TWM563247U - Microvascular detection device - Google Patents

Microvascular detection device Download PDF

Info

Publication number
TWM563247U
TWM563247U TW107202373U TW107202373U TWM563247U TW M563247 U TWM563247 U TW M563247U TW 107202373 U TW107202373 U TW 107202373U TW 107202373 U TW107202373 U TW 107202373U TW M563247 U TWM563247 U TW M563247U
Authority
TW
Taiwan
Prior art keywords
point
microvascular
degree
punctuation
microvessel
Prior art date
Application number
TW107202373U
Other languages
Chinese (zh)
Inventor
林孟癸
侯軍緯
Original Assignee
洋華光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洋華光電股份有限公司 filed Critical 洋華光電股份有限公司
Priority to TW107202373U priority Critical patent/TWM563247U/en
Publication of TWM563247U publication Critical patent/TWM563247U/en

Links

Landscapes

  • Image Analysis (AREA)

Abstract

一種微血管檢測裝置,待測一手指放在一指槽中,經由一手指皮下組織中的至少一微血管影像,檢測所述微血管的血流流速以及管徑,包含有:一電腦,具有一顯示器以及一處理器;一感光耦合元件,電性訊號連結該電腦;以及一顯微鏡鏡頭,經由顯微鏡鏡頭擷取所述微血管影像,該微血管影像由該感光耦合元件形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器顯示於該顯示器。A microvascular detecting device, wherein a finger to be tested is placed in a finger groove, and a blood flow velocity and a diameter of the microvascular are detected through at least one microvascular image in a subcutaneous tissue of a finger, comprising: a computer having a display and a processor; a photosensitive coupling element, the electrical signal is coupled to the computer; and a microscope lens that captures the microvascular image through the microscope lens, the microvascular image is formed by the photosensitive coupling element into a plurality of frame digital images, wherein the time is continuous The digital image is framed and displayed on the display via the processor.

Description

微血管檢測裝置Microvascular detection device

本創作涉及一種人體血管的檢測裝置和方法,尤其是指一種檢測微血管的血流流速以及管徑的微血管檢測裝置。The present invention relates to a device and a method for detecting a blood vessel of a human body, and more particularly to a microvascular detecting device for detecting a blood flow velocity and a diameter of a blood vessel of a microvessel.

先前技術微血管檢測,如中華民國專利號I246910,該創作提出一種直接即時檢測微血管血流流速的方法與微循環功能的評估裝置。包括利用紅外光雷射血管顯微攝影儀之影像動畫,以指標選取影像中特定微血管分支,沿著微血管縱向標定分析範圍,透過連續的動畫處理,可以繪製即時紅血球位移影像。偵測即時血球位移影像的斜率變化可以分析紅血球的位移速度變化及加速度。綜合此部位各個微血管流速,進行統計分析,可以觀察微血管群之特性差異。Prior art microvascular testing, such as the Republic of China Patent No. I246910, proposed a method for directly detecting the blood flow velocity of a microvessel and an evaluation device for the microcirculation function. Including the use of infrared light laser microscopy image animation, using the index to select specific microvascular branches in the image, along the microvascular longitudinal calibration analysis range, through continuous animation processing, you can draw an instant red blood cell displacement image. Detecting the slope change of the real-time blood cell displacement image can analyze the displacement velocity change and acceleration of the red blood cell. By synthesizing the microvessel flow velocity at this site and performing statistical analysis, it is possible to observe the difference in characteristics of the microvascular population.

上述習用之紅外光雷射血管顯微攝影儀,用灰階判定的方式容易有誤差;再者,計算路徑方式單一化,無其他計算路徑方式變化來做為參考;此外,目前用於微血管檢測的裝置大都昂貴的專用儀器,無法普及應於一般人的居家護理使用。The above-mentioned conventional infrared light laser microscopy apparatus is easy to have errors by means of gray scale determination; further, the calculation path mode is singular, and no other calculation path mode changes are used as a reference; in addition, it is currently used for microvascular detection. Most of the devices are expensive and special instruments, and they cannot be used in general home care.

有鑑於此,本創作人乃潛心研思、設計組製,期能提供一種廉價且可簡便操作以便快速檢測微血管的裝置和方法,其以簡易低價的顯微攝像裝置搭配一般家用電腦使用即可快速地自我檢測微血管的血流流速以及管徑,讓使用者隨時自我簡易檢測評估血液循環狀態,以便注意維護身體健康。In view of this, the author is devoted to research and design, and can provide an inexpensive and easy-to-operate device for rapid detection of microvasculature, which is simple and low-cost microscopic camera combined with a general household computer. It can quickly detect the blood flow velocity and diameter of the microvessels, allowing the user to easily assess the blood circulation status at any time, so as to pay attention to maintaining good health.

本創作之主要目的,在於提供一種利用白血球定位以及像素運算,來達到檢測微血管的血流流速以及管徑的目的。The main purpose of this creation is to provide a purpose of detecting blood flow velocity and diameter of microvessels by using white blood cell positioning and pixel calculation.

為達上述目的,本創作之一實施例為一種微血管檢測裝置,經由一手指皮下組織中的至少一微血管影像,檢測所述微血管的血流流速以及管徑,包含有:一電腦,具有一顯示器以及一處理器;一感光耦合元件,電性訊號連結該電腦;以及一顯微鏡鏡頭,經由該顯微鏡鏡頭擷取該微血管影像,該微血管影像由該感光耦合元件形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器顯示於該顯示器。In order to achieve the above object, an embodiment of the present invention is a microvascular detecting device for detecting a blood flow velocity and a tube diameter of the microvessel through at least one microvascular image in a subcutaneous tissue of a finger, comprising: a computer having a display And a processor; a photosensitive coupling component, the electrical signal is coupled to the computer; and a microscope lens, wherein the microvascular image is captured by the microscope lens, wherein the microvascular image forms a plurality of frame digital images by the photosensitive coupling element, wherein the time is continuous The plurality of frames of the digital image are displayed on the display via the processor.

所述檢測裝置在一實施例中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該起點標示點以及該終點標示點的時間差為第1時間差,該處理器計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器顯示該血流流速值。In one embodiment, the processor calibrates the digital image of the plurality of frames, corresponding to a time-continuous marker point of a white blood cell in the microvessel, including a point marker point and an endpoint marker point, the start point marker point and the The time difference of the end point marked point is the first time difference, the processor calculates the first path length of the continuous continuous marked point, the first path length is divided by the blood flow velocity value of the first time difference, and the blood flow velocity value is displayed on the display. .

所述檢測裝置在一實施例中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該處理器具有一工字型框架的模組,包含有45度標點、90度標點、以及135度標點的路經搜尋到一最大邊緣位置,該處理器計算一血管中心標示點,由該血管中心標示點,經由該工字型框架的模組,依次標示出至少一計算標示點,直到該終點標示點,該起點標示點以及該終點標示點的時間差為第2時間差,該處理器計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值,於該顯示器顯示該血流流速值。In one embodiment, the processor calibrates the plurality of frames of the digital image, corresponding to a time-continuous marker point of a white blood cell in the microvessel, including a point marker point and an endpoint marker point, the processor having a word The module of the frame includes a 45 degree punctuation, a 90 degree punctuation, and a 135 degree punctuation path to find a maximum edge position, and the processor calculates a blood vessel center marked point, and the blood vessel center marks the point through the work a module of the font frame, which in turn marks at least one calculated mark point until the end point mark point, the time difference between the start point mark point and the end point mark point is a second time difference, and the processor calculates the continuous continuous calculation mark point The second path length is divided by the blood flow rate value of the second time difference, and the blood flow rate value is displayed on the display.

所述檢測裝置在一實施例中,該處理器掃描複數幀該數位影像成灰階訊號,由縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點,該處理器由橫軸該微血管的兩邊緣端點的相應像素值,計算該微血管的一管徑值,於該顯示器顯示該微血管的該管徑值。In an embodiment, the processor scans the digital image of the plurality of frames into a gray-scale signal, and the maximum value of the gray-scale signal plus the total value of the vertical axis, and calibrates the two edge ends of the microvascular tube diameter, the processor A diameter value of the microvessel is calculated from a corresponding pixel value of the edge of both edges of the microvessel on the horizontal axis, and the diameter of the microvessel is displayed on the display.

本創作之另一實施例為一種微血管檢測方法,分解該數位影像作為量測一微血管的一血流流速值,其中,檢測步驟,包含有:點選該數位影像中一白血球起始位置;找出時間連續的該數位影像中同一個該白血球的位置,並點選該白血球的位置,搜尋到路徑,則標示路徑並計算該血流流速值;以及搜尋不到路徑,則顯示錯誤,並重新回到點選該數位影像中該白血球起始位置的步驟。Another embodiment of the present invention is a microvascular detecting method for decomposing the digital image as a blood flow velocity value for measuring a microvessel, wherein the detecting step comprises: selecting a white blood cell starting position of the digital image; Outputting the position of the same white blood cell in the continuous digital image, and clicking the position of the white blood cell, searching for the path, indicating the path and calculating the blood flow velocity value; and searching for the path, displaying an error and re-displaying Go back to the step of selecting the white blood cell start position in the digital image.

所述檢測方法在一實施例中,分解該數位影像作為量測一微血管的一管徑值,其中,檢測步驟,包含有:點選該數位影像中該微血管內的任一位置;找出該微血管內的兩邊緣端點位置,並量測該微血管的管徑;以及手動微調量測位置,並顯示該微血管的該管徑值於該顯示器。In one embodiment, the digital image is decomposed to measure a diameter of a microvessel, wherein the detecting step includes: selecting any position in the microvessel in the digital image; Positioning the two end points of the microvessels and measuring the diameter of the microvessel; and manually fine-tuning the measurement position and displaying the diameter of the microvessel on the display.

所述檢測方法在一實施例中,分解該數位影像作為量測一微血管的一血流流速值,其中,同一個該白血球在時間連續的該數位影像中的位置,被標定為一起點標示點以及一終點標示點、以及至少一追蹤點,計算所有該追蹤點的一平均位置點,各追蹤點和平均位置的角度,依角度進行排序,得到該白血球流經的順序,該起點標示點以及該終點標示點的時間差為第1時間差,依序加總相鄰距離,得到流經該微血管的第1路徑長,第1路徑長除以第1時間差的一血流流速值;以及 於該顯示器顯示該血流流速值 。In one embodiment, the detecting method decomposes the digital image as a blood flow velocity value for measuring a microvessel, wherein the position of the same white blood cell in the time-continuous digital image is marked as a point marking point together And an endpoint marker point and at least one tracking point, calculating an average position point of all the tracking points, and the angles of the tracking points and the average position are sorted according to an angle to obtain an order of the white blood cells flowing through, the starting point marking point and The time difference of the end point marked point is the first time difference, and the adjacent distance is sequentially added to obtain the first path length flowing through the micro blood vessel, and the first path length is divided by the blood flow velocity value of the first time difference; and the display is The blood flow rate value is displayed.

所述檢測方法在一實施例中,分解該數位影像作為量測一微血管的一血流流速值,其中,檢測步驟,更包含有:點選該數位影像中該白血球的一起點標示點以及一終點標示點;使用一工字型框架,以45度標點、90度標點、以及135度標點的路經搜尋到一最大邊緣位置;計算一血管中心標示點;由該血管中心標示點,經由該工字型框架依次標示出至少一計算標示點,直到該終點標示點;該起點標示點以及該終點標示點的時間差為第2時間差,計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值;以及於該顯示器顯示該血流流速值。In one embodiment, the digital image is decomposed as a blood flow velocity value for measuring a micro blood vessel, wherein the detecting step further includes: selecting a point marking point of the white blood cell in the digital image and a point End point marker point; using a I-shaped frame, searching for a maximum edge position with a 45-degree punctuation, a 90-degree punctuation, and a 135-degree punctuation; calculating a blood vessel center marking point; marking the point from the blood vessel center The I-shaped frame sequentially marks at least one calculated mark point until the end point marks the point; the time difference between the start point mark point and the end point mark point is the second time difference, and the second path length of the calculated mark point is calculated continuously. Dividing the blood flow rate value by the second time difference; and displaying the blood flow rate value on the display.

所述檢測方法在一實施例中,找出該微血管內的兩邊緣端點位置,其步驟,包含:由掃描該數位影像成灰階訊號,形成縱軸灰階訊號值,橫軸像素值;縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點;該微血管管徑的兩邊緣端點的相應橫軸像素值,計算該微血管的該管徑值;以及於該顯示器顯示該微血管的該管徑值。In one embodiment, the detecting method finds the position of the end points of the two edges in the microvessel, and the step includes: forming a gray-scale signal by scanning the digital image to form a gray-scale signal value of the vertical axis, and a pixel value of the horizontal axis; The maximum value of the gray-scale signal of the vertical axis is added to the maximum value of the edge of the microvascular tube; the pixel value of the corresponding horizontal axis of the end point of the edge of the microvascular tube is calculated, and the diameter of the microvessel is calculated; The display shows the diameter of the microvessel.

本「新型內容」係以簡化形式介紹一些選定概念,在下文之「實施方式」中將進一步對其進行描述。本「新型內容」並非意欲辨識申請專利之標的之關鍵特徵或基本特徵,亦非意欲用於限制申請專利之標的之範圍。This "New Content" introduces selected concepts in a simplified form and will be further described in the "Implementation" below. This “new content” is not intended to identify key features or essential features of the patent application, nor is it intended to limit the scope of the patent application.

圖1所示,為本創作裝置示意圖。在一實施例中,本創作提供一種微血管檢測裝置,經由一手指16皮下組織中的至少一微血管21影像,檢測該微血管21的血流流速以及管徑,本創作裝置包含有:電腦11、感光耦合元件13 (charge-coupled device, CCD)、以及顯微鏡鏡頭14。其中該電腦11,具有一顯示器12以及一處理器17;該感光耦合元件13,電性訊號連結該電腦11,例如使用通訊傳輸介面的USB介面、IEEE 1394介面、 Ethernet介面、以及 CVBS加上影像擷取卡介面等。以及該顯微鏡鏡頭14具有放大顯微影像功能,經由該顯微鏡鏡頭14擷取該微血管21影像,該微血管21影像由該感光耦合元件13形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器17顯示於該顯示器12。Figure 1 is a schematic diagram of the authoring device. In one embodiment, the present invention provides a microvascular detecting device for detecting a blood flow velocity and a diameter of a blood vessel 21 via at least one microvascular 21 image in a subcutaneous tissue of a finger. The present apparatus includes: a computer 11 and a photosensitive device. A charge-coupled device 13 (CCD), and a microscope lens 14. The computer 11 has a display 12 and a processor 17; the photosensitive coupling element 13 is electrically connected to the computer 11, for example, using a USB interface of a communication transmission interface, an IEEE 1394 interface, an Ethernet interface, and a CVBS plus image. Capture the card interface, etc. The microscope lens 14 has a function of magnifying the microscopic image, and the microvessel 21 image is captured by the microscope lens 14. The microvascular 21 image is formed by the photosensitive coupling element 13 into a plurality of frames of digital images, wherein the digital image is continuous in a plurality of frames. Displayed on the display 12 via the processor 17.

圖2和圖3所示,該處理器17標定複數幀該數位影像,對應該微血管21中一白血球22的時間連續的標示點,包括一起點標示點81以及一終點標示點82,該起點標示點81以及該終點標示點82的時間差為第1時間差,該處理器17計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器12顯示該血流流速值。As shown in FIG. 2 and FIG. 3, the processor 17 calibrates the digital image of the plurality of frames, corresponding to the time-continuous marker points of a white blood cell 22 in the microvessel 21, including a point marker point 81 and an endpoint marker point 82. The time difference between the point 81 and the end point designation point 82 is the first time difference, and the processor 17 calculates the first path length of the total continuous marked point, and divides the first path length by the blood flow rate value of the first time difference on the display. 12 shows the blood flow rate value.

圖4和圖5所示為本創作兩種血流流速值的顯示結構,圖4所示為本創作白血球22解析路徑,找出若干分解圖中被選取血管的白血球22,並分析其流動路徑。以及圖5所示為本創作沿微血管21邊緣解析路徑。從微血管21內一點選位置出發,沿微血管21邊緣,找到另一點選位置。由流動路徑長度,及總共有的分解數位影像的圖數,即可得到總時間,以便可計算出血流流速。Figure 4 and Figure 5 show the display structure of the two blood flow velocity values. Figure 4 shows the analytical path of the white blood cell 22, finds the white blood cells 22 of the selected blood vessels in the exploded view, and analyzes the flow path. . And Figure 5 shows the path of the creation along the edge of the microvascular 21. Starting from a point in the microvessel 21, along the edge of the microvessel 21, another spot is found. The total time is obtained from the length of the flow path and the total number of images of the decomposed digital image so that the flow rate of the blood flow can be calculated.

圖6所示,是量測管徑示意圖。為本創作一實施例,經由處理器17計算,顯示在顯示器12的功能顯示畫面,包括顯示微血管21的管徑值,以及微調左(left)的第1標線24的邊境值,微調右(right) 的第2標線25的邊境值,以及使用滑鼠點選第1標線24、以及第2標線25的位置後,處理器17計算微血管21的管徑值,圖6顯示畫面,與圖7中步驟S71、S72、以及S73的共用該顯示器12的功能。顯示在顯示器12的功能顯示畫面的下端,是圖形功能介面的選項。Figure 6 is a schematic view of the measuring tube diameter. For the present embodiment, the function display screen displayed on the display 12 via the processor 17 includes displaying the diameter of the microvessel 21, and fine-tuning the left border of the first line 24 of the left, fine-tuning the right ( The border value of the second line 25 of the right) and the position of the first line 24 and the second line 25 are selected by the mouse, and the processor 17 calculates the diameter of the microvessel 21, and the screen is shown in FIG. The function of the display 12 is shared with steps S71, S72, and S73 in FIG. Displayed at the lower end of the function display screen of the display 12 is an option of the graphic function interface.

圖7所示,在另一實施中,是本創作微血管21血流流速檢測方法步驟圖。其中,檢測步驟,包含有:步驟S1,待測一手指16放在一指槽15中;步驟S2,使一感光耦合元件13取得一數位影像;步驟S3,經傳輸將該數位影像顯示在一電腦11的一顯示器12;步驟S4,依該顯示器12的該數位影像調整該手指16的位置及一顯微鏡鏡頭14的焦距;以及步驟S5,擷取該數位影像並依連續時間分解該數位影像。Fig. 7 shows, in another embodiment, a step diagram of the blood flow velocity detecting method of the present microvascular 21. The detecting step includes: in step S1, a finger 16 to be tested is placed in a finger slot 15; in step S2, a photosensitive coupling element 13 obtains a digital image; and in step S3, the digital image is displayed in a transmission. a display 12 of the computer 11; in step S4, the position of the finger 16 and the focal length of a microscope lens 14 are adjusted according to the digital image of the display 12; and in step S5, the digital image is captured and the digital image is decomposed according to continuous time.

圖7所示,由步驟S6,功能選擇,來選擇分解該數位影像作為量測一微血管21的一血流流速值,其中,檢測步驟,包含有:步驟S81,點選該數位影像中一白血球22起始位置;步驟S82,找出時間連續的該數位影像中同一個該白血球22的位置,並點選該白血球22的位置;步驟S85,搜尋到路徑,則標示路徑並計算該血流流速值;以及步驟S84,搜尋不到路徑,則顯示錯誤,並重新回到點選該數位影像中該白血球22起始位置的步驟。As shown in FIG. 7, in step S6, function selection, the digital image is decomposed and used as a blood flow velocity value for measuring a microvessel 21. The detecting step includes: step S81, selecting a white blood cell in the digital image. 22 initial position; step S82, finding the position of the same white blood cell 22 in the digital image consecutively, and clicking the position of the white blood cell 22; step S85, searching for the path, indicating the path and calculating the blood flow velocity Value; and in step S84, if the path is not found, an error is displayed and the step of clicking the starting position of the white blood cell 22 in the digital image is returned.

圖7所示,由步驟S6,功能選擇,來選擇分解該數位影像作為量測一微血管21的一管徑值,其中,檢測步驟,包含有:步驟S71,點選該數位影像中該微血管21內的任一位置;步驟S72,找出該微血管21內的兩邊緣端點位置,並量測該微血管21的管徑;以及步驟S73,手動微調量測位置,並顯示該微血管21的該管徑值於該顯示器12。As shown in FIG. 7 , the digital image is decomposed by step S6 to select a diameter value of a micro blood vessel 21, wherein the detecting step includes: step S71, selecting the micro blood vessel 21 in the digital image. Any position in the interior; step S72, finding the position of the end points of the two blood vessels 21, and measuring the diameter of the microvessel 21; and step S73, manually fine-tuning the measurement position, and displaying the tube of the micro blood vessel 21 The diameter is on the display 12.

圖7至圖10所示,分解該數位影像作為量測一微血管21的一血流流速值,其中,同一個該白血球22在時間連續的該數位影像中的位置,被標定為一起點標示點81以及一終點標示點82、以及至少一追蹤點,圖10所示,第1追蹤點102、第2追蹤點103、到第6追蹤點107;計算所有該追蹤點的一平均位置點101,各追蹤點和平均位置的角度,依角度進行排序;得到該白血球22流經的順序,該起點標示點81以及該終點標示點82的時間差為第1時間差;依序加總相鄰距離,得到流經該微血管21的第1路徑長;第1路徑長除以第1時間差的一血流流速值;以及於該顯示器12顯示該血流流速值。As shown in FIG. 7 to FIG. 10, the digital image is decomposed as a blood flow velocity value for measuring a microvessel 21, wherein the position of the same white blood cell 22 in the time-continuous digital image is marked as a point marker point together. 81 and an end point 82, and at least one tracking point, as shown in FIG. 10, the first tracking point 102, the second tracking point 103, and the sixth tracking point 107; calculating an average position point 101 of all the tracking points, The angles of the tracking points and the average position are sorted according to the angle; the order of the white blood cells 22 flowing through is obtained, and the time difference between the starting point marking point 81 and the ending point marking point 82 is the first time difference; and the adjacent distances are sequentially added to obtain The first path length flowing through the microvessel 21; the first path length divided by the blood flow rate value of the first time difference; and the blood flow rate value displayed on the display 12.

圖9中,同一白血球22的選取,以影像分析各分解圖間之灰階差異,找出其間所有白血球22位置,並去除選取範圍外白血球92。In Fig. 9, the selection of the same white blood cell 22 is performed by image analysis of the difference in gray scale between the exploded views, finding the position of all the white blood cells 22 therebetween, and removing the white blood cells 92 outside the selected range.

圖8中,使用者選取分解畫面的白血球22起點,並在後續幾張分解畫面中選取白血球22終點,依電腦11效能,錄影壓縮後,可以從數位影像檔案得知圖框率(Frame Rate),以下以每秒25張的圖框率(Frame Rate),舉例: 每張為1/25秒,分解圖的數位影像有9張,頭尾間隔8/25秒。圖10中,假設上述路徑長計算得96 像素(pixel),而顯微鏡鏡頭14擷取的數位影像,像素比為 1.164594 μm/pixel.,第2路徑長是96 像素(pixel) 乘以 1.164594 μm/pixel=111.801024μm,顯微鏡鏡頭14擷取的數位影像,每秒有25張數位影像,由此算出該起點標示點81以及該終點標示點82的時間差為第1時間差,因此第2路徑長除以第1時間差,可以計算血流流速,[96 pixels / (8/25 sec)] X 1.164594μm/pixel = 349μm/sec ≒ 0.35mm/sec。In Figure 8, the user selects the starting point of the white blood cell 22 of the decomposition picture, and selects the end point of the white blood cell 22 in the subsequent several decomposition pictures. According to the performance of the computer 11, after the video is compressed, the frame rate can be known from the digital image file. The following is a frame rate of 25 frames per second. For example: 1/25 of each frame, 9 digital images of the exploded view, and 8/25 seconds between the head and the tail. In Fig. 10, it is assumed that the path length is calculated to be 96 pixels (pixel), and the digital image captured by the microscope lens 14 has a pixel ratio of 1.164594 μm/pixel. The second path length is 96 pixels (pixel) multiplied by 1.164594 μm/ Pixel=111.801024μm, the digital image captured by the microscope lens 14 has 25 digital images per second, thereby calculating the time difference between the start point marker point 81 and the end point marker point 82 as the first time difference, so the second path length is divided by For the first time difference, the blood flow rate can be calculated, [96 pixels / (8/25 sec)] X 1.164594 μm / pixel = 349 μm / sec ≒ 0.35 mm / sec.

圖11至圖9中,是本創作一實施例工字型框架88計算血流流速值。本創作分解該數位影像作為量測一微血管21的一血流流速值,其中,檢測步驟,更包含有:圖11所示,點選該數位影像中該白血球22的一起點標示點81以及一終點標示點82;圖12至圖13C所示,使用一工字型框架88,以45度標點87、90度標點86、以及135度標點85的路經,圖14所示,搜尋到一最大邊緣位置89;圖14所示,計算一血管中心標示點90;由該血管中心標示點90,圖15至圖17所示,經由該工字型框架88依次標示出至少一計算標示點91,直到該終點標示點82;該起點標示點81以及該終點標示點82的時間差為第2時間差,圖18所示,計算加總連續的該計算標示點91的第2路徑長,除以第2時間差的一血流流速值;以及於該顯示器12顯示該血流流速值。In Figs. 11 to 9, the I-shaped frame 88 of the present embodiment calculates the blood flow velocity value. The creation decomposes the digital image as a blood flow velocity value of the microvessel 21, wherein the detecting step further includes: as shown in FIG. 11, clicking the point 81 and the point of the white blood cell 22 in the digital image The end point is marked 82; as shown in FIG. 12 to FIG. 13C, an I-shaped frame 88 is used, with a 45 degree punctuation point of 87, a 90 degree punctuation point 86, and a 135 degree punctuation point 85, as shown in FIG. An edge position 89; as shown in FIG. 14, a blood vessel center marker point 90 is calculated; a point 90 is indicated by the blood vessel center, and at least one calculated marker point 91 is sequentially indicated via the I-shaped frame 88, as shown in FIG. 15 to FIG. Until the end point is marked 82; the time difference between the start point mark point 81 and the end point mark point 82 is the second time difference, and as shown in FIG. 18, the second path length of the calculated mark point 91 is calculated and divided by the second time. A blood flow rate value of the time difference; and the blood flow rate value is displayed on the display 12.

圖12所示,是由起點標示點81或終點標示點82較低者搜尋,初始的搜尋方向是向上的90度方向。本創作,內定每一步的搜尋角度是+/- 45度。所以下一步的候選位置為135、90,45度,如圖13A至圖13C所示,三點位置。由左至右分別是往135、90,45度前進的位置。工字型框架88為搜尋範圍,從血管外部往中心方向計算該角度的最大邊緣量,其中,最大邊緣量定義是依點選位置沿著工字型框架88的工字型左右兩側的箭頭方向,從血管外部往中心方向各掃描若干像素(pixels)之範圍,掃描方法先產生鄰近像素間灰階值差異,並將工字型框架88的工字型中軸方向的灰階值加總,結果得到工字型框架88的工字型左右側的曲線圖,找出左右側曲線中的坡峰,即差異最大處,為該角度的左側之最大邊緣量(Lmax),以及右側之最大邊緣量(Rmax)。As shown in FIG. 12, it is searched by the lower starting point 81 or the ending point 82, and the initial search direction is an upward 90 degree direction. For this creation, the search angle for each step is +/- 45 degrees. Therefore, the candidate positions for the next step are 135, 90, and 45 degrees, as shown in FIGS. 13A to 13C, at the three-point position. From left to right, the position is 135, 90, 45 degrees forward. The I-shaped frame 88 is a search range, and the maximum edge amount of the angle is calculated from the outside of the blood vessel to the center direction, wherein the maximum edge amount is defined as an arrow along the left and right sides of the I-shaped type of the I-shaped frame 88 according to the selected position. The direction is to scan a range of pixels from the outside of the blood vessel to the center. The scanning method first generates a grayscale value difference between adjacent pixels, and adds the grayscale values of the axial direction of the I-shaped frame of the I-shaped frame 88. As a result, a graph of the left and right sides of the I-shaped frame of the I-shaped frame 88 is obtained, and the slope peak in the left and right side curves is found, that is, the maximum difference is the maximum edge amount (Lmax) of the left side of the angle, and the maximum edge of the right side. Quantity (Rmax).

左右兩側最大邊緣量的總和(Lmax + Rmax),是此角度的總邊緣量。如圖13A實施例中135度的右側之最大邊緣量(Rmax)=181,左側之最大邊緣量(Lmax )=29,因此,135度之總邊緣量 181+29=210。如圖13B實施例中90度的右側之最大邊緣量(Rmax)=354,左側之最大邊緣量(Lmax )=672,90度之總邊緣量 672+354=1026。如圖13C實施例中45度的右側之最大邊緣量(Rmax)=229,左側之最大邊緣量(Lmax )=243,因此,45度之總邊緣量 229+243=472。由上述計算,90度總邊緣量大於45度總邊緣量,大於135度總邊緣量,所以最大總邊緣量是90度總邊緣量的值,即1026。由於在此階段的最大總邊緣量是90度的值,即1026,所以此階段的方向往最大總邊緣量,即90度前進。The sum of the maximum edge amounts on the left and right sides (Lmax + Rmax) is the total edge amount of this angle. In the embodiment of Fig. 13A, the maximum edge amount (Rmax) of the right side of 135 degrees is 181, and the maximum edge amount (Lmax) of the left side is 29, so that the total edge amount of 135 degrees is 181 + 29 = 210. In the embodiment of Fig. 13B, the maximum edge amount (Rmax) of the right side of 90 degrees is 354, the maximum edge amount (Lmax) of the left side is 672, and the total edge amount of 90 degrees is 672+354=1026. In the embodiment of Fig. 13C, the maximum edge amount (Rmax) of the right side of 45 degrees is 229, and the maximum edge amount (Lmax) of the left side is 243, and therefore, the total edge amount of 45 degrees is 229 + 243 = 472. From the above calculation, the total edge amount of 90 degrees is greater than the total edge amount of 45 degrees, which is greater than the total edge amount of 135 degrees, so the maximum total edge amount is the value of the total edge amount of 90 degrees, that is, 1026. Since the maximum total edge amount at this stage is a value of 90 degrees, that is, 1026, the direction of this stage advances toward the maximum total edge amount, that is, 90 degrees.

工字型框架88兩側各有一個最大邊緣量,兩側最大邊緣量的總和,是此角度的總邊緣量。假設此階段的最大總邊緣量是90度,所以此階段的方向往90度前進,如圖14所示。在圖14中,90度標點86為90度方向的候選位置。演算法會根據此最大邊緣量的位置於兩側的位置,即,最大邊緣位置89,將候選座標,在圖14中,90度標點86往血管中心方向調整到血管中心標示點90。最後,此一血管中心標示點90即是此一階段中,所找出的下一開啟搜索點的位置,而下一步的候選位置,是以血管中心標示點90為開啟搜索點,繼續向135、90,45度方向搜索。The I-shaped frame 88 has a maximum edge amount on each side, and the sum of the maximum edge amounts on both sides is the total edge amount of the angle. Assuming that the maximum total edge amount at this stage is 90 degrees, the direction of this stage advances to 90 degrees, as shown in FIG. In Fig. 14, the 90 degree punctuation 86 is a candidate position in the 90 degree direction. The algorithm will adjust the candidate coordinates according to the position of the maximum edge amount on both sides, that is, the maximum edge position 89, and in FIG. 14, the 90 degree punctuation 86 is adjusted to the blood vessel center mark point 90 toward the blood vessel center direction. Finally, the blood vessel center marking point 90 is the position of the next open search point found in this stage, and the next candidate position is to open the search point with the blood vessel center marking point 90, and continue to the 135. Search in the 90, 45 degree direction.

如圖15所示。以90度方向一步步往前計算,可以以血管中心標示點90為開啟搜索點,逐次找出最大總邊緣量的方向,前進的計算標示點91位置。如圖16A至圖16C所示,以起始搜索的計算標示點91位置,重新上述工字型框架88的搜尋,搜尋方向是向上的90度方向。本創作的演算法,內定每一步的可旋轉角度是+/-45度。所以圖16A至圖16C所示的下一步的候選位置為135、90,45度,如圖16A至圖16C所示的三個位置,包括:45度標點87、90度標點86、以及135度標點85的位置。由左至右分別是往135、90,45度前進的位置。As shown in Figure 15. Calculating step by step in the direction of 90 degrees, the search point can be opened with the blood vessel center mark point 90, and the direction of the maximum total edge amount is successively found, and the forward calculation points the position of the point 91. As shown in Figs. 16A to 16C, the search for the point 91 is started by the calculation of the initial search, and the search of the I-shaped frame 88 is repeated, and the search direction is the upward 90-degree direction. The algorithm of this creation, the rotation angle of each step is +/- 45 degrees. Therefore, the candidate positions of the next step shown in FIGS. 16A to 16C are 135, 90, 45 degrees, and the three positions shown in FIGS. 16A to 16C include: 45 degree punctuation 87, 90 degree punctuation 86, and 135 degrees. The location of punctuation 85. From left to right, the position is 135, 90, 45 degrees forward.

以工字型框架88為搜尋範圍,從血管外部往中心方向計算該角度的最大邊緣量。其中,最大邊緣量定義是依點選位置沿著工字型框架88的工字型左右兩側的箭頭方向, 從血管外部往中心方向各掃描若干像素(pixels)之範圍,掃描方法先產生鄰近像素間灰階值差異,並將工字型框架88的工字型中軸方向的灰階值加總,結果得到工字型框架88的工字型左右側的曲線圖, 找出左右側曲線中的坡峰,即差異最大處,為該角度的左側之最大邊緣量(Lmax ),以及右側之最大邊緣量(Rmax)。The I-shaped frame 88 is used as a search range, and the maximum edge amount of the angle is calculated from the outside of the blood vessel toward the center. Wherein, the maximum edge amount is defined by the direction of the arrow on the left and right sides of the I-shaped type of the I-shaped frame 88, and the range of pixels (pixels) is scanned from the outside of the blood vessel to the center, and the scanning method first generates the proximity. The grayscale value difference between the pixels is added, and the grayscale values of the I-axis direction of the I-shaped frame 88 are added together, and the left and right sides of the I-shaped frame of the I-shaped frame 88 are obtained, and the left and right curves are found. The slope, which is the maximum difference, is the maximum edge amount (Lmax) on the left side of the angle and the maximum edge amount (Rmax) on the right side.

左右兩側最大邊緣量的總和(Lmax + Rmax),是此角度的總邊緣量。如圖16A實施例中135度的右側之最大邊緣量(Rmax)= 473,左側之最大邊緣量(Lmax )= 29,因此,135度之總邊緣量 473+29=502。如圖16B實施例中90度的右側之最大邊緣量(Rmax)= 701,左側之最大邊緣量(Lmax )=540,90度之總邊緣量 701+540=1241。如圖16C實施例中45度的右側之最大邊緣量(Rmax)= 758,左側之最大邊緣量(Lmax )= 979,因此,45度之總邊緣量758+979=1737。由上述計算,45度總邊緣量大於90度總邊緣量,90度總邊緣量大於 135度總邊緣量,所以最大總邊緣量是45度總邊緣量的值,即1737。由於在此階段的最大總邊緣量是45度的值,即1737,所以此階段的方向往最大總邊緣量,即45度前進。The sum of the maximum edge amounts on the left and right sides (Lmax + Rmax) is the total edge amount of this angle. In the embodiment of Fig. 16A, the maximum edge amount (Rmax) of the right side of 135 degrees = 473, and the maximum edge amount (Lmax) of the left side = 29, and therefore, the total edge amount of 135 degrees is 473 + 29 = 502. In the embodiment of Fig. 16B, the maximum edge amount (Rmax) of the right side of 90 degrees = 701, the maximum edge amount (Lmax) of the left side = 540, and the total edge amount of 701 + 540 = 1241 of 90 degrees. In the embodiment of Fig. 16C, the maximum edge amount (Rmax) of the right side of 45 degrees = 758, and the maximum edge amount (Lmax) of the left side = 979, therefore, the total edge amount of 45 degrees is 758 + 979 = 1737. From the above calculation, the total edge amount of 45 degrees is greater than the total edge amount of 90 degrees, and the total edge amount of 90 degrees is greater than the total edge amount of 135 degrees, so the maximum total edge amount is the value of the total edge amount of 45 degrees, that is, 1737. Since the maximum total edge amount at this stage is a value of 45 degrees, that is, 1737, the direction of this stage advances toward the maximum total edge amount, that is, 45 degrees.

如圖16A至圖16C所示,工字型框架88為搜尋範圍,沿著雙箭頭方向,從血管外部往雙箭頭中心方向計算該角度的邊緣量。工字型框架88兩側各有一個最大邊緣位置89,兩側最大邊緣位置89的總和,即是此角度的總邊緣量。假設此階段的最大總邊緣量是45度,所以此階段的方向往45度前進,如圖17所示。As shown in Figs. 16A to 16C, the I-shaped frame 88 is a search range, and the edge amount of the angle is calculated from the outside of the blood vessel toward the center of the double arrow in the direction of the double arrow. The I-shaped frame 88 has a maximum edge position 89 on each side, and the sum of the maximum edge positions 89 on both sides is the total edge amount of the angle. Assuming that the maximum total edge amount at this stage is 45 degrees, the direction of this stage advances to 45 degrees, as shown in FIG.

在圖17中,45度方向的候選位置是45度標點87。假設最大邊緣位置89在兩側形成,演算法會根據此兩側的最大邊緣位置89,將候選座標的45度標點87往血管中心方向調整到血管中心標示點90 。 最後血管中心標示點90即是此一階段所找出的下一點起始搜索點的位置,而下一步的候選位置,是以血管中心標示點90為開啟搜索點,繼續向135、90,45度方向搜索。In Fig. 17, the candidate position in the 45 degree direction is the 45 degree punctuation 87. Assuming that the maximum edge position 89 is formed on both sides, the algorithm adjusts the 45 degree punctuation 87 of the candidate coordinates to the blood vessel center point 90 according to the maximum edge position 89 on both sides. Finally, the blood vessel center marking point 90 is the position of the starting point of the next point found in this stage, and the next candidate position is to open the search point with the blood vessel center marking point 90, and continue to 135, 90, 45. Search in the direction.

在圖18中,是依照上述方法,一步一步往下一個計算出來的位置推進,並且調整行進方向,直到進入終點區域的終點標示點82,即找出此條微血管21的軌跡。In Fig. 18, in accordance with the above method, the position is advanced step by step to the next calculated position, and the traveling direction is adjusted until the end point of the end point region is marked 82, that is, the trajectory of the microvessel 21 is found.

圖11中,使用者選取分解畫面的白血球22起點,並在後續幾張分解畫面中選取白血球22終點,依電腦11效能,錄影壓縮後,可以從數位影像檔案得知圖框率(Frame Rate),以下以每秒25張的圖框率(Frame Rate),舉例: 每張為1/25秒,分解圖的數位影像有9張,頭尾間隔8/25秒。圖18以及圖19中,假設上述路徑長計算得86 像素(pixel),而顯微鏡鏡頭14擷取的數位影像,像素比為 1.164594 μm/pixel.,第2路徑長是86 像素(pixel) 乘以 1.164594 μm/pixel=100.155084μm,顯微鏡鏡頭14擷取的數位影像,每秒有25張數位影像,由此算出該起點標示點81以及該終點標示點82的時間差為第2時間差,因此第2路徑長除以第2時間差,可以計算血流流速,86 pixels / (8/25 sec) 乘以 1.164594μm/pixel =294μm/s = 0.29mm/s。In Figure 11, the user selects the starting point of the white blood cell 22 of the decomposition picture, and selects the end point of the white blood cell 22 in the subsequent several decomposition pictures. According to the performance of the computer 11, after the video is compressed, the frame rate can be known from the digital image file. The following is a frame rate of 25 frames per second. For example: 1/25 of each frame, 9 digital images of the exploded view, and 8/25 seconds between the head and the tail. In Fig. 18 and Fig. 19, it is assumed that the path length is calculated to be 86 pixels, and the digital image captured by the microscope lens 14 has a pixel ratio of 1.164594 μm/pixel. The second path length is 86 pixels (pixel) multiplied by 1.164594 μm/pixel=100.155084 μm, the digital image captured by the microscope lens 14 has 25 digital images per second, thereby calculating the time difference between the start point marker point 81 and the end point marker point 82 as the second time difference, so the second path By dividing the length by the second time difference, the blood flow rate can be calculated, 86 pixels / (8/25 sec) multiplied by 1.164594 μm / pixel = 294 μm / s = 0.29 mm / s.

圖20中,找出該微血管21內的兩邊緣端點位置,其步驟,包含:由掃描該數位影像成灰階訊號,形成縱軸灰階訊號值,橫軸像素值;縱軸灰階訊號加總值最大值,標定該微血管21管徑的兩邊緣端點;該微血管21管徑的兩邊緣端點的相應橫軸像素值,計算該微血管21的該管徑值;以及於該顯示器12顯示該微血管21的該管徑值。In FIG. 20, the positions of the end points of the two edges in the microvessel 21 are found, and the steps include: forming a gray-scale signal by scanning the digital image to form a vertical-axis gray-scale signal value, a horizontal-axis pixel value, and a vertical-axis gray-scale signal. Adding a total value, calibrating the two edge endpoints of the microvascular 21 diameter; the corresponding horizontal axis pixel values of the two edge endpoints of the microvascular 21 diameter, calculating the diameter of the microvascular 21; and the display 12 This diameter value of the microvessel 21 is displayed.

圖20中,依點選位置,左右各掃描16 像素(pixel),正方型範圍,如果找不到自動再向左右擴大掃描,掃描方法先產生像素間灰階值差異,結果得到如圖20中第1分佈圖110、以及第2分佈圖120的像素間灰階值差異分佈圖,再將垂直方向的灰階值加總,結果得到如圖20中的第1曲線圖111以及第2曲線圖121的曲線圖。找出曲線中的坡峰,如圖中的差異最大值,即為微血管21邊緣,依顯微鏡鏡頭14,擷取的數位影像,像素比為 1.164594 μm/pixel,圖20中左側坡峰,在第7 像素(pixel)處,右側在第10 像素(pixel)處,因此共間隔16 像素(pixel)。計算出微血管21管徑,為16像素(pixel) 乘以 1.164594μm/pixel 等於 18.6μm。In Fig. 20, according to the selected position, 16 pixels (pixel) are scanned on the left and right sides, and the square range is ranged. If the automatic scanning is not performed to the left and right, the scanning method first generates the grayscale value difference between the pixels, and the result is as shown in FIG. In the first distribution map 110 and the second distribution map 120, the inter-pixel grayscale value difference distribution map is further added to the grayscale values in the vertical direction, and as a result, the first graph 111 and the second graph in FIG. 20 are obtained. 121 graph. Find the peak in the curve, the maximum value of the difference in the figure, that is, the edge of the microvessel 21, according to the microscope lens 14, the digital image captured, the pixel ratio is 1.164594 μm / pixel, the left slope in Figure 20, in the first At 7 pixels (pixel), the right side is at the 10th pixel (pixel), so a total of 16 pixels (pixel). The diameter of the microvessel 21 was calculated to be 16 pixels (pixel) multiplied by 1.164594 μm/pixel equal to 18.6 μm.

雖然本創作已以實施例揭露如上,然其並非用以限定本創作,任何熟習此技術者,在不脫離本創作之精神和範圍內,當可作各種之更動與潤飾,因此本創作之保護範圍當視後附之創作申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Anyone who is familiar with the technology can protect the creation of the creation without any deviation from the spirit and scope of the creation. The scope is subject to the definition of the patent application scope attached to the attached.

11‧‧‧電腦
12‧‧‧顯示器
13‧‧‧感光耦合元件
14‧‧‧顯微鏡鏡頭
15‧‧‧指槽
16‧‧‧手指
17‧‧‧處理器
21‧‧‧微血管
22‧‧‧白血球
24‧‧‧第1標線
25‧‧‧第2標線
81‧‧‧起點標示點
82‧‧‧終點標示點
85‧‧‧135度標點
86‧‧‧90度標點
87‧‧‧45度標點
88‧‧‧工字型框架
89‧‧‧最大邊緣位置
90‧‧‧血管中心標示點
91‧‧‧計算標示點
92‧‧‧範圍外白血球
101‧‧‧平均位置點
102‧‧‧第1追蹤點
103‧‧‧第2追蹤點
104‧‧‧第3追蹤點
105‧‧‧第4追蹤點
106‧‧‧第5追蹤點
107‧‧‧第6追蹤點
110‧‧‧第1分佈圖
111‧‧‧第1曲線圖
120‧‧‧第2分佈圖
121‧‧‧第2曲線圖
11‧‧‧ computer
12‧‧‧ display
13‧‧‧Photosensitive coupling element
14‧‧‧Microscope lens
15‧‧‧ finger slot
16‧‧‧ fingers
17‧‧‧Processor
21‧‧‧microvascular
22‧‧‧White blood cells
24‧‧‧1st marking
25‧‧‧2nd marking
81‧‧‧ starting point
82‧‧‧ End point marking point
85‧‧‧135 degree punctuation
86‧‧‧90 degree punctuation
87‧‧‧45 degree punctuation
88‧‧‧ I-shaped frame
89‧‧‧Maximum edge position
90‧‧‧Vascular Center Marking Point
91‧‧‧ Calculate the marked points
White blood cells outside the range of 92‧‧
101‧‧‧ average position point
102‧‧‧1st tracking point
103‧‧‧2nd tracking point
104‧‧‧3rd tracking point
105‧‧‧4th tracking point
106‧‧‧5th tracking point
107‧‧‧Sixth Tracking Point
110‧‧‧1st distribution map
111‧‧‧1st graph
120‧‧‧2nd distribution map
121‧‧‧2nd graph

圖1為本創作裝置示意圖。 圖2為本創作起點標示點示意圖。 圖3為本創作終點標示點示意圖。 圖4為本創作以白血球解析路徑示意圖。 圖5為本創作以沿血管邊緣解析路徑示意圖。 圖6為本創作量測管徑示意圖。 圖7為本創作微血管血流流速檢測方法步驟圖。 圖8為本創作以白血球析路徑的分解畫面示意圖。 圖9為本創作微血管血流流速檢測方法步驟圖。 圖10為本創作由平均位置的角度,計算流經路徑長示意圖。 圖11為本創作以沿血管邊緣解析路徑的分解畫面示意圖。 圖12為本創作以血管邊緣解析路徑的初始搜尋路徑。 圖13A為本創作工字型框架135度搜尋示意圖。 圖13B為本創作工字型框架90度搜尋示意圖。 圖13C為本創作工字型框架45度搜尋示意圖。 圖14為本創作最大邊緣位置中心定位示意圖。 圖15為本創作以沿血管邊緣解析路徑的前進標示示意圖。 圖16A為本創作工字型框架135度搜尋示意圖。 圖16B為本創作工字型框架90度搜尋示意圖。 圖16C為本創作工字型框架45度搜尋示意圖。 圖17為本創作最大邊緣位置中心定位示意圖。 圖18為本創作以血管邊緣解析路徑的軌跡圖。 圖19為本創作以沿血管邊緣解析路徑血流流速計算示意圖。 圖20為本創作管徑量測示意圖。Figure 1 is a schematic diagram of the authoring device. Figure 2 is a schematic diagram of the starting point of the creation. Figure 3 is a schematic diagram of the marking point of the creation end point. Figure 4 is a schematic diagram of the white blood cell analysis path of the creation. Figure 5 is a schematic illustration of the path of analysis along the edge of a blood vessel. Figure 6 is a schematic view of the diameter of the measuring tube. Fig. 7 is a step chart of the method for detecting the blood flow velocity of the microvascular blood flow. FIG. 8 is a schematic diagram of an exploded view of a white blood cell analysis path. Fig. 9 is a step chart of the method for detecting the blood flow velocity of the microvascular blood flow. Figure 10 is a schematic diagram showing the length of the flow path by the angle of the average position. Figure 11 is a schematic exploded view of the creation of a path along the edge of a blood vessel. Figure 12 is the initial search path for the path of the blood vessel edge analysis. FIG. 13A is a schematic diagram of a 135 degree search of the original I-shaped frame. FIG. 13B is a schematic diagram of a 90 degree search of the original I-shaped frame. FIG. 13C is a schematic diagram of a 45 degree search of the original I-shaped frame. FIG. 14 is a schematic diagram of center positioning of the maximum edge position of the creation. Figure 15 is a schematic illustration of the advancement of the creative path along the edge of the vessel. FIG. 16A is a schematic diagram of a 135 degree search of the original I-shaped frame. FIG. 16B is a schematic diagram of a 90 degree search of the original I-shaped frame. FIG. 16C is a schematic diagram of a 45 degree search of the original I-shaped frame. Figure 17 is a schematic diagram of the center position of the maximum edge position of the creation. Figure 18 is a trajectory diagram of the path of the blood vessel edge analysis. Figure 19 is a schematic diagram of the calculation of blood flow velocity along the analytical path along the edge of the blood vessel. Figure 20 is a schematic diagram of the measurement of the pipe diameter.

Claims (4)

一種微血管檢測裝置,經由一手指皮下組織中的至少一微血管影像,檢測所述微血管的血流流速以及管徑,包含有: 一電腦,具有一顯示器以及一處理器; 一感光耦合元件,電性訊號連結該電腦;以及 一顯微鏡鏡頭,經由該顯微鏡鏡頭擷取該微血管影像,該微血管影像由該感光耦合元件形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器顯示於該顯示器。A microvascular detecting device detects blood flow velocity and diameter of a microvascular through at least one microvascular image in a subcutaneous tissue of a finger, comprising: a computer having a display and a processor; a photosensitive coupling element, electrical The signal is connected to the computer; and a microscope lens is used to capture the microvascular image through the microscope lens, the microvascular image is formed by the photosensitive coupling element to form a plurality of frame digital images, wherein the digital image is displayed in a plurality of consecutive frames The display. 如申請專利範圍第1項所述之微血管檢測裝置,其中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該起點標示點以及該終點標示點的時間差為第1時間差,該處理器計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器顯示該血流流速值。The microvascular detecting device according to claim 1, wherein the processor calibrates the plurality of frames of the digital image, corresponding to a time-continuous marking point of a white blood cell in the microvessel, including a point marking point and an ending point marking point, The time difference between the start point marker point and the end point marker point is a first time difference, and the processor calculates a first path length that adds the consecutive marked points, and the first path length is divided by the first time difference of a blood flow rate value, and the display is on the display. The blood flow rate value is displayed. 如申請專利範圍第1項所述之微血管檢測裝置,其中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該處理器具有一工字型框架的一搜尋模組,包含有一45度標點、一90度標點以及一135度標點的路經搜尋到一最大邊緣位置,該處理器計算一血管中心標示點,由該血管中心標示點,經由該工字型框架的該搜尋模組,依次標示出至少一計算標示點,直到該終點標示點,該起點標示點以及該終點標示點的時間差為第2時間差,該處理器計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值,於該顯示器顯示該血流流速值,其中,經由該搜尋模組計算一最大邊緣位置的搜尋,是使用一最大邊緣量,該最大邊緣量依該起點標示點以及該計算標示點的點選位置,沿著該工字型框架的工字型左右兩側的方向, 從該微血管外部往該工字型框架的中心方向各掃描複數個像素,掃描產生鄰近像素間灰階值差異,將該工字型框架的工字型中軸方向的灰階值加總,得到左側中差異最大處為相應角度的左側之該最大邊緣量,以及得到右側中差異最大處為相應角度的右側之該最大邊緣量,其中,同一相應角度的左右兩側最大邊緣量的總和,分別是該45度標點、該90度標點以及該135度標點的相應角度的一總邊緣量,該搜尋模組將該45度標點、該90度標點、以及該135度標點的相應角度分別的該總邊緣量中,選出一相應階段中最大該總邊緣量,該相應階段的下一階段搜尋的前進方向,是往該相應階段的最大該總邊緣量的相應方向前進。The microvascular detecting device according to claim 1, wherein the processor calibrates the plurality of frames of the digital image, corresponding to a time-continuous marking point of a white blood cell in the microvessel, including a point marking point and an ending point marking point, The processor has a search module of an I-shaped frame, including a 45 degree punctuation, a 90 degree punctuation, and a 135 degree punctuation path to search for a maximum edge position, the processor calculates a blood vessel center marking point, The blood vessel center mark points, through the search module of the I-shaped frame, sequentially mark at least one calculated mark point until the end point mark point, and the time difference between the start point mark point and the end point mark point is a second time difference, The processor calculates a second path length of the continuous calculated point of the calculated point, and divides the value of the blood flow rate by the second time difference, and displays the blood flow rate value on the display, wherein the maximum edge is calculated by the search module The search of the position uses a maximum edge amount, which is marked according to the starting point and the selected position of the calculated marked point, along the work The direction of the left and right sides of the I-shaped frame of the frame, scanning a plurality of pixels from the outside of the microvessel to the center of the I-shaped frame, and scanning generates a difference in grayscale values between adjacent pixels, and the I-shaped frame of the I-shaped frame The gray scale values in the direction of the middle axis of the type are summed to obtain the maximum edge amount on the left side of the corresponding angle at the maximum difference in the left side, and the maximum edge amount on the right side of the corresponding angle where the difference in the right side is the largest, wherein the same corresponding angle The sum of the maximum edge amounts on the left and right sides is a total edge amount of the 45 degree punctuation, the 90 degree punctuation and the corresponding angle of the 135 degree punctuation, and the search module selects the 45 degree punctuation, the 90 degree punctuation, And the total edge amount of the corresponding angle of the corresponding angle of the 135 degree punctuation, the largest total amount of the edge in the corresponding phase is selected, and the forward direction of the next stage of the corresponding phase is the maximum total amount of the edge to the corresponding phase Go in the corresponding direction. 如申請專利範圍第1項所述之微血管檢測裝置,其中,該處理器掃描複數幀該數位影像成灰階訊號,由縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點,該處理器由橫軸該微血管的兩邊緣端點的相應像素值,計算該微血管的一管徑值,於該顯示器顯示該微血管的該管徑值。The microvascular detecting device according to claim 1, wherein the processor scans the plurality of frames of the digital image into a gray-scale signal, and the vertical axis gray-scale signal adds a total value to the maximum value, and calibrates the two edges of the microvascular tube diameter. An end point, the processor calculates a diameter value of the microvessel from a corresponding pixel value of the edge of the two edges of the microvessel on the horizontal axis, and displays the diameter value of the microvessel on the display.
TW107202373U 2018-02-14 2018-02-14 Microvascular detection device TWM563247U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107202373U TWM563247U (en) 2018-02-14 2018-02-14 Microvascular detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107202373U TWM563247U (en) 2018-02-14 2018-02-14 Microvascular detection device

Publications (1)

Publication Number Publication Date
TWM563247U true TWM563247U (en) 2018-07-11

Family

ID=63641072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107202373U TWM563247U (en) 2018-02-14 2018-02-14 Microvascular detection device

Country Status (1)

Country Link
TW (1) TWM563247U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112017760A (en) * 2019-05-28 2020-12-01 长庚医学科技股份有限公司 Circulating blood green fluorescence image analysis method and device
TWI796317B (en) * 2018-02-14 2023-03-21 洋華光電股份有限公司 Microvascular detection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI796317B (en) * 2018-02-14 2023-03-21 洋華光電股份有限公司 Microvascular detection device and method
CN112017760A (en) * 2019-05-28 2020-12-01 长庚医学科技股份有限公司 Circulating blood green fluorescence image analysis method and device

Similar Documents

Publication Publication Date Title
CN101384211B (en) Image analyzing device and image analyzing method
CN103884271B (en) A kind of line structured light vision sensor direct calibration method
CN109215063A (en) A kind of method for registering of event triggering camera and three-dimensional laser radar
Dandrifosse et al. Imaging wheat canopy through stereo vision: Overcoming the challenges of the laboratory to field transition for morphological features extraction
CN110991266A (en) Binocular face living body detection method and device
CN105066877A (en) Tree measuring method based on intelligent terminal lens
WO2021115259A1 (en) Algae counting method
CN106201201B (en) view adjusting method and system
CN110533686A (en) Line-scan digital camera line frequency and the whether matched judgment method of speed of moving body and system
US11957302B2 (en) User-interface for visualization of endoscopy procedures
CN111028271A (en) Multi-camera personnel three-dimensional positioning and tracking system based on human skeleton detection
TWM563247U (en) Microvascular detection device
JP2012514814A (en) Method and apparatus for automatic detection of the presence and type of caps on vials and other containers
JP2005142938A (en) Electronic camera, control program
JP2019095328A (en) Color reaction detection system, color reaction detection method, and program
CN102813516A (en) Non-contact type human body height measuring method based on optical imaging
CN110279393B (en) Microvascular detection device and method
KR20140058373A (en) Test chart and method for using thereof
CN109697409B (en) Feature extraction method of motion image and identification method of standing motion image
CN112016341A (en) Text picture correction method and device
US20180082129A1 (en) Information processing apparatus, detection system, and information processing method
TWI796317B (en) Microvascular detection device and method
Hunt et al. High frame rate video mosaicking microendoscope to image large regions of intact tissue with subcellular resolution
CN117288120A (en) Three-dimensional imaging measurement system based on multiple visual angles and calibration method thereof
CN112284983A (en) Method for measuring contact angle by image processing