TWM544104U - Suppresion electrode of electrostatic lens for use in ion implanter - Google Patents

Suppresion electrode of electrostatic lens for use in ion implanter Download PDF

Info

Publication number
TWM544104U
TWM544104U TW105213844U TW105213844U TWM544104U TW M544104 U TWM544104 U TW M544104U TW 105213844 U TW105213844 U TW 105213844U TW 105213844 U TW105213844 U TW 105213844U TW M544104 U TWM544104 U TW M544104U
Authority
TW
Taiwan
Prior art keywords
electrode
suppression electrode
opening
suppression
curvature
Prior art date
Application number
TW105213844U
Other languages
Chinese (zh)
Inventor
W. 戴維斯 李
Original Assignee
瓦里安半導體設備公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瓦里安半導體設備公司 filed Critical 瓦里安半導體設備公司
Publication of TWM544104U publication Critical patent/TWM544104U/en

Links

Abstract

The utility provides a suppression electrode of an electrostatic lens for use in an ion implanter. The electrostatic lens includes a terminal electrode, a ground electrode and first and second suppression electrodes. Each of the electrodes includes an hourglass-shaped opening therein for receiving an ion beam traveling in a z direction therethrough. The hourglass-shaped opening in the terminal electrode has a size that is different from a size of the opening in at least one of the first and second suppression electrodes and the ground electrode. Each electrode also includes at least one curved (convex or concave) face as observed in the y-z plane, where the y-direction is a vertical direction and the z-direction is the direction of travel of the ion beam. The curvatures of the faces of the electrodes can be different between adjacent electrodes so that a distance between adjacent electrodes at upper and lower extremities of the adjacent electrodes is different from a distance between the adjacent electrodes at their centers.

Description

用於離子植入機中的靜電透鏡的抑制電極 Suppression electrode for electrostatic lens used in ion implanter

本新型創作是有關於離子植入的領域,且特別是有關於一種用於離子植入工具中的四極管透鏡。 The present invention is directed to the field of ion implantation and, in particular, to a quadrupole lens for use in an ion implantation tool.

離子植入是用於將雜質離子摻雜到例如半導體晶片等襯底中的過程。一般而言,離子束從離子源腔室朝向襯底引導。不同進料氣體被供應到離子源腔室以獲得用於形成具有特定摻雜劑特性的離子束的等離子。舉例來說,從進料氣體PH3、BF3或AsH3中,各種原子和分子離子形成在離子源內,並且隨後經歷加速和品質選擇。所產生的離子植入到襯底中的深度是基於離子植入能量和離子的品質。一種或多種類型的離子物質可以不同劑量且在不同能級下植入在目標晶片或襯底中以獲得所希望的裝置特性。襯底中的精確的摻雜分佈對於適當的裝置操作是關鍵的。 Ion implantation is a process for doping impurity ions into a substrate such as a semiconductor wafer. In general, the ion beam is directed from the ion source chamber toward the substrate. Different feed gases are supplied to the ion source chamber to obtain plasma for forming an ion beam having specific dopant characteristics. For example, from the feed gas PH 3, BF 3 or AsH 3, various atomic and molecular ions formed in the ion source, and subsequently subjected to selection and quality of acceleration. The depth at which the generated ions are implanted into the substrate is based on the ion implantation energy and the quality of the ions. One or more types of ionic species can be implanted in the target wafer or substrate at different doses and at different energy levels to achieve the desired device characteristics. The precise doping profile in the substrate is critical to proper device operation.

離子植入機廣泛用於半導體製造中以在襯底中提供此類摻雜分佈或者修改不同材料。在典型的離子植入機中,從離子源中產生的離子被引導通過一系列射束線元件,這些射束線元件可 以包括一個或多個分析磁體以及多個電極。分析磁體選擇所希望的離子物質、濾出污染物質和具有不希望的能量的離子,並且在目標晶片處調節離子束品質。適當地成形的電極(通常被稱作“透鏡”)用於修改沿著射束的行進的不同點處的離子束的能量和形狀。離子能量的顯著改變可以發生在此類透鏡中並且可以對離子束的形狀具有相當大的影響。離子束的形狀可以繼而影響目標襯底的最終摻雜分佈的品質。常規系統和方法可能無法提供隨著離子束被引導到目標襯底的離子束的偏轉和/或聚集的所希望的程度的控制。 Ion implanters are widely used in semiconductor fabrication to provide such doping profiles or modify different materials in a substrate. In a typical ion implanter, ions generated from an ion source are directed through a series of beamline elements that can To include one or more analytical magnets and multiple electrodes. The analysis magnet selects the desired ionic species, filters out contaminants and ions with undesired energy, and adjusts the ion beam quality at the target wafer. A suitably shaped electrode (often referred to as a "lens") is used to modify the energy and shape of the ion beam at different points along the travel of the beam. Significant changes in ion energy can occur in such lenses and can have a considerable impact on the shape of the ion beam. The shape of the ion beam can in turn affect the quality of the final doping profile of the target substrate. Conventional systems and methods may not provide the desired degree of control as the ion beam is deflected and/or concentrated by the ion beam directed to the target substrate.

本新型創作公開了用於離子植入機中的靜電透鏡的抑制電極。抑制電極具有第一表面和第二表面以及抑制電極開口以用於接收穿過其中沿著z軸行進的離子束,第一表面和第二表面中的至少一個在y-z平面中是彎曲的。抑制極開口具有頂端、底端和中心部分,並且抑制電極開口在頂端和底端處的寬度大於抑制電極開口在中心部分處的寬度,並且抑制電極開口在頂端處的寬度等於抑制電極開口在底端處的寬度。抑制電極的第一表面具有第一曲率半徑,並且抑制電極的第二表面具有第二曲率半徑,並且其中第一曲率半徑和第二曲率半徑是從沿著負“z”軸的點測量的,其中負z軸是從抑制電極的中心在離子束行進的相反方向上測量的,並且其中第一曲率半徑小於第二曲率半徑。 The present invention discloses a suppression electrode for an electrostatic lens used in an ion implanter. The suppression electrode has a first surface and a second surface and a suppression electrode opening for receiving an ion beam traveling therethrough along the z-axis, at least one of the first surface and the second surface being curved in the y-z plane. The suppressing pole opening has a top end, a bottom end, and a center portion, and suppressing a width of the electrode opening at the top end and the bottom end is greater than a width of the suppressing electrode opening at the central portion, and suppressing a width of the electrode opening at the tip end is equal to suppressing the electrode opening at the bottom The width at the end. The first surface of the suppression electrode has a first radius of curvature, and the second surface of the suppression electrode has a second radius of curvature, and wherein the first radius of curvature and the second radius of curvature are measured from points along the negative "z" axis, Wherein the negative z-axis is measured from the center of the suppression electrode in the opposite direction of travel of the ion beam, and wherein the first radius of curvature is less than the second radius of curvature.

在本新型創作的一實施例中,在所述y-z平面中觀察的所述抑制電極的所述第一表面是凹入的。 In an embodiment of the novel creation, the first surface of the suppression electrode viewed in the y-z plane is concave.

在本新型創作的一實施例中,在所述y-z平面中觀察的所述抑制電極的所述第二表面是凸出的。 In an embodiment of the novel creation, the second surface of the suppression electrode viewed in the y-z plane is convex.

在本新型創作的一實施例中,所述第一曲率半徑和第二曲率半徑在250毫米到310毫米的範圍內。 In an embodiment of the novel creation, the first radius of curvature and the second radius of curvature are in the range of 250 mm to 310 mm.

基於上述,靜電透鏡通過調節抑制電極可以獲得多種不同射束形狀。 Based on the above, the electrostatic lens can obtain a variety of different beam shapes by adjusting the suppression electrode.

為讓本新型創作的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will become more apparent and understood from the following description.

95‧‧‧離子束 95‧‧‧Ion Beam

100‧‧‧離子植入機 100‧‧‧Ion implanter

102‧‧‧離子源 102‧‧‧Ion source

106‧‧‧分析儀磁體 106‧‧‧Analyzer magnet

108‧‧‧品質解析縫隙 108‧‧‧Quality analysis gap

109‧‧‧減速透鏡 109‧‧‧Deceleration lens

110‧‧‧掃描器 110‧‧‧Scanner

112‧‧‧準直器 112‧‧‧ collimator

114‧‧‧襯底平臺 114‧‧‧Background platform

116‧‧‧襯底 116‧‧‧Substrate

118‧‧‧加速器/減速器 118‧‧‧Accelerator/Reducer

120‧‧‧驅動系統 120‧‧‧Drive system

200‧‧‧靜電透鏡 200‧‧‧Electrostatic lens

202‧‧‧端電極 202‧‧‧ terminal electrode

204‧‧‧第一抑制電極 204‧‧‧First suppression electrode

206‧‧‧第二抑制電極 206‧‧‧Second suppression electrode

208‧‧‧接地電極 208‧‧‧Ground electrode

210‧‧‧第一空間 210‧‧‧First space

212‧‧‧第二空間 212‧‧‧Second space

214‧‧‧第三空間 214‧‧‧ Third Space

202a、204a、206a、208a‧‧‧頂部部分 202a, 204a, 206a, 208a‧‧‧ top part

202b、204b、206b、208b‧‧‧底部部分 202b, 204b, 206b, 208b‧‧‧ bottom part

202c、204c、206c、208c‧‧‧主體部分 202c, 204c, 206c, 208c‧‧‧ main part

202d、204d、206d、208d‧‧‧開口 202d, 204d, 206d, 208d‧‧‧ openings

202e、204e、206e、208e‧‧‧第一表面 202e, 204e, 206e, 208e‧‧‧ first surface

202f、204f、206f、208f‧‧‧第二表面 202f, 204f, 206f, 208f‧‧‧ second surface

216、216a、216b、216c、216d‧‧‧開口的頂端 The top of the opening of 216, 216a, 216b, 216c, 216d‧‧

218、218a、218b、218c、218d‧‧‧開口的中心部分 Central part of the opening of 218, 218a, 218b, 218c, 218d‧‧

220‧‧‧品質解析結構 220‧‧‧Quality analysis structure

220a、220b、220c、220d‧‧‧開口的底端 220a, 220b, 220c, 220d‧‧‧ bottom end of the opening

221‧‧‧底端 221‧‧‧ bottom

223‧‧‧掃描器組裝件 223‧‧‧Scanner assembly

W‧‧‧寬度 W‧‧‧Width

H‧‧‧高度 H‧‧‧ Height

OH‧‧‧開口高度 OH‧‧‧ opening height

OHb‧‧‧開口高度 OHb‧‧‧ opening height

OHa‧‧‧開口高度 OHa‧‧‧ opening height

OHc‧‧‧開口高度 OHc‧‧ ‧ opening height

OHd‧‧‧開口高度 OHd‧‧‧ opening height

OW1、OW1b、OW2b、OW3b‧‧‧開口寬度 OW1, OW1b, OW2b, OW3b‧‧‧ opening width

OW1a、OW2a、OW3a‧‧‧開口寬度 OW1a, OW2a, OW3a‧‧‧ opening width

OW1c、OW2c、OW3c‧‧‧開口寬度 OW1c, OW2c, OW3c‧‧‧ opening width

OW1d、OW2d、OW3d‧‧‧開口寬度 OW1d, OW2d, OW3d‧‧‧ opening width

LR1b‧‧‧曲率半徑 LR1b‧‧‧ radius of curvature

LR1a‧‧‧曲率半徑 LR1a‧‧‧ radius of curvature

LR2a‧‧‧曲率半徑 LR2a‧‧‧ radius of curvature

LR2b‧‧‧曲率半徑 LR2b‧‧‧ radius of curvature

LR3a‧‧‧曲率半徑 LR3a‧‧‧ radius of curvature

LR3b‧‧‧曲率半徑 LR3b‧‧‧ radius of curvature

LR4a‧‧‧曲率半徑 LR4a‧‧‧ radius of curvature

LH1‧‧‧透鏡高度 LH1‧‧‧Lens height

LW1‧‧‧透鏡寬度 LW1‧‧ lens width

LH2‧‧‧透鏡高度 LH2‧‧‧Lens height

LW2‧‧‧透鏡寬度 LW2‧‧‧ lens width

LH3‧‧‧透鏡高度 LH3‧‧‧Lens height

LW3‧‧‧透鏡寬度 LW3‧‧‧ lens width

LH4‧‧‧透鏡高度 LH4‧‧‧Lens height

LW4‧‧‧透鏡寬度 LW4‧‧‧ lens width

UE‧‧‧上端 UE‧‧‧Upper

LE‧‧‧下端 LE‧‧‧Bottom

D1‧‧‧距離 D1‧‧‧ distance

D2‧‧‧距離 D2‧‧‧ distance

圖1是說明根據本新型的離子植入系統的示意圖。 1 is a schematic diagram illustrating an ion implantation system in accordance with the present invention.

圖2是根據本新型的示例性靜電透鏡的側視圖。 2 is a side view of an exemplary electrostatic lens in accordance with the present invention.

圖3是圖2的靜電透鏡的端視圖。 3 is an end view of the electrostatic lens of FIG. 2.

圖4A和圖4B是說明單獨操作模式的圖2的靜電透鏡的側視圖。 4A and 4B are side views of the electrostatic lens of Fig. 2 illustrating a single mode of operation.

圖5至圖7相應地是圖2的靜電透鏡的示例性端電極的等距視圖、正視圖和側視圖。 5 through 7 are correspondingly isometric, front and side views of an exemplary end electrode of the electrostatic lens of Fig. 2.

圖8至圖10相應地是圖2的靜電透鏡的示例性第一抑制電極的等距視圖、正視圖和側視圖。 8 through 10 are correspondingly isometric, front and side views of an exemplary first suppression electrode of the electrostatic lens of Fig. 2.

圖11至圖13相應地是圖2的靜電透鏡的示例性第二抑制電 極的等距視圖、正視圖和側視圖。 11 to 13 are correspondingly exemplary second suppression powers of the electrostatic lens of FIG. 2 Extreme isometric view, front view and side view.

圖14至圖16相應地是圖2的靜電透鏡的示例性接地電極的等距視圖、正視圖和側視圖。 14 through 16 are correspondingly isometric, front and side views of an exemplary ground electrode of the electrostatic lens of Fig. 2.

圖17是圖2的靜電透鏡的鄰近電極之間的示例性非同心表面配置的示意圖。 17 is a schematic illustration of an exemplary non-concentric surface configuration between adjacent electrodes of the electrostatic lens of FIG. 2.

圖18至圖24是與圖2的靜電透鏡相關聯的電場線的示例性圖。 18 through 24 are exemplary diagrams of electric field lines associated with the electrostatic lens of Fig. 2.

圖1描述根據本新型的各種實施例示出為離子植入機100的射束線離子植入機的框形式的俯視平面圖。離子植入機100包括離子源102,該離子源102被配置成產生離子束95。離子束95可以提供為點狀射束或帶狀射束,其具有射束寬度(沿著示出的笛卡爾座標的X方向)大於射束高度(沿著Y方向)的截面。在本文中所使用的定則中,Z方向是指平行於離子束95的中心射線軌道的軸的方向。因此,Z方向的絕對方向以及X方向(垂直於Z方向)可在離子植入機100內的不同點處改變,如圖所示。 1 depicts a top plan view of a frame form of a beamline ion implanter shown as an ion implanter 100 in accordance with various embodiments of the present invention. The ion implanter 100 includes an ion source 102 that is configured to generate an ion beam 95. The ion beam 95 can be provided as a point beam or a ribbon beam having a beam width (along the X direction of the Cartesian coordinates shown) that is greater than the beam height (along the Y direction). In the rules used herein, the Z direction refers to the direction parallel to the axis of the central ray trajectory of the ion beam 95. Thus, the absolute direction in the Z direction and the X direction (perpendicular to the Z direction) can be varied at different points within the ion implanter 100, as shown.

離子源102可以包括離子腔室,其中供應到離子腔室的進料氣體得到離子化。此氣體可以是以下項或可以包括或包含以下項:氫氣、氦氣、其它稀有氣體、氧氣、氮氣、砷、硼、磷、鋁、銦、銻、碳硼烷、烷烴、另一大分子化合物或其它p型或n型摻雜物。所產生的離子可以通過一系列提取電極(未示出)從離子腔室中提取以形成離子束95。在衝擊安置在襯底平臺114上 的襯底116之前離子束95可行進通過分析儀磁體106、品質解析縫隙108、減速透鏡109且通過準直器112。在一些實施例中襯底平臺114可以被配置成至少沿著Y方向掃描襯底116。 The ion source 102 can include an ion chamber in which the feed gas supplied to the ion chamber is ionized. The gas may be or may include or include the following: hydrogen, helium, other rare gases, oxygen, nitrogen, arsenic, boron, phosphorus, aluminum, indium, antimony, carborane, alkanes, another macromolecular compound Or other p-type or n-type dopants. The generated ions can be extracted from the ion chamber through a series of extraction electrodes (not shown) to form an ion beam 95. Placed on the substrate platform 114 in an impact The ion beam 95 can travel through the analyzer magnet 106, the quality resolution slit 108, the deceleration lens 109, and through the collimator 112 before the substrate 116. In some embodiments the substrate platform 114 can be configured to scan the substrate 116 at least along the Y direction.

在圖1中所示的實例中,離子束95可以提供為由掃描器110沿著X方向掃描的點狀射束,以便提供具有與襯底116的寬度W類似的寬度的經掃描的離子束95。在其它實施例中,離子束95可以提供為帶狀射束。在圖1的實例中,為了清楚起見,省略了對所屬領域的一般技術人員而言顯而易見的可用於離子植入機100的操作的其它射束線元件。 In the example shown in FIG. 1, ion beam 95 can be provided as a spot beam scanned by scanner 110 along the X direction to provide a scanned ion beam having a width similar to the width W of substrate 116. 95. In other embodiments, the ion beam 95 can be provided as a ribbon beam. In the example of FIG. 1, other beamline elements useful for operation of ion implanter 100 that are apparent to those of ordinary skill in the art are omitted for clarity.

離子植入機100進一步包括加速器/減速器118。如圖1中所示,加速器/減速器118可以安置在離子源102與分析儀磁體106之間的點A處。在其它實施例中,加速器/減速器118可以安置在離子植入機100內的其它位置處,例如,點B或點C。加速器/減速器118可以耦合到驅動系統120,該驅動系統120可操作以調節加速器/減速器118內的一個電極相對於其它電極的位置。這尤其允許離子束95中的射束電流在離子束95的給定離子能量下得到調節。 The ion implanter 100 further includes an accelerator/reducer 118. As shown in FIG. 1, the accelerator/reducer 118 can be disposed at point A between the ion source 102 and the analyzer magnet 106. In other embodiments, the accelerator/reducer 118 can be disposed at other locations within the ion implanter 100, such as point B or point C. The accelerator/reducer 118 can be coupled to a drive system 120 that is operable to adjust the position of one of the electrodes within the accelerator/reducer 118 relative to the other electrodes. This in particular allows the beam current in the ion beam 95 to be adjusted at a given ion energy of the ion beam 95.

在各種實施例中,離子植入機100可以被配置成輸送用於“中間”能量離子植入的離子束95,或對應於用於單個帶電離子的60keV到300keV的植入能量範圍的60kV到300kV的電壓範圍。如下文所論述,加速器/減速器118的透鏡與端抑制電極電氣絕緣且獨立地驅動,因此允許離子植入機100的增大的射束電 流操作範圍。 In various embodiments, the ion implanter 100 can be configured to deliver an ion beam 95 for "intermediate" energy ion implantation, or 60 kV to an implant energy range of 60 keV to 300 keV for a single charged ion. 300kV voltage range. As discussed below, the lens of the accelerator/reducer 118 is electrically insulated from the end suppression electrode and independently driven, thus allowing for increased beam power of the ion implanter 100. Flow operation range.

圖2是示例性靜電透鏡200(其可用作圖1中所示的透鏡109)的側視圖,該靜電透鏡200具有端電極202、第一抑制電極204和第二抑制電極206以及接地電極208。鄰近電極沿著z軸(即,沿著離子束95的行進方向)間隔開。因此,第一空間210可以形成於端電極202與第一抑制電極204之間,第二空間212可以形成於第一抑制電極204與第二抑制電極206之間,並且第三空間214可以形成於第二抑制電極206與接地電極208之間。如將描述,所公開的靜電透鏡200是四極管減速透鏡並且被設計成採用高且相對薄的略微地發散的輸入離子束95、對該離子束95進行減速,並且產生更加聚集的平行或會聚的輸出離子束95。 2 is a side view of an exemplary electrostatic lens 200 having a terminal electrode 202, a first suppression electrode 204 and a second suppression electrode 206, and a ground electrode 208, which may be used as the lens 109 shown in FIG. . Adjacent electrodes are spaced along the z-axis (ie, along the direction of travel of the ion beam 95). Therefore, the first space 210 may be formed between the terminal electrode 202 and the first suppression electrode 204, the second space 212 may be formed between the first suppression electrode 204 and the second suppression electrode 206, and the third space 214 may be formed on The second suppression electrode 206 is between the ground electrode 208. As will be described, the disclosed electrostatic lens 200 is a quadrupole deceleration lens and is designed to decelerate the ion beam 95 with a high and relatively thin slightly divergent input ion beam 95 and produce a more concentrated parallel or converging The output ion beam 95.

端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個可以包括頂部部分202a、204a、206a、208a、底部部分202b、204b、206b、208b和主體部分202c、204c、206c、208c。端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個還包括開口202d、204d、206d、208d(圖3),其限定每個電極的主體部分202c、204c、206c、208c內的孔口,穿過孔口在x方向上具有寬度“W”以及在y方向上具有高度“H”的離子束95在z方向上通過靜電透鏡200。施加到端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個的電壓可用於隨著離子束95通過靜電透鏡200使射束成形。如稍後將更詳細地描述,端電極202、第一抑制電極204、第 二抑制電極206及接地電極208的形狀還可用於隨著離子束95通過靜電透鏡200使射束成形。 Each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 may include a top portion 202a, 204a, 206a, 208a, a bottom portion 202b, 204b, 206b, 208b, and a body portion 202c, 204c , 206c, 208c. Each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 further includes openings 202d, 204d, 206d, 208d (FIG. 3) that define body portions 202c, 204c of each electrode, The orifices in 206c, 208c pass through the electrostatic lens 200 in the z-direction through the orifice having a width "W" in the x-direction and a height "H" in the y-direction. The voltage applied to each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 can be used to shape the beam as the ion beam 95 passes through the electrostatic lens 200. As will be described in more detail later, the terminal electrode 202, the first suppression electrode 204, the first The shape of the second suppression electrode 206 and the ground electrode 208 can also be used to shape the beam as the ion beam 95 passes through the electrostatic lens 200.

端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個的主體部分202c、204c、206c、208c可以包括相對的第一表面202e、204e、206e、208e和第二表面202f、204f、206f、208f,其中第一表面大致上面向迎面而來的離子束95。端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個的第一表面202e、204e、206e、208e和第二表面202f、204f、206f、208f中的一些可以是平坦的,而端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個的第一表面202e、204e、206e、208e和第二表面202f、204f、206f、208f中的一些可以是彎曲的。舉例來說,在一些實施例中,當從側面觀察時,端電極202、第一抑制電極204、第二抑制電極206及接地電極208中的每一個的第一表面202e、204e、206e、208e和第二表面202f、204f、206f、208f可以是凸出的、凹入的或平坦的。 The body portions 202c, 204c, 206c, 208c of each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 may include opposing first surfaces 202e, 204e, 206e, 208e, and second Surfaces 202f, 204f, 206f, 208f, wherein the first surface generally faces the oncoming ion beam 95. Some of the first surfaces 202e, 204e, 206e, 208e and the second surfaces 202f, 204f, 206f, 208f of each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 may be Flat, and the first surface 202e, 204e, 206e, 208e and the second surface 202f, 204f, 206f, 208f of each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 are Some of them can be curved. For example, in some embodiments, the first surface 202e, 204e, 206e, 208e of each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 when viewed from the side And the second surface 202f, 204f, 206f, 208f may be convex, concave or flat.

在所說明的實施例中,如在y-z平面中觀察的(其中“y”軸是垂直的並且“z”軸沿著離子束95的行進方向),端電極202的第一表面202e和第一抑制電極204的第一表面204e是凸出的,如在y-z平面中觀察的,第二抑制電極206的第一表面206e和接地電極208的第一表面208e是凹入的,如在y-z平面中觀察的,端電極202的第二表面202f和第一抑制電極204的第二表面204f是凹入的,如在y-z平面中觀察的,第二抑制電極206的第二表面 206f是凸出的並且接地電極208的第二表面208f是平坦的。這引起端電極202在負“z”方向上是“凸出”的,第一抑制電極204在負和正“z”方向上是“凸出”的,並且第二抑制電極206在正“z”方向上是“凸出”的。由於接地電極208的第一表面208e是凹入的而第二表面208f是大致上平坦的,所以接地電極208在正“z”方向上呈現為凹進的。將瞭解表面形狀的特定的所說明的佈置僅是示例性的而非限制性的,並且可以使用曲率的其它組合。 In the illustrated embodiment, as viewed in the yz plane (where the "y" axis is vertical and the "z" axis is along the direction of travel of the ion beam 95), the first surface 202e of the tip electrode 202 and the first The first surface 204e of the suppression electrode 204 is convex, as viewed in the yz plane, the first surface 206e of the second suppression electrode 206 and the first surface 208e of the ground electrode 208 are concave, as in the yz plane Observed, the second surface 202f of the terminal electrode 202 and the second surface 204f of the first suppression electrode 204 are concave, as viewed in the yz plane, the second surface of the second suppression electrode 206 206f is convex and the second surface 208f of the ground electrode 208 is flat. This causes the terminal electrode 202 to be "bulged" in the negative "z" direction, the first suppression electrode 204 is "bumped" in the negative and positive "z" directions, and the second suppression electrode 206 is in the positive "z" The direction is "bulging". Since the first surface 208e of the ground electrode 208 is concave and the second surface 208f is substantially flat, the ground electrode 208 appears concave in the positive "z" direction. The particular illustrated arrangement of the surface shape will be understood to be illustrative and not limiting, and other combinations of curvatures may be used.

如可見,鄰近電極的鄰近表面是大致上互補的(即,凹入表面定位成鄰近於相對的凸出表面)。這引起在從靜電透鏡200的側面觀察時介於中間的第一空間210、第二空間212和第三空間214是彎曲的(即,如先前限定的,它們在y-z平面中是彎曲的)。 As can be seen, adjacent surfaces of adjacent electrodes are substantially complementary (ie, the concave surfaces are positioned adjacent to the opposing convex surfaces). This causes the first space 210, the second space 212, and the third space 214 in the middle as viewed from the side of the electrostatic lens 200 to be curved (i.e., as previously defined, they are curved in the y-z plane).

圖3示出了靜電透鏡200的端視圖,示出了示例性離子束95的端電極202、第一抑制電極204、第二抑制電極206及接地電極208具有高度“H”和寬度“W”的開口202d、204d、206d、208d。如可見,端電極202的開口202d具有沙漏形狀。因此,開口202d可具有沿著y軸測量的開口高度“OH”、如沿著x軸在開口的頂端216處測量的第一開口寬度“OW1”、沿著x軸在開口的中心部分218處測量的第二開口寬度“OW2”,以及沿著x軸在開口的底端221處測量的第三開口寬度“OW3”。第一開口寬度“OW1”和第三開口寬度“OW3”可以是相同的,而第二開口寬度“OW2”可以小於第一開口寬度“OW1”和第三開口寬度“OW3”。這種配置提供圖3中所示的所希望的沙漏形狀。 如稍後將更詳細地描述,其它電極的開口204d、206d、208d可具有類似的沙漏配置,其具有如關於端電極的開口202d所描述的開口高度和開口寬度。在一些實施例中,開口202d、204d、206d、208d全部具有相同的形狀和尺寸,而在其它實施例中一些開口的形狀和/或尺寸不同於其它開口的那些。 3 shows an end view of electrostatic lens 200 showing end electrode 202, first suppression electrode 204, second suppression electrode 206, and ground electrode 208 of exemplary ion beam 95 having a height "H" and a width "W" Openings 202d, 204d, 206d, 208d. As can be seen, the opening 202d of the terminal electrode 202 has an hourglass shape. Thus, opening 202d can have an opening height "OH" measured along the y-axis, a first opening width "OW1" as measured along the x-axis at the top end 216 of the opening, along the x-axis at the central portion 218 of the opening The measured second opening width "OW2" and the third opening width "OW3" measured along the x-axis at the bottom end 221 of the opening. The first opening width "OW1" and the third opening width "OW3" may be the same, and the second opening width "OW2" may be smaller than the first opening width "OW1" and the third opening width "OW3". This configuration provides the desired hourglass shape shown in FIG. As will be described in more detail later, the openings 204d, 206d, 208d of the other electrodes may have a similar hourglass configuration with an opening height and an opening width as described with respect to the opening 202d of the terminal electrode. In some embodiments, the openings 202d, 204d, 206d, 208d all have the same shape and size, while in other embodiments some of the openings are different in shape and/or size from those of the other openings.

靜電透鏡200可以是減速透鏡,其被配置成減速離子束95使得射束在所希望的植入能量下擊中目標工作零件。電壓電勢可以選擇性地施加到端電極202、第一抑制電極204、第二抑制電極206和接地電極208中的每一個以隨著離子束95行進穿過靜電透鏡200而操控離子束95的離子能量。參考圖4A和圖4B,示出了靜電透鏡200的兩個操作模式。在這些圖中在品質解析結構222的情境中示出了靜電透鏡200,並且可以包括電極的示例性掃描器組裝件223偏置以按所希望的方式掃描射束。 The electrostatic lens 200 can be a deceleration lens configured to decelerate the ion beam 95 such that the beam hits the target working part at the desired implantation energy. A voltage potential can be selectively applied to each of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 to manipulate the ions of the ion beam 95 as the ion beam 95 travels through the electrostatic lens 200. energy. Referring to Figures 4A and 4B, two modes of operation of the electrostatic lens 200 are illustrated. Electrostatic lens 200 is shown in the context of quality resolution structure 222 in these figures, and an exemplary scanner assembly 223, which may include electrodes, is biased to scan the beam in a desired manner.

在圖4A中說明瞭單模式的操作。如將瞭解,單模式可以用於較高能量射束。在此模式中,品質解析結構220、端電極202、第二抑制電極206和接地電極208保持在接地電勢下,而第一抑制電極204保持在負電勢下。此類佈置可以提供較高能量離子束95的聚集。在圖4B中說明瞭具有兩步減速的操作的“減速”模式。品質解析結構220和端電極202將保持在相同電勢“VT”處。第一抑制電極204將保持在較低電勢“VS1”處以抑制電子流,接地電極208將保持在接地電勢處,而第二抑制電極206將保持在中間電勢“VS2”處。將瞭解這些模式僅是示例性的而非限制性 的。實際上電極可以保持在多種電勢中的任何一種處以產生具有所希望的組的特性的離子束95。 The operation of the single mode is illustrated in Figure 4A. As will be appreciated, single mode can be used for higher energy beams. In this mode, the quality resolution structure 220, the terminal electrode 202, the second suppression electrode 206, and the ground electrode 208 are maintained at a ground potential while the first suppression electrode 204 is maintained at a negative potential. Such an arrangement can provide for agglomeration of the higher energy ion beam 95. The "deceleration" mode of operation with two-step deceleration is illustrated in Figure 4B. The quality resolution structure 220 and the terminal electrode 202 will remain at the same potential "VT". The first suppression electrode 204 will remain at the lower potential "VS1" to suppress the flow of electrons, the ground electrode 208 will remain at the ground potential, and the second suppression electrode 206 will remain at the intermediate potential "VS2". It will be understood that these models are exemplary and not limiting. of. In practice the electrodes can be maintained at any of a variety of potentials to produce an ion beam 95 having the desired set of characteristics.

參考圖5至圖7,將更詳細地描述端電極202。端電極202可具有如沿著y軸測量的透鏡高度“LH1”,以及如沿著x軸測量的透鏡寬度“LW1”。如先前描述,端電極202可具有頂部部分202a、底部部分202b、主體部分202c和開口202d。開口202d可具有沙漏形狀,其具有沿著y軸測量的開口高度“OHa”、如沿著x軸在開口的頂端216a處測量的第一開口寬度“OW1a”、沿著x軸在開口的中心部分218a處測量的第二開口寬度“OW2a”,以及沿著x軸在開口的底端220a處測量的第三開口寬度“OW3a”。第一開口寬度“OW1a”和第三開口寬度“OW3a”可以是相同的,而第二開口寬度“OW2a”可以小於第一開口寬度“OW1a”和第三開口寬度“OW3a”。 Referring to Figures 5 through 7, the terminal electrode 202 will be described in more detail. The terminal electrode 202 may have a lens height "LH1" as measured along the y-axis, and a lens width "LW1" as measured along the x-axis. As previously described, the tip electrode 202 can have a top portion 202a, a bottom portion 202b, a body portion 202c, and an opening 202d. The opening 202d may have an hourglass shape having an opening height "OHa" measured along the y-axis, a first opening width "OW1a" as measured along the x-axis at the top end 216a of the opening, and a center along the x-axis at the opening The second opening width "OW2a" measured at portion 218a, and the third opening width "OW3a" measured at the bottom end 220a of the opening along the x-axis. The first opening width "OW1a" and the third opening width "OW3a" may be the same, and the second opening width "OW2a" may be smaller than the first opening width "OW1a" and the third opening width "OW3a".

如先前描述,端電極202的第一表面202e和第二表面202f可以是彎曲的。因此,第一表面202e可具有第一曲率半徑“LR1a”,而第二表面202f可具有第二曲率半徑“LR1b”。兩個曲率半徑都可以從沿著正“z”軸的點測量(即,在離子束95行進的方向上靜電透鏡200的下游)。在所說明的實施例中,第一曲率半徑“LR1a”大於第二曲率半徑“LR1b”。 As previously described, the first surface 202e and the second surface 202f of the terminal electrode 202 can be curved. Thus, the first surface 202e can have a first radius of curvature "LR1a" and the second surface 202f can have a second radius of curvature "LR1b". Both radii of curvature may be measured from points along the positive "z" axis (ie, downstream of electrostatic lens 200 in the direction in which ion beam 95 travels). In the illustrated embodiment, the first radius of curvature "LR1a" is greater than the second radius of curvature "LR1b".

參考圖8至圖10,將更詳細地描述第一抑制電極204。第一抑制電極204可具有如沿著y軸測量的透鏡高度“LH2”,以及如沿著x軸測量的透鏡寬度“LW2”。如先前描述,第一抑制 電極204可具有頂部部分204a、底部部分204b、主體部分204c和開口204d。開口204d可具有沙漏形狀,其具有沿著y軸測量的開口高度“OHb”、如沿著x軸在開口的頂端216b處測量的第一開口寬度“OW1b”、沿著x軸在開口的中心部分218b處測量的第二開口寬度“OW2b”,以及沿著x軸在開口的底端220b處測量的第三開口寬度“OW3b”。第一開口寬度“OW1b”和第三開口寬度“OW3b”可以是相同的,而第二開口寬度“OW2b”可以小於第一開口寬度“OW1b”和第三開口寬度“OW3b”。 The first suppression electrode 204 will be described in more detail with reference to FIGS. 8 to 10. The first suppression electrode 204 may have a lens height "LH2" as measured along the y-axis, and a lens width "LW2" as measured along the x-axis. First suppression as previously described The electrode 204 can have a top portion 204a, a bottom portion 204b, a body portion 204c, and an opening 204d. The opening 204d may have an hourglass shape having an opening height "OHb" measured along the y-axis, a first opening width "OW1b" as measured along the x-axis at the top end 216b of the opening, and a center along the x-axis at the opening The second opening width "OW2b" measured at portion 218b, and the third opening width "OW3b" measured at the bottom end 220b of the opening along the x-axis. The first opening width "OW1b" and the third opening width "OW3b" may be the same, and the second opening width "OW2b" may be smaller than the first opening width "OW1b" and the third opening width "OW3b".

如可見,第一抑制電極204的開口204d的大小可以不同於端電極202的開口202d的大小。舉例來說,在所說明的實施例中,第一抑制電極204的開口高度“OHb”小於端電極202的開口高度“OHa”,而第一抑制電極204的開口寬度“OW1b”、“OW2b”、“OW3b”與端電極202的開口寬度“OW1a”、“OW2a”、“OW3a”相比可以相應地較大。 As can be seen, the size of the opening 204d of the first suppression electrode 204 can be different than the size of the opening 202d of the terminal electrode 202. For example, in the illustrated embodiment, the opening height "OHb" of the first suppression electrode 204 is smaller than the opening height "OHa" of the terminal electrode 202, and the opening widths "OW1b", "OW2b" of the first suppression electrode 204. "OW3b" can be correspondingly larger than the opening widths "OW1a", "OW2a", and "OW3a" of the terminal electrode 202.

第一抑制電極204的第一表面204e和第二表面204f可以是彎曲的。因此,第一表面204e可具有第一曲率半徑“LR2a”,而第二表面204f可具有第二曲率半徑“LR2b”。第一曲率半徑“LR2a”可以從沿著正“z”軸的點測量(即,在離子束95行進的方向上靜電透鏡200的下游),而第二曲率半徑“LR2b”可以從沿著負“z”軸的點測量(即,在離子束95行進的相反方向上靜電透鏡200的上游)。在所說明的實施例中,第一曲率半徑“LR2a”與第二曲率半徑“LR2b”相同。 The first surface 204e and the second surface 204f of the first suppression electrode 204 may be curved. Thus, the first surface 204e can have a first radius of curvature "LR2a" and the second surface 204f can have a second radius of curvature "LR2b". The first radius of curvature "LR2a" may be measured from a point along the positive "z" axis (ie, downstream of the electrostatic lens 200 in the direction in which the ion beam 95 travels), while the second radius of curvature "LR2b" may follow from a negative The point measurement of the "z" axis (i.e., upstream of the electrostatic lens 200 in the opposite direction of travel of the ion beam 95). In the illustrated embodiment, the first radius of curvature "LR2a" is the same as the second radius of curvature "LR2b".

參考圖11至圖13,將更詳細地描述第二抑制電極206。第二抑制電極206可具有如沿著y軸測量的透鏡高度“LH3”,以及如沿著x軸測量的透鏡寬度“LW3”。如先前描述,第二抑制電極206可具有頂部部分206a、底部部分206b、主體部分206c和開口206d。開口206d可具有沙漏形狀,其具有沿著y軸測量的開口高度“OHc”、如沿著x軸在開口的頂端216c處測量的第一開口寬度“OW1c”、沿著x軸在開口的中心部分218c處測量的第二開口寬度“OW2c”,以及沿著x軸在開口的底端220c處測量的第三開口寬度“OW3c”。第一開口寬度“OW1c”和第三開口寬度“OW3c”可以是相同的,而第二開口寬度“OW2c”可以小於第一開口寬度“OW1c”和第三開口寬度“OW3c”。 Referring to Figures 11 through 13, the second suppression electrode 206 will be described in more detail. The second suppression electrode 206 may have a lens height "LH3" as measured along the y-axis, and a lens width "LW3" as measured along the x-axis. As previously described, the second suppression electrode 206 can have a top portion 206a, a bottom portion 206b, a body portion 206c, and an opening 206d. The opening 206d may have an hourglass shape having an opening height "OHc" measured along the y-axis, a first opening width "OW1c" as measured along the x-axis at the top end 216c of the opening, and a center along the x-axis at the opening The second opening width "OW2c" measured at portion 218c, and the third opening width "OW3c" measured at the bottom end 220c of the opening along the x-axis. The first opening width "OW1c" and the third opening width "OW3c" may be the same, and the second opening width "OW2c" may be smaller than the first opening width "OW1c" and the third opening width "OW3c".

如可見,第二抑制電極206的開口206d的大小可以不同於第一抑制電極204的開口204d的大小。舉例來說,在所說明的實施例中,第一抑制電極204的開口高度“OHb”小於第二抑制電極206的開口高度“OHc”,而第一抑制電極204的開口寬度“OW1b”、“OW2b”、“OW3b”與第二抑制電極206的開口寬度“OW1c”、“OW2c”、“OW3c”相比可以相應地較大。 As can be seen, the size of the opening 206d of the second suppression electrode 206 can be different than the size of the opening 204d of the first suppression electrode 204. For example, in the illustrated embodiment, the opening height "OHb" of the first suppression electrode 204 is smaller than the opening height "OHc" of the second suppression electrode 206, and the opening width "OW1b" of the first suppression electrode 204, " OW2b" and "OW3b" may be correspondingly larger than the opening widths "OW1c", "OW2c", and "OW3c" of the second suppression electrode 206.

如先前描述,第二抑制電極206的第一表面206e和第二表面206f可以是彎曲的。因此,第一表面206e可具有第一曲率半徑“LR3a”,而第二表面206f可具有第二曲率半徑“LR3b”。兩個曲率半徑都可以從沿著負“z”軸的點測量(即,在離子束95行進的相反方向上靜電透鏡200的上游)。在所說明的實施例中, 第一曲率半徑“LR3a”小於第二曲率半徑“LR3b”。 As previously described, the first surface 206e and the second surface 206f of the second suppression electrode 206 may be curved. Thus, the first surface 206e can have a first radius of curvature "LR3a" and the second surface 206f can have a second radius of curvature "LR3b". Both radii of curvature may be measured from points along the negative "z" axis (ie, upstream of electrostatic lens 200 in the opposite direction of travel of ion beam 95). In the illustrated embodiment, The first radius of curvature "LR3a" is smaller than the second radius of curvature "LR3b".

參考圖14至圖16,將更詳細地描述接地電極208。接地電極208可具有如沿著y軸測量的透鏡高度“LH4”,以及如沿著x軸測量的透鏡寬度“LW4”。如先前描述,接地電極208可具有頂部部分208a、底部部分208b、主體部分208c和開口208d。開口208d可具有沙漏形狀,其具有沿著y軸測量的開口高度“OHd”、如沿著x軸在開口的頂端216d處測量的第一開口寬度“OW1d”、沿著x軸在開口的中心部分218d處測量的第二開口寬度“OW2d”,以及沿著x軸在開口的底端220d處測量的第三開口寬度“OW3d”。第一開口寬度“OW1d”和第三開口寬度“OW3d”可以是相同的,而第二開口寬度“OW2d”可以小於第一開口寬度“OW1d”和第三開口寬度“OW3d”。 Referring to Figures 14 through 16, the ground electrode 208 will be described in more detail. The ground electrode 208 may have a lens height "LH4" as measured along the y-axis, and a lens width "LW4" as measured along the x-axis. As previously described, the ground electrode 208 can have a top portion 208a, a bottom portion 208b, a body portion 208c, and an opening 208d. The opening 208d may have an hourglass shape having an opening height "OHd" measured along the y-axis, a first opening width "OW1d" as measured along the x-axis at the top end 216d of the opening, along the x-axis at the center of the opening The second opening width "OW2d" measured at portion 218d, and the third opening width "OW3d" measured at the bottom end 220d of the opening along the x-axis. The first opening width "OW1d" and the third opening width "OW3d" may be the same, and the second opening width "OW2d" may be smaller than the first opening width "OW1d" and the third opening width "OW3d".

如可見,接地電極208的開口208d的大小可以不同於第二抑制電極206的開口206d的大小。舉例來說,在所說明的實施例中,接地電極208的開口高度“OHd”小於第二抑制電極206的開口高度“OHc”,而接地電極208的開口寬度“OW1d”、“OW2d”、“OW3d”與第二抑制電極206的開口寬度“OW1c”、“OW2c”、“OW3c”相比可以相應地較大。 As can be seen, the size of the opening 208d of the ground electrode 208 can be different than the size of the opening 206d of the second suppression electrode 206. For example, in the illustrated embodiment, the opening height "OHd" of the ground electrode 208 is smaller than the opening height "OHc" of the second suppression electrode 206, and the opening width "OW1d", "OW2d", "" of the ground electrode 208 OW3d" may be correspondingly larger than the opening widths "OW1c", "OW2c", and "OW3c" of the second suppression electrode 206.

如先前描述,接地電極208的第一表面208e可以是彎曲的。因此,第一表面208e可具有如從沿著負“z”軸的點測量的(即,在離子束95行進的相反方向上靜電透鏡200的上游)第一曲率半徑“LR4a”。第二表面208f可以是平坦的(即,朝向垂直 於沿著“z”軸的離子束95的行進方向)。 As previously described, the first surface 208e of the ground electrode 208 can be curved. Thus, the first surface 208e can have a first radius of curvature "LR4a" as measured from a point along the negative "z" axis (ie, upstream of the electrostatic lens 200 in the opposite direction traveled by the ion beam 95). The second surface 208f can be flat (ie, oriented toward vertical In the direction of travel of the ion beam 95 along the "z" axis).

雖然已經將鄰近電極的鄰近表面描述為大致上互補(即,凹入表面被定位成鄰近於凸出表面),但是鄰近表面的曲率半徑可具有非同心曲率。因此,舉例來說,端電極202的第二表面202f的曲率半徑LR1b可以小於第一抑制電極204的第一表面202e的曲率半徑LR2a。因此,端電極202的第二表面202f與第一抑制電極204的第一表面202e之間的距離可以不同。 While adjacent surfaces of adjacent electrodes have been described as being substantially complementary (ie, the concave surface is positioned adjacent to the convex surface), the radius of curvature of the adjacent surface may have a non-concentric curvature. Thus, for example, the radius of curvature LR1b of the second surface 202f of the terminal electrode 202 can be less than the radius of curvature LR2a of the first surface 202e of the first suppression electrode 204. Therefore, the distance between the second surface 202f of the terminal electrode 202 and the first surface 202e of the first suppression electrode 204 may be different.

圖17是此非同心曲率佈置的示例性示意圖。如可見,在鄰近電極(在此實例中是端電極202和第一抑制電極204)的表面的曲率半徑不同的情況下,端電極202與第一抑制電極204之間的距離“D1”在電極的中心“C”處與在電極的上端“UE”和下端“LE”處在端電極202與第一抑制電極204之間的距離“D2”相比是不同的。在所說明的實施例中,端電極202和第一抑制電極204的相應的曲率半徑使得距離D1大於距離D2。這意味著聚集在離子束95的頂部和底部處與聚集在離子束95的軸線中心上相比更強。在一些實施例中,端電極202與第一抑制電極電極204可以各自保持在獨特電勢下,並且因此鄰近電極之間的電壓差將是恒定的。由於電場是距離的函數,所以改變鄰近電極之間的距離使得電場能夠按需要改變。將理解,電場中的變化可用於按需要維持離子束95的形狀。 Figure 17 is an exemplary schematic diagram of this non-concentric curvature arrangement. As can be seen, in the case where the radii of curvature of the surfaces of the adjacent electrodes (in this example, the terminal electrode 202 and the first suppression electrode 204) are different, the distance "D1" between the terminal electrode 202 and the first suppression electrode 204 is at the electrode. The center "C" is different from the distance "D2" between the upper electrode 202 and the first suppression electrode 204 at the upper end "UE" and the lower end "LE" of the electrode. In the illustrated embodiment, the respective radii of curvature of the terminal electrode 202 and the first suppression electrode 204 are such that the distance D1 is greater than the distance D2. This means that the gathering is stronger at the top and bottom of the ion beam 95 than at the center of the axis of the ion beam 95. In some embodiments, the terminal electrode 202 and the first suppression electrode electrode 204 can each be maintained at a unique potential, and thus the voltage difference between adjacent electrodes will be constant. Since the electric field is a function of distance, changing the distance between adjacent electrodes allows the electric field to change as needed. It will be appreciated that variations in the electric field can be used to maintain the shape of the ion beam 95 as desired.

在非限制性示例性實施例中,端電極202與第一抑制電極204的曲率半徑可以在幾百毫米(mm)(例如,250到310mm) 的範圍內,電極高度可以是大約100mm,並且電極寬度可以從20mm到50mm。將瞭解,這些尺寸可以由離子束95的大小以及所希望的聚集的程度驅動。因此,這些尺寸並非限制性的並且電極可以適合於產生具有所希望的大小和聚集的離子束95。 In a non-limiting exemplary embodiment, the radius of curvature of the terminal electrode 202 and the first suppression electrode 204 may be several hundred millimeters (mm) (eg, 250 to 310 mm). Within the scope of the electrode, the electrode height may be approximately 100 mm and the electrode width may be from 20 mm to 50 mm. It will be appreciated that these dimensions can be driven by the size of the ion beam 95 and the desired degree of aggregation. Thus, these dimensions are not limiting and the electrodes may be adapted to produce an ion beam 95 having a desired size and concentration.

雖然圖17僅示出了端電極202與第一抑制電極204的鄰近表面之間的曲率半徑的差異,但是將瞭解類似配置可以提供在靜電透鏡200的任何電極的任何鄰近表面之間。另外,雖然圖17示出了距離D1大於距離D2的配置,但是在所涵蓋的實施例中距離D2也可以大於距離D1。另外,將瞭解靜電透鏡200可以包括多種組合配置,例如,關於圖17中描述的一個。在一些實施例中,靜電透鏡200的全部的電極可併入鄰近電極之間的此類非同心曲率半徑。在其它實施例中,靜電透鏡200的少於全部的電極可併入鄰近電極之間的此類非同心曲率半徑。 Although FIG. 17 only shows the difference in radius of curvature between the end electrodes 202 and the adjacent surfaces of the first suppression electrode 204, it will be appreciated that a similar configuration may be provided between any adjacent surfaces of any of the electrodes of the electrostatic lens 200. Additionally, while FIG. 17 illustrates a configuration in which the distance D1 is greater than the distance D2, the distance D2 may also be greater than the distance D1 in the contemplated embodiment. Additionally, it will be appreciated that the electrostatic lens 200 can include a variety of combined configurations, such as with respect to one depicted in FIG. In some embodiments, all of the electrodes of electrostatic lens 200 can incorporate such non-concentric radius of curvature between adjacent electrodes. In other embodiments, less than all of the electrodes of electrostatic lens 200 can incorporate such non-concentric radius of curvature between adjacent electrodes.

如將瞭解,所公開的沙漏孔口形狀提供與圓形或矩形孔口可以實現的相比更緊密地匹配所希望的射束形狀的所希望的電場形狀。舉例來說,基本上矩形的孔口將引起等電勢的頂部和底部塌陷成圓形形狀並且將預期誘發離子束中的偏差。圖18示出了圍繞靜電透鏡200中的沙漏形狀開口202d至208d的電場線的示例性圖。如可見,沙漏形狀可以抵消等電勢的“橢圓狀”,允許垂直和水準電場的更好的去耦合。場線沿著開口202d的側面相對較直,並且一般形狀更好的匹配將被放置通過靜電透鏡200的高和薄的離子束95。因此,較少偏差將在離子束95中形成。 As will be appreciated, the disclosed hourglass aperture shape provides a desired electric field shape that more closely matches the desired beam shape than can be achieved with a circular or rectangular aperture. For example, a substantially rectangular aperture will cause the top and bottom of the equipotential to collapse into a circular shape and would be expected to induce a deviation in the ion beam. FIG. 18 shows an exemplary diagram of electric field lines surrounding the hourglass-shaped openings 202d to 208d in the electrostatic lens 200. As can be seen, the hourglass shape can counteract the "elliptical" of the equipotential, allowing for better decoupling of the vertical and horizontal electric fields. The field lines are relatively straight along the sides of the opening 202d, and generally a better shape matching will be placed through the high and thin ion beam 95 of the electrostatic lens 200. Therefore, less deviation will be formed in the ion beam 95.

如先前所提及,端電極202、第一抑制電極204、第二抑制電極206及接地電極208的相應的開口202d至208d的大小可以在高度和寬度上改變。通過改變開口的寬度和高度,並且還通過例如第二抑制電極206上的電壓,可以調節水準和垂直聚集的位置和量。在圖19中所示的曲線中,離子束95可以從20keV減速到2keV。與第一抑制電極204相關聯的電源上面具有22kV並且與第二抑制電極206相關聯的電源上面僅具有3kV。如可見,大部分等電勢在第一抑制電極204與第二抑制電極206之間封裝的非常緊密。在此說明中,等電勢間隔開500V。這引起第二抑制電極206的開口206d中的相當大的水準的聚焦,並且會聚射束離開靜電透鏡200,如圖20可見,圖20是使用圖19的設置的穿過靜電透鏡200的所計算的射束軌道的曲線圖。 As mentioned previously, the size of the respective openings 202d to 208d of the terminal electrode 202, the first suppression electrode 204, the second suppression electrode 206, and the ground electrode 208 may vary in height and width. The position and amount of level and vertical accumulation can be adjusted by varying the width and height of the opening, and also by, for example, the voltage across the second suppression electrode 206. In the graph shown in Figure 19, the ion beam 95 can be decelerated from 20 keV to 2 keV. The power supply associated with the first suppression electrode 204 has 22 kV above and the power supply associated with the second suppression electrode 206 has only 3 kV above. As can be seen, most of the equipotential is very tightly packed between the first suppression electrode 204 and the second suppression electrode 206. In this description, the equipotentials are spaced 500V apart. This causes a considerable level of focus in the opening 206d of the second suppression electrode 206, and the concentrated beam exits the electrostatic lens 200, as seen in Figure 20, which is the calculated through the electrostatic lens 200 using the arrangement of Figure 19. The curve of the beam orbit.

在圖21中,離子束95從20keV減速到2keV。與第一抑制電極204相關聯的電源上面具有22kV並且與第二抑制電極206相關聯的電源上面具有10kV。這引起等電勢在第一抑制電極204與第二抑制電極206之間以及在第二抑制電極206與接地電極208之間相當均勻地間隔開。在此說明中,等電勢間隔開500V。進一步的結果是第二抑制電極206的開口206d中的較少水準的聚集。可以看到離子束95從靜電透鏡200中在很大程度上平行地出現,如在圖22中可見,圖22是使用圖21的設置的穿過靜電透鏡200的所計算的射束軌道的曲線圖。 In Figure 21, ion beam 95 is decelerated from 20 keV to 2 keV. The power supply associated with the first suppression electrode 204 has 22 kV above and the power supply associated with the second suppression electrode 206 has 10 kV thereon. This causes the equipotential to be fairly evenly spaced between the first suppression electrode 204 and the second suppression electrode 206 and between the second suppression electrode 206 and the ground electrode 208. In this description, the equipotentials are spaced 500V apart. A further result is less level of accumulation in the opening 206d of the second suppression electrode 206. It can be seen that the ion beam 95 appears largely parallel from the electrostatic lens 200, as seen in Figure 22, which is a curve of the calculated beam trajectory through the electrostatic lens 200 using the arrangement of Figure 21 Figure.

圖23是圖19的曲線圖的側視圖。如所提到,在這種情 況下離子束95從20keV減速到2keV。與第一抑制電極204相關聯的電源上面具有22kV並且與第二抑制電極206相關聯的電源上面僅具有3kV。如圖所示,大部分等電勢在第一抑制電極204與第二抑制電極206之間非常緊密地封裝,這引起在第二抑制電極206的開口206d中的非常少的垂直集中。同樣,在此曲線圖中,等電勢間隔開500V。 Figure 23 is a side view of the graph of Figure 19. As mentioned, in this situation The ion beam 95 is decelerated from 20 keV to 2 keV. The power supply associated with the first suppression electrode 204 has 22 kV above and the power supply associated with the second suppression electrode 206 has only 3 kV above. As shown, most of the equipotential is very tightly packed between the first suppression electrode 204 and the second suppression electrode 206, which causes very little vertical concentration in the opening 206d of the second suppression electrode 206. Again, in this graph, the equipotentials are spaced 500V apart.

圖24是圖21的曲線圖的側視圖。如所提到,在這種情況下離子束95從20keV減速到2keV。與第一抑制電極204相關聯的電源上面具有22kV並且與第二抑制電極206相關聯的電源上面具有10kV。如圖所示,等電勢在第一抑制電極204與第二抑制電極206之間以及在第二抑制電極206與接地電極208之間相當均勻地間隔開,這引起第二抑制電極206的開口206d中的較少水準聚集,但是大量的垂直聚集。同樣,在此曲線圖中,等電勢間隔開500V。 Figure 24 is a side view of the graph of Figure 21 . As mentioned, in this case the ion beam 95 is decelerated from 20 keV to 2 keV. The power supply associated with the first suppression electrode 204 has 22 kV above and the power supply associated with the second suppression electrode 206 has 10 kV thereon. As shown, the equipotential is relatively evenly spaced between the first suppression electrode 204 and the second suppression electrode 206 and between the second suppression electrode 206 and the ground electrode 208, which causes the opening 206d of the second suppression electrode 206. Less level of aggregation, but a lot of vertical accumulation. Again, in this graph, the equipotentials are spaced 500V apart.

如將瞭解,圖18至圖24中所示的曲線圖僅僅是示例性的並且適用於電極形狀、開口大小和所施加的電勢的一個實施例。使用所公開的靜電透鏡200通過調節本文中描述的個體特徵可以獲得多種不同射束形狀(包括聚集發生在何處以及發生多少聚集)。 As will be appreciated, the graphs shown in Figures 18-24 are merely exemplary and apply to one embodiment of electrode shape, opening size, and applied potential. Using the disclosed electrostatic lens 200, a variety of different beam shapes can be obtained by adjusting the individual features described herein (including where the aggregation occurs and how much aggregation occurs).

雖然本新型創作已以實施例揭露如上,然其並非用以限定本新型創作,任何所屬技術領域中具有通常知識者,在不脫離本新型創作的精神和範圍內,當可作些許的更動與潤飾,故本新 型創作的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the novel creation, and any person skilled in the art can make some changes without departing from the spirit and scope of the novel creation. Retouching, so this new The scope of protection for type creation is subject to the definition of the scope of the patent application attached.

200‧‧‧靜電透鏡 200‧‧‧Electrostatic lens

202‧‧‧端電極 202‧‧‧ terminal electrode

204‧‧‧第一抑制電極 204‧‧‧First suppression electrode

206‧‧‧第二抑制電極 206‧‧‧Second suppression electrode

208‧‧‧接地電極 208‧‧‧Ground electrode

210‧‧‧第一空間 210‧‧‧First space

212‧‧‧第二空間 212‧‧‧Second space

214‧‧‧第三空間 214‧‧‧ Third Space

202a、204a、206a、208a‧‧‧頂部部分 202a, 204a, 206a, 208a‧‧‧ top part

202b、204b、206b、208b‧‧‧底部部分 202b, 204b, 206b, 208b‧‧‧ bottom part

202c、204c、206c、208c‧‧‧主體部分 202c, 204c, 206c, 208c‧‧‧ main part

202e、204e、206e、208e‧‧‧第一表面 202e, 204e, 206e, 208e‧‧‧ first surface

202f、204f、206f、208f‧‧‧第二表面 202f, 204f, 206f, 208f‧‧‧ second surface

Claims (4)

一種用於離子植入機中的靜電透鏡的抑制電極,包括:抑制電極,具有位於所述抑制電極的主體的相反側的第一表面和第二表面,其中所述抑制電極包含抑制電極開口以用於接收穿過其中沿著z軸行進的離子束,所述第一表面和所述第二表面中的至少一個在y-z平面中是彎曲的;其中所述抑制電極開口具有頂端、底端和中心部分,並且所述抑制電極開口在所述頂端和所述底端處的寬度大於所述抑制電極開口在所述中心部分處的寬度,並且所述抑制電極開口在所述頂端處的所述寬度等於所述抑制電極開口在所述底端處的所述寬度,其中所述抑制電極的所述第一表面具有第一曲率半徑,並且所述抑制電極的所述第二表面具有第二曲率半徑,並且其中所述第一曲率半徑和所述第二曲率半徑是從沿著負“z”軸的點測量的,其中所述負“z”軸是從所述抑制電極的中心在所述離子束行進的相反方向上測量的,並且其中所述第一曲率半徑小於所述第二曲率半徑。 A suppression electrode for an electrostatic lens in an ion implanter, comprising: a suppression electrode having a first surface and a second surface on opposite sides of a body of the suppression electrode, wherein the suppression electrode comprises a suppression electrode opening For receiving an ion beam traveling therethrough along the z-axis, at least one of the first surface and the second surface being curved in a yz plane; wherein the suppression electrode opening has a top end, a bottom end, and a central portion, and a width of the suppression electrode opening at the top end and the bottom end is greater than a width of the suppression electrode opening at the central portion, and the suppression electrode opening is at the top end a width equal to the width of the suppression electrode opening at the bottom end, wherein the first surface of the suppression electrode has a first radius of curvature and the second surface of the suppression electrode has a second curvature a radius, and wherein the first radius of curvature and the second radius of curvature are measured from a point along a negative "z" axis, wherein the negative "z" axis is from the suppression electrode Measured at the center in the opposite direction of travel of the ion beam, and wherein the first radius of curvature smaller than the second radius of curvature. 如申請專利範圍第1項所述的抑制電極,其中在所述y-z平面中觀察的所述抑制電極的所述第一表面是凹入的。 The suppression electrode of claim 1, wherein the first surface of the suppression electrode observed in the y-z plane is concave. 如申請專利範圍第2項所述的抑制電極,其中在所述y-z平面中觀察的所述抑制電極的所述第二表面是凸出的。 The suppression electrode of claim 2, wherein the second surface of the suppression electrode observed in the y-z plane is convex. 如申請專利範圍第3項所述的抑制電極,其中所述第一曲率半徑和第二曲率半徑在250毫米到310毫米的範圍內。 The suppression electrode of claim 3, wherein the first radius of curvature and the second radius of curvature are in the range of 250 mm to 310 mm.
TW105213844U 2016-04-21 2016-09-08 Suppresion electrode of electrostatic lens for use in ion implanter TWM544104U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201662325628P 2016-04-21 2016-04-21

Publications (1)

Publication Number Publication Date
TWM544104U true TWM544104U (en) 2017-06-21

Family

ID=58299982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105213844U TWM544104U (en) 2016-04-21 2016-09-08 Suppresion electrode of electrostatic lens for use in ion implanter

Country Status (2)

Country Link
CN (1) CN206040593U (en)
TW (1) TWM544104U (en)

Also Published As

Publication number Publication date
CN206040593U (en) 2017-03-22

Similar Documents

Publication Publication Date Title
TWI489515B (en) Ion beam line
TWI466157B (en) Beam processing apparatus
TWI404104B (en) Beam angle adjustment in ion implanters
US7687782B2 (en) Electrostatic beam deflection scanner and beam deflection scanning method
JP2007220522A (en) Ion beam radiating apparatus
TW201635326A (en) Systems and methods for beam angle adjustment in ion implanters with beam deceleration
US8008630B2 (en) Ion implantation apparatus and method of correcting deviation angle of ion beam
TWM536411U (en) Electrostatic lens for use in ion implanter
JP2009516335A (en) Technique for providing a segmented electric field lens for an ion implanter
US20120056107A1 (en) Uniformity control using ion beam blockers
JP3240634U (en) Electrostatic filter with shaped electrodes
JP2006351312A (en) Ion implanter
JP6428726B2 (en) Ion implantation system
US9502213B2 (en) Ion beam line
CN206040592U (en) A telluric electricity field for electrostatic lens among ion implanter
TWI490909B (en) End terminations for electrodes used in ion implantation systems
US10249477B2 (en) Ion implanter and ion implantation method
TWM544104U (en) Suppresion electrode of electrostatic lens for use in ion implanter
TWM535869U (en) Terminal electrode of electrostatic lens for use in ion implanter
JP7343445B2 (en) Ion beam control over a wide range of beam current operation
CN206098341U (en) A suppressor electrode for electrostatic lens among ion implanter