TWM521809U - Solar cell structure with doped polysilicon contact - Google Patents

Solar cell structure with doped polysilicon contact Download PDF

Info

Publication number
TWM521809U
TWM521809U TW105202372U TW105202372U TWM521809U TW M521809 U TWM521809 U TW M521809U TW 105202372 U TW105202372 U TW 105202372U TW 105202372 U TW105202372 U TW 105202372U TW M521809 U TWM521809 U TW M521809U
Authority
TW
Taiwan
Prior art keywords
solar cell
cell structure
passivation layer
doped polysilicon
semiconductor substrate
Prior art date
Application number
TW105202372U
Other languages
Chinese (zh)
Inventor
郭正聞
官大明
余承曄
Original Assignee
元晶太陽能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元晶太陽能科技股份有限公司 filed Critical 元晶太陽能科技股份有限公司
Priority to TW105202372U priority Critical patent/TWM521809U/en
Publication of TWM521809U publication Critical patent/TWM521809U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar cell structure includes a semiconductor substrate having a front side and a rear side, at least a passivation layer on the rear side, and a doped polysilicon contact on the passivation layer. The passivation layer is composed of silicon dioxide and has a thickness that is not greater than 2 nm. The doped polysilicon contact is in direct contact with the passivation layer. The doped polysilicon contact has a thickness ranging between 5 and 100 nm.

Description

具有摻雜多晶矽電極的太陽能電池結構Solar cell structure with doped polysilicon electrode

本創作係有關於一種太陽能電池技術領域,特別是有關一種具有摻雜多晶矽電極的太陽能電池結構。The present invention relates to the field of solar cell technology, and more particularly to a solar cell structure having a doped polysilicon electrode.

已知,太陽能電池的工作原理係利用太陽光之輻射能源與半導體材料作用來產生電能,主要材料包括有半導體材料,如單晶矽、多晶矽、非晶矽之矽基板或III-V族化合物之半導體材料等,以及用來作為電極之導電膠,例如,銀膠或鋁膠等。It is known that the working principle of solar cells is to use solar radiation energy and semiconductor materials to generate electrical energy. The main materials include semiconductor materials such as single crystal germanium, polycrystalline germanium, amorphous germanium germanium or III-V compound. A semiconductor material or the like, and a conductive paste used as an electrode, for example, a silver paste or an aluminum paste.

一般,太陽能電池的製造方法係先進行晶圓表面清潔與粗糙化處理,然後進行擴散製程,在晶圓表面形成磷玻璃層及摻雜射極(emitter)區域,以蝕刻製程去除磷玻璃層後,再形成抗反射層,然後,利用網印技術於電池正、背面以金屬漿料網印出電極圖案,然後進行高溫燒結,形成電極。最後,進行串焊將電池單元串接成模組。Generally, the solar cell manufacturing method first performs wafer surface cleaning and roughening treatment, and then performs a diffusion process to form a phosphor glass layer and an impurity emitter region on the surface of the wafer, and remove the phosphor glass layer by an etching process. Then, an anti-reflection layer is formed, and then the electrode pattern is printed on the metal paste web on the front and back sides of the battery by screen printing technology, and then sintered at a high temperature to form an electrode. Finally, string welding is performed to connect the battery cells in series.

此外,業界還提出一種異質接面結構(Heterojunction with Intrinsic Thin Layer, HIT)太陽能電池,以非晶矽薄膜來降低載子表面再結合速率,進一步提升太陽能電池的光電轉換效率。目前量產的HIT太陽能電池以22%轉換效率,優於N型單晶電池(21%)及P型多晶電池(20.5%)。In addition, the industry has also proposed a Heterojunction with Intrinsic Thin Layer (HIT) solar cell, which uses an amorphous germanium film to reduce the surface recombination rate of the carrier and further improve the photoelectric conversion efficiency of the solar cell. The currently mass-produced HIT solar cells have a conversion efficiency of 22%, which is superior to N-type single crystal cells (21%) and P-type polycrystalline cells (20.5%).

雖然上述HIT太陽能電池具轉換效率高、載子損耗率低、高溫特性佳等特點,但是在製備這類太陽能電池時,後續燒結溫度需控制在相對較低溫度下,以避免非晶矽的再結晶,因此限制了製程的彈性。Although the above HIT solar cell has the characteristics of high conversion efficiency, low carrier loss rate, and high temperature characteristics, in the preparation of such a solar cell, the subsequent sintering temperature needs to be controlled at a relatively low temperature to avoid the recrystallization of the amorphous germanium. Crystallization, thus limiting the flexibility of the process.

本創作的主要目的在提供一種改良的太陽能電池結構,以解決先前技藝的不足與缺點。The primary purpose of this creation is to provide an improved solar cell structure that addresses the deficiencies and shortcomings of the prior art.

根據本創作實施例,一種太陽能電池結構,包含有一半導體基板,具有一正面及一背面;至少一鈍化層,設於該半導體基板的該背面上;以及一摻雜多晶矽電極,設於該鈍化層上。其中,該鈍化層包含二氧化矽,厚度不大於2nm。其中該摻雜多晶矽電極直接接觸到鈍化層,且該摻雜多晶矽電極的厚度介於5~100nm。According to the present invention, a solar cell structure includes a semiconductor substrate having a front surface and a back surface; at least one passivation layer disposed on the back surface of the semiconductor substrate; and a doped polysilicon electrode disposed on the passivation layer on. Wherein, the passivation layer comprises cerium oxide and has a thickness of not more than 2 nm. The doped polysilicon electrode is in direct contact with the passivation layer, and the doped polysilicon electrode has a thickness of 5 to 100 nm.

為讓本創作之上述目的、特徵及優點能更明顯易懂,下文特舉較佳實施方式,並配合所附圖式,作詳細說明如下。然而如下之較佳實施方式與圖式僅供參考與說明用,並非用來對本創作加以限制者。The above described objects, features and advantages of the present invention will become more apparent from the following description. However, the following preferred embodiments and drawings are for illustrative purposes only and are not intended to limit the present invention.

參閱第1圖,其為依據本創作實施例所繪示的具有摻雜多晶矽電極的太陽能電池結構的剖面示意圖。Referring to FIG. 1 , it is a schematic cross-sectional view of a solar cell structure having a doped polysilicon electrode according to an embodiment of the present invention.

如第1圖所示,太陽能電池結構1包括一半導體基板10,例如,N型或P型摻雜結晶矽基板或結晶矽晶圓,其厚度例如約60~200微米左右,但不限於此。半導體基板10的正面(受光面)S1上,係以表面粗糙化製程,形成有金字塔形結構101。通常,在形成金字塔形結構101之前(或之後),會另進行晶圓表面清潔製程,以去除污染物。As shown in Fig. 1, the solar cell structure 1 includes a semiconductor substrate 10, for example, an N-type or P-type doped crystalline germanium substrate or a crystalline germanium wafer having a thickness of, for example, about 60 to 200 μm, but is not limited thereto. On the front surface (light receiving surface) S1 of the semiconductor substrate 10, a pyramidal structure 101 is formed by a surface roughening process. Typically, a wafer surface cleaning process is performed before (or after) the formation of the pyramidal structure 101 to remove contaminants.

根據本創作實施例,在半導體基板10的正面S1的金字塔形結構101上,設有一複合層108,例如包括鈍化層110以及一抗反射層112,其中,鈍化層110可以是二氧化矽,厚度不大於2nm,而抗反射層112可以是氮化矽、氮氧化矽或氧化鋁,但不限於此。根據本創作實施例,抗反射層112上可以設有正面金屬電極120。此外,在半導體基板10的正面S1還可以設有一摻雜區12,例如N型或P型摻雜區。According to the present embodiment, on the pyramid-shaped structure 101 of the front surface S1 of the semiconductor substrate 10, a composite layer 108 is provided, for example, including a passivation layer 110 and an anti-reflection layer 112, wherein the passivation layer 110 may be ruthenium dioxide, thickness The anti-reflection layer 112 may be not less than 2 nm, and the anti-reflection layer 112 may be tantalum nitride, hafnium oxynitride or aluminum oxide, but is not limited thereto. According to the present creative embodiment, the front metal electrode 120 may be disposed on the anti-reflective layer 112. Further, a doping region 12 such as an N-type or P-type doping region may be further provided on the front surface S1 of the semiconductor substrate 10.

根據本創作實施例,在半導體基板10的背面S2上,設有一鈍化層210,例如,二氧化矽,厚度不大於2nm。在鈍化層210上,則設有一N型或P型摻雜多晶矽電極212,例如,厚度介於5~100nm。摻雜多晶矽電極212直接接觸到鈍化層210。在摻雜多晶矽層212上可以另設有一背面金屬電極220。According to the present embodiment, on the back surface S2 of the semiconductor substrate 10, a passivation layer 210, for example, cerium oxide, having a thickness of not more than 2 nm is provided. On the passivation layer 210, an N-type or P-type doped polysilicon electrode 212 is provided, for example, having a thickness of 5 to 100 nm. The doped polysilicon electrode 212 is in direct contact with the passivation layer 210. A back metal electrode 220 may be additionally disposed on the doped polysilicon layer 212.

根據本創作實施例,太陽能電池結構1包括摻雜多晶矽電極212,而在其背面S2上構成一異質接面結構,相對的,在其正面S1上則不需另外形成非晶矽(amorphous silicon)層。According to the present embodiment, the solar cell structure 1 includes a doped polysilicon electrode 212, and a heterojunction structure is formed on the back surface S2 thereof. In contrast, no amorphous silicon is formed on the front surface S1. Floor.

第2圖至第7圖為依據本創作實施例所繪示製作具有摻雜多晶矽電極的太陽能電池結構的方法的剖面示意圖。2 to 7 are schematic cross-sectional views showing a method of fabricating a solar cell structure having a doped polysilicon electrode according to the present embodiment.

首先,如第2圖所示,提供一半導體基板10,例如,N型或P型摻雜結晶矽基板或結晶矽晶圓。再利用化學蝕刻製程,進行半導體基板10的表面清潔處理及表面粗糙化(surface texture)處理,在半導體基板10的正面S1及背面S2上形成粗糙化(或金字塔形)結構101。First, as shown in FIG. 2, a semiconductor substrate 10 such as an N-type or P-type doped crystalline germanium substrate or a crystalline germanium wafer is provided. Further, a surface cleaning process and a surface texture process of the semiconductor substrate 10 are performed by a chemical etching process, and a roughened (or pyramidal) structure 101 is formed on the front surface S1 and the back surface S2 of the semiconductor substrate 10.

如第3圖所示,接著可以利用化學溶劑對半導體基板10的背面S2進行拋光製程,形成一平坦表面。接著,可以於正面S1形成一摻雜區12。摻雜區12可以利用一擴散爐,提供三氯氧磷(phosphorus chloride oxide, POCl 3)氣體擴散形成,後續再利用氫氟酸(hydrofluoric acid, HF)等濕式蝕刻方法,去除位於半導體基板10表面的磷玻璃(phosphosilicate glass, PSG)(圖未示)。 As shown in FIG. 3, the back surface S2 of the semiconductor substrate 10 can then be polished by a chemical solvent to form a flat surface. Next, a doping region 12 may be formed on the front surface S1. The doping region 12 can be formed by using a diffusion furnace to provide diffusion of phosphorous chloride oxide (POCl 3 ) gas, and then using a wet etching method such as hydrofluoric acid (HF) to remove the semiconductor substrate 10 . Phosphorus glass (PSG) on the surface (not shown).

如第4圖所示,之後於半導體基板10的正面S1及背面S2上分別形成鈍化層110及鈍化層210。例如,鈍化層110及鈍化層210可以是二氧化矽、氧化鋁、氮化矽、氮氧化矽等,厚度不大於2nm。舉例來說,鈍化層110及鈍化層210若為二氧化矽,可以利用高溫爐管,在700~800度高溫下形成,或利用化學溶劑清洗並成長。鈍化層110及鈍化層210若為氧化鋁、氮化矽、氮氧化矽等,則可以利用原子層沉積(ALD)法或化學氣相沉積(CVD)法形成。As shown in FIG. 4, a passivation layer 110 and a passivation layer 210 are formed on the front surface S1 and the back surface S2 of the semiconductor substrate 10, respectively. For example, the passivation layer 110 and the passivation layer 210 may be cerium oxide, aluminum oxide, cerium nitride, cerium oxynitride, or the like, and have a thickness of not more than 2 nm. For example, if the passivation layer 110 and the passivation layer 210 are cerium oxide, they can be formed at a high temperature of 700 to 800 degrees by using a high temperature furnace tube, or can be cleaned and grown by using a chemical solvent. The passivation layer 110 and the passivation layer 210 may be formed by atomic layer deposition (ALD) or chemical vapor deposition (CVD) if they are alumina, tantalum nitride, hafnium oxynitride or the like.

接著,如第5圖所示,在半導體基板10的正面S1的鈍化層110上以電漿加強化學氣相沉積(PECVD)法繼續沉積一抗反射層112,例如,氮化矽或氮氧化矽,但不限於此。抗反射層112的厚度可以介於80~100nm。Next, as shown in FIG. 5, an anti-reflection layer 112, for example, tantalum nitride or hafnium oxynitride, is further deposited on the passivation layer 110 of the front surface S1 of the semiconductor substrate 10 by plasma enhanced chemical vapor deposition (PECVD). , but not limited to this. The anti-reflection layer 112 may have a thickness of 80 to 100 nm.

如第6圖所示,接著在半導體基板10的背面S2上的鈍化層210上,以常壓化學氣相沉積(APCVD)法、電漿加強化學氣相沉積(PECVD)法、低壓化學氣相沉積(LPCVD)或有機金屬化學氣相沉積(MOCVD)法,成長出摻雜多晶矽電極(doped polysilicon contact)212,其可以是N型摻雜或P型摻雜。摻雜多晶矽電極212的厚度,例如,介於5~100nm。As shown in FIG. 6, next to the passivation layer 210 on the back surface S2 of the semiconductor substrate 10, an atmospheric pressure chemical vapor deposition (APCVD) method, a plasma enhanced chemical vapor deposition (PECVD) method, a low pressure chemical vapor phase By deposition (LPCVD) or organometallic chemical vapor deposition (MOCVD), a doped polysilicon contact 212 is grown which may be N-doped or P-doped. The thickness of the doped polysilicon electrode 212 is, for example, between 5 and 100 nm.

最後,如第7圖所示,於半導體基板10的正面S1及背面S2上分別形成正面金屬電極120及背面金屬電極220。正面金屬電極120及背面金屬電極220的形成方式可以利用網印或者電鍍,但不限於此。需注意,以上各製程步驟、順序僅為例示說明,其所用技術手段、方法僅為舉例,且各膜層材料不侷限於上述說明。Finally, as shown in FIG. 7, the front surface metal electrode 120 and the back surface metal electrode 220 are formed on the front surface S1 and the back surface S2 of the semiconductor substrate 10, respectively. The front metal electrode 120 and the back metal electrode 220 may be formed by screen printing or electroplating, but are not limited thereto. It should be noted that the above various process steps and sequences are merely illustrative, and the technical means and methods used are merely examples, and the material of each film layer is not limited to the above description.

以上所述僅為本創作之較佳實施例,凡依本創作申請專利範圍所做之均等變化與修飾,皆應屬本創作之涵蓋範圍。The above descriptions are only preferred embodiments of the present invention, and all changes and modifications made by the scope of the patent application of the present invention should be covered by the present invention.

1‧‧‧太陽能電池結構
10‧‧‧半導體基板
12‧‧‧摻雜區
101‧‧‧金字塔形結構
108‧‧‧複合層
110‧‧‧鈍化層
112‧‧‧抗反射層
120‧‧‧正面金屬電極
210‧‧‧鈍化層
212‧‧‧摻雜多晶矽電極
220‧‧‧背面金屬電極
S1‧‧‧正面(受光面)
S2‧‧‧背面
1‧‧‧Solar cell structure
10‧‧‧Semiconductor substrate
12‧‧‧Doped area
101‧‧‧ Pyramidal structure
108‧‧‧Composite layer
110‧‧‧ Passivation layer
112‧‧‧Anti-reflective layer
120‧‧‧Front metal electrode
210‧‧‧ Passivation layer
212‧‧‧Doped polycrystalline germanium electrode
220‧‧‧Back metal electrode
S1‧‧‧Front (glossy)
S2‧‧‧Back

第1圖為依據本創作實施例所繪示的具有摻雜多晶矽電極的太陽能電池結構的剖面示意圖。   第2圖至第7圖為依據本創作實施例所繪示製作具有摻雜多晶矽電極的太陽能電池結構的方法的剖面示意圖。1 is a schematic cross-sectional view showing a structure of a solar cell having a doped polysilicon electrode according to the present embodiment. 2 to 7 are schematic cross-sectional views showing a method of fabricating a solar cell structure having a doped polysilicon electrode according to the present embodiment.

1‧‧‧太陽能電池結構 1‧‧‧Solar cell structure

10‧‧‧半導體基板 10‧‧‧Semiconductor substrate

12‧‧‧摻雜區 12‧‧‧Doped area

101‧‧‧金字塔形結構 101‧‧‧ Pyramidal structure

108‧‧‧複合層 108‧‧‧Composite layer

110‧‧‧鈍化層 110‧‧‧ Passivation layer

112‧‧‧抗反射層 112‧‧‧Anti-reflective layer

120‧‧‧正面金屬電極 120‧‧‧Front metal electrode

210‧‧‧鈍化層 210‧‧‧ Passivation layer

212‧‧‧摻雜多晶矽電極 212‧‧‧Doped polycrystalline germanium electrode

220‧‧‧背面金屬電極 220‧‧‧Back metal electrode

S1‧‧‧正面(受光面) S1‧‧‧Front (glossy)

S2‧‧‧背面 S2‧‧‧Back

Claims (8)

一種太陽能電池結構,包含有: 一半導體基板,具有一正面及一背面; 至少一鈍化層,設於該半導體基板的該背面上;以及 一摻雜多晶矽電極,設於該鈍化層上。A solar cell structure comprising: a semiconductor substrate having a front surface and a back surface; at least one passivation layer disposed on the back surface of the semiconductor substrate; and a doped polysilicon electrode disposed on the passivation layer. 如申請專利範圍第1項所述的太陽能電池結構,其中該半導體基板的該正面上另具有一摻雜區。The solar cell structure of claim 1, wherein the semiconductor substrate further has a doped region on the front side. 如申請專利範圍第2項所述的太陽能電池結構,其中該摻雜區上設有一複合層。The solar cell structure of claim 2, wherein the doped region is provided with a composite layer. 如申請專利範圍第3項所述的太陽能電池結構,其中該複合層包含二氧化矽、氮化矽、氮氧化矽或氧化鋁。The solar cell structure of claim 3, wherein the composite layer comprises cerium oxide, cerium nitride, cerium oxynitride or aluminum oxide. 如申請專利範圍第1項所述的太陽能電池結構,其中該鈍化層包含二氧化矽。The solar cell structure of claim 1, wherein the passivation layer comprises hafnium oxide. 如申請專利範圍第1項所述的太陽能電池結構,其中該鈍化層的厚度不大於2nm。The solar cell structure of claim 1, wherein the passivation layer has a thickness of not more than 2 nm. 如申請專利範圍第1項所述的太陽能電池結構,其中該摻雜多晶矽電極直接接觸到鈍化層。The solar cell structure of claim 1, wherein the doped polysilicon electrode is in direct contact with the passivation layer. 如申請專利範圍第1項所述的太陽能電池結構,其中該摻雜多晶矽電極的厚度介於5~100nm。The solar cell structure according to claim 1, wherein the doped polysilicon electrode has a thickness of 5 to 100 nm.
TW105202372U 2016-02-19 2016-02-19 Solar cell structure with doped polysilicon contact TWM521809U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105202372U TWM521809U (en) 2016-02-19 2016-02-19 Solar cell structure with doped polysilicon contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105202372U TWM521809U (en) 2016-02-19 2016-02-19 Solar cell structure with doped polysilicon contact

Publications (1)

Publication Number Publication Date
TWM521809U true TWM521809U (en) 2016-05-11

Family

ID=56510404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105202372U TWM521809U (en) 2016-02-19 2016-02-19 Solar cell structure with doped polysilicon contact

Country Status (1)

Country Link
TW (1) TWM521809U (en)

Similar Documents

Publication Publication Date Title
JP6411604B2 (en) Solar cell
JP5374504B2 (en) Emitter structure fabrication method and resulting emitter structure
JP5546616B2 (en) Rear junction solar cell with tunnel oxide
TWI718703B (en) Solar cell and manufacturing method thereof
JP2010538492A (en) Solar cell having crystalline silicon pn homojunction and amorphous silicon heterojunction for surface stabilization
TW201432923A (en) Hybrid emitter all back contact solar cell
CN111628052B (en) Preparation method of passivated contact battery
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
TW200937502A (en) Method for making solar cells having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation in a furnace having doped sources
WO2022142343A1 (en) Solar cell and preparation method therefor
CN112490325B (en) Preparation method of solar cell
CN115020508A (en) Full back contact solar cell and manufacturing method thereof
TW201312779A (en) Method for producing a solar cell and solar cell
CN115394863A (en) Solar cell and preparation method thereof
TWM517422U (en) Heterojunction solar cell with local passivation
CN111697110A (en) Heterojunction solar cell and manufacturing method thereof
CN217306520U (en) Solar cell and photovoltaic module
TW201731116A (en) Solar cell structure with doped polysilicon contact
TWI686958B (en) Solar cell and method of fabricating the same
TW201611309A (en) Passivation of light-receiving surfaces of solar cells
US20210384364A1 (en) Solar cell structure and fabrication method thereof
TWM521809U (en) Solar cell structure with doped polysilicon contact
TWI573286B (en) Method of manufacturing solar cell
TWM535876U (en) Solar cell structure with double side doped polysilicon contact
CN216563162U (en) Silicon-based solar cell unit