TWM550342U - Cooling fan structure of self-rotating cylindrical blade - Google Patents

Cooling fan structure of self-rotating cylindrical blade Download PDF

Info

Publication number
TWM550342U
TWM550342U TW106211810U TW106211810U TWM550342U TW M550342 U TWM550342 U TW M550342U TW 106211810 U TW106211810 U TW 106211810U TW 106211810 U TW106211810 U TW 106211810U TW M550342 U TWM550342 U TW M550342U
Authority
TW
Taiwan
Prior art keywords
rotating
hub
self
inner space
fan blade
Prior art date
Application number
TW106211810U
Other languages
Chinese (zh)
Inventor
Bor-Haw Chang
Chung-Shu Wang
Original Assignee
Asia Vital Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asia Vital Components Co Ltd filed Critical Asia Vital Components Co Ltd
Priority to TW106211810U priority Critical patent/TWM550342U/en
Publication of TWM550342U publication Critical patent/TWM550342U/en

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

自轉式圓柱體扇葉之散熱風扇結構Cooling fan structure of self-rotating cylindrical fan blade

本創作係有關於風扇領域,特別指一種自轉式圓柱體扇葉之散熱風扇結構。This creation is about the fan field, especially the cooling fan structure of a self-rotating cylindrical fan blade.

一般風扇的扇葉在旋轉後具有使氣流由經過設計之氣流角度,使氣流在翼面上下表面流動因表面距離長度不同而造成速度上的差異。因為在上翼表面氣流流動速度較快,故相應周圍的氣體壓力較小,而在下翼表面氣流流動速度較慢,故相應周圍的氣體壓力較大,此不同大小之壓力差,使得下翼面的壓力推向上翼面的壓力因而產生升力。該升力之反作用力形成氣流推力,氣流經過翼面轉彎產生作功的效果,進而表現出風扇特性。     然而,傳統動靜葉結構,或是單動葉搭配肋條結構外框,因扇葉翼形結構交互影響下,導致噪音上的寬頻噪音與窄頻噪音普遍較大。再者,傳統風扇結構,因扇葉翼形影響使氣流呈發散方式流出,故對於系統內風扇正後方的發熱元件其解熱程度不足。             是以,要如何將解決上述之問題與缺失,即為本案之創作人與從事此行業之相關廠商所亟欲研究改善之方向所在者。Generally, the fan blades of the fan have a difference in speed caused by the airflow passing through the designed airflow angle so that the airflow flows on the lower surface of the airfoil due to the difference in surface distance length. Because the airflow on the upper wing surface is faster, the corresponding gas pressure is smaller, and the airflow velocity is slower on the lower wing surface, so the corresponding surrounding gas pressure is larger, and the pressure difference of different sizes makes the lower airfoil The pressure pushes the pressure on the upper airfoil and thus generates lift. The reaction force of the lift forms the airflow thrust, and the airflow turns through the airfoil to produce a work effect, thereby exhibiting fan characteristics. However, the traditional dynamic and static leaf structure, or the single-moving blade with the rib structure outer frame, due to the interaction of the blade-wing structure, the noise and narrow-band noise on the noise are generally large. Furthermore, the conventional fan structure causes the airflow to flow out in a divergent manner due to the influence of the blade wing shape, so that the heat-dissipating element directly behind the fan in the system is insufficient in heat dissipation. Therefore, how to solve the above problems and deficiencies, that is, the creators of the case and the relevant manufacturers engaged in this industry are eager to study the direction of improvement.

本創作之目的,係提供一種散熱風扇的旋轉體轉動時能夠帶動在旋轉體其上的每一旋轉圓柱體轉動,使旋轉圓柱體自我旋轉。 本創作之另一目的,係提供一種在輪轂的頂部設置有複數圓柱體的扇葉,該等圓柱體式的扇葉除了隨輪轂轉動外,也會自我旋轉以使氣流朝輪轂的徑向放射流動。 本創作之另一目的,係提供一種在輪轂的側部設置有複數圓柱體式的扇葉,該等圓柱體式的扇葉除了隨輪轂轉動外,也會自我旋轉以使氣流朝輪轂的軸向流動。 本創作之另一目的,係提供一種自轉式圓柱體式扇葉之散熱風扇結構,經由旋轉圓柱體導出之氣流未經過習知的翼形扇葉變化交互作用下,在相同解熱下其噪音程度相對較小。 本創作之另一目的,係提供一種自轉式圓柱體式扇葉之散熱風扇結構,經由旋轉圓柱體導出之氣流較為收斂且範圍較廣,故針對系統內的發熱元件可直接受氣流導引到熱源或是直接循環帶走熱源。 本創作之另一目的,係提供一種自轉式圓柱體式扇葉之散熱風扇結構,係將馬格努斯效應應用在散熱風扇產生相應的氣流流動。 本創作之另一目的,係提供各個旋轉圓柱體的半徑係為不同尺寸,進而產生不同大小的推力使得該等旋轉圓柱體的合向推力偏一邊,令風向也偏一邊,進而應用在發熱源不在散熱風扇正後方的解熱。 為達上述目的,本創作提供一種自轉式圓柱體扇葉之散熱風扇結構,包括一旋轉體及複數旋轉圓柱體,該旋轉體包含一轉子組與一定子組,該轉子組對應該定子組以驅動該旋轉體的該轉子組轉動,並該轉子組包含一輪轂,該輪轂具有一頂部與一側部,前述複數旋轉圓柱體係樞設在相對該輪轂的頂部或側部上, 該等旋轉圓柱體隨著該旋轉體轉動而被帶動,令該等旋轉圓柱體自我旋轉。 在一實施例,該輪轂包含複數連動件,該等連動件設置在該輪轂的該頂部或該側部,該等旋轉圓柱體的一端與相對該等連動件相樞接。 在一實施例,該轉子組包含一第一內空間與一第二內空間,該第二內空間環設在該第一內空間外側,該第一內空間設有一輪轂軸桿連接該輪轂,並該第一內空間內容設一殼部及一磁性元件,該磁性元件設置在該殼部的一內側。 在一實施例,該第一內空間及該第二內空間之間設有一環形間隔壁。 在一實施例,該定子組包括一基座,該基座設有一中心軸筒,該中心軸筒內設有至少一軸承用以支撐該輪轂軸桿,一定子繞線組套設在該中心軸筒的一外側對應該磁性元件。 在一實施例,複數貫穿孔係貫設在輪轂的頂部或側部, 用以供容設該等連動件,且該等連動件容設在該頂部的該等貫穿孔內或該側部的該等貫穿孔內。 在一實施例,該等旋轉圓柱體具有一軸心桿,該等旋轉圓柱體的軸心桿的一端插接緊配在對應該連動件具有的一洞孔內,並貫穿過該洞孔凸出延伸至該第二內空間內,且該軸心桿的另一端則固設於該等旋轉圓柱體內。 在一實施例,該等連動件為一軸承。 在一實施例,該等旋轉圓柱體為非對稱排列設置。 在一實施例,該等旋轉圓柱體的一外周表面設有至少一凸條,該等凸條包括螺旋狀或翼狀或水車狀或分段徑向分佈狀。 在一實施例,該等旋轉圓柱體的半徑係為相同或不同。 在一實施例,該等旋轉圓柱體的旋轉轉速係為相同或不同。 在一實施例,該軸心桿設有一凹槽,該凹槽係凹設形成在該軸心桿的一端外周側上,且相對該輪轂的一內表面,該凹槽用以供與相對的一扣件相連接。The purpose of the present invention is to provide a rotating fan that can rotate each rotating cylinder on the rotating body when the rotating body rotates, so that the rotating cylinder rotates by itself. Another object of the present invention is to provide a blade provided with a plurality of cylinders at the top of the hub, which in addition to rotating with the hub, also rotates self-rotating to cause airflow to flow radially toward the hub. . Another object of the present invention is to provide a plurality of cylindrical blades on the side of the hub, which in addition to rotating with the hub, will also self-rotate to flow the airflow toward the axial direction of the hub. . Another object of the present invention is to provide a cooling fan structure of a self-rotating cylindrical fan blade. The airflow derived through the rotating cylinder is not subjected to the interaction of the conventional wing blade, and the noise level is relatively the same under the same heat. Smaller. Another object of the present invention is to provide a cooling fan structure of a self-rotating cylindrical fan blade. The airflow derived through the rotating cylinder is convergent and wide-ranging, so that the heating element in the system can be directly guided by the airflow to the heat source. Or take the heat away directly. Another object of the present invention is to provide a cooling fan structure for a self-rotating cylindrical fan blade, which applies the Magnus effect to a cooling fan to generate a corresponding airflow. Another purpose of the present invention is to provide the radii of the respective rotating cylinders to different sizes, thereby generating different magnitudes of thrust so that the directional thrust of the rotating cylinders is offset to one side, and the wind direction is also biased to one side, and thus applied to the heat source. Does not dissipate heat directly behind the cooling fan. In order to achieve the above object, the present invention provides a cooling fan structure of a self-rotating cylindrical fan blade, comprising a rotating body and a plurality of rotating cylinders, the rotating body comprising a rotor group and a certain subgroup, the rotor group corresponding to the stator group The rotor set that drives the rotating body rotates, and the rotor set includes a hub having a top portion and a side portion, the plurality of rotating cylindrical systems being pivoted on a top or side opposite the hub, the rotating cylinder The body is driven as the rotating body rotates, causing the rotating cylinders to rotate themselves. In one embodiment, the hub includes a plurality of linkages disposed on the top or the side of the hub, one end of the rotating cylinders being pivotally coupled to the linkages. In one embodiment, the rotor assembly includes a first inner space and a second inner space, the second inner space is disposed outside the first inner space, and the first inner space is provided with a hub axle connecting the hub. And the first inner space is provided with a shell portion and a magnetic element, and the magnetic element is disposed on an inner side of the shell portion. In an embodiment, an annular partition wall is disposed between the first inner space and the second inner space. In one embodiment, the stator assembly includes a base, the base is provided with a central shaft cylinder, and the central shaft cylinder is provided with at least one bearing for supporting the hub axle, and the stator winding group is sleeved at the center An outer side of the barrel corresponds to the magnetic element. In one embodiment, the plurality of through holes are disposed at the top or the side of the hub for receiving the linking members, and the linking members are received in the through holes of the top or at the side portions. These through holes. In one embodiment, the rotating cylinders have a shaft rod, and one end of the shaft rod of the rotating cylinder is inserted into a hole corresponding to the linking member and penetrates through the hole. The extension extends into the second inner space, and the other end of the shaft rod is fixed in the rotating cylinder. In an embodiment, the linkages are a bearing. In an embodiment, the rotating cylinders are arranged in an asymmetrical arrangement. In one embodiment, an outer peripheral surface of the rotating cylinder is provided with at least one rib, and the ribs include a spiral or a wing or a waterwheel or a segmented radial distribution. In one embodiment, the radius of the rotating cylinders is the same or different. In one embodiment, the rotational speeds of the rotating cylinders are the same or different. In one embodiment, the shaft rod is provided with a groove formed on the outer peripheral side of one end of the shaft rod, and the groove is provided for the opposite side with respect to an inner surface of the hub A fastener is connected.

本創作之上述目的及其結構與功能上的特性,將依據所附圖式之較佳實施例予以說明。 本創作係一種自轉式圓柱體扇葉之散熱風扇結構。參閱第1A、1B、1C圖式,係本創作立體分解與組合及組合剖視示意圖。該散熱風扇10包括一旋轉體20及複數旋轉圓柱體30,該旋轉體20包含一轉子組21與一定子組22,該轉子組21包含一輪轂210、複數連動件211、一第一內空間212及一第二內空間213,該輪轂210具有一頂部2101、一從該頂部2101外周延伸的側部2102及複數貫穿孔219,該側部2102相對垂直該頂部2101,該等貫穿孔219貫設在該輪轂210上在本實施例該等貫穿孔219貫穿過該輪轂210的頂部2101,以連通該第二內空間213,且該等貫穿孔219係用以供容設該等連動件211。 該等連動件211於本實施例表示為一軸承223,但並不侷限於此。該等連動件211設置在前述輪轂210內在本實施例該等連動件211容設在該輪轂210的頂部2101的該等貫穿孔219內,且該等連動件211的頂面係平齊該輪轂210的頂面(即輪轂210的頂部2101外表面),並該等連動件211設有一洞孔2111。 該第一內空間212與第二內空間213係為同心圓的排列,該第二內空間213環在該第一內空間212的外側,且該第一、二內空間212、213之間設有一環形間隔壁217用以間隔出兩個內空間(即第一、二內空間212、213)。該第一內空間212設有一輪轂軸桿214,該輪轂軸桿214連接該輪轂210,並該第一內空間212內容設有一殼部218(例如鐵殼)及一磁性元件216(例如磁鐵),該磁性元件216環設在該殼部218的一內側。 該定子組22包括一基座221,該基座221設有一中心軸筒222,該中心軸筒222內設有至少一軸承223用以支撐該輪轂軸桿214,藉由該輪轂軸桿214插設(或樞設)在該中心軸筒222內的軸承223後被一扣片(例如C型環扣片)扣設,以令該轉子組21設置在該定子組22上。一定子繞線組215套設在該中心軸筒222的一外側對應到該第一內空間212的磁性元件216,當該定子繞線組215通電後跟該磁性元件216產生磁感作用,進而驅動該旋轉體20的轉子組21轉動。該定子繞線組215包括堆疊的一矽鋼片組2151、一絕緣架組2152、一電路板2154及一繞線組2153,該絕緣架組2152分設在該矽鋼片組2151的上、下方,該繞線組2153纏繞在該絕緣架組2152上,該電路板2154設置在該絕緣架組2152的下方且電性連接該繞線組2153,所述電路板2154係透過電線(無圖式)連接一外部電源(無圖式)以提供定子繞線組215運作的電源。其中前述輪轂210與基座221係為絕緣材質,例如塑膠材質製成。 而前述複數旋轉圓柱體30在本實施例係垂直設置在相對該輪轂210的頂部2101上,且該等旋轉圓柱體30的一端與相對該等連動件211相樞接,讓該等旋轉圓柱體30可於對應該等連動件211上自轉,藉由該等連動件211可有效增加該等旋轉圓柱體30的轉動效率的功能,並該旋轉圓柱體30的一中心線c2平行於該輪轂210的中心線c1。該等旋轉圓柱體30被該旋轉體20的轉子組21帶動圍繞該輪轂210的中心線c1轉動。在一實施例,前述該等連動件211可省略,由該等旋轉圓柱體30的一端插設鬆接在對應該輪轂210的該等貫穿孔219內,令該等旋轉圓柱體30隨著該旋轉體20的轉子組21轉動而被帶動,令該等旋轉圓柱體30自我旋轉。 續參閱第1A、1C、2A圖,該等旋轉圓柱體30具有一軸心桿301,該等旋轉圓柱體30的軸心桿301一端插接緊配在對應該等連動件211的洞孔2111內,並貫穿過該洞孔2111凸出延伸至該第二內空間213內,且該軸心桿301的另一端則固設於該等旋轉圓柱體30內,藉由該等連動件211用以支撐對應該等旋轉圓柱體30的軸心桿301,令該等旋轉圓柱體30位於相對該輪轂210的頂部2101上方,當該等旋轉圓柱體30隨著該旋轉體20的轉子組21轉動而被帶動,使該等旋轉圓柱體30連動對應該等連動件211自我旋轉,其中該等旋轉圓柱體30的轉動方向D1與轉子組21的轉動方向D2為同方向。並該每一旋轉圓柱體30的外周表面設有至少一凸條303,在本實施例該凸條303係為螺旋狀且螺旋繞設在該旋轉圓柱體30的外周表面。 請繼續參閱第2A、2B圖所示,當該轉子組21的輪轂210轉動帶動該等旋轉圓柱體30圍繞該輪轂210的中心線c1轉動,使該轉子組21的輪轂210轉動後的慣性將迫使呈非對稱排列的該等旋轉圓柱體30會隨著該輪轂210的轉動方向D2而被帶動(或甩動或振動或偏動或因重力而旋動),令各該旋轉圓柱體30的軸心桿301會連動相對各該連動件211一起轉動,並由於該輪轂210在持續轉動之下,慣性持續加速作用使該旋轉圓柱體30在對應該連動件211上圍繞輪轂210的中心線c1自我旋轉,此時使該旋轉圓柱體30的一側有一橫向氣流流向該旋轉圓柱體30(如第2B圖所示,從圖中的右側流向左側) 進而產生馬格努斯(Magnus type)效應,也就是在旋轉圓柱體30的上方A的速度總和為相加效應(橫向速度F1與切線速度F2為同向)速度變快,則壓力較小(根據柏努利定律Bernoulli's principle),在旋轉圓柱體30的下方B的速度總和為相減效應(橫向速度F1與切線速度F2為反向)速度變慢,則壓力較大(根據柏努利定律Bernoulli's principle);最後兩壓力差下壓力大的往壓力小的推擠過去,將產生與橫流方向垂直的橫向推力Y。在這樣的作用下使散熱風扇10產生徑向氣流H(如離心式氣流),也就是氣流H呈放射狀的朝散熱風扇10的徑向流動。 請參閱第3圖,在另一實施例,前述軸心桿301設有一凹槽302,該凹槽302係凹設形成在該軸心桿301的一端外周側上,且相對該輪轂210的頂部2101內側,令該凹槽302用與相對的一扣件40(例如C型環扣件)相連接,藉由該扣件40有效防止該軸心桿301脫離。 續參第4A、4B、4C圖所示,在另一實施例,該等旋轉圓柱體30係放射狀以非對稱排列方式的樞設在該旋轉體20的輪轂210的側部2102上,且該等貫穿孔219也改設計在貫穿該輪轂210的側部2102上,令該等連動件211容設在對應該側部2102的該等貫穿孔219內,以與對應該旋轉圓柱體30相樞設。當旋轉體20的輪轂210轉動及旋轉圓柱體30因旋轉體20的輪轂210轉動後的慣性而自我轉動時,在旋轉圓柱體30的上方A的速度總和為相減效應(橫向速度F1與切線速度F2為反向)速度變慢,則壓力較大(根據柏努利定律Bernoulli's principle),在旋轉圓柱體30的下方B的速度總和為相加效應(橫向速度F1與切線速度F2為同向)速度變快,則壓力較小(根據柏努利定律Bernoulli's principle);最後兩壓力差下壓力大的往壓力小的推擠過去,將產生與橫流方向垂直的橫向推力Y。使散熱風扇10產生軸向氣流V,也就是氣流V朝散熱風扇的軸向流動。其中該等旋轉圓柱體30的轉動方向D1與轉子組21的轉動方向D2為同方向。 參閱第5A、5B圖所示,前面所述實施例的圖示中該等旋轉圓柱體30的半徑係為相同尺寸的表示,但是在一些替代實施例,設置在該旋轉體20的輪轂210的頂部2101(如第5A圖)或者側部2102(如第5B圖)的各個旋轉圓柱體30的半徑係為不同尺寸,例如圖示中有三根旋轉圓柱體30a、30b、30c,旋轉圓柱體30a的半徑大於旋轉圓柱體30b的半徑大於旋轉圓柱體30c的半徑,藉此各旋轉圓柱體30a、30b、30c產生不同大小的輸出風量,進而產生不同大小的推力,可以調節輸出風量的大小使得該等旋轉圓柱體30的合向推力偏一邊,進而應用在發熱源不在散熱風扇10正後方的解熱。 續參閱第6A、6B及6C圖所示,前面的實施例雖然表示該旋轉圓柱體30的外周表面的凸條303(如前面各圖所示)為螺旋狀,但是在另外一些替代實施例,該等凸條303a係為翼狀(如第6A圖)或者該等凸條303b為水車狀(如第6B圖)或該等凸條303c為分段且徑向分佈狀(如第6C圖)。 請繼續參閱第7圖所示, 本實施例垂直設置在該輪轂210的頂部2101的旋轉圓柱體30a、30b、30c係為非對稱排列設置。其中非對稱排列設置就是兩兩旋轉圓柱體30a、30b、30c之間的直線距離不相等,如第7圖所示,前述三個直線距離L11~L13不相等。 請繼續參閱第8圖所示,放射狀設置在該旋轉體20的輪轂210的側部2102的該等旋轉圓柱體30a、30b、30c係為非對稱排列設置。其中非對稱排列設置就是兩兩旋轉圓柱體30a、30b、30c的夾角α、β、γ的角度不相同,例如夾角α為120度,夾角β為140度,夾角γ為100度。且如第8圖所示,各旋轉圓柱體30a、30b、30c的軸向線c21、c22、c23延伸到輪轂210的中心線c1,旋轉圓柱體30a及旋轉圓柱體30b之間的夾角γ界定在軸向線c21、c22之間;旋轉圓柱體30b及旋轉圓柱體30c之間的夾角α界定在軸向線c22、c23之間;旋轉圓柱體30c及旋轉圓柱體30a之間的夾角β界定在軸向線c21、c23之間。 綜上所述,本創作有以下優點;     1.當散熱風扇10的旋轉體20轉動時能夠帶動在旋轉體20的頂部2101(或側部2102)上的每一旋轉圓柱體30轉動,使每一旋轉圓柱體30自我旋轉。     2.該等旋轉圓柱體30設置在輪轂210的頂部2101會產生徑向放射流動,或設置在輪轂210的側部2102會產生軸向流動。     3.經由旋轉圓柱體30導出之氣流,因為未經過習知的翼形扇葉變化交互作用下,所以在相同解熱下其噪音程度相對較小。     4.經由旋轉圓柱體30導出之氣流較為收斂且範圍較廣,故針對系統內的發熱元件可直接受氣流導引到熱源或是直接循環帶走熱源。 以上已將本創作做一詳細說明,惟以上所述者,僅為本創作之一較佳實施例而已, 當不能限定本創作實施之範圍。即凡依本創作申請範圍所作之均等變化與修飾等,皆應仍屬本創作之專利涵蓋範圍。The above object of the present invention, as well as its structural and functional features, will be described in accordance with the preferred embodiments of the drawings. This creation is a cooling fan structure of a self-rotating cylindrical fan blade. Referring to Figures 1A, 1B, and 1C, a schematic diagram of the three-dimensional decomposition and combination and combination of the present invention is shown. The cooling fan 10 includes a rotating body 20 and a plurality of rotating cylinders 30. The rotating body 20 includes a rotor group 21 and a certain subset 22, the rotor group 21 includes a hub 210, a plurality of linking members 211, and a first inner space. 212 and a second inner space 213, the hub 210 has a top portion 2101, a side portion 2102 extending from the outer periphery of the top portion 2101, and a plurality of through holes 219, the side portions 2102 are relatively perpendicular to the top portion 2101, and the through holes 219 The through hole 219 is disposed on the hub 210 in the embodiment. The through hole 219 extends through the top portion 2101 of the hub 210 to communicate with the second inner space 213. The through holes 219 are used to accommodate the linking members 211. . These linkages 211 are shown as a bearing 223 in this embodiment, but are not limited thereto. The linkages 211 are disposed in the hub 210. In the present embodiment, the linkages 211 are received in the through holes 219 of the top portion 2101 of the hub 210, and the top surface of the linkages 211 is flush with the hub. The top surface of 210 (i.e., the outer surface of the top 2101 of the hub 210), and the linkages 211 are provided with a hole 2111. The first inner space 212 and the second inner space 213 are arranged in a concentric circle. The second inner space 213 is outside the first inner space 212, and the first and second inner spaces 212 and 213 are disposed. An annular partition wall 217 is provided for spacing the two inner spaces (i.e., the first and second inner spaces 212, 213). The first inner space 212 is provided with a hub axle 214, the hub axle 214 is connected to the hub 210, and the first inner space 212 is provided with a shell portion 218 (such as an iron shell) and a magnetic element 216 (such as a magnet). The magnetic element 216 is annularly disposed on an inner side of the shell portion 218. The stator assembly 22 includes a base 221, and the base 221 is provided with a central shaft barrel 222. The central shaft barrel 222 is provided with at least one bearing 223 for supporting the hub axle 214, and the hub shaft 214 is inserted. The bearing 223 in the central shaft barrel 222 is disposed (or pivoted) and then fastened by a clasp (for example, a C-shaped loop piece) to allow the rotor set 21 to be disposed on the stator set 22. The stator winding group 215 is disposed on an outer side of the central shaft barrel 222 and corresponds to the magnetic element 216 of the first inner space 212. When the stator winding group 215 is energized, the magnetic element 216 generates a magnetic induction effect. The rotor group 21 that drives the rotating body 20 rotates. The stator winding group 215 includes a stacked steel sheet group 2151, an insulating frame group 2152, a circuit board 2154, and a winding group 2153. The insulating frame group 2152 is disposed above and below the silicon steel sheet group 2151. The winding group 2153 is wound on the insulating frame group 2152. The circuit board 2154 is disposed under the insulating frame group 2152 and electrically connected to the winding group 2153. The circuit board 2154 is connected to the wire (not shown). An external power source (not shown) is connected to provide power to the stator winding set 215. The hub 210 and the base 221 are made of an insulating material, such as a plastic material. The plurality of rotating cylinders 30 are vertically disposed on the top portion 2101 of the hub 210, and one ends of the rotating cylinders 30 are pivotally connected to the linking members 211 to allow the rotating cylinders to be pivoted. 30 can be rotated on the corresponding linking member 211, and the linking member 211 can effectively increase the rotational efficiency of the rotating cylinder 30, and a center line c2 of the rotating cylinder 30 is parallel to the hub 210. Center line c1. The rotating cylinders 30 are rotated by the rotor group 21 of the rotating body 20 about the center line c1 of the hub 210. In one embodiment, the interlocking members 211 may be omitted, and one end of the rotating cylinders 30 is inserted into the through holes 219 corresponding to the hub 210, so that the rotating cylinders 30 follow The rotor group 21 of the rotating body 20 is rotated to be driven to rotate the rotating cylinders 30 themselves. Continuing to refer to FIGS. 1A, 1C, and 2A, the rotating cylinders 30 have a shaft rod 301. One end of the shaft rod 301 of the rotating cylinder 30 is inserted into the hole 2111 of the corresponding linking member 211. And extending through the hole 2111 to the second inner space 213, and the other end of the shaft rod 301 is fixed in the rotating cylinder 30, by the linking member 211 To support the shaft rod 301 corresponding to the rotating cylinder 30, the rotating cylinders 30 are positioned above the top 2101 of the hub 210, and when the rotating cylinders 30 rotate with the rotor assembly 21 of the rotating body 20 When the rotating cylinders 30 are interlocked, the interlocking members 211 are self-rotating, wherein the rotating direction D1 of the rotating cylinders 30 is in the same direction as the rotating direction D2 of the rotor group 21. The outer circumferential surface of each of the rotating cylinders 30 is provided with at least one rib 303. In the present embodiment, the rib 303 is spirally wound and spirally wound around the outer circumferential surface of the rotating cylinder 30. Continuing to refer to FIGS. 2A and 2B, when the hub 210 of the rotor assembly 21 rotates to rotate the rotating cylinder 30 about the center line c1 of the hub 210, the inertia of the hub 210 of the rotor assembly 21 will be rotated. Forcing the rotating cylinders 30 in an asymmetrical arrangement to be driven (or tilted or vibrated or biased or rotated by gravity) with the direction of rotation D2 of the hub 210, so that each of the rotating cylinders 30 The shaft rod 301 will rotate together with each of the linking members 211, and since the hub 210 is continuously rotated, the inertia continues to accelerate to cause the rotating cylinder 30 to surround the center line c1 of the hub 210 on the corresponding linking member 211. Self-rotation, at this time, a side of the rotating cylinder 30 has a lateral airflow to the rotating cylinder 30 (as shown in FIG. 2B, flowing from the right side to the left side in the figure) to generate a Magnus type effect. That is, the sum of the speeds above A of the rotating cylinder 30 is the additive effect (the lateral velocity F1 and the tangential velocity F2 are in the same direction), the velocity becomes faster, and the pressure is smaller (according to Bernoulli's principle), in rotation Below the cylinder 30 The sum of the degrees is the subtractive effect (the transverse velocity F1 and the tangential velocity F2 are opposite), the velocity is slower, the pressure is larger (according to Bernoulli's principle); the pressure of the last two pressures is small and the pressure is small. In the past, a lateral thrust Y perpendicular to the cross-flow direction will be produced. Under such action, the heat radiating fan 10 generates a radial airflow H (e.g., a centrifugal airflow), that is, the airflow H radially flows toward the radial direction of the heat radiating fan 10. Referring to FIG. 3, in another embodiment, the shaft rod 301 is provided with a recess 302 formed on the outer peripheral side of one end of the shaft rod 301 and opposite to the top of the hub 210. The inside of the 2101 is such that the groove 302 is connected to an opposite fastener 40 (for example, a C-ring fastener), and the fastener 40 is effectively prevented from being disengaged. 4A, 4B, and 4C, in another embodiment, the rotating cylinders 30 are radially disposed in an asymmetric arrangement on the side portion 2102 of the hub 210 of the rotating body 20, and The through holes 219 are also designed to extend through the side portions 2102 of the hub 210 such that the linking members 211 are received in the through holes 219 corresponding to the side portions 2102 to correspond to the corresponding rotating cylinders 30. Pivot. When the hub 210 of the rotating body 20 rotates and the rotating cylinder 30 self-rotates due to the inertia of the rotation of the hub 210 of the rotating body 20, the sum of the speeds above the rotating cylinder 30 is the subtractive effect (lateral velocity F1 and tangent) When the speed F2 is reversed, the speed becomes slower, and the pressure is larger (according to Bernoulli's principle), the sum of the speeds of B below the rotating cylinder 30 is an additive effect (the lateral speed F1 and the tangential speed F2 are in the same direction). When the speed is faster, the pressure is smaller (according to Bernoulli's principle); the pressure with a large pressure under the last two pressure differences is pushed forward, and a lateral thrust Y perpendicular to the cross flow direction is generated. The heat radiating fan 10 is caused to generate an axial airflow V, that is, the airflow V flows toward the axial direction of the heat radiating fan. The rotation direction D1 of the rotating cylinders 30 is the same direction as the rotation direction D2 of the rotor group 21. Referring to Figures 5A, 5B, the radius of the rotating cylinders 30 in the illustration of the previously described embodiments is a representation of the same size, but in some alternative embodiments, disposed on the hub 210 of the rotating body 20. The radius of each of the rotating cylinders 30 of the top portion 2101 (as in Figure 5A) or the side portion 2102 (as in Figure 5B) is of a different size, such as three rotating cylinders 30a, 30b, 30c in the illustration, the rotating cylinder 30a The radius of the rotating cylinder 30b is larger than the radius of the rotating cylinder 30c, whereby each of the rotating cylinders 30a, 30b, 30c generates different output air volumes, thereby generating different magnitudes of thrust, and the output air volume can be adjusted so that the When the directional thrust of the rotating cylinder 30 is shifted to the side, it is applied to the heat source which is not decooled directly behind the heat radiating fan 10. 6A, 6B, and 6C, the foregoing embodiment shows that the ribs 303 (shown in the previous figures) of the outer circumferential surface of the rotating cylinder 30 are spiral, but in other alternative embodiments, The ribs 303a are wing-shaped (as shown in FIG. 6A) or the ribs 303b are waterwheel-shaped (as shown in FIG. 6B) or the ribs 303c are segmented and radially distributed (as shown in FIG. 6C). . Continuing to refer to FIG. 7, the rotating cylinders 30a, 30b, 30c disposed vertically on the top portion 2101 of the hub 210 are arranged in an asymmetrical arrangement. The asymmetric arrangement is such that the linear distances between the two rotating cylinders 30a, 30b, and 30c are not equal. As shown in FIG. 7, the three straight distances L11 to L13 are not equal. Continuing to refer to FIG. 8, the rotating cylinders 30a, 30b, 30c radially disposed on the side portion 2102 of the hub 210 of the rotating body 20 are arranged in an asymmetrical arrangement. The asymmetric arrangement is such that the angles α, β, and γ of the two rotating cylinders 30a, 30b, and 30c are different, for example, the angle α is 120 degrees, the angle β is 140 degrees, and the angle γ is 100 degrees. And as shown in Fig. 8, the axial lines c21, c22, c23 of the respective rotating cylinders 30a, 30b, 30c extend to the center line c1 of the hub 210, and the angle γ between the rotating cylinder 30a and the rotating cylinder 30b is defined Between the axial lines c21, c22; the angle α between the rotating cylinder 30b and the rotating cylinder 30c is defined between the axial lines c22, c23; the angle β between the rotating cylinder 30c and the rotating cylinder 30a is defined Between the axial lines c21, c23. In summary, the present invention has the following advantages: 1. When the rotating body 20 of the cooling fan 10 rotates, it can drive each rotating cylinder 30 on the top portion 2101 (or the side portion 2102) of the rotating body 20 to rotate, so that each A rotating cylinder 30 rotates itself. 2. The rotating cylinders 30 are disposed on the top 2101 of the hub 210 to create a radial radiating flow, or the side portions 2102 disposed in the hub 210 may cause axial flow. 3. The airflow exited via the rotating cylinder 30, because of the interaction of the conventional wing-shaped blade changes, the noise level is relatively small under the same anti-heating. 4. The airflow derived through the rotating cylinder 30 is more convergent and has a wider range. Therefore, the heating element in the system can be directly guided by the airflow to the heat source or directly circulate and take away the heat source. The present invention has been described in detail above, but the above description is only a preferred embodiment of the present invention, and the scope of the present invention cannot be limited. That is, all changes and modifications made in accordance with the scope of this creation application shall remain covered by the patents of this creation.

10‧‧‧散熱風扇
20‧‧‧旋轉體
21‧‧‧轉子組
210‧‧‧輪轂
2101‧‧‧頂部
2102‧‧‧側部
211‧‧‧連動件
2111‧‧‧洞孔
212‧‧‧第一內空間
213‧‧‧第二內空間
214‧‧‧輪轂軸桿
215‧‧‧定子繞線組
2151‧‧‧矽鋼片組
2152‧‧‧絕緣架組
2153‧‧‧繞線組
2154‧‧‧電路板
216‧‧‧磁性元件
217‧‧‧環形間隔壁
218‧‧‧殼部
219‧‧‧貫穿孔
22‧‧‧定子組
221‧‧‧基座
222‧‧‧中心軸筒
223‧‧‧軸承
30、30a、30b、30c‧‧‧旋轉圓柱體
301‧‧‧軸心桿
302‧‧‧凹槽
303、303a、303b、303c‧‧‧凸條
40‧‧‧扣件
c1、c2‧‧‧中心線
L11~L13‧‧‧直線距離
α、β、γ‧‧‧夾角
c21、c22、c23‧‧‧軸向線
D1、D2‧‧‧轉動方向
H‧‧‧徑向氣流
V‧‧‧軸向氣流
Y‧‧‧橫向推力
10‧‧‧ cooling fan
20‧‧‧ rotating body
21‧‧‧Rotor group
210‧‧·wheels
2101‧‧‧ top
2102‧‧‧ side
211‧‧‧ linkages
2111‧‧‧ hole
212‧‧‧First inner space
213‧‧‧Second inner space
214‧‧‧Wheel axle
215‧‧‧Stator winding group
2151‧‧‧矽Steel sheet group
2152‧‧‧Insulation frame set
2153‧‧‧ Winding group
2154‧‧‧Circuit board
216‧‧‧Magnetic components
217‧‧‧ annular partition
218‧‧‧Shell Department
219‧‧‧through holes
22‧‧‧stator group
221‧‧‧Base
222‧‧‧ center shaft tube
223‧‧‧ bearing
30, 30a, 30b, 30c‧‧‧ rotating cylinder
301‧‧‧axis rod
302‧‧‧ Groove
303, 303a, 303b, 303c‧‧ s ribs
40‧‧‧fasteners
C1, c2‧‧‧ center line
L11~L13‧‧‧ Straight line distance α, β, γ‧‧‧ angle
C21, c22, c23‧‧‧ axial line
D1, D2‧‧‧ direction of rotation
H‧‧‧ radial airflow
V‧‧‧ axial airflow
Y‧‧‧ lateral thrust

第1A圖係本創作立體分解示意圖。 第1B圖係本創作立體組合示意圖。 第1C圖係本創作組合剖視示意圖。 第2A圖係本創作俯視作動示意圖。 第2B圖係本創作旋轉圓柱體自我轉動之作動示意圖。 第3圖係本創作另一實施組合剖視示意圖。 第4A圖係本創作另一實施立體分解示意圖。 第4B圖係本創作另一實施之立體作動示意圖。 第4C圖係本創作另一實施之正視作動示意圖。 第5A、5B圖係本創作其他替代實施示意圖。 第6A、6B、6C圖為本創作旋轉圓柱體各種實施之示意圖。 第7圖為本創作該等旋轉圓柱體在該輪轂的頂部非對稱設置之示意圖。 第8圖為本創作該等旋轉圓柱體在該輪轂的側部非對稱設置之示意圖。Figure 1A is a schematic exploded view of the present creation. Figure 1B is a schematic diagram of the three-dimensional combination of the present creation. The 1C figure is a schematic cross-sectional view of the creation combination. Figure 2A is a schematic view of the creation of the present plan. Figure 2B is a schematic diagram of the self-rotation of the rotating cylinder of the present creation. Figure 3 is a schematic cross-sectional view showing another embodiment of the present creation. Fig. 4A is a perspective exploded view showing another embodiment of the present creation. Figure 4B is a schematic diagram of the stereoscopic operation of another embodiment of the present creation. Figure 4C is a schematic diagram of the front view of another implementation of the present creation. Figures 5A and 5B are schematic diagrams of other alternative implementations of the present creation. Figures 6A, 6B, and 6C are schematic views of various implementations of the inventive rotating cylinder. Figure 7 is a schematic view showing the asymmetric arrangement of the rotating cylinders at the top of the hub. Figure 8 is a schematic view showing the asymmetric arrangement of the rotating cylinders on the side of the hub.

10‧‧‧散熱風扇 10‧‧‧ cooling fan

20‧‧‧旋轉體 20‧‧‧ rotating body

21‧‧‧轉子組 21‧‧‧Rotor group

210‧‧‧輪轂 210‧‧·wheels

2101‧‧‧頂部 2101‧‧‧ top

2102‧‧‧側部 2102‧‧‧ side

211‧‧‧連動件 211‧‧‧ linkages

2111‧‧‧洞孔 2111‧‧‧ hole

215‧‧‧定子繞線組 215‧‧‧Stator winding group

2151‧‧‧矽鋼片組 2151‧‧‧矽Steel sheet group

2152‧‧‧絕緣架組 2152‧‧‧Insulation frame set

2153‧‧‧繞線組 2153‧‧‧ Winding group

2154‧‧‧電路板 2154‧‧‧Circuit board

219‧‧‧貫穿孔 219‧‧‧through holes

22‧‧‧定子組 22‧‧‧stator group

221‧‧‧基座 221‧‧‧Base

222‧‧‧中心軸筒 222‧‧‧ center shaft tube

223‧‧‧軸承 223‧‧‧ bearing

30‧‧‧旋轉圓柱體 30‧‧‧Rotating cylinder

301‧‧‧軸心桿 301‧‧‧axis rod

303‧‧‧凸條 303‧‧ ‧ ribs

c1、c2‧‧‧中心線 C1, c2‧‧‧ center line

Claims (12)

一種自轉式圓柱體扇葉之散熱風扇結構,包括: 一旋轉體,包含一轉子組與一定子組,該轉子組對應該定子組以驅動該旋轉體的該轉子組轉動,並該轉子組包含一輪轂,該輪轂具有一頂部與一側部;及 複數旋轉圓柱體,係樞設在相對該輪轂的該頂部或該側部上, 該等旋轉圓柱體隨著該旋轉體轉動而被帶動,令該等旋轉圓柱體自我旋轉。A cooling fan structure for a self-rotating cylindrical fan blade, comprising: a rotating body comprising a rotor group and a certain subgroup, the rotor group corresponding to the stator group to drive the rotor group of the rotating body, and the rotor group includes a hub having a top portion and a side portion; and a plurality of rotating cylinders pivotally mounted on the top portion or the side portion of the hub, the rotating cylinders being driven as the rotating body rotates, Let the rotating cylinders rotate themselves. 如請求項1所述之自轉式圓柱體扇葉之散熱風扇結構,其中該輪轂包含複數連動件,該等連動件設置在該輪轂的該頂部或該側部,該等旋轉圓柱體的一端與相對該等連動件相樞接。The heat dissipation fan structure of the self-rotating cylindrical fan blade of claim 1, wherein the hub comprises a plurality of linkages disposed at the top or the side of the hub, one end of the rotating cylinders The pivotal members are pivotally connected to each other. 如請求項2所述之自轉式圓柱體扇葉之散熱風扇結構,其中該轉子組包含一第一內空間與一第二內空間,該第二內空間環設在該第一內空間外側,該第一內空間設有一輪轂軸桿連接該輪轂,並該第一內空間內容設一殼部及一磁性元件,該磁性元件設置在該殼部的一內側。The heat dissipation fan structure of the self-rotating cylindrical fan blade of claim 2, wherein the rotor group includes a first inner space and a second inner space, and the second inner space ring is disposed outside the first inner space. The first inner space is provided with a hub axle connected to the hub, and the first inner space is provided with a shell portion and a magnetic element, and the magnetic element is disposed on an inner side of the shell portion. 如請求項3所述之自轉式圓柱體扇葉之散熱風扇結構,其中該第一內空間及該第二內空間之間設有一環形間隔壁。The cooling fan structure of the self-rotating cylindrical fan blade of claim 3, wherein an annular partition wall is disposed between the first inner space and the second inner space. 如請求項3所述之自轉式圓柱體扇葉之散熱風扇結構,其中該定子組包括一基座,該基座設有一中心軸筒,該中心軸筒內設有至少一軸承用以支撐該輪轂軸桿,一定子繞線組套設在該中心軸筒的一外側對應該磁性元件。The cooling fan structure of the self-rotating cylindrical fan blade of claim 3, wherein the stator assembly comprises a base, the base is provided with a central shaft cylinder, and the central shaft cylinder is provided with at least one bearing for supporting the The hub axle, the stator winding group is sleeved on an outer side of the central shaft cylinder to correspond to the magnetic component. 如請求項2所述之自轉式圓柱體扇葉之散熱風扇結構,其中複數貫穿孔係貫設在該輪轂的該頂部或該側部, 用以供容設該等連動件,且該等連動件容設在該頂部的該等貫穿孔內或該側部的該等貫穿孔內。The heat dissipation fan structure of the self-rotating cylindrical fan blade of claim 2, wherein a plurality of through holes are disposed at the top or the side of the hub for receiving the linkages, and the linkages The pieces are received in the through holes of the top or in the through holes of the side. 如請求項6所述之自轉式圓柱體扇葉之散熱風扇結構,其中該等旋轉圓柱體具有一軸心桿,該等旋轉圓柱體的軸心桿的一端插接緊配在對應該等連動件具有的一洞孔內,並貫穿過該洞孔凸出延伸至該第二內空間內,且該軸心桿的另一端則固設於該等旋轉圓柱體內。The cooling fan structure of the self-rotating cylindrical fan blade according to claim 6, wherein the rotating cylinder has an axial rod, and one end of the shaft rod of the rotating cylinder is tightly coupled to match The piece has a hole and protrudes through the hole to extend into the second inner space, and the other end of the shaft is fixed in the rotating cylinder. 如請求項2所述之自轉式圓柱體扇葉之散熱風扇結構,其中該等連動件為一軸承。The cooling fan structure of the self-rotating cylindrical fan blade according to claim 2, wherein the linking member is a bearing. 如請求項1所述之自轉式圓柱體扇葉之散熱風扇結構,其中該等旋轉圓柱體為非對稱排列設置。The cooling fan structure of the self-rotating cylindrical fan blade according to claim 1, wherein the rotating cylinders are arranged in an asymmetric arrangement. 如請求項1所述之自轉式圓柱體扇葉之散熱風扇結構,其中該等旋轉圓柱體的一外周表面設有至少一凸條,該等凸條包括螺旋狀或翼狀或水車狀或分段徑向分佈狀。A cooling fan structure of a self-rotating cylindrical fan blade according to claim 1, wherein an outer peripheral surface of the rotating cylinder is provided with at least one ridge, the ribs including a spiral or a wing or a waterwheel or a minute The segments are radially distributed. 如請求項1所述之自轉式圓柱體扇葉之散熱風扇結構,其中該等旋轉圓柱體的半徑係為相同或不同。The cooling fan structure of the self-rotating cylindrical fan blade according to claim 1, wherein the radius of the rotating cylinders is the same or different. 如請求項7所述之自轉式圓柱體扇葉之散熱風扇結構,其中該軸心桿設有一凹槽,該凹槽係凹設形成在該軸心桿的一端外周側上,且相對該輪轂的一內側,該凹槽用以供與相對的一扣件相連接。The cooling fan structure of the self-rotating cylindrical fan blade according to claim 7, wherein the shaft rod is provided with a groove formed concavely on an outer peripheral side of one end of the shaft rod, and opposite to the hub An inner side of the groove is for connecting with an opposite fastener.
TW106211810U 2017-08-10 2017-08-10 Cooling fan structure of self-rotating cylindrical blade TWM550342U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106211810U TWM550342U (en) 2017-08-10 2017-08-10 Cooling fan structure of self-rotating cylindrical blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106211810U TWM550342U (en) 2017-08-10 2017-08-10 Cooling fan structure of self-rotating cylindrical blade

Publications (1)

Publication Number Publication Date
TWM550342U true TWM550342U (en) 2017-10-11

Family

ID=61013537

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106211810U TWM550342U (en) 2017-08-10 2017-08-10 Cooling fan structure of self-rotating cylindrical blade

Country Status (1)

Country Link
TW (1) TWM550342U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI624597B (en) * 2017-08-10 2018-05-21 奇鋐科技股份有限公司 Cooling fan structure with rotational cylindrical fan vanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI624597B (en) * 2017-08-10 2018-05-21 奇鋐科技股份有限公司 Cooling fan structure with rotational cylindrical fan vanes

Similar Documents

Publication Publication Date Title
JP5259416B2 (en) Series axial fan
CN105889099B (en) A kind of small micro-blower
US20190226492A1 (en) Serrated fan blade, axial fan, and centrifugal fan
CN205858770U (en) A kind of little Minitype radiating fan
CN205858771U (en) A kind of ultrahigh speed radiator fan
CN106026517A (en) Ultra-high-speed turbine generator
US10202981B2 (en) Modular fan blade
TWI631283B (en) Axial flow fan
KR101342746B1 (en) Cooling fan
US10511204B2 (en) Cooling fan structure with rotational cylindrical fan blades
TWI468589B (en) Fan assembly
JP4374897B2 (en) Axial fan
CN104948474A (en) Fan
TWI624597B (en) Cooling fan structure with rotational cylindrical fan vanes
TWM550342U (en) Cooling fan structure of self-rotating cylindrical blade
CN201310489Y (en) Radiating fan
TWI290606B (en) Axial fan system
TWM551658U (en) Heat dissipating fan structure with cylindrical fan blades
CN101392761A (en) Axial flow type electronic radiator fan
TWI632302B (en) Cooling fan structure of cylindrical fan blade
WO2021103050A1 (en) Fan and motor
CN210799491U (en) Axial flow cooling fan assembly structure
US10598187B2 (en) Heat-dissipation fan with cylindrical fan blades
CN107435649A (en) The cooling fan structure of rotation type cylinder flabellum
CN210599484U (en) High-performance axial flow impeller