一陰極層(Ca/Al),該陰極層係覆設於該主動層之上端面,該陰極層係包含一鈣質層(Ca)及一鋁質層(Al)所構成者。A structure of a flexible polymer solar cell capable of improving photoelectric conversion efficiency, including: an anode layer (ITO PET), which is made of an ITO soft plastic glass material; an hole transport layer (PEDOT: PSS: MoO) 3 ), which is arranged on the upper end surface of the anode layer, and the hole transport layer contains a plurality of poly (3,4-dioxyethylene thiophene) -polystyrene sulfonic acid (PEDOT: PSS) and a plurality of trioxide molybdenum (MoO 3) are mixed; wherein the plurality of poly (3,4-dioxyethylene thiophene) - polystyrene sulfonate (PEDOT: PSS) and the plurality of molybdenum trioxide (MoO 3) the volume ratio of 1 : 3; an active layer (P3HT: PCPDTBT: PC61BM), which is disposed on the upper end surface of the hole transport layer, and the active layer contains a plurality of poly (3-hexylthiophene), P3HT (p Type material)) polymer semiconductor, multiple low-energy band gap polymers (PCPDTBT), and multiple phenyl-C61-butyric acid methylester (PC61BM (n-type material)) are mixed; The weight ratio of poly 3-hexylthiophene (P3HT), plural low-energy band gap polymers (PCPDTBT), and plural phenyl-C61 methyl butyrate (PC61BM) is 1: 0.04: 1; one negative Layer (Ca / Al), overlying the cathode layer system is disposed on the end face of the active layer, the cathode layer system comprises a layer of calcium (Ca) layer and an aluminum (Al) are formed.
TW107204163U 2018-03-30 2018-03-30 Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency TWM563664U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107204163U TWM563664U (en) 2018-03-30 2018-03-30 Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107204163U TWM563664U (en) 2018-03-30 2018-03-30 Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency

Publications (1)

Publication Number Publication Date
TWM563664U true TWM563664U (en) 2018-07-11

Family

ID=63641169

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107204163U TWM563664U (en) 2018-03-30 2018-03-30 Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency

Country Status (1)

Country Link
TW (1) TWM563664U (en)

Similar Documents

Publication Publication Date Title
Ryu et al. Effect of solution processed graphene oxide/nickel oxide bi-layer on cell performance of bulk-heterojunction organic photovoltaic
TWI414097B (en) Organic solar cell and method for forming the same
CN104241530B (en) A kind of organic thin film solar cell based on water solubility copolymer
TW201108485A (en) Organic solar cell and method forming the same
WO2011148717A1 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
Yu et al. Colorful conducting polymers for vivid solar panels
CN105185912A (en) Dual-acceptor-contained three-element solar cell
CN103682105A (en) Composite anode buffer layer, polymer solar cell and preparation methods of composite anode buffer layer and polymer solar cell
CN106025078A (en) Novel planar heterojunction perovskite photovoltaic cell and preparation method thereof
WO2009061134A1 (en) Method of fabricating solar cell utilizing semiconductor nanoparticles embedded in polymer layer
Yusli et al. Solvent effect on the thin film formation of polymeric solar cells
TWI624075B (en) Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency
CN105185911A (en) Polymer solar battery based on solvent doping, and preparation method thereof
WO2010137449A1 (en) Organic photoelectric conversion element, and solar cell and optical sensor array each using same
CN109817811B (en) Annealing-free and anti-solvent-free perovskite photovoltaic device and preparation method thereof
Kois et al. Glass/ITO/In (O, S)/CuIn (S, Se) 2 solar cell with conductive polymer window layer
CN104966783B (en) It is connecting layer organic thin film solar cell based on gradual change mixed active layer
KR100972291B1 (en) Organic Solar Cells And Method For Manufacturing The Same
TWM563664U (en) Structure and method of flexible polymer solar cell capable of improving photoelectric conversion efficiency
CN103972397B (en) Combination electrode and preparation method thereof, solar cell and preparation method thereof
JP5691810B2 (en) Conjugated polymer and organic photoelectric conversion device using the same
CN102832346A (en) Polymer solar cell based on microcavity structure and manufacture method thereof
CN105006523A (en) Iridium complex doped triplet solar cell
TWI529194B (en) Structure of photoelectric conversion efficiency of PCPDTBT and graphene-promoted soft polymer solar cell with active layer
TWI616058B (en) Structure and method of enhancing photoelectric conversion efficiency of pvp solar cell by mixed pvp

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees