TWI796317B - Microvascular detection device and method - Google Patents

Microvascular detection device and method Download PDF

Info

Publication number
TWI796317B
TWI796317B TW107105412A TW107105412A TWI796317B TW I796317 B TWI796317 B TW I796317B TW 107105412 A TW107105412 A TW 107105412A TW 107105412 A TW107105412 A TW 107105412A TW I796317 B TWI796317 B TW I796317B
Authority
TW
Taiwan
Prior art keywords
point
microvessel
digital image
degree
punctuation
Prior art date
Application number
TW107105412A
Other languages
Chinese (zh)
Other versions
TW201934076A (en
Inventor
林孟癸
侯軍緯
Original Assignee
洋華光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洋華光電股份有限公司 filed Critical 洋華光電股份有限公司
Priority to TW107105412A priority Critical patent/TWI796317B/en
Publication of TW201934076A publication Critical patent/TW201934076A/en
Application granted granted Critical
Publication of TWI796317B publication Critical patent/TWI796317B/en

Links

Images

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Image Analysis (AREA)

Abstract

A microvascular device for detecting the blood flow velocity and the diameter of the microvascular by at least one microvascular image of a finger subcutaneous tissue under test when the finger to be measured is placed in a finger groove, comprising: a computer having a display; and a processor; a charge-coupled device(CCD), electrically connected to the computer; and a microscope lens for capturing microvascular images via the microscope lens, wherein the microvascular images form a plurality of frames of digital images by the charge-coupled device(CCD), wherein the time continuous digital images are displayed on the display via the processor.

Description

微血管檢測裝置和方法Microvessel detection device and method

本發明涉及一種人體血管的檢測裝置和方法,尤其是指一種檢測微血管的血流流速以及管徑的微血管檢測裝置和方法。The invention relates to a human blood vessel detection device and method, in particular to a microvessel detection device and method for detecting blood flow velocity and diameter of microvessels.

先前技術微血管檢測,如中華民國專利號I246910,該發明提出一種直接即時檢測微血管血流流速的方法與微循環功能的評估裝置。包括利用紅外光雷射血管顯微攝影儀之影像動畫,以指標選取影像中特定微血管分支,沿著微血管縱向標定分析範圍,透過連續的動畫處理,可以繪製即時紅血球位移影像。偵測即時血球位移影像的斜率變化可以分析紅血球的位移速度變化及加速度。綜合此部位各個微血管流速,進行統計分析,可以觀察微血管群之特性差異。Prior art microvascular detection, such as the Republic of China Patent No. I246910, this invention proposes a method for directly and instantly detecting blood flow velocity in microvascular and an evaluation device for microcirculatory function. Including using the image animation of the infrared laser vascular micrographer to select specific microvascular branches in the image with indicators, and to calibrate the analysis range along the longitudinal direction of the microvessels. Through continuous animation processing, real-time red blood cell displacement images can be drawn. Detecting the slope change of the real-time blood cell displacement image can analyze the change of the displacement velocity and acceleration of the red blood cell. Combining the flow velocity of each microvessel in this part, statistical analysis can be performed to observe the difference in the characteristics of the microvascular group.

上述習用之紅外光雷射血管顯微攝影儀,用灰階判定的方式容易有誤差;再者,計算路徑方式單一化,無其他計算路徑方式變化來做為參考;此外,目前用於微血管檢測的裝置大都昂貴的專用儀器,無法普及應於一般人的居家護理使用。The above-mentioned conventional infrared laser blood vessel micrograph is prone to errors in the gray scale judgment method; moreover, the calculation path method is simplified, and there are no other calculation path changes as a reference; in addition, it is currently used for microvascular detection Most of the devices are expensive special instruments, which cannot be popularized and used in the home care of ordinary people.

有鑑於此,本發明人乃潛心研思、設計組製,期能提供一種廉價且可簡便操作以便快速檢測微血管的裝置和方法,其以簡易低價的顯微攝像裝置搭配一般家用電腦使用即可快速地自我檢測微血管的血流流速以及管徑,讓使用者隨時自我簡易檢測評估血液循環狀態,以便注意維護身體健康。In view of this, the inventors have devoted themselves to research, design and assembly, hoping to provide a cheap and easy-to-operate device and method for rapid detection of microvessels, which can be used with a simple and low-cost microscopic imaging device with a general household computer. It can quickly self-test the blood flow rate and diameter of microvessels, allowing users to self-test and evaluate the blood circulation status at any time, so as to pay attention to maintaining their health.

本發明之主要目的,在於提供一種利用白血球定位以及像素運算,來達到檢測微血管的血流流速以及管徑的目的。The main purpose of the present invention is to provide a method for detecting the blood flow velocity and diameter of microvessels by using white blood cell positioning and pixel calculation.

為達上述目的,本發明之一實施例為一種微血管檢測裝置,經由一手指皮下組織中的至少一微血管影像,檢測所述微血管的血流流速以及管徑,包含有:一電腦,具有一顯示器以及一處理器;一感光耦合元件,電性訊號連結該電腦;以及一顯微鏡鏡頭,經由該顯微鏡鏡頭擷取該微血管影像,該微血管影像由該感光耦合元件形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器顯示於該顯示器。To achieve the above purpose, one embodiment of the present invention is a microvessel detection device, which detects the blood flow velocity and diameter of the microvessel through at least one microvessel image in the subcutaneous tissue of a finger, including: a computer with a display and a processor; a photosensitive coupling device, which is electrically connected to the computer; and a microscope lens, through which the microvascular image is captured, and the microvascular image is formed by the photosensitive coupling device into a plurality of frames of digital images, wherein time-continuous Multiple frames of the digital image are displayed on the display through the processor.

所述檢測裝置在一實施例中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該起點標示點以及該終點標示點的時間差為第1時間差,該處理器計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器顯示該血流流速值。In one embodiment of the detection device, the processor calibrates the plurality of frames of the digital image, corresponding to a time-continuous marker point of a white blood cell in the microvessel, including a starting point marker point and an end point marker point, the starting point marker point and the The time difference between the marked points at the end point is the first time difference. The processor calculates and adds up the first path length of the consecutive marked points, and divides the first path length by a blood flow velocity value of the first time difference, and displays the blood flow velocity value on the display. .

所述檢測裝置在一實施例中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該處理器具有一工字型框架的模組,包含有45度標點、90度標點、以及135度標點的路經搜尋到一最大邊緣位置,該處理器計算一血管中心標示點,由該血管中心標示點,經由該工字型框架的模組,依次標示出至少一計算標示點,直到該終點標示點,該起點標示點以及該終點標示點的時間差為第2時間差,該處理器計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值,於該顯示器顯示該血流流速值。In one embodiment of the detection device, the processor calibrates the multiple frames of the digital image, corresponding to the time-continuous marking points of a white blood cell in the microvessel, including a starting point marking point and an end point marking point, and the processor has an I word The module of the frame, including 45-degree punctuation, 90-degree punctuation, and 135-degree punctuation, searches for a maximum edge position, the processor calculates a blood vessel center mark point, from the blood vessel center mark point, through the tool The module of the font frame sequentially marks at least one calculation mark point until the end mark point, the time difference between the start point mark point and the end point mark point is the second time difference, and the processor calculates and sums up the consecutive calculation mark points The second path length is divided by a blood flow velocity value of the second time difference, and the blood flow velocity value is displayed on the display.

所述檢測裝置在一實施例中,該處理器掃描複數幀該數位影像成灰階訊號,由縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點,該處理器由橫軸該微血管的兩邊緣端點的相應像素值,計算該微血管的一管徑值,於該顯示器顯示該微血管的該管徑值。In one embodiment of the detection device, the processor scans multiple frames of the digital image into grayscale signals, and uses the maximum value of the grayscale signals on the vertical axis to mark the two edge endpoints of the microvascular diameter. The processor A diameter value of the microvessel is calculated from corresponding pixel values of two edge endpoints of the microvessel on the horizontal axis, and the diameter value of the microvessel is displayed on the display.

本發明之另一實施例為一種微血管檢測方法,分解該數位影像作為量測一微血管的一血流流速值,其中,檢測步驟,包含有:點選該數位影像中一白血球起始位置;找出時間連續的該數位影像中同一個該白血球的位置,並點選該白血球的位置,搜尋到路徑,則標示路徑並計算該血流流速值;以及搜尋不到路徑,則顯示錯誤,並重新回到點選該數位影像中該白血球起始位置的步驟。Another embodiment of the present invention is a microvessel detection method, which is to decompose the digital image to measure a blood flow velocity value of a microvessel, wherein the detection step includes: clicking on the initial position of a white blood cell in the digital image; finding Find the position of the same white blood cell in the time-continuous digital image, and click on the position of the white blood cell. If the path is found, the path will be marked and the blood flow velocity value will be calculated; if the path cannot be found, an error will be displayed and restarted. Go back to the step of selecting the initial position of the white blood cell in the digital image.

在一實施例中,分解該數位影像作為量測一微血管的一管徑值,其中,檢測步驟,包含有:點選該數位影像中該微血管內的任一位置;找出該微血管內的兩邊緣端點位置,並量測該微血管的管徑;以及手動微調量測位置,並顯示該微血管的該管徑值於該顯示器。In one embodiment, the digital image is decomposed to measure a diameter value of a microvessel, wherein the detection step includes: clicking any position in the microvessel in the digital image; finding two positions in the microvessel position of the edge endpoint, and measure the diameter of the microvessel; and manually fine-tune the measurement position, and display the value of the diameter of the microvessel on the display.

所述檢測方法在一實施例中,分解該數位影像作為量測一微血管的一血流流速值,其中,同一個該白血球在時間連續的該數位影像中的位置,被標定為一起點標示點以及一終點標示點、以及至少一追蹤點,計算所有該追蹤點的一平均位置點,各追蹤點和平均位置的角度,依角度進行排序,得到該白血球流經的順序,該起點標示點以及該終點標示點的時間差為第1時間差,依序加總相鄰距離,得到流經該微血管的第1路徑長,第1路徑長除以第1時間差的一血流流速值;以及 於該顯示器顯示該血流流速值 。In one embodiment of the detection method, the digital image is decomposed to measure a blood flow velocity value of a microvessel, wherein the position of the same white blood cell in the time-continuous digital image is marked as a common point marker point and an end mark point, and at least one tracking point, calculate an average position point of all the tracking points, the angles between each tracking point and the average position, and sort them according to the angle to obtain the sequence of the white blood cells flowing through, the starting point mark point and The time difference of the end point marked point is the first time difference, and the adjacent distances are summed up in order to obtain the first path length flowing through the microvessel, and a blood flow velocity value obtained by dividing the first path length by the first time difference; and on the display Displays the blood flow velocity value.

所述檢測方法在一實施例中,分解該數位影像作為量測一微血管的一血流流速值,其中,檢測步驟,更包含有:點選該數位影像中該白血球的一起點標示點以及一終點標示點;使用一工字型框架,以45度標點、90度標點、以及135度標點的路經搜尋到一最大邊緣位置;計算一血管中心標示點;由該血管中心標示點,經由該工字型框架依次標示出至少一計算標示點,直到該終點標示點;該起點標示點以及該終點標示點的時間差為第2時間差,計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值;以及於該顯示器顯示該血流流速值。In one embodiment of the detection method, the digital image is decomposed to measure a blood flow velocity value of a microvessel, wherein, the detection step further includes: clicking on a marked point of the white blood cell in the digital image and a End mark point; use an I-shaped frame, search for a maximum edge position with the path of 45-degree punctuation, 90-degree punctuation, and 135-degree punctuation; calculate a blood vessel center mark point; from the blood vessel center mark point, through the The I-shaped frame marks at least one calculation mark point in turn until the end mark point; the time difference between the start mark point and the end point mark point is the second time difference, and the second path length of the continuous calculation mark points is calculated and summed up, dividing a blood flow velocity value by the second time difference; and displaying the blood flow velocity value on the display.

所述檢測方法在一實施例中,找出該微血管內的兩邊緣端點位置,其步驟,包含:由掃描該數位影像成灰階訊號,形成縱軸灰階訊號值,橫軸像素值;縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點;該微血管管徑的兩邊緣端點的相應橫軸像素值,計算該微血管的該管徑值;以及於該顯示器顯示該微血管的該管徑值。In one embodiment of the detection method, the position of the two edge endpoints in the microvessel is found. The steps include: scanning the digital image into a grayscale signal, forming a grayscale signal value on the vertical axis, and a pixel value on the horizontal axis; The maximum value of the sum of the gray scale signals on the vertical axis is used to mark the two edge endpoints of the microvascular diameter; the corresponding horizontal axis pixel values of the two edge endpoints of the microvascular diameter are used to calculate the diameter value of the microvessel; and The monitor displays the diameter value of the microvessel.

本「發明內容」係以簡化形式介紹一些選定概念,在下文之「實施方式」中將進一步對其進行描述。本「發明內容」並非意欲辨識申請專利之標的之關鍵特徵或基本特徵,亦非意欲用於限制申請專利之標的之範圍。This Summary presents a selection of concepts in a simplified form that are further described below in the Description. This Summary of the Invention is not intended to identify key features or essential features of the subject matter of a patent application, nor is it intended to be used to limit the scope of the subject matter of a patent application.

圖1所示,為本發明裝置示意圖。在一實施例中,本發明提供一種微血管檢測裝置,經由一手指16皮下組織中的至少一微血管21影像,檢測該微血管21的血流流速以及管徑,本發明裝置包含有:電腦11、感光耦合元件13 (charge-coupled device, CCD)、以及顯微鏡鏡頭14。其中該電腦11,具有一顯示器12以及一處理器17;該感光耦合元件13,電性訊號連結該電腦11,例如使用通訊傳輸介面的USB介面、IEEE 1394介面、 Ethernet介面、以及 CVBS加上影像擷取卡介面等。以及該顯微鏡鏡頭14具有放大顯微影像功能,經由該顯微鏡鏡頭14擷取該微血管21影像,該微血管21影像由該感光耦合元件13形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器17顯示於該顯示器12。As shown in Fig. 1, it is a schematic diagram of the device of the present invention. In one embodiment, the present invention provides a microvessel detection device, which detects the blood flow velocity and diameter of the microvessel 21 through the image of at least one microvessel 21 in the subcutaneous tissue of a finger 16. The device of the present invention includes: a computer 11, a photosensitive A coupling element 13 (charge-coupled device, CCD), and a microscope lens 14. Wherein the computer 11 has a display 12 and a processor 17; the photosensitive coupling element 13 is connected to the computer 11 by electrical signals, such as USB interface, IEEE 1394 interface, Ethernet interface, and CVBS plus image using communication transmission interface Capture card interface, etc. And the microscope lens 14 has the function of magnifying the microscopic image, and the image of the microvessel 21 is captured through the microscope lens 14, and the image of the microvessel 21 is formed into a plurality of frames of digital images by the photosensitive coupling device 13, wherein the time-continuous multiple frames of the digital images, displayed on the display 12 via the processor 17 .

圖2和圖3所示,該處理器17標定複數幀該數位影像,對應該微血管21中一白血球22的時間連續的標示點,包括一起點標示點81以及一終點標示點82,該起點標示點81以及該終點標示點82的時間差為第1時間差,該處理器17計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器12顯示該血流流速值。As shown in Figures 2 and 3, the processor 17 calibrates the multiple frames of the digital image, corresponding to the time-continuous marking points of a white blood cell 22 in the microvessel 21, including a starting point marking point 81 and an end point marking point 82, the starting point marking point The time difference between point 81 and the end mark point 82 is the first time difference. The processor 17 calculates the first path length of the continuous marked points, divides the first path length by a blood flow velocity value of the first time difference, and displays it on the display 12 shows the blood flow velocity value.

圖4和圖5所示為本發明兩種血流流速值的顯示結構,圖4所示為本發明白血球22解析路徑,找出若干分解圖中被選取血管的白血球22,並分析其流動路徑。以及圖5所示為本發明沿微血管21邊緣解析路徑。從微血管21內一點選位置出發,沿微血管21邊緣,找到另一點選位置。由流動路徑長度,及總共有的分解數位影像的圖數,即可得到總時間,以便可計算出血流流速。Figure 4 and Figure 5 show the display structure of two kinds of blood flow velocity values of the present invention, and Figure 4 shows the analysis path of white blood cells 22 of the present invention, find out some white blood cells 22 of selected blood vessels in the exploded view, and analyze their flow paths . And FIG. 5 shows the analysis path along the edge of the microvessel 21 according to the present invention. Starting from one selected position in the microvessel 21, another selected position is found along the edge of the microvessel 21. The total time can be obtained from the length of the flow path and the total number of decomposed digital images, so that the blood flow velocity can be calculated.

圖6所示,是量測管徑示意圖。為本發明一實施例,經由處理器17計算,顯示在顯示器12的功能顯示畫面,包括顯示微血管21的管徑值,以及微調左(left)的第1標線24的邊境值,微調右(right) 的第2標線25的邊境值,以及使用滑鼠點選第1標線24、以及第2標線25的位置後,處理器17計算微血管21的管徑值,圖6顯示畫面,與圖7中步驟S71、S72、以及S73的共用該顯示器12的功能。顯示在顯示器12的功能顯示畫面的下端,是圖形功能介面的選項。As shown in Figure 6, it is a schematic diagram of measuring pipe diameter. As an embodiment of the present invention, the function display screen displayed on the display 12 through the calculation of the processor 17 includes displaying the diameter value of the microvessel 21, fine-tuning the boundary value of the first marking line 24 on the left, and fine-tuning the border value of the first marking line 24 on the right ( right) the boundary value of the second marking line 25, and after using the mouse to click on the position of the first marking line 24 and the second marking line 25, the processor 17 calculates the caliber value of the microvessel 21, as shown in FIG. 6 , The function of the display 12 is shared with steps S71, S72, and S73 in FIG. 7 . Displayed at the lower end of the function display screen of the display 12 is the option of the graphical function interface.

圖7所示,在另一實施中,是本發明微血管21血流流速檢測方法步驟圖。其中,檢測步驟,包含有:步驟S1,待測一手指16放在一指槽15中;步驟S2,使一感光耦合元件13取得一數位影像;步驟S3,經傳輸將該數位影像顯示在一電腦11的一顯示器12;步驟S4,依該顯示器12的該數位影像調整該手指16的位置及一顯微鏡鏡頭14的焦距;以及步驟S5,擷取該數位影像並依連續時間分解該數位影像。As shown in FIG. 7 , in another implementation, it is a step diagram of the method for detecting the blood flow velocity of the microvessel 21 of the present invention. Wherein, the detection step includes: step S1, a finger 16 to be tested is placed in a finger groove 15; step S2, a photosensitive coupling element 13 is made to obtain a digital image; step S3, the digital image is displayed on a A display 12 of the computer 11; step S4, adjust the position of the finger 16 and the focal length of a microscope lens 14 according to the digital image of the display 12; and step S5, capture the digital image and decompose the digital image according to continuous time.

圖7所示,由步驟S6,功能選擇,來選擇分解該數位影像作為量測一微血管21的一血流流速值,其中,檢測步驟,包含有:步驟S81,點選該數位影像中一白血球22起始位置;步驟S82,找出時間連續的該數位影像中同一個該白血球22的位置,並點選該白血球22的位置;步驟S85,搜尋到路徑,則標示路徑並計算該血流流速值;以及步驟S84,搜尋不到路徑,則顯示錯誤,並重新回到點選該數位影像中該白血球22起始位置的步驟。As shown in FIG. 7, step S6, function selection, selects and decomposes the digital image as a measurement of a blood flow velocity value of a microvessel 21, wherein, the detection step includes: step S81, click a white blood cell in the digital image 22 starting position; step S82, find out the position of the same white blood cell 22 in the time-continuous digital image, and click on the position of the white blood cell 22; step S85, find the path, mark the path and calculate the blood flow velocity value; and step S84, if the path cannot be found, an error is displayed, and the step of selecting the initial position of the white blood cell 22 in the digital image is returned to.

圖7所示,由步驟S6,功能選擇,來選擇分解該數位影像作為量測一微血管21的一管徑值,其中,檢測步驟,包含有:步驟S71,點選該數位影像中該微血管21內的任一位置;步驟S72,找出該微血管21內的兩邊緣端點位置,並量測該微血管21的管徑;以及步驟S73,手動微調量測位置,並顯示該微血管21的該管徑值於該顯示器12。As shown in FIG. 7, step S6, function selection, selects and decomposes the digital image as a measurement of a diameter value of a microvessel 21, wherein, the detection step includes: step S71, clicking on the microvessel 21 in the digital image Any position within; step S72, find out the positions of the two edge endpoints in the microvessel 21, and measure the diameter of the microvessel 21; and step S73, manually fine-tune the measurement position, and display the tube The diameter value is on the display 12.

圖7至圖10所示,分解該數位影像作為量測一微血管21的一血流流速值,其中,同一個該白血球22在時間連續的該數位影像中的位置,被標定為一起點標示點81以及一終點標示點82、以及至少一追蹤點,圖10所示,第1追蹤點102、第2追蹤點103、到第6追蹤點107;計算所有該追蹤點的一平均位置點101,各追蹤點和平均位置的角度,依角度進行排序;得到該白血球22流經的順序,該起點標示點81以及該終點標示點82的時間差為第1時間差;依序加總相鄰距離,得到流經該微血管21的第1路徑長;第1路徑長除以第1時間差的一血流流速值;以及於該顯示器12顯示該血流流速值。As shown in FIGS. 7 to 10, the digital image is decomposed to measure a blood flow velocity value of a microvessel 21, wherein the position of the same white blood cell 22 in the time-continuous digital image is demarcated as a point marking point 81 and an end mark point 82, and at least one tracking point, as shown in Figure 10, the first tracking point 102, the second tracking point 103, and the sixth tracking point 107; calculate an average position point 101 of all the tracking points, The angles between each tracking point and the average position are sorted according to the angle; the order in which the white blood cells 22 flow through is obtained, and the time difference between the starting point 81 and the end point 82 is the first time difference; the adjacent distances are summed up sequentially to obtain A first path length flowing through the microvessel 21 ; a blood flow velocity value obtained by dividing the first path length by a first time difference; and displaying the blood flow velocity value on the display 12 .

圖9中,同一白血球22的選取,以影像分析各分解圖間之灰階差異,找出其間所有白血球22位置,並去除選取範圍外白血球92。In FIG. 9 , for the selection of the same white blood cell 22 , image analysis is used to analyze the gray scale differences between the exploded views to find out the positions of all white blood cells 22 and remove the white blood cells 92 outside the selection range.

圖8中,使用者選取分解畫面的白血球22起點,並在後續幾張分解畫面中選取白血球22終點,依電腦11效能,錄影壓縮後,可以從數位影像檔案得知圖框率(Frame Rate),以下以每秒25張的圖框率(Frame Rate),舉例: 每張為1/25秒,分解圖的數位影像有9張,頭尾間隔8/25秒。圖10中,假設上述路徑長計算得96 像素(pixel),而顯微鏡鏡頭14擷取的數位影像,像素比為 1.164594 μm/pixel.,第2路徑長是96 像素(pixel) 乘以 1.164594 μm/pixel=111.801024μm,顯微鏡鏡頭14擷取的數位影像,每秒有25張數位影像,由此算出該起點標示點81以及該終點標示點82的時間差為第1時間差,因此第2路徑長除以第1時間差,可以計算血流流速,[96 pixels / (8/25 sec)] X 1.164594μm/pixel = 349μm/sec ≒ 0.35mm/sec。In Fig. 8, the user selects the starting point of the white blood cell 22 in the decomposition screen, and selects the end point of the white blood cell 22 in several subsequent decomposition screens. According to the performance of the computer 11, after the video is compressed, the frame rate (Frame Rate) can be obtained from the digital image file. , the following frame rate is 25 frames per second, for example: each frame is 1/25 second, there are 9 digital images of the exploded view, and the interval between the beginning and the end is 8/25 seconds. In Fig. 10, assume that the above-mentioned path length is calculated to be 96 pixels (pixel), and the digital image captured by the microscope lens 14 has a pixel ratio of 1.164594 μm/pixel. The second path length is 96 pixels (pixel) multiplied by 1.164594 μm/pixel. pixel=111.801024 μm, the digital image captured by the microscope lens 14 has 25 digital images per second, thus the time difference between the starting point 81 and the end point 82 is calculated as the first time difference, so the second path length is divided by The first time difference can calculate the blood flow velocity, [96 pixels / (8/25 sec)] X 1.164594μm/pixel = 349μm/sec ≒ 0.35mm/sec.

圖11至圖9中,是本發明一實施例工字型框架88計算血流流速值。本發明分解該數位影像作為量測一微血管21的一血流流速值,其中,檢測步驟,更包含有:圖11所示,點選該數位影像中該白血球22的一起點標示點81以及一終點標示點82;圖12至圖13C所示,使用一工字型框架88,以45度標點87、90度標點86、以及135度標點85的路經,圖14所示,搜尋到一最大邊緣位置89;圖14所示,計算一血管中心標示點90;由該血管中心標示點90,圖15至圖17所示,經由該工字型框架88依次標示出至少一計算標示點91,直到該終點標示點82;該起點標示點81以及該終點標示點82的時間差為第2時間差,圖18所示,計算加總連續的該計算標示點91的第2路徑長,除以第2時間差的一血流流速值;以及於該顯示器12顯示該血流流速值。In Fig. 11 to Fig. 9, the blood flow velocity values calculated by the I-shaped frame 88 according to an embodiment of the present invention are shown. The present invention decomposes the digital image to measure a blood flow velocity value of a microvessel 21, wherein the detection step further includes: as shown in FIG. End mark point 82; shown in Fig. 12 to Fig. 13C, use an I-shaped frame 88, with 45 degree punctuation 87, 90 degree punctuation 86 and the path of 135 degree punctuation 85, as shown in Fig. 14, search for a maximum Edge position 89; as shown in FIG. 14, calculate a blood vessel center marking point 90; from the blood vessel center marking point 90, as shown in FIG. 15 to FIG. Up to this end mark point 82; The time difference between this start mark point 81 and this end point mark point 82 is the 2nd time difference, as shown in Figure 18, calculate the 2nd path length of this calculation mark point 91 that sums up continuously, divide by the 2nd A blood flow velocity value of the time difference; and displaying the blood flow velocity value on the display 12 .

圖12所示,是由起點標示點81或終點標示點82較低者搜尋,初始的搜尋方向是向上的90度方向。本發明,內定每一步的搜尋角度是+/- 45度。所以下一步的候選位置為135、90,45度,如圖13A至圖13C所示,三點位置。由左至右分別是往135、90,45度前進的位置。工字型框架88為搜尋範圍,從血管外部往中心方向計算該角度的最大邊緣量,其中,最大邊緣量定義是依點選位置沿著工字型框架88的工字型左右兩側的箭頭方向,從血管外部往中心方向各掃描若干像素(pixels)之範圍,掃描方法先產生鄰近像素間灰階值差異,並將工字型框架88的工字型中軸方向的灰階值加總,結果得到工字型框架88的工字型左右側的曲線圖,找出左右側曲線中的坡峰,即差異最大處,為該角度的左側之最大邊緣量(Lmax),以及右側之最大邊緣量(Rmax)。As shown in FIG. 12 , the starting point 81 or the end point 82 are searched by the lower one, and the initial search direction is upward at 90 degrees. In the present invention, the default search angle for each step is +/- 45 degrees. Therefore, the candidate positions for the next step are 135, 90, and 45 degrees, as shown in Fig. 13A to Fig. 13C , three o'clock positions. From left to right are the forward positions of 135, 90, and 45 degrees respectively. The I-shaped frame 88 is the search range, and the maximum edge amount of the angle is calculated from the outside of the blood vessel to the center direction, wherein the definition of the maximum edge amount is the arrow on the left and right sides of the I-shaped frame 88 along the clicked position direction, scan the range of several pixels (pixels) from the outside of the blood vessel to the center direction, the scanning method first generates the gray scale value difference between adjacent pixels, and sums up the gray scale values in the I-shaped central axis direction of the I-shaped frame 88, As a result, the left and right curves of the I-shaped frame 88 are obtained, and the slope peaks in the left and right curves are found, that is, the point with the largest difference, which is the maximum edge amount (Lmax) on the left side of the angle, and the maximum edge on the right side. amount (Rmax).

左右兩側最大邊緣量的總和(Lmax + Rmax),是此角度的總邊緣量。如圖13A實施例中135度的右側之最大邊緣量(Rmax)=181,左側之最大邊緣量(Lmax )=29,因此,135度之總邊緣量 181+29=210。如圖13B實施例中90度的右側之最大邊緣量(Rmax)=354,左側之最大邊緣量(Lmax )=672,90度之總邊緣量 672+354=1026。如圖13C實施例中45度的右側之最大邊緣量(Rmax)=229,左側之最大邊緣量(Lmax )=243,因此,45度之總邊緣量 229+243=472。由上述計算,90度總邊緣量大於45度總邊緣量,大於135度總邊緣量,所以最大總邊緣量是90度總邊緣量的值,即1026。由於在此階段的最大總邊緣量是90度的值,即1026,所以此階段的方向往最大總邊緣量,即90度前進。The sum of the maximum margins on the left and right sides (Lmax + Rmax) is the total margin at this angle. As shown in the embodiment of Figure 13A, the maximum edge amount (Rmax) on the right side of 135 degrees is 181, and the maximum edge amount (Lmax ) on the left side is 29. Therefore, the total edge amount of 135 degrees is 181+29=210. In the example shown in Figure 13B, the maximum edge amount (Rmax) on the right side of 90 degrees is 354, the maximum edge amount (Lmax ) on the left side is 672, and the total edge amount of 90 degrees is 672+354=1026. As shown in Figure 13C embodiment, the maximum edge amount (Rmax) on the right side of 45°=229, and the maximum edge amount (Lmax)=243 on the left side, therefore, the total edge amount of 45° is 229+243=472. According to the above calculation, the total edge amount of 90 degrees is greater than the total edge amount of 45 degrees, and greater than the total edge amount of 135 degrees, so the maximum total edge amount is the value of the total edge amount of 90 degrees, that is, 1026. Since the maximum total edge amount at this stage is the value of 90 degrees, that is, 1026, the direction of this stage advances toward the maximum total edge amount, that is, 90 degrees.

工字型框架88兩側各有一個最大邊緣量,兩側最大邊緣量的總和,是此角度的總邊緣量。假設此階段的最大總邊緣量是90度,所以此階段的方向往90度前進,如圖14所示。在圖14中,90度標點86為90度方向的候選位置。演算法會根據此最大邊緣量的位置於兩側的位置,即,最大邊緣位置89,將候選座標,在圖14中,90度標點86往血管中心方向調整到血管中心標示點90。最後,此一血管中心標示點90即是此一階段中,所找出的下一開啟搜索點的位置,而下一步的候選位置,是以血管中心標示點90為開啟搜索點,繼續向135、90,45度方向搜索。Both sides of the I-shaped frame 88 have a maximum edge amount respectively, and the sum of the maximum edge amounts on both sides is the total edge amount of this angle. Assume that the maximum total edge amount at this stage is 90 degrees, so the direction at this stage advances to 90 degrees, as shown in Figure 14. In FIG. 14 , the 90-degree mark 86 is a candidate position in the 90-degree direction. The algorithm will adjust the candidate coordinates, in FIG. 14 , the 90-degree point 86 to the blood vessel center marking point 90 according to the position of the maximum edge amount on both sides, ie, the maximum edge position 89 . Finally, this vascular center marked point 90 is the position of the next open search point found in this stage, and the next candidate position is to use the vascular center marked point 90 as the open search point, and continue to 135 , 90, 45 degree direction search.

如圖15所示。以90度方向一步步往前計算,可以以血管中心標示點90為開啟搜索點,逐次找出最大總邊緣量的方向,前進的計算標示點91位置。如圖16A至圖16C所示,以起始搜索的計算標示點91位置,重新上述工字型框架88的搜尋,搜尋方向是向上的90度方向。本發明的演算法,內定每一步的可旋轉角度是+/-45度。所以圖16A至圖16C所示的下一步的候選位置為135、90,45度,如圖16A至圖16C所示的三個位置,包括:45度標點87、90度標點86、以及135度標點85的位置。由左至右分別是往135、90,45度前進的位置。As shown in Figure 15. To calculate step by step in the direction of 90 degrees, the marked point 90 of the blood vessel center can be used as the starting search point, and the direction of the maximum total edge amount can be found out one by one, and the position of the marked point 91 can be calculated in advance. As shown in FIG. 16A to FIG. 16C , the search of the above-mentioned I-shaped frame 88 is repeated with the position of the calculated mark point 91 at the initial search, and the search direction is an upward 90-degree direction. In the algorithm of the present invention, the default rotation angle of each step is +/-45 degrees. So the candidate positions of the next step shown in Fig. 16A to Fig. 16C are 135, 90, and 45 degrees, three positions shown in Fig. 16A to Fig. 16C, including: 45 degree punctuation point 87, 90 degree punctuation point 86, and 135 degree The location of punctuation 85. From left to right are the forward positions of 135, 90, and 45 degrees respectively.

以工字型框架88為搜尋範圍,從血管外部往中心方向計算該角度的最大邊緣量。其中,最大邊緣量定義是依點選位置沿著工字型框架88的工字型左右兩側的箭頭方向, 從血管外部往中心方向各掃描若干像素(pixels)之範圍,掃描方法先產生鄰近像素間灰階值差異,並將工字型框架88的工字型中軸方向的灰階值加總,結果得到工字型框架88的工字型左右側的曲線圖, 找出左右側曲線中的坡峰,即差異最大處,為該角度的左側之最大邊緣量(Lmax ),以及右側之最大邊緣量(Rmax)。Taking the I-shaped frame 88 as the search range, calculate the maximum edge amount of the angle from the outside of the blood vessel to the center. Among them, the definition of the maximum edge amount is to scan the range of several pixels (pixels) from the outside of the blood vessel to the center direction along the arrow directions on the left and right sides of the I-shaped frame 88 according to the click position. The scanning method first generates adjacent Differences in gray scale values between pixels, and summing up the gray scale values in the direction of the central axis of the I-shaped frame 88 to obtain the curves on the left and right sides of the I-shaped frame 88, find out the curves on the left and right sides The peak of the slope, that is, the largest difference, is the maximum edge amount (Lmax) on the left side of the angle, and the maximum edge amount (Rmax) on the right side of the angle.

左右兩側最大邊緣量的總和(Lmax + Rmax),是此角度的總邊緣量。如圖16A實施例中135度的右側之最大邊緣量(Rmax)= 473,左側之最大邊緣量(Lmax )= 29,因此,135度之總邊緣量 473+29=502。如圖16B實施例中90度的右側之最大邊緣量(Rmax)= 701,左側之最大邊緣量(Lmax )=540,90度之總邊緣量 701+540=1241。如圖16C實施例中45度的右側之最大邊緣量(Rmax)= 758,左側之最大邊緣量(Lmax )= 979,因此,45度之總邊緣量758+979=1737。由上述計算,45度總邊緣量大於90度總邊緣量,90度總邊緣量大於 135度總邊緣量,所以最大總邊緣量是45度總邊緣量的值,即1737。由於在此階段的最大總邊緣量是45度的值,即1737,所以此階段的方向往最大總邊緣量,即45度前進。The sum of the maximum margins on the left and right sides (Lmax + Rmax) is the total margin at this angle. As shown in the embodiment of Figure 16A, the maximum edge amount (Rmax) on the right side of 135 degrees = 473, and the maximum edge amount (Lmax ) on the left side = 29. Therefore, the total edge amount of 135 degrees is 473+29=502. As shown in the embodiment of Figure 16B, the maximum edge amount (Rmax) on the right side of 90 degrees = 701, the maximum edge amount (Lmax ) on the left side = 540, and the total edge amount of 90 degrees is 701+540=1241. As shown in the embodiment of Figure 16C, the maximum edge amount (Rmax) on the right side of 45 degrees = 758, and the maximum edge amount (Lmax ) on the left side = 979. Therefore, the total edge amount of 45 degrees is 758+979=1737. According to the above calculation, the total margin of 45 degrees is greater than the total margin of 90 degrees, and the total margin of 90 degrees is greater than the total margin of 135 degrees, so the maximum total margin is the value of the total margin of 45 degrees, that is, 1737. Since the maximum total edge amount at this stage is the value of 45 degrees, ie 1737, the direction at this stage is towards the maximum total edge amount, ie 45 degrees.

如圖16A至圖16C所示,工字型框架88為搜尋範圍,沿著雙箭頭方向,從血管外部往雙箭頭中心方向計算該角度的邊緣量。工字型框架88兩側各有一個最大邊緣位置89,兩側最大邊緣位置89的總和,即是此角度的總邊緣量。假設此階段的最大總邊緣量是45度,所以此階段的方向往45度前進,如圖17所示。As shown in FIG. 16A to FIG. 16C , the I-shaped frame 88 is the search range, along the direction of the double arrow, the edge amount of the angle is calculated from the outside of the blood vessel to the center of the double arrow. There is a maximum edge position 89 on both sides of the I-shaped frame 88, and the sum of the maximum edge positions 89 on both sides is the total edge amount of this angle. Assume that the maximum total edge amount at this stage is 45 degrees, so the direction at this stage advances to 45 degrees, as shown in Figure 17.

在圖17中,45度方向的候選位置是45度標點87。假設最大邊緣位置89在兩側形成,演算法會根據此兩側的最大邊緣位置89,將候選座標的45度標點87往血管中心方向調整到血管中心標示點90 。 最後血管中心標示點90即是此一階段所找出的下一點起始搜索點的位置,而下一步的候選位置,是以血管中心標示點90為開啟搜索點,繼續向135、90,45度方向搜索。In FIG. 17 , the candidate position for the 45-degree direction is the 45-degree mark 87 . Assuming that the maximum edge position 89 is formed on both sides, the algorithm will adjust the 45-degree mark point 87 of the candidate coordinates to the vessel center mark point 90 in the direction of the vessel center according to the maximum edge position 89 on both sides. Finally, the marked point 90 of the blood vessel center is the position of the starting search point of the next point found in this stage, and the candidate position of the next step is to start the search point with the marked point 90 of the blood vessel center, and continue to 135, 90, 45 Degree direction search.

在圖18中,是依照上述方法,一步一步往下一個計算出來的位置推進,並且調整行進方向,直到進入終點區域的終點標示點82,即找出此條微血管21的軌跡。In FIG. 18 , according to the above method, advance to the next calculated position step by step, and adjust the traveling direction until entering the end point 82 in the end area, that is, to find the track of the microvessel 21 .

圖11中,使用者選取分解畫面的白血球22起點,並在後續幾張分解畫面中選取白血球22終點,依電腦11效能,錄影壓縮後,可以從數位影像檔案得知圖框率(Frame Rate),以下以每秒25張的圖框率(Frame Rate),舉例: 每張為1/25秒,分解圖的數位影像有9張,頭尾間隔8/25秒。圖18以及圖19中,假設上述路徑長計算得86 像素(pixel),而顯微鏡鏡頭14擷取的數位影像,像素比為 1.164594 μm/pixel.,第2路徑長是86 像素(pixel) 乘以 1.164594 μm/pixel=100.155084μm,顯微鏡鏡頭14擷取的數位影像,每秒有25張數位影像,由此算出該起點標示點81以及該終點標示點82的時間差為第2時間差,因此第2路徑長除以第2時間差,可以計算血流流速,86 pixels / (8/25 sec) 乘以 1.164594μm/pixel =294μm/s = 0.29mm/s。In Fig. 11, the user selects the starting point of the white blood cell 22 in the decomposition screen, and selects the end point of the white blood cell 22 in the subsequent several decomposition screens. According to the performance of the computer 11, after the video is compressed, the frame rate (Frame Rate) can be obtained from the digital image file. , the following frame rate is 25 frames per second, for example: each frame is 1/25 second, there are 9 digital images of the exploded view, and the interval between the beginning and the end is 8/25 seconds. In Fig. 18 and Fig. 19, assume that the above-mentioned path length is calculated to be 86 pixels (pixel), and the digital image captured by the microscope lens 14 has a pixel ratio of 1.164594 μm/pixel. The second path length is 86 pixels (pixel) multiplied by 1.164594 μm/pixel=100.155084 μm, the digital image captured by the microscope lens 14 has 25 digital images per second, thus the time difference between the starting point 81 and the end point 82 is calculated as the second time difference, so the second path The blood flow velocity can be calculated by dividing the length by the second time difference, 86 pixels / (8/25 sec) multiplied by 1.164594μm/pixel = 294μm/s = 0.29mm/s.

圖20中,找出該微血管21內的兩邊緣端點位置,其步驟,包含:由掃描該數位影像成灰階訊號,形成縱軸灰階訊號值,橫軸像素值;縱軸灰階訊號加總值最大值,標定該微血管21管徑的兩邊緣端點;該微血管21管徑的兩邊緣端點的相應橫軸像素值,計算該微血管21的該管徑值;以及於該顯示器12顯示該微血管21的該管徑值。In FIG. 20 , the steps of finding the positions of the two edge endpoints in the microvessel 21 include: scanning the digital image into a gray-scale signal, forming a gray-scale signal value on the vertical axis, and a pixel value on the horizontal axis; the gray-scale signal on the vertical axis The maximum value of the total value is used to mark the two edge endpoints of the diameter of the microvessel 21; the corresponding horizontal axis pixel values of the two edge endpoints of the diameter of the microvessel 21 are used to calculate the value of the diameter of the microvessel 21; and on the display 12 The diameter value of the microvessel 21 is displayed.

圖20中,依點選位置,左右各掃描16 像素(pixel),正方型範圍,如果找不到自動再向左右擴大掃描,掃描方法先產生像素間灰階值差異,結果得到如圖20中第1分佈圖110、以及第2分佈圖120的像素間灰階值差異分佈圖,再將垂直方向的灰階值加總,結果得到如圖20中的第1曲線圖111以及第2曲線圖121的曲線圖。找出曲線中的坡峰,如圖中的差異最大值,即為微血管21邊緣,依顯微鏡鏡頭14,擷取的數位影像,像素比為 1.164594 μm/pixel,圖20中左側坡峰,在第7 像素(pixel)處,右側在第10 像素(pixel)處,因此共間隔16 像素(pixel)。計算出微血管21管徑,為16像素(pixel) 乘以 1.164594μm/pixel 等於 18.6μm。In Figure 20, according to the selected position, scan 16 pixels (pixels) on the left and right, and the square range. If you can’t find it, you can automatically expand the scan to the left and right. The scanning method first produces the difference in gray scale value between pixels, and the result is as shown in Figure 20. The first distribution diagram 110 and the distribution diagram of gray scale value differences between pixels in the second distribution diagram 120, and then sum the gray scale values in the vertical direction, the result is the first graph 111 and the second graph as shown in Figure 20 121 graph. Find the peak in the curve. The maximum difference in the figure is the edge of the microvessel 21. According to the digital image captured by the microscope lens 14, the pixel ratio is 1.164594 μm/pixel. The left peak in Figure 20 is at the 7 pixels (pixel), right at 10 pixels (pixel), so a total of 16 pixels (pixel) apart. The diameter of the microvessel 21 is calculated, which is 16 pixels (pixel) multiplied by 1.164594 μm/pixel, which is equal to 18.6 μm.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技術者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之發明申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Any skilled person can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be defined in the scope of the appended patent application for invention.

11‧‧‧電腦12‧‧‧顯示器13‧‧‧感光耦合元件14‧‧‧顯微鏡鏡頭15‧‧‧指槽16‧‧‧手指17‧‧‧處理器21‧‧‧微血管22‧‧‧白血球24‧‧‧第1標線25‧‧‧第2標線81‧‧‧起點標示點82‧‧‧終點標示點85‧‧‧135度標點86‧‧‧90度標點87‧‧‧45度標點88‧‧‧工字型框架89‧‧‧最大邊緣位置90‧‧‧血管中心標示點91‧‧‧計算標示點92‧‧‧範圍外白血球101‧‧‧平均位置點102‧‧‧第1追蹤點103‧‧‧第2追蹤點104‧‧‧第3追蹤點105‧‧‧第4追蹤點106‧‧‧第5追蹤點107‧‧‧第6追蹤點110‧‧‧第1分佈圖111‧‧‧第1曲線圖120‧‧‧第2分佈圖121‧‧‧第2曲線圖11‧‧‧computer 12‧‧‧monitor 13‧‧‧photosensitive coupling element 14‧‧‧microscope lens 15‧‧‧finger slot 16‧‧‧finger 17‧‧‧processor 21‧‧‧microvascular 22‧‧‧white blood cell 24‧‧‧1st marking line 25‧‧‧2nd marking line 81‧‧‧starting mark point 82‧‧‧end point marking point 85‧‧‧135 degree punctuation 86‧‧‧90 degree punctuation 87‧‧45 degree Punctuation 88‧‧‧I-shaped frame 89‧‧‧maximum edge position 90‧‧‧vascular center mark point 91‧‧‧calculated mark point 92‧‧‧white blood cells outside the range 101‧‧‧average position point 102‧‧‧th 1st tracking point 103‧‧‧2nd tracking point 104‧‧‧3rd tracking point 105‧‧‧4th tracking point 106‧‧‧5th tracking point 107‧‧‧6th tracking point 110‧‧‧1st distribution Figure 111‧‧‧the first graph 120‧‧‧the second distribution graph 121‧‧‧the second graph

圖1為本發明裝置示意圖。 圖2為本發明起點標示點示意圖。 圖3為本發明終點標示點示意圖。 圖4為本發明以白血球解析路徑示意圖。 圖5為本發明以沿血管邊緣解析路徑示意圖。 圖6為本發明量測管徑示意圖。 圖7為本發明微血管血流流速檢測方法步驟圖。 圖8為本發明以白血球析路徑的分解畫面示意圖。 圖9為本發明微血管血流流速檢測方法步驟圖。 圖10為本發明由平均位置的角度,計算流經路徑長示意圖。 圖11為本發明以沿血管邊緣解析路徑的分解畫面示意圖。 圖12為本發明以血管邊緣解析路徑的初始搜尋路徑。 圖13A為本發明工字型框架135度搜尋示意圖。 圖13B為本發明工字型框架90度搜尋示意圖。 圖13C為本發明工字型框架45度搜尋示意圖。 圖14為本發明最大邊緣位置中心定位示意圖。 圖15為本發明以沿血管邊緣解析路徑的前進標示示意圖。 圖16A為本發明工字型框架135度搜尋示意圖。 圖16B為本發明工字型框架90度搜尋示意圖。 圖16C為本發明工字型框架45度搜尋示意圖。 圖17為本發明最大邊緣位置中心定位示意圖。 圖18為本發明以血管邊緣解析路徑的軌跡圖。 圖19為本發明以沿血管邊緣解析路徑血流流速計算示意圖。 圖20為本發明管徑量測示意圖。Figure 1 is a schematic diagram of the device of the present invention. Fig. 2 is a schematic diagram of the marking point of the starting point of the present invention. Fig. 3 is a schematic diagram of the end point marking points of the present invention. Fig. 4 is a schematic diagram of the analysis path of leukocytes in the present invention. Fig. 5 is a schematic diagram of analyzing a path along a blood vessel edge according to the present invention. Fig. 6 is a schematic diagram of measuring pipe diameter in the present invention. Fig. 7 is a step diagram of the method for detecting the blood flow velocity of microvessels of the present invention. FIG. 8 is a schematic diagram of an exploded view of the leukocyte analysis path in the present invention. Fig. 9 is a step diagram of the method for detecting the blood flow velocity of microvessels in the present invention. Fig. 10 is a schematic diagram of calculating the flow path length from the angle of the average position according to the present invention. FIG. 11 is a schematic diagram of an exploded screen for analyzing a path along a blood vessel edge according to the present invention. FIG. 12 shows the initial search path of the present invention based on the analysis of the path by the edge of the blood vessel. Fig. 13A is a schematic diagram of the 135-degree search of the I-shaped frame of the present invention. Fig. 13B is a schematic diagram of the 90-degree search of the I-shaped frame of the present invention. Fig. 13C is a schematic diagram of the 45-degree search of the I-shaped frame of the present invention. Fig. 14 is a schematic diagram of positioning the center of the maximum edge position in the present invention. FIG. 15 is a schematic diagram of the present invention to indicate progress along the analytical path along the edge of a blood vessel. Fig. 16A is a schematic diagram of the 135-degree search of the I-shaped frame of the present invention. Fig. 16B is a schematic diagram of the 90-degree search of the I-shaped frame of the present invention. Fig. 16C is a schematic diagram of the 45-degree search of the I-shaped frame of the present invention. Fig. 17 is a schematic diagram of positioning the center of the maximum edge position in the present invention. Fig. 18 is a trajectory diagram of the path analyzed by the edge of the blood vessel in the present invention. Fig. 19 is a schematic diagram of the present invention to calculate the blood flow velocity along the blood vessel edge analysis path. Fig. 20 is a schematic diagram of pipe diameter measurement in the present invention.

11‧‧‧電腦 11‧‧‧Computer

12‧‧‧顯示器 12‧‧‧Display

13‧‧‧感光耦合元件 13‧‧‧Photocoupler

14‧‧‧顯微鏡鏡頭 14‧‧‧Microscope lens

15‧‧‧指槽 15‧‧‧Finger groove

16‧‧‧手指 16‧‧‧finger

17‧‧‧處理器 17‧‧‧Processor

Claims (8)

一種微血管檢測裝置,經由一手指皮下組織中的至少一微血管影像,檢測所述微血管的血流流速以及管徑,包含有:一電腦,具有一顯示器以及一處理器;一感光耦合元件,電性訊號連結該電腦;以及一顯微鏡鏡頭,經由該顯微鏡鏡頭擷取該微血管影像,該微血管影像由該感光耦合元件形成複數幀數位影像,其中時間連續的複數幀該數位影像,經由該處理器顯示於該顯示器;其中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該處理器具有一工字型框架的一搜尋模組,包含有一45度標點、一90度標點以及一135度標點的路經搜尋到一最大邊緣位置,該處理器計算一血管中心標示點,由該血管中心標示點,經由該工字型框架的該搜尋模組,依次標示出至少一計算標示點,直到該終點標示點,該起點標示點以及該終點標示點的時間差為第2時間差,該處理器計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值,於該顯示器顯示該血流流速值,其中,經由該搜尋模組計算一最大邊緣位置的搜尋,是使用一最大邊緣量,該最大邊緣量依該起點標示點以及該計算標示點的點選位置,沿著該工字型框架的工字型左右兩側的方向,從該微血管外部往該工字型框架的中心方向各掃描複數個像素,掃描產生鄰近像素間灰階值差異,將該工字型框架的工字型中軸方向的灰階值加總,得到左側中差異最大處為相應角度的左側之該最大邊緣 量,以及得到右側中差異最大處為相應角度的右側之該最大邊緣量,其中,同一相應角度的左右兩側最大邊緣量的總和,分別是該45度標點、該90度標點以及該135度標點的相應角度的一總邊緣量,該搜尋模組將該45度標點、該90度標點、以及該135度標點的相應角度分別的該總邊緣量中,選出一相應階段中最大該總邊緣量,該相應階段的下一階段搜尋的前進方向,是往該相應階段的最大該總邊緣量的相應方向前進。 A microvessel detection device, which detects the blood flow velocity and diameter of the microvessel through at least one microvessel image in the subcutaneous tissue of a finger, including: a computer with a display and a processor; a photosensitive coupling element, electrically The signal is connected to the computer; and a microscope lens, through which the microvascular image is captured, and the microvascular image is formed into a plurality of frames of digital images by the photosensitive coupling device, wherein the time-continuous plurality of frames of the digital images are displayed on the computer through the processor The display; wherein, the processor calibrates multiple frames of the digital image corresponding to time-continuous marking points of a white blood cell in the microvessel, including a starting point marking point and an end point marking point, and the processor has a search for an I-shaped frame The module includes a 45-degree punctuation point, a 90-degree punctuation point and a 135-degree punctuation point to search for a maximum edge position, the processor calculates a blood vessel center mark point, from the blood vessel center mark point, through the I-shaped The search module of the framework sequentially marks at least one calculation mark point until the end mark point, the time difference between the start point mark point and the end point mark point is the second time difference, and the processor calculates and sums up the consecutive calculation mark points The second path length is divided by a blood flow velocity value of the second time difference, and the blood flow velocity value is displayed on the display, wherein the search for calculating a maximum edge position through the search module uses a maximum edge amount, According to the starting point marked point and the selected position of the calculated marked point, the maximum edge amount is along the direction of the left and right sides of the I-shaped frame, from the outside of the microvessel to the center of the I-shaped frame. Scan a plurality of pixels, scan to generate the difference in grayscale value between adjacent pixels, add up the grayscale values in the direction of the central axis of the I-shaped frame, and obtain the largest difference in the left side is the largest edge on the left side of the corresponding angle amount, and the largest difference in the right side is the maximum edge amount on the right side of the corresponding angle, wherein the sum of the maximum edge amounts on the left and right sides of the same corresponding angle is the 45-degree punctuation point, the 90-degree punctuation point and the 135-degree A total edge amount of the corresponding angle of the punctuation point, the search module selects the largest total edge amount in a corresponding stage from the total edge amount of the corresponding angles of the 45-degree punctuation point, the 90-degree punctuation point, and the 135-degree punctuation point amount, the advancing direction of the next stage search in the corresponding stage is to advance in the corresponding direction of the maximum total edge amount in the corresponding stage. 如申請專利範圍第1項所述之微血管檢測裝置,其中,該處理器標定複數幀該數位影像,對應該微血管中一白血球的時間連續的標示點,包括一起點標示點以及一終點標示點,該起點標示點以及該終點標示點的時間差為第1時間差,該處理器計算加總連續標示點的第1路徑長,第1路徑長除以第1時間差的一血流流速值,於該顯示器顯示該血流流速值。 The microvessel detection device described in item 1 of the scope of the patent application, wherein the processor calibrates multiple frames of the digital image corresponding to a time-continuous marker point of a white blood cell in the microvessel, including a starting point marker point and an end point marker point, The time difference between the start mark point and the end mark point is the first time difference, the processor calculates the first path length of the continuous mark points, divides the first path length by a blood flow velocity value of the first time difference, and displays it on the display Displays the blood flow velocity value. 如申請專利範圍第1項所述之微血管檢測裝置,其中,該處理器掃描複數幀該數位影像成灰階訊號,由縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點,該處理器由橫軸該微血管的兩邊緣端點的相應像素值,計算該微血管的一管徑值,於該顯示器顯示該微血管的該管徑值。 The microvessel detection device as described in item 1 of the scope of the patent application, wherein the processor scans multiple frames of the digital image into grayscale signals, and marks the two edges of the microvascular diameter from the maximum value of the sum of the grayscale signals on the vertical axis Endpoints, the processor calculates a diameter value of the microvessel from corresponding pixel values of the two edge endpoints of the microvessel on the horizontal axis, and displays the diameter value of the microvessel on the display. 一種微血管檢測方法,其係使用申請專利範圍第1項所述之微血管檢測裝置,其中,檢測步驟,包含有:待測一手指放在一指槽中;使一感光耦合元件取得一數位影像;經傳輸將該數位影像顯示在一電腦的一顯示器; 依該顯示器的該數位影像調整該手指的位置及一顯微鏡鏡頭的焦距;以及擷取該數位影像並依連續時間分解該數位影像;其中,分解該數位影像作為量測一微血管的一血流流速值,其檢測步驟包括:點選該數位影像中該白血球的一起點標示點以及一終點標示點;使用一工字型框架,以45度標點、90度標點、以及135度標點的路經搜尋到一最大邊緣位置;計算一血管中心標示點;由該血管中心標示點,經由該工字型框架依次標示出至少一計算標示點,直到該終點標示點;該起點標示點以及該終點標示點的時間差為第2時間差,計算加總連續的該計算標示點的第2路徑長,除以第2時間差的一血流流速值;以及於該顯示器顯示該血流流速值;其中,該最大邊緣位置的搜尋步驟,包括:使用一最大邊緣量,該最大邊緣量依該起點標示點以及該計算標示點的點選位置,沿著該工字型框架的工字型左右兩側的方向,從該微血管外部往該工字型框架的中心方向各掃描複數個像素;掃描產生鄰近像素間灰階值差異;將該工字型框架的工字型中軸方向的灰階值加總;得到左側中差異最大處為相應角度的左側之該最大邊緣量,以及得到右側中差異最大處為相應角度的右側之該最大邊緣量; 將同一相應角度的左右兩側最大邊緣量的總和,分別是該45度標點、該90度標點以及該135度標點的相應角度的一總邊緣量;將該45度標點、該90度標點以及該135度標點的相應角度分別的該總邊緣量中,選出一相應階段中最大該總邊緣量;以及使該相應階段的下一階段搜尋的前進方向,是往該相應階段的最大該總邊緣量的相應方向前進。 A microvessel detection method, which uses the microvessel detection device described in item 1 of the scope of the patent application, wherein the detection step includes: placing a finger to be tested in a finger groove; making a photosensitive coupling element obtain a digital image; displaying the digital image by transmission on a display of a computer; adjusting the position of the finger and the focal length of a microscope lens according to the digital image of the display; and capturing the digital image and decomposing the digital image in continuous time; wherein, decomposing the digital image as measuring a blood flow velocity of a microvessel value, and its detection steps include: clicking on the starting point marking point and an end point marking point of the white blood cell in the digital image; using an I-shaped frame to search for the path of 45 degree punctuation, 90 degree punctuation and 135 degree punctuation to a maximum edge position; calculate a blood vessel center mark point; from the blood vessel center mark point, through the I-shaped frame, at least one calculated mark point is sequentially marked until the end point mark point; the start point mark point and the end point mark point The time difference is the second time difference, calculate and add up the second path length of the consecutive calculation marked points, divide by a blood flow velocity value of the second time difference; and display the blood flow velocity value on the display; wherein, the maximum edge The search step of the position includes: using a maximum edge amount, the maximum edge amount is marked according to the starting point and the clicked position of the calculated mark point, along the direction of the left and right sides of the I-shaped frame, from A plurality of pixels are scanned from the outside of the microvessel to the center of the I-shaped frame; the gray scale value difference between adjacent pixels is generated by scanning; the gray scale values in the direction of the I-shaped central axis of the I-shaped frame are summed up; The largest difference is the maximum edge amount on the left side of the corresponding angle, and the largest difference in the right side is the maximum edge amount on the right side of the corresponding angle; The sum of the maximum edge amounts on the left and right sides of the same corresponding angle is respectively a total edge amount of the corresponding angles of the 45-degree punctuation, the 90-degree punctuation, and the 135-degree punctuation; the 45-degree punctuation, the 90-degree punctuation and Among the respective total margins of the corresponding angles of the 135-degree punctuation, select the maximum total margin in a corresponding stage; and make the forward direction of the search for the next stage of the corresponding phase be the maximum total margin towards the corresponding phase Move in the corresponding direction of the quantity. 如申請專利範圍第4項所述之微血管檢測方法,分解該數位影像作為量測一微血管的一血流流速值,其中,檢測步驟,包含有:點選該數位影像中一白血球起始位置;找出時間連續的該數位影像中同一個該白血球的位置,並點選該白血球的位置;搜尋到路徑,則標示路徑並計算該血流流速值;以及搜尋不到路徑,則顯示錯誤,並重新回到點選該數位影像中該白血球起始位置的步驟。 In the microvessel detection method described in item 4 of the scope of the patent application, the digital image is decomposed to measure a blood flow velocity value of a microvessel, wherein the detection step includes: clicking on the initial position of a white blood cell in the digital image; Find the position of the same white blood cell in the time-continuous digital image, and click the position of the white blood cell; if the path is found, mark the path and calculate the blood flow velocity value; and if the path cannot be found, display an error, and Go back to the step of selecting the initial position of the white blood cell in the digital image. 如申請專利範圍第4項所述之微血管檢測方法,分解該數位影像作為量測一微血管的一管徑值,其中,檢測步驟,包含有:點選該數位影像中該微血管內的任一位置;找出該微血管內的兩邊緣端點位置,並量測該微血管的管徑;以及手動微調量測位置,並顯示該微血管的該管徑值於該顯示器。 In the microvessel detection method described in item 4 of the scope of the patent application, the digital image is decomposed to measure a diameter value of a microvessel, wherein the detection step includes: clicking any position in the microvessel in the digital image ; finding the positions of the two edge endpoints in the microvessel, and measuring the diameter of the microvessel; and manually fine-tuning the measurement position, and displaying the value of the diameter of the microvessel on the display. 如申請專利範圍第5項所述之微血管檢測方法,分解該數位影像作為量測一微血管的一血流流速值,其中, 同一個該白血球在時間連續的該數位影像中的位置,被標定為一起點標示點以及一終點標示點、以及至少一追蹤點;計算所有該追蹤點的一平均位置點,各追蹤點和平均位置的角度,依角度進行排序;得到該白血球流經的順序,該起點標示點以及該終點標示點的時間差為第1時間差;依序加總相鄰距離,得到流經該微血管的第1路徑長;第1路徑長除以第1時間差的一血流流速值;以及於該顯示器顯示該血流流速值。 For the microvessel detection method described in item 5 of the scope of the patent application, the digital image is decomposed as a blood flow velocity value of a microvessel, wherein, The position of the same white blood cell in the time-continuous digital image is marked as a starting point marking point, an end point marking point, and at least one tracking point; an average position point of all the tracking points is calculated, each tracking point and the average The angle of the position is sorted according to the angle; the order of the flow of the white blood cells is obtained, and the time difference between the starting point and the end point is the first time difference; the adjacent distances are summed up sequentially to obtain the first path of the microvessel length; a blood flow velocity value obtained by dividing the first path length by the first time difference; and displaying the blood flow velocity value on the display. 如申請專利範圍第6項所述之微血管檢測方法,其中,找出該微血管內的兩邊緣端點位置,其步驟,包含:由掃描該數位影像成灰階訊號,形成縱軸灰階訊號值,橫軸像素值;縱軸灰階訊號加總值最大值,標定該微血管管徑的兩邊緣端點;該微血管管徑的兩邊緣端點的相應橫軸像素值,計算該微血管的該管徑值;以及於該顯示器顯示該微血管的該管徑值。 The microvessel detection method described in item 6 of the scope of the patent application, wherein the steps of finding the two edge endpoints in the microvessel include: scanning the digital image into a grayscale signal to form a grayscale signal value on the vertical axis , the pixel value on the horizontal axis; the maximum value of the sum of the gray-scale signals on the vertical axis, marking the two edge endpoints of the microvascular diameter; the corresponding horizontal axis pixel values of the two edge endpoints of the microvascular diameter, to calculate the microvascular diameter value; and display the diameter value of the microvessel on the display.
TW107105412A 2018-02-14 2018-02-14 Microvascular detection device and method TWI796317B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107105412A TWI796317B (en) 2018-02-14 2018-02-14 Microvascular detection device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107105412A TWI796317B (en) 2018-02-14 2018-02-14 Microvascular detection device and method

Publications (2)

Publication Number Publication Date
TW201934076A TW201934076A (en) 2019-09-01
TWI796317B true TWI796317B (en) 2023-03-21

Family

ID=68618403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105412A TWI796317B (en) 2018-02-14 2018-02-14 Microvascular detection device and method

Country Status (1)

Country Link
TW (1) TWI796317B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114073494A (en) * 2020-08-19 2022-02-22 京东方科技集团股份有限公司 Leukocyte detection method, system, electronic device, and computer-readable medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200500041A (en) * 2003-06-18 2005-01-01 Yio-Wha Shau Non-invasive determination of vascular mechanical properties
TW200618774A (en) * 2004-12-01 2006-06-16 Yio-Wha Shau Real time inspection system and inspection method for micro-circulation
CN102068285A (en) * 2010-12-30 2011-05-25 广州宝胆医疗器械科技有限公司 Esophagoscope system with color Doppler ultrasound scanning function
CN106163417A (en) * 2014-04-11 2016-11-23 皇家飞利浦有限公司 Imaging and therapy equipment
TWM563247U (en) * 2018-02-14 2018-07-11 洋華光電股份有限公司 Microvascular detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200500041A (en) * 2003-06-18 2005-01-01 Yio-Wha Shau Non-invasive determination of vascular mechanical properties
TW200618774A (en) * 2004-12-01 2006-06-16 Yio-Wha Shau Real time inspection system and inspection method for micro-circulation
CN102068285A (en) * 2010-12-30 2011-05-25 广州宝胆医疗器械科技有限公司 Esophagoscope system with color Doppler ultrasound scanning function
CN106163417A (en) * 2014-04-11 2016-11-23 皇家飞利浦有限公司 Imaging and therapy equipment
TWM563247U (en) * 2018-02-14 2018-07-11 洋華光電股份有限公司 Microvascular detection device

Also Published As

Publication number Publication date
TW201934076A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
CN104361327A (en) Pedestrian detection method and system
CN108334847A (en) A kind of face identification method based on deep learning under real scene
Dandrifosse et al. Imaging wheat canopy through stereo vision: Overcoming the challenges of the laboratory to field transition for morphological features extraction
AU2010286345A1 (en) Feature detection and measurement in retinal images
US20160370865A1 (en) Operation Input Device, Operation Input Method, and Program
DeWitt et al. Creating high-resolution bare-earth digital elevation models (DEMs) from stereo imagery in an area of densely vegetated deciduous forest using combinations of procedures designed for lidar point cloud filtering
CN104376334B (en) A kind of pedestrian comparison method of multi-scale feature fusion
JP2019080811A (en) Biological information detector and biological information detection method
CN111028271A (en) Multi-camera personnel three-dimensional positioning and tracking system based on human skeleton detection
CN107631782A (en) A kind of level testing methods based on Harris Corner Detections
CN110533686A (en) Line-scan digital camera line frequency and the whether matched judgment method of speed of moving body and system
CN103090796B (en) Rocket beat, the measuring system of sedimentation and method
CN111444389A (en) Conference video analysis method and system based on target detection
TWI796317B (en) Microvascular detection device and method
CN104517277B (en) A kind of arteria carotis communis ultrasonic wave rip cutting image after processing device and method
CN110279393B (en) Microvascular detection device and method
TWM563247U (en) Microvascular detection device
Qiu et al. CrossDet++: Growing crossline representation for object detection
CN106017328A (en) Method and device for measuring various types of line widths
JP2010075354A (en) Blood capillary blood flow measurement apparatus, blood capillary blood flow measurement method, and program
CN106780613A (en) The method for visualizing and its system of multi-cam calibration result
RU2536668C2 (en) Method of recognising objects
Jayawardena et al. Automated filtering of eye gaze metrics from dynamic areas of interest
CN112284983A (en) Method for measuring contact angle by image processing
CN111080712A (en) Multi-camera personnel positioning, tracking and displaying method based on human body skeleton detection