TWM513882U - Nano ceramic coating micro particle structure having active tree-like support layer - Google Patents

Nano ceramic coating micro particle structure having active tree-like support layer Download PDF

Info

Publication number
TWM513882U
TWM513882U TW104212316U TW104212316U TWM513882U TW M513882 U TWM513882 U TW M513882U TW 104212316 U TW104212316 U TW 104212316U TW 104212316 U TW104212316 U TW 104212316U TW M513882 U TWM513882 U TW M513882U
Authority
TW
Taiwan
Prior art keywords
dendritic
active
ceramic coating
nano ceramic
group
Prior art date
Application number
TW104212316U
Other languages
Chinese (zh)
Inventor
Shou-Mao Hung
Ching-Cheng Huang
Mei-Ting Lee
Original Assignee
Ching-Cheng Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ching-Cheng Huang filed Critical Ching-Cheng Huang
Priority to TW104212316U priority Critical patent/TWM513882U/en
Publication of TWM513882U publication Critical patent/TWM513882U/en

Links

Description

具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體Nano ceramic coating particle structure with active dendritic support layer

本創作揭示一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,其中包含一矽氧烷互穿網核主體;一樹狀體嵌網結構層;以及一活性樹狀體支撐層;其中該活性樹狀體支撐層包含一活性樹狀體結構,複數個活性點以及一容置空間,其中該容置空間,支撐該奈米陶瓷塗料微粒結構體,並扮演為環境緩衝的功能,可克服現有技術,達成各種需求之特殊金屬表面便利改質、上色、封閉及保護的目的。The present invention discloses a nano ceramic coating particle structure having an active dendritic support layer, comprising a monooxane interpenetrating network core; a dendritic inlaid network layer; and an active dendritic support layer; The active dendritic support layer comprises an active dendritic structure, a plurality of active sites and an accommodating space, wherein the accommodating space supports the nano ceramic coating particle structure and functions as an environmental buffering function. Overcoming the prior art, special metal surfaces that meet various needs facilitate the purpose of upgrading, coloring, sealing and protecting.

在許多的建材、家電製品等用途,常有需求在材料表面進行改質,使材料表面產生機能性,例如耐腐蝕機能或異質材料黏合等。在先前的技藝中,對於金屬材料表面改質使用磷酸鹽處理係使含有磷酸離子之酸性溶液與鋼板接觸而使其反應,在鍍層表面形成以磷酸化物為主成分之結晶性表層膜的處理,這樣的處理提高與塗膜之密合性,並具有對於各種後段塗裝穩定的底層保護性能。因此,金屬板特別是鍍鋅系鋼板透過磷酸鹽處理, 廣泛地被使用作為建材、家電等之塗裝應用。然而,以磷酸鹽處理,其耐蝕性不足,因此,通常於磷酸鹽處理後施行稱為「密封處理」之封孔處理。此密封處理係以噴霧、浸漬等方法使含有六價鉻之水溶液與鋼板接觸,然後在不水洗下進行乾燥之處理,藉由此處理而提高耐蝕性。然而,鉻酸鹽處理藥劑和塗膜雖然具有良好的改質性,但所含的六價鉻已被報導對於生物體及環境都具有相當嚴重毒性,因此,一個能代替鉻酸鹽處理劑之低毒性金屬表面改質劑便有其急迫性。另外,在工業製程中,常有配齒流程,而常會發生斷裂或劃傷,因此,金屬表面粗糙度控制、磨耗控制的需求有相當急迫。未料解決這些問題,於特開2000-054157號公報中揭示一種含有磷、鉬等金屬及三價鉻離子,其為不含六價鉻及氟化物之合成表面處理劑。於日本特開平3-39485號公報中,揭示一種於水性樹脂中分散有二氧化矽與玻璃轉移點(Tg點)在40℃以上之蠟,且乾態質量為0.3g/m2 ~3.0g/m2 之塗料。美國專利第5,292,549號,揭示利用矽烷耦合劑進行金屬板處理,藉由交聯劑交聯有機官能矽烷,而形成細緻的矽氧烷膜。於日本特開昭61-83262號公報、特公平2-41555號公報、及特開平5-320568號公報等中,揭示對水性丙烯酸樹脂和水性胺基樹脂,添加環氧樹脂和磷酸、或環氧樹脂和磷酸酯和羧酸反應物改善密合性之熱硬化型組成物。於日本特許2004-047447號公報及特許2004-073736號公報中,揭示利用正矽酸乙酯作為前驅物,經由水解縮合後形成平均分子量為1,000~10,000的烷氧基矽烷寡聚物之醇溶液,作為無鉻水溶性金屬防銹塗料。在台灣也有許多團隊欲解決上述問題,如中華民國專利公告第555888號,提出一種鎂鋁合金表面處理方法,其特徵為以 有機-無機酸混合溶液進行鎂鋁合金表面之酸處理,達到活化金屬之目的,其中有機-無機酸混合溶液為單獨無機酸或有機酸或兩者並存之混合溶液,其中有機酸可以任一種以上選自酸類、醇酸類、二酸類、膦酸類之有機酸;無機酸可以任一種以上選自磷酸、硝酸、硼酸或鹽酸。中華民國專利第I406969號,一種利用包含矽烷/矽烷醇/矽氧烷/聚矽氧烷之水性組成物塗佈金屬表面的方法,其特徵在於該組成物除了包含至少一種化合物,其係選自於矽烷、矽烷醇、矽氧烷、以及聚矽氧烷,及至少一種包含鈦、鉿、鋯、鋁及/或硼的化合物,其中至少一者為錯合氟化物,以及至少一種陽離子、以及金屬的陽離子及/或至少一種相對應的化合物,該組成物還包含了至少一種物質,其係選自於:在每一種情況下均具有至少一種胺基、尿素基及/或亞胺基之無矽化合物,亞硝酸鹽的陰離子及/或具有至少一個硝基之化合物以過氧化物為基礎之化合物,以及含磷化合物、至少一種磷酸鹽之陰離子及/或至少一種膦酸酯之陰離子。中華民國專利公告第I339596號,提出一種奈米陶瓷溶液於金屬表面的處理方法,包括一前處理步驟,其係先將一金屬之表面的油污、雜質去除;以及一奈米陶瓷溶液覆蓋步驟,其係將一奈米陶瓷溶液覆蓋於該金屬表面,使奈米陶瓷溶液化學鍵結於該金屬表面形成一奈米陶瓷薄膜,其中該奈米陶瓷溶液係包括至少兩種金屬烷氧化物、水以及將該金屬烷氧化物催化以進一步和水縮合形成奈米陶瓷溶液的酸類。中華民國專利公開第201221683號,提出一種低介電材料薄膜的製備方法,透過置入一基板於一電漿生成反應系統中;通入一載氣於該電漿生成反應系統中,該載氣承載一含碳氟二氧化矽先驅物,並形成該含碳氟之二氧化矽先驅物 於該基板上;以及轉化該含碳氟之二氧化矽先驅物為一低介電材料薄膜,並消除該低介電材料薄膜之應力使其具有更緊密結構;其中該低介電材料薄膜之碳含量係介於10%至50%之間,氟含量係介於10%至40%之間。然而,該等技術無法全面滿足耐蝕性、耐熱性、耐指紋性、導電性等問題,特別是含鹵素或奈米添加物更存在環境應用安全性的問題,並且不具有使用與調製便利性及安定性。除了上述問題外,習知技藝並無法透過常溫速乾的製程操作,來達到高品質精密表面改質應用的目的。此外,習知奈米陶瓷塗料具有收縮易脆裂的問題。更特定地,針對特殊金屬例如鋰鎂合金(如LZ91),鎂合金(如AZ91,AZ31),因為鋰具有高活性,易反應產生銹蝕、不耐酸、不耐醇,而難以在附著性與防蝕性能取得平衡,並且從沖壓、皮膜鈍化到塗裝,需要完美的配合,方能達到產品輕量化,耐蝕性,延展強度,沖壓加工的目的。In many applications such as building materials and home appliances, it is often necessary to modify the surface of the material to produce functional properties such as corrosion resistance or bonding of foreign materials. In the prior art, a phosphate treatment system is used to modify the surface of a metal material, and an acidic solution containing a phosphate ion is brought into contact with a steel sheet to cause a reaction, and a crystallized surface film containing a phosphate as a main component is formed on the surface of the plating layer. Such a treatment improves the adhesion to the coating film and has a stable undercoating property for various subsequent coatings. Therefore, the metal plate, in particular, the galvanized steel sheet is subjected to phosphate treatment, and is widely used as a coating application for building materials and home appliances. However, since phosphate treatment has insufficient corrosion resistance, it is usually subjected to a sealing treatment called "sealing treatment" after the phosphate treatment. In this sealing treatment, an aqueous solution containing hexavalent chromium is brought into contact with a steel sheet by spraying, dipping, or the like, and then dried without being washed with water, whereby the corrosion resistance is improved by the treatment. However, although the chromate treatment agent and the coating film have good reformability, the hexavalent chromium contained has been reported to be quite toxic to both the organism and the environment, and therefore, one can replace the chromate treatment agent. Low toxicity metal surface modifiers have their urgency. In addition, in the industrial process, there is often a tooth flow process, and often breakage or scratching, therefore, the need for metal surface roughness control and wear control is quite urgent. In order to solve these problems, a metal containing phosphorus, molybdenum or the like and a trivalent chromium ion, which are synthetic surface treatment agents containing no hexavalent chromium and fluoride, are disclosed in Japanese Laid-Open Patent Publication No. 2000-054157. Japanese Laid-Open Patent Publication No. Hei-3-39485 discloses a wax in which cerium oxide and a glass transition point (Tg point) are dispersed at 40 ° C or higher in an aqueous resin, and the dry mass is 0.3 g/m 2 to 3.0 g. /m 2 coating. U.S. Patent No. 5,292,549 discloses the use of a decane couplant for metal plate treatment to crosslink the organofunctional decane to form a fine siloxane film. In the case of a water-based acrylic resin and an aqueous amine-based resin, an epoxy resin and a phosphoric acid or a ring are disclosed in JP-A-61-83262, JP-A-4-41555, and JP-A-5-320568. A thermosetting composition in which an oxygen resin and a phosphate ester and a carboxylic acid reactant improve adhesion. An alcohol solution of an alkoxydecane oligomer having an average molecular weight of 1,000 to 10,000 is formed by hydrolysis and condensation using ethyl ortho-nonanoate as a precursor, as disclosed in Japanese Patent Publication No. 2004-047447 and No. 2004-073736. As a chromium-free water-soluble metal anti-rust coating. There are also many teams in Taiwan that want to solve the above problems, such as the Republic of China Patent Bulletin No. 555888, which proposes a magnesium-aluminum alloy surface treatment method characterized by acid treatment of the surface of the magnesium-aluminum alloy with an organic-inorganic acid mixed solution to achieve activated metal. The purpose of the organic-inorganic acid mixed solution is a mixed inorganic or organic acid or a mixed solution of the two, wherein the organic acid may be any one or more organic acids selected from the group consisting of acids, alkyds, diacids, and phosphonic acids; Any one or more may be selected from phosphoric acid, nitric acid, boric acid or hydrochloric acid. Republic of China Patent No. I406969, a method of coating a metal surface with an aqueous composition comprising decane/stanol/halothane/polyoxyalkylene, characterized in that the composition comprises at least one compound selected from the group consisting of a compound comprising titanium, cerium, zirconium, aluminum, and/or boron, at least one of which is a mis-fluoride, and at least one cation, and a metal cation and/or at least one corresponding compound, the composition further comprising at least one substance selected from the group consisting of: in each case having at least one amine group, urea group and/or imine group An antimony compound, an anion of a nitrite and/or a peroxide-based compound of a compound having at least one nitro group, and an anion of a phosphorus-containing compound, an anion of at least one phosphate, and/or at least one phosphonate. The Republic of China Patent Publication No. I339596 proposes a method for treating a nano ceramic solution on a metal surface, comprising a pretreatment step of first removing oil stains and impurities on a surface of a metal; and covering a nano ceramic solution step, The invention comprises covering a surface of the metal with a nano ceramic solution, and chemically bonding the nano ceramic solution to the surface of the metal to form a nano ceramic film, wherein the nano ceramic solution comprises at least two metal alkoxides, water and The metal alkoxide is catalyzed to further condense with water to form an acid of the nanoceramic solution. The Republic of China Patent Publication No. 201221683 proposes a method for preparing a low dielectric material film by inserting a substrate into a plasma generation reaction system; and introducing a carrier gas into the plasma generation reaction system, the carrier gas Carrying a fluorocarbon ceria precursor and forming the fluorocarbon-containing ceria precursor on the substrate; and converting the fluorocarbon-containing ceria precursor into a low dielectric material film and eliminating The stress of the low dielectric material film has a tighter structure; wherein the low dielectric material film has a carbon content of between 10% and 50% and a fluorine content of between 10% and 40%. However, these technologies cannot fully satisfy the problems of corrosion resistance, heat resistance, fingerprint resistance, conductivity, etc., especially halogen-containing or nano-additives have more environmental safety problems, and have no use and modulation convenience. Stability. In addition to the above problems, conventional techniques cannot achieve high-quality precision surface modification applications through normal temperature and quick-drying process operations. In addition, conventional nano ceramic coatings have the problem of shrinkage and brittle fracture. More specifically, for special metals such as lithium magnesium alloys (such as LZ91), magnesium alloys (such as AZ91, AZ31), because lithium has high activity, easy to react to produce rust, acid and alcohol, and difficult to adhere and corrosion Balanced performance, and from stamping, film passivation to coating, the perfect fit is required to achieve light weight, corrosion resistance, elongation strength, and stamping processing.

有鑑於此,本創作之創作者精心研究,提出一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,除了解決上述需求,更可進一步依客製化需求調整本創作所設計產品,是一種具有高機動調製性之一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體。這樣的一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體設計解決習知技藝僅利用各種型式混合物之塗料效能限制,更使本創作表面改質劑具有品質安定、穩定的優點,更特別的是可常溫速乾來達成表面改質的目的,並不限於金屬材料表面使用。In view of this, the creators of this creation have carefully studied and proposed a nano-ceramic coating particle structure with an active dendritic support layer. In addition to solving the above requirements, the creative design product can be further adjusted according to the customization requirements. It is a kind of nano ceramic coating particle structure with active dendritic support layer with high maneuverability. Such a nano ceramic coating particle structure design with an active dendritic support layer solves the prior art using only the coating performance limitations of various types of mixtures, and the surface modifying agent of the present invention has the advantages of stable quality and stability. In particular, it can be dried at a constant temperature to achieve surface modification, and is not limited to the surface of a metal material.

本創作揭示一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,為了達到高機動調製性,特別地設計一種用於常溫速乾塗料具有活性樹狀核心主體(Active Multi-Dentric Core,AMD Core)及其架構其表層的矽氧烷互穿網結構層,其中活性樹狀核心主體具有可作為表面微觀環境緩衝功能的容置空間及支撐此容置空間的活性樹狀體結構,作為本創作奈米陶瓷塗料微粒結構體的特徵結構。所述奈米陶瓷塗料微粒結構體可克服現有技術,達成各種需求之表面便利常溫速乾改質、封閉、上色及充分保護的目的,特別適用於特殊金屬例如鋰合金、鋰鎂合金及鋁合金的保護,但並不限於特殊金屬合金及金屬材料表面使用,亦適用於其他無機或有機系統的表面。The present invention discloses a nano ceramic coating particle structure having an active dendritic support layer. In order to achieve high maneuverability, an active multi-dentic core (Active Multi-Dentric Core) is specially designed for a normal temperature and quick drying coating. AMD Core) and its surface layer of helium oxide interpenetrating network structure layer, wherein the active dendritic core body has a receiving space which can serve as a surface microenvironment buffering function and an active dendritic structure supporting the receiving space, as The characteristic structure of the nano ceramic coating particle structure. The nano ceramic coating particle structure can overcome the prior art, and the surface for various needs is convenient for dry temperature modification, sealing, coloring and sufficient protection, and is particularly suitable for special metals such as lithium alloy, lithium magnesium alloy and aluminum. The protection of alloys, but not limited to the surface of special metal alloys and metal materials, is also applicable to the surface of other inorganic or organic systems.

即,本創作揭示一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,其中該奈米陶瓷塗料微粒結構體包含一矽氧烷互穿網核主體;一樹狀體嵌網結構層;以及一活性樹狀體支撐層;其中該矽氧烷互穿網核主體包含複數個矽氧烷寡聚物分子鏈結構,而該矽氧烷寡聚物分子鏈結構相互連接而形成該矽氧烷互穿網核主體;該活性樹狀體支撐層包含一活性樹狀體結構,複數個活性點以及一容置空間,其中該活性樹狀體結構包含複數個枝狀結構及複數個枝狀結構終端,而該枝狀結構相互連接支撐形成該活性樹狀體結構,並且同時形成該容置 空間,並支撐該奈米陶瓷塗料微粒結構體;以及該樹狀體嵌網結構層,設置於矽氧烷互穿網核主體與該活性樹狀體支撐層之間,用於在該矽氧烷互穿網核主體外輪廓支撐性地形成可將該活性樹狀體嵌合的網狀結構。That is, the present disclosure discloses a nano ceramic coating particle structure having an active dendritic support layer, wherein the nano ceramic coating particle structure comprises a phthalic oxide interpenetrating network core; a dendritic embedded structure layer; And an active dendritic support layer; wherein the oxane interpenetrating network core comprises a plurality of siloxane oxide molecular chain structures, and the oxane oligo molecular chain structure is interconnected to form the oxime An alkane interpenetrating network core; the active dendritic support layer comprises an active dendritic structure, a plurality of active sites and an accommodating space, wherein the active dendritic structure comprises a plurality of dendritic structures and a plurality of dendrites a structural terminal, wherein the dendritic structures are connected to each other to form the active dendritic structure, and at the same time form the accommodation Space, and supporting the nano ceramic coating particle structure; and the dendritic intercalation layer is disposed between the xenon oxide interpenetrating core body and the active dendritic support layer for The outer contour of the alkane interpenetrating network core supports a network structure in which the active dendrimer is fitted.

優選地,該容置空間可作為微環境結構緩衝的功能。Preferably, the accommodating space functions as a buffer for the microenvironment structure.

優選地,該容置空間可用以容置一酸鹼值調節粒子,調整酸鹼值。Preferably, the accommodating space can be used to accommodate a pH adjusting particle to adjust the pH value.

優選地,該矽氧烷互穿網層之鋁與矽的重量比介於1:20到1:100之間,包含有(OR)x M-O-M(OR)x 、(R)y (OR)x-y M-O-M(OR)x-y (R)y 、M(OR)x 、M(OR)x-y (R)y 或(OR)x M-O-M(OR)x 及其組合之鍵結;R係選自由烷(alkyl)基、烯基(alkenyl)、芳基(aryl)、鹵烷基(alkylhalide)、氫(hydrogen)及其組合所組成之群組;M係可選自於鋁、矽及其組合所組成之群組;x>y,且x為2、3、4或5,y為1、2、3或4。Preferably, the helium oxide interpenetrating layer has a weight ratio of aluminum to lanthanum between 1:20 and 1:100, including (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x , M(OR) xy (R) y or (OR) x MOM(OR) x and combinations thereof; R is selected from alkyl a group consisting of an alkenyl group, an aryl group, an alkylhalide group, a hydrogen group, and combinations thereof; the M system may be selected from the group consisting of aluminum, strontium, and combinations thereof. Group; x>y, and x is 2, 3, 4 or 5, and y is 1, 2, 3 or 4.

優選地,該矽氧烷寡聚物分子鏈結構係由複數個選自由乙烯三甲氧基矽烷化物、甲基三甲氧基矽烷化物、四乙氧基矽烷化物、二甲基二乙氧基矽烷化物、苯基三乙氧基矽烷化物、γ-甲丙烯氧基丙基-三甲氧基矽烷化物、γ-氯丙基三甲基氧基矽烷化物、癸基三甲氧基矽烷化物、異丁基三甲氧基矽烷化物、三級-丁基二甲基氯矽烷化物、乙烯基三氯矽烷化物、3-氨丙基三甲氧基矽烷化物、二苯基二氯矽烷化物、六甲基二矽烷化物、乙烯基三矽烷化物、矽酸鹽衍生物、雙(3-三乙氧矽烷基丙基)胺、雙(3-三甲氧矽烷基丙烷基)胺、3-胺基丙烷基甲基二乙氧矽烷、3-胺基丙烷基-三乙氧矽烷、3-胺基丙烷基-甲基二乙氧矽烷、多胺基矽烷、多胺基矽氧烷、3-胺基丙烷基-三甲氧矽烷、三胺基功能性丙烷基三甲烷氧基矽烷、2-胺基乙基-3-胺基丙基 甲基-二甲氧基矽烷、2-胺基乙基-3-胺基丙基-三甲氧基矽烷、環氧基矽氧烷及其組合族群所形成。Preferably, the molecular structure of the siloxane oxide oligomer is selected from the group consisting of ethylene trimethoxy decanoate, methyl trimethoxy decanoate, tetraethoxy decyl halide, dimethyl diethoxy decyl halide. Phenyltriethoxydecane, γ-methylpropoxypropyl-trimethoxydecane, γ-chloropropyltrimethyloxydecane, decyltrimethoxydecane, isobutyltrimethyl Oxaloxane, tertiary-butyldimethylchloromethane, vinyltrichloromethane, 3-aminopropyltrimethoxydecane, diphenyldichlorodecanoate, hexamethyldidecane, Vinyl tridecane, citrate derivative, bis(3-triethoxydecylpropyl)amine, bis(3-trimethoxydecylpropane)amine, 3-aminopropanylmethyldiethoxylate Decane, 3-aminopropane-triethoxyoxane, 3-aminopropanyl-methyldiethoxyoxane, polyamine decane, polyamine oxirane, 3-aminopropane-trimethoxy decane , triamine functional propane trimethaneoxydecane, 2-aminoethyl-3-aminopropyl Methyl-dimethoxydecane, 2-aminoethyl-3-aminopropyl-trimethoxydecane, epoxy oxane, and combinations thereof are formed.

透過本創作奈米陶瓷塗料微粒結構體可用但不限於金屬表面,特別是用於鋅、鋁、不鏽鋼及鈦合金製品表面特性之修飾,達到表面黏著性調整、表面張力的調整、表面粗糙度的調整、表面生物相容性的調整、表面介電常數調整、表面熱膨脹係數調整、表面隔離膜厚度調整、表面呈色調整、表面氧化程度的調整等目的。更特定地,更適用於特殊金屬例如鋰鎂合金(如LZ91),鎂合金(如AZ91,AZ31),鋁合金(例如5052-H32),解決特殊金屬易反應產生銹蝕、不耐酸、不耐醇,而難以在附著性與防蝕性能取得平衡,並且從沖壓、皮膜鈍化到塗裝,需要完美的配合等需求,達到產品輕量化,耐蝕性,延展強度,沖壓加工的目的。Through the creation of nano ceramic coating particle structure can be used but not limited to metal surface, especially for the modification of the surface characteristics of zinc, aluminum, stainless steel and titanium alloy products, to achieve surface adhesion adjustment, surface tension adjustment, surface roughness Adjustment, surface biocompatibility adjustment, surface dielectric constant adjustment, surface thermal expansion coefficient adjustment, surface isolation film thickness adjustment, surface color adjustment, surface oxidation degree adjustment, etc. More specifically, it is more suitable for special metals such as lithium-magnesium alloys (such as LZ91), magnesium alloys (such as AZ91, AZ31), and aluminum alloys (such as 5052-H32) to solve the problem that special metals are easily reacted to produce rust, acid and alcohol. It is difficult to balance the adhesion and corrosion resistance, and from the stamping, film passivation to coating, the need for perfect fit, to achieve the purpose of product lightweight, corrosion resistance, extension strength, and stamping.

選擇性地,該奈米陶瓷塗料微粒結構體進一步包含一種酸鹼值調節劑,用來因應該常溫速乾塗料之應用來調整酸鹼值。選擇性地,該奈米陶瓷塗料微粒結構體進一步可配合一選自由聚脲酸酯樹脂、聚丙烯酸酯樹脂、聚醯胺樹脂、聚環氧樹脂、聚四氟乙烯、聚矽氧烷樹脂、聚碳酸酯樹脂、聚炔樹脂、聚乙二醇樹脂、聚乙烯吡咯烷酮、聚烯樹脂及其組合族群之機能性樹脂,形成客製化機能性塗料。選擇性地達成金屬表面黏著性調整、表面張力的調整、表面粗糙度的調整、表面生物相容性的調整、表面介電常數調整、表面熱膨脹係數調整、表面隔離膜厚度調整、表面氧化程度調整、金屬表面呈色調整及其組合之功能。Optionally, the nano ceramic coating particle structure further comprises a pH adjusting agent for adjusting the pH value according to the application of the normal temperature dry coating. Optionally, the nano ceramic coating particle structure may further be selected from the group consisting of a polyurea resin, a polyacrylate resin, a polyamide resin, a polyepoxy resin, a polytetrafluoroethylene, a polyoxyalkylene resin, A functional resin of a polycarbonate resin, a polyacetylene resin, a polyethylene glycol resin, a polyvinylpyrrolidone, a polyolefin resin, and a combination thereof forms a custom functional coating. Selectively achieve metal surface adhesion adjustment, surface tension adjustment, surface roughness adjustment, surface biocompatibility adjustment, surface dielectric constant adjustment, surface thermal expansion coefficient adjustment, surface isolation film thickness adjustment, surface oxidation degree adjustment The metal surface is colored and adjusted to function.

1‧‧‧具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體1‧‧‧Nano ceramic coating particle structure with active dendritic support layer

10‧‧‧活性樹狀核心主體10‧‧‧Active tree core subject

11‧‧‧枝狀結構11‧‧‧dendritic structure

12‧‧‧枝狀結構終端12‧‧‧dendritic terminal

13‧‧‧活性樹狀體結構13‧‧‧Active dendritic structure

15‧‧‧活性點15‧‧‧Active points

17‧‧‧容置空間17‧‧‧ accommodating space

20‧‧‧矽氧烷互穿網核主體20‧‧‧Hane oxide interpenetrating network core

25‧‧‧矽氧烷寡聚物分子鏈結構25‧‧‧Oxygenane oligomer molecular chain structure

30‧‧‧樹狀體嵌網結構層30‧‧‧Tree-like inlaid mesh structure

35‧‧‧網狀結構35‧‧‧ mesh structure

第1圖,本創作一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體示意 圖。Fig. 1, a schematic diagram of a nano-ceramic coating particle structure with an active dendritic support layer Figure.

本創作揭示一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,其中包含一矽氧烷互穿網核主體;一樹狀體嵌網結構層;以及一活性樹狀體支撐層;其中該矽氧烷互穿網核主體包含複數個矽氧烷寡聚物分子鏈結構,而該矽氧烷寡聚物分子鏈結構相互連接而形成該矽氧烷互穿網核主體;該活性樹狀體支撐層包含一活性樹狀體結構,複數個活性點以及一容置空間,其中該活性樹狀體結構包含複數個枝狀結構及複數個枝狀結構終端,而該枝狀結構相互連接支撐形成該活性樹狀體結構,並且同時形成該容置空間,並支撐該奈米陶瓷塗料微粒結構體;以及該樹狀體嵌網結構層,設置於矽氧烷互穿網核主體與該活性樹狀體支撐層之間,用於在該矽氧烷互穿網核主體外輪廓支撐性地形成可將該活性樹狀體嵌合的網狀結構,其中該奈米陶瓷塗料微粒結構體之鋁矽重量比介於2到20之間,並包含-Si-O-Si-鍵結與-Si-O-Al-鍵結之互穿網結構。所述奈米陶瓷塗料微粒結構體可克服現有技術,達成各種需求之金屬表面便利改質、上色、封閉及保護的目的。為讓本創作之目的、特徵、和優點能更明顯易懂,下文特舉較佳實施例,作詳細說明如下。The present invention discloses a nano ceramic coating particle structure having an active dendritic support layer, comprising a monooxane interpenetrating network core; a dendritic inlaid network layer; and an active dendritic support layer; The oxane interpenetrating network core comprises a plurality of siloxane oxide molecular chain structures, and the siloxane oxide oligo molecular chain structure is interconnected to form the oxirane interpenetrating network core; the active tree The support layer comprises an active dendritic structure, a plurality of active sites and an accommodating space, wherein the active dendritic structure comprises a plurality of dendritic structures and a plurality of dendritic structures, and the dendritic structures are interconnected Supporting to form the active dendritic structure, and simultaneously forming the accommodating space, and supporting the nano ceramic coating particle structure; and the dendritic intercalation structure layer, disposed on the siloxane base interpenetrating core body and the Between the active dendritic support layers, for forming a network structure capable of fitting the active dendrites to the outer contour of the oxime interpenetrating network core, wherein the nano ceramic coating particle structure Aluminum Weight ratio is between 2 and 20, and includes -Si-O-Si- bond -Si-O-Al- and bond the IPN structure. The nano ceramic coating particle structure can overcome the prior art, and achieve the purpose of convenient modification, coloring, sealing and protection of the metal surface of various requirements. In order to make the objects, features, and advantages of the present invention more comprehensible, the preferred embodiments are described in detail below.

第1實施例-用於鋰鎂合金表面保護具有矽氧烷活性樹狀體支撐層之奈米陶瓷塗料微粒結構體之製備First Embodiment - Preparation of Nano Ceramic Coating Particle Structure for Surface Protection of Lithium-Oxide Alloy

本創作一種用於鋰鎂合金表面保護具有矽氧烷活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,可透過下列步驟達成製備。取第一官能基矽氧烷化物1莫爾與對應該第一官能基能進行加成或縮合反應的第二官能基矽氧烷化物2莫爾,溶於20克異丙醇溶劑形成混合矽氧烷化物異丙醇溶液,意即透過相對應反應之第一官能基能與第二官能基的反應物莫耳數調控,混合攪拌並在室溫25°下進行反應,形成矽氧烷活性樹狀體溶液。進一步,取二級-丁基氧化鋁(aluminum sec-butoxide)0.01莫爾克溶於10克異丙醇溶劑形成鋁氧化物異丙醇溶液,矽氧烷化物0.2莫爾,溶於20克異丙醇溶劑形成混合鋁氧化物/矽氧烷化物異丙醇溶液,混合攪拌並在室溫25°下進行互穿網反應,得到含複數個矽氧烷寡聚物分子鏈結構所組成之矽氧烷互穿網核主體溶液並加入矽氧烷活性樹狀體溶液,進行嵌核網結構形成反應,10分鐘。選擇性地,因應客製化需求,在特定應用可加入反應促進劑、酸鹼值調節劑、或輔助催化劑等添加劑來控制反應產物的分子量及互穿網密度。例如,加入硝酸0.1克混合攪拌10分鐘,加入水20克,混合攪拌2小時使反應更充分互穿網密度更高。當然鈦氧化物及鉻氧化物亦可在特定應用中替代鋁氧化物,例如鈦氧化物主要是透過一選自由鈦丙氧烷化物(titanium(IV)propoxide)、鈦異丙氧烷化物(titanium(IV)isopropoxide)、鈦丁氧烷化物(titanium(IV)butoxide)、鈦二級-丁氧烷化物(titanium(IV)sec-butoxide)、鈦三級-丁氧烷化物(titanium(IV)teit-butoxide)及其組合族群的鈦氧烷化物。本實施例所設計的具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,其中該矽氧烷互穿網核主體之鋁矽重量比介於20到100之間。將該奈米陶瓷塗 料微粒結構體進行紅外線光譜儀分析可發現在1000到1100cm-1 有吸收峰,這是活性矽氧烷互穿網多核心結構體具有Si-O-Si鍵結的證明。由粒徑分析可得該鋁矽氧複合互穿網寡聚物結構核心主體具有介於0.01微米到0.1微米之間粒徑。本實施例所使用之第一矽氧烷化物與第二矽氧烷化物係選自由乙烯三甲氧基矽烷化物、甲基三甲氧基矽烷化物、四乙氧基矽烷化物、二甲基二乙氧基矽烷化物、苯基三乙氧基矽烷化物、γ-甲丙烯氧基丙基-三甲氧基矽烷化物、γ-氯丙基三甲基氧基矽烷化物、癸基三甲氧基矽烷化物、異丁基三甲氧基矽烷化物、三級-丁基二甲基氯矽烷化物、乙烯基三氯矽烷化物、3-氨丙基三甲氧基矽烷化物、二苯基二氯矽烷化物、六甲基二矽烷化物、乙烯基三矽烷化物、矽酸鹽衍生物、雙(3-三乙氧矽烷基丙基)胺、雙(3-三甲氧矽烷基丙烷基)胺、3-胺基丙烷基甲基二乙氧矽烷、3-胺基丙烷基-三乙氧矽烷、3-胺基丙烷基-甲基二乙氧矽烷、多胺基矽烷、多胺基矽氧烷、3-胺基丙烷基-三甲氧矽烷、三胺基功能性丙烷基三甲烷氧基矽烷、2-胺基乙基-3-胺基丙基甲基-二甲氧基矽烷、2-胺基乙基-3-胺基丙基-三甲氧基矽烷、環氧基矽氧烷及其組合族群的矽氧烷化物。因此,本創作常溫速乾表面改質劑主要包含一互穿網結構體並且該結構包含有(OR)x M-O-M(OR)x 、(R)y (OR)x-y M-O-M(OR)x-y (R)y 、M(OR)x 、M(OR)x-y (R)y 或(OR)x M-O-M(OR)x 及其組合之鍵結;R係選自由烷(alkyl)基、烯基(alkenyl)、芳基(aryl)、鹵烷基(alkylhalide)、胺基(amino)、氫(hydrogen)及其組合所組成之群組;M係可選自於鋁、矽及其組合所組成之群組;x>y,且x為2、3、4或5,y為1、2、3或4;以及鋁與矽的重量比介於1:20到1:100之間;粒 徑介於0.1微米到100微米之間。本創作可應用的塗料可以是溶膠、凝膠、溶膠-凝膠、顆粒懸浮液、均勻液、乳化液所組成族群組合,因此,可依需求透過浸泡、噴霧、滾輪塗佈、一般塗佈及其組合之製程進行標的材料表面的修飾。修飾後的材料表面可直接風乾,更可以進一步根據需求以高溫烘乾或紫外光照射等方式進行強化處理。在特定的應用中,可在標的材料表面先透過電漿、臭氧、酸鹼處理等,增加標的金屬表面的活性,達到表面黏著性調整、表面張力的調整、表面粗糙度的調整、表面生物相容性的調整、表面介電常數調整、表面熱膨脹係數調整、表面隔離膜厚度調整、表面氧化程度的調整等目的。The present invention relates to a nano ceramic coating particle structure for protecting a surface of a lithium magnesium alloy having a buffer layer of a siloxane active dendrite, which can be prepared by the following steps. Taking a first functional oxirane 1 Mohr and a second functional oxirane 2 Mohr corresponding to the addition or condensation reaction of the first functional group, dissolved in 20 g of isopropyl alcohol solvent to form a mixed oxime The oxyalkylate isopropanol solution, that is, the first functional group energy of the corresponding reaction and the reactant number of the second functional group are controlled, mixed and stirred at room temperature at 25° to form a siloxane activity. Dendrimer solution. Further, taking aluminum sec-butoxide 0.01 molg dissolved in 10 g of isopropyl alcohol solvent to form an aluminum oxide isopropanol solution, the oxirane compound 0.2 mol, dissolved in 20 g different The propanol solvent forms a mixed aluminum oxide/nonoxyalkylated isopropanol solution, and is stirred and mixed and subjected to an interpenetrating reaction at room temperature of 25° to obtain a molecular chain structure containing a plurality of siloxane oxide oligomers. The oxane interpenetrates the core body solution and adds a oxoxane active dendrimer solution to form an in-core network structure forming reaction for 10 minutes. Optionally, additives such as a reaction accelerator, a pH adjuster, or a co-catalyst may be added to control the molecular weight of the reaction product and the interpenetrating network density in accordance with the requirements of customization. For example, 0.1 g of nitric acid is added and stirred for 10 minutes, 20 g of water is added, and the mixture is stirred for 2 hours to make the reaction more fully interpenetrating. Of course, titanium oxide and chromium oxide can also replace aluminum oxide in specific applications. For example, titanium oxide is mainly transmitted through a titanium oxide propoxide (titanium (IV) propoxide), titanium isopropoxide (titanium). (IV) isopropoxide), titanium (IV) butoxide, titanium (IV) sec-butoxide, titanium tertiary butane (titanium (IV) Teit-butoxide) and its combination group of titanyl alkoxides. In the embodiment, the nano ceramic coating particle structure having the active dendritic support layer is designed, wherein the helium oxide interpenetrating core body has an aluminum crucible weight ratio of between 20 and 100. The infrared ceramic spectroscopic analysis of the nano ceramic coating particle structure revealed an absorption peak at 1000 to 1100 cm -1 , which is evidence that the active siloxane sub - network multi-core structure has Si-O-Si bonding. The core body of the aluminum-niobium oxide composite interpenetrating network oligomer has a particle diameter of between 0.01 micrometers and 0.1 micrometers as determined by particle size analysis. The first oxime oxyalkylate and the second oxo oxyalkylate used in this embodiment are selected from the group consisting of ethylene trimethoxy decanoate, methyl trimethoxy decane, tetraethoxy decyl, dimethyl diethoxy Base hydride, phenyltriethoxy decane, γ-methyl propyloxypropyl-trimethoxy decane, γ-chloropropyltrimethyloxydecane, decyltrimethoxydecane, different Butyl trimethoxy decanoate, tertiary butyl dimethyl chloroformate, vinyl trichloromethane, 3-aminopropyl trimethoxy decane, diphenyl dichloromethane, hexamethyl Decane, vinyl tridecanoate, decanoate derivative, bis(3-triethoxydecylpropyl)amine, bis(3-trimethoxydecylpropane)amine, 3-aminopropanylmethyl Diethoxyoxane, 3-aminopropanyl-triethoxyoxane, 3-aminopropanyl-methyldiethoxyoxane, polyaminodecane, polyamine oxirane, 3-aminopropanyl- Trimethoxane, triamine functional propane trimethaneoxydecane, 2-aminoethyl-3-aminopropylmethyl-dimethoxydecane, 2- An alkoxyalkylate of aminoethyl-3-aminopropyl-trimethoxydecane, an epoxy oxane, and combinations thereof. Therefore, the present constant temperature and quick-drying surface modifier mainly comprises an interpenetrating network structure and the structure comprises (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x , M(OR) xy (R) y or (OR) x MOM(OR) x and combinations thereof; R is selected from an alkyl group, an alkenyl group, a group consisting of an aryl group, an alkylhalide group, an amino group, a hydrogen group, and a combination thereof; the M system may be selected from the group consisting of aluminum, cerium, and combinations thereof; x>y, and x is 2, 3, 4 or 5, y is 1, 2, 3 or 4; and the weight ratio of aluminum to bismuth is between 1:20 and 1:100; the particle size is between 0.1 micron Up to 100 microns. The paints that can be applied in this creation may be a combination of a group consisting of a sol, a gel, a sol-gel, a particle suspension, a homogeneous liquid, and an emulsion. Therefore, it can be immersed, sprayed, roller coated, and generally coated as needed. The combined process performs the modification of the surface of the target material. The surface of the modified material can be directly air-dried, and further strengthened by high-temperature drying or ultraviolet light irradiation according to requirements. In a specific application, the surface of the target material can be firstly filtered through plasma, ozone, acid and alkali to increase the activity of the surface of the target metal, to achieve surface adhesion adjustment, surface tension adjustment, surface roughness adjustment, surface bio-phase Capacitive adjustment, surface dielectric constant adjustment, surface thermal expansion coefficient adjustment, surface isolation film thickness adjustment, surface oxidation degree adjustment, etc.

將本創作常溫速乾塗料為了保護或改變材料表面機能性而用於常見金屬表面,特別是特殊金屬,但不限於金屬,可用於鋅、鋁、不鏽鋼及鈦合金製品表面特性之修飾或玻璃或矽晶片,特別地適用於鋰鎂合金(如LZ91),鎂合金(如AZ91,AZ31),鋁合金(例如5052-H32),達到產品輕量化,耐蝕性,延展強度,沖壓加工的目的。更適宜地,在應用鋰鎂合金表面保護時,可搭配皮膜處理或陽極處理或微弧氧化處理進一步強化保護效果。The original temperature-drying coatings are used for common metal surfaces in order to protect or change the surface function of materials, especially special metals, but not limited to metals, which can be used for the modification of the surface properties of zinc, aluminum, stainless steel and titanium alloy products or glass or矽 wafers, especially for lithium-magnesium alloys (such as LZ91), magnesium alloys (such as AZ91, AZ31), aluminum alloys (such as 5052-H32), to achieve product weight, corrosion resistance, ductility, and stamping processing purposes. More suitably, when the surface protection of the lithium-magnesium alloy is applied, the protective effect can be further enhanced by the film treatment or the anodizing treatment or the micro-arc oxidation treatment.

可用於達到表面黏著性調整、表面張力的調整、表面粗糙度的調整、表面生物相容性的調整、表面介電常數調整、表面熱膨脹係數調整、表面隔離膜厚度調整、表面氧化程度的調整等目的。Can be used to achieve surface adhesion adjustment, surface tension adjustment, surface roughness adjustment, surface biocompatibility adjustment, surface dielectric constant adjustment, surface thermal expansion coefficient adjustment, surface isolation film thickness adjustment, surface oxidation degree adjustment, etc. purpose.

第2實施例-具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體Second Embodiment - Nano Ceramic Coating Particle Structure with Active Dendritic Support Layer

本實施例設計一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體(1)如圖一所示,其中該具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構 體(1)包含一矽氧烷互穿網核主體(20);一樹狀體嵌網結構層(30);以及一活性樹狀體支撐層(10);其中該矽氧烷互穿網核主體(20)包含複數個矽氧烷寡聚物分子鏈結構(25),而該矽氧烷寡聚物分子鏈結構(25)相互連接而形成該矽氧烷互穿網核主體(20);該活性樹狀體支撐層(10)包含複數個活性樹狀體結構(13),複數個活性點(15)以及一容置空間(17),其中該活性樹狀體結構(13)包含複數個枝狀結構(11)及複數個枝狀結構終端(12),而該枝狀結構(11)相互連接支撐形成該活性樹狀體結構(13),並且同時形成該容置空間(17),並支撐該具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體(1);以及該樹狀體嵌網結構層(30),設置於矽氧烷互穿網核主體(20)與該活性樹狀體支撐層(10)之間,用於在該矽氧烷互穿網核主體(20)外輪廓支撐性地形成可將該活性樹狀體結構(13)嵌合的網狀結構(35)。其中該矽氧烷互穿網核主體(20)具有介於0.01微米到0.1微米之間粒徑;具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體(1)具有介於0.05微米到0.5微米之間粒徑。該容置空間(17)在結構中主要扮演結構緩衝之功能。在特定應用中,本創作具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體(1)與大部分功能性樹脂有高度相容性,並可搭配複數個選自由聚脲酸酯樹脂、聚丙烯酸酯樹脂、聚醯胺樹脂、聚環氧樹脂、聚四氟乙烯、聚矽氧烷樹脂、聚碳酸酯樹脂、聚炔樹脂、聚乙二醇樹脂、聚乙烯吡咯烷酮、聚烯樹脂及其組合族群之機能性樹脂來使用,使本創作高度相容性的特徵充分顯明,並可進一步形成符合客製化機能性產品。In this embodiment, a nano ceramic coating particle structure (1) having an active dendritic support layer is designed as shown in FIG. 1 , wherein the nano ceramic coating particle structure having the active dendritic support layer The body (1) comprises a monooxane interpenetrating network core (20); a dendritic network structure layer (30); and an active dendritic support layer (10); wherein the xenon oxide interpenetrating network core The main body (20) comprises a plurality of siloxane oxide oligomer molecular chain structures (25), and the siloxane oxide oligomer molecular chain structure (25) is interconnected to form the oxirane interpenetrating network core (20) The active dendritic support layer (10) comprises a plurality of active dendritic structures (13), a plurality of active sites (15) and an accommodating space (17), wherein the active dendritic structure (13) comprises a plurality of dendritic structures (11) and a plurality of dendritic structures (12), wherein the dendritic structures (11) are interconnected to form the active dendritic structure (13), and simultaneously form the accommodating space (17) And supporting the nano ceramic coating particle structure (1) having an active dendritic support layer; and the dendritic intercalation structure layer (30) disposed on the xenon oxide interpenetrating network core (20) Between the active dendritic support layer (10), a net for supporting the active dendrimer structure (13) is formed on the outer contour of the xenon oxide interpenetrating core body (20). Structure (35)Wherein the xenon oxide interpenetrating network core (20) has a particle size of between 0.01 micrometers and 0.1 micrometer; and the nano ceramic coating particle structure (1) having an active dendritic support layer has a Particle size between 0.5 microns. The accommodating space (17) mainly plays the role of structural buffering in the structure. In a specific application, the nano ceramic coating particle structure (1) having an active dendritic support layer is highly compatible with most functional resins, and may be combined with a plurality of selected from polyurea resins. Polyacrylate resin, polyamide resin, polyepoxy resin, polytetrafluoroethylene, polyoxyalkylene resin, polycarbonate resin, polyacetylene resin, polyethylene glycol resin, polyvinylpyrrolidone, polyolefin resin and The functional resin of the combined group is used to fully characterize the highly compatible nature of the creation, and can further form a product that conforms to the customized function.

本創作一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體設計解決習知技藝僅利用各種型式混合物之塗料效能限制,諸如溶劑相容性, 環保性,塗層安定性,塗層厚度,塗層與金屬密合性,塗層對特殊金屬的腐蝕性。更由於本創作具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體作為常溫速乾塗料主要特徵之設計,使本創作常溫速乾塗料除了效能提升,也因為含活性樹狀核心主體,而具備關鍵產品結構穩定性及常溫速乾性等核心特性,使終端產品在品質管控與操作應用上更為穩定,進一步,更具備因客製化需求便利地來調製各種機能性塗料,可視為一種兼具進步性、創新性、便利產業利用性及相關產業提升性等優點之常溫速乾塗料。更適宜地,在應用鋰鎂合金表面保護時,可搭配皮膜處理或陽極處理或微弧氧化處理進一步強化保護效果。The present invention relates to a nano ceramic coating particle structure design with an active dendritic support layer. The prior art utilizes only the coating performance limitations of various types of mixtures, such as solvent compatibility. Environmental friendliness, coating stability, coating thickness, coating and metal adhesion, corrosion of coatings to special metals. Moreover, due to the design of the nano-ceramic coating particle structure with active dendritic support layer as the main feature of the normal temperature and quick-drying coating, the creation of the normal temperature and quick-drying coating in addition to the performance improvement, but also because of the active tree core body, With core features such as structural stability of the key products and fast drying at room temperature, the terminal products are more stable in quality control and operation applications. Further, it is more convenient to modulate various functional coatings due to customized requirements. A room temperature quick-drying coating with the advantages of progressiveness, innovation, convenience of industrial utilization and improvement of related industries. More suitably, when the surface protection of the lithium-magnesium alloy is applied, the protective effect can be further enhanced by the film treatment or the anodizing treatment or the micro-arc oxidation treatment.

上所述者,僅為本創作之較佳實施例,當不能以此限定本創作實施之範圍,即大凡依本創作申請專利範圍及新型說明書內容所作之等效變化與修飾,皆應仍屬本創作專利涵蓋之範圍內。綜觀上述,本創作之構造特徵確實具有實用價值及進步性,以其整體結構而言,誠已符合專利法之法定要件,爰依法提出新型專利申請。The above description is only a preferred embodiment of the present invention. When it is not possible to limit the scope of the creation of the present invention, the equivalent changes and modifications made by the applicant in accordance with the scope of the patent application and the contents of the new manual should remain This creative patent covers the scope. Looking at the above, the structural features of this creation do have practical value and progressiveness. In terms of its overall structure, Cheng has already complied with the statutory requirements of the Patent Law and has filed a new type of patent application according to law.

1‧‧‧具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體1‧‧‧Nano ceramic coating particle structure with active dendritic support layer

10‧‧‧活性樹狀核心主體10‧‧‧Active tree core subject

11‧‧‧枝狀結構11‧‧‧dendritic structure

12‧‧‧枝狀結構終端12‧‧‧dendritic terminal

13‧‧‧活性樹狀體結構13‧‧‧Active dendritic structure

15‧‧‧活性點15‧‧‧Active points

17‧‧‧容置空間17‧‧‧ accommodating space

20‧‧‧矽氧烷互穿網核主體20‧‧‧Hane oxide interpenetrating network core

25‧‧‧矽氧烷寡聚物分子鏈結構25‧‧‧Oxygenane oligomer molecular chain structure

30‧‧‧樹狀體嵌網結構層30‧‧‧Tree-like inlaid mesh structure

35‧‧‧網狀結構35‧‧‧ mesh structure

Claims (5)

一種具有活性樹狀體支撐層之奈米陶瓷塗料微粒結構體,其中該奈米陶瓷塗料微粒結構體包含一矽氧烷互穿網核主體;一樹狀體嵌網結構層;以及一活性樹狀體支撐層;其中該矽氧烷互穿網核主體包含複數個矽氧烷寡聚物分子鏈結構,而該矽氧烷寡聚物分子鏈結構相互連接而形成該矽氧烷互穿網核主體;該活性樹狀體支撐層包含一活性樹狀體結構,複數個活性點以及一容置空間,其中該活性樹狀體結構包含複數個枝狀結構及複數個枝狀結構終端,而該枝狀結構相互連接支撐形成該活性樹狀體結構,並且同時形成該容置空間,並支撐該奈米陶瓷塗料微粒結構體;以及該樹狀體嵌網結構層,設置於矽氧烷互穿網核主體與該活性樹狀體支撐層之間,用於在該矽氧烷互穿網核主體外輪廓支撐性地形成可將該活性樹狀體嵌合的網狀結構。A nano ceramic coating particle structure having an active dendritic support layer, wherein the nano ceramic coating particle structure comprises a fluorene oxide interpenetrating network core; a dendritic network layer; and an active tree a bulk support layer; wherein the oxane interpenetrating network core comprises a plurality of siloxane oxide molecular chain structures, and the siloxane oxide oligomer molecular chain structure is interconnected to form the oxirane interpenetrating network core The active dendritic support layer comprises an active dendritic structure, a plurality of active sites and an accommodating space, wherein the active dendritic structure comprises a plurality of dendritic structures and a plurality of dendritic structures, and the The dendritic structures are interconnected to form the active dendritic structure, and at the same time form the accommodating space and support the nano ceramic coating particle structure; and the dendritic intercalated structure layer is disposed on the decane intercalation Between the core body and the active dendritic support layer, a mesh structure capable of fitting the active dendrites is formed in a supportive manner on the outer contour of the xenon oxide interpenetrating core body. 如申請專利範圍第1項所述之奈米陶瓷塗料微粒結構體,其中,該矽氧烷互穿網核主體之鋁與矽的重量比介於1:20到1:100之間,包含有(OR)x M-O-M(OR)x 、(R)y (OR)x-y M-O-M(OR)x-y (R)y 、M(OR)x 、M(OR)x-y (R)y 或(OR)x M-O-M(OR)x 及其組合之鍵結;R係選自由烷(alkyl)基、烯基(alkenyl)、芳基(aryl)、鹵烷基(alkylhalide)、胺基(amino)、氫(hydrogen)及其組合所組成之群組;M係可選自於鋁、矽及其組合所組成之群組;x>y,且x 為2、3、4或5,y為1、2、3或4。The nano ceramic coating particle structure according to claim 1, wherein the helium oxide interpenetrating core body has a weight ratio of aluminum to tantalum of between 1:20 and 1:100, including (OR) x MOM(OR) x , (R) y (OR) xy MOM(OR) xy (R) y , M(OR) x , M(OR) xy (R) y or (OR) x MOM( OR) a bond of x and a combination thereof; R is selected from the group consisting of an alkyl group, an alkenyl group, an aryl group, an alkylhalide group, an amino group, a hydrogen group, and a group consisting of a combination; the M system may be selected from the group consisting of aluminum, strontium, and combinations thereof; x>y, and x is 2, 3, 4, or 5, and y is 1, 2, 3, or 4 . 如申請專利範圍第1項所述之奈米陶瓷塗料微粒結構體,其中,該矽氧烷寡聚物分子鏈結構係由複數個選自由乙烯三甲氧基矽烷化物、甲基三甲氧基矽烷化物、四乙氧基矽烷化物、二甲基二乙氧基矽烷化物、苯基三乙氧基矽烷化物、γ-甲丙烯氧基丙基-三甲氧基矽烷化物、γ-氯丙基三甲基氧基矽烷化物、癸基三甲氧基矽烷化物、異丁基三甲氧基矽烷化物、三級-丁基二甲基氯矽烷化物、乙烯基三氯矽烷化物、3-氨丙基三甲氧基矽烷化物、二苯基二氯矽烷化物、六甲基二矽烷化物、乙烯基三矽烷化物、矽酸鹽衍生物、雙(3-三乙氧矽烷基丙基)胺、雙(3-三甲氧矽烷基丙烷基)胺、3-胺基丙烷基甲基二乙氧矽烷、3-胺基丙烷基-三乙氧矽烷、3-胺基丙烷基-甲基二乙氧矽烷、多胺基矽烷、多胺基矽氧烷、3-胺基丙烷基-三甲氧矽烷、三胺基功能性丙烷基三甲烷氧基矽烷、2-胺基乙基-3-胺基丙基甲基-二甲氧基矽烷、2-胺基乙基-3-胺基丙基-三甲氧基矽烷、環氧基矽氧烷及其組合族群所形成。The nano ceramic coating particle structure according to claim 1, wherein the molecular structure of the siloxane oxide oligomer is selected from the group consisting of ethylene trimethoxy decyl halide and methyl trimethoxy decyl halide. , tetraethoxy decyl hydride, dimethyl diethoxy decyl hydride, phenyl triethoxy decyl hydride, γ-methyl propyloxypropyl-trimethoxy decane, γ-chloropropyl trimethyl Oxaloxane, decyltrimethoxydecane, isobutyltrimethoxydecane, tert-butyldimethylchloromethane, vinyltrichloromethane, 3-aminopropyltrimethoxydecane , diphenyldichloromethane, hexamethyldidecyl, vinyl tridecanoate, decanoate derivative, bis(3-triethoxydecylpropyl)amine, bis(3-trimethoxydecane) Alkyl)amine, 3-aminopropanylmethyldiethoxydecane, 3-aminopropanyl-triethoxyoxane, 3-aminopropanyl-methyldiethoxydecane, polyaminodecane, Polyamine-based oxane, 3-aminopropylpropane-trimethoxy decane, triamine functional propane-trimethyloxy decane 2-Aminoethyl-3-aminopropylmethyl-dimethoxydecane, 2-aminoethyl-3-aminopropyl-trimethoxydecane, epoxy oxoxane, and combinations thereof The formation of ethnic groups. 如申請專利範圍第1項所述之奈米陶瓷塗料微粒結構體,其中該容置空間可作為微環境結構緩衝的功能。The nano ceramic coating particle structure according to claim 1, wherein the accommodating space functions as a buffer for the microenvironment structure. 如申請專利範圍第1項所述之奈米陶瓷塗料微粒結構體,其中該容置空間可用以容置一酸鹼值調節粒子,調整酸鹼值。The nano ceramic coating particle structure according to claim 1, wherein the accommodating space can be used to accommodate a pH adjusting particle to adjust the pH value.
TW104212316U 2015-07-31 2015-07-31 Nano ceramic coating micro particle structure having active tree-like support layer TWM513882U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104212316U TWM513882U (en) 2015-07-31 2015-07-31 Nano ceramic coating micro particle structure having active tree-like support layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104212316U TWM513882U (en) 2015-07-31 2015-07-31 Nano ceramic coating micro particle structure having active tree-like support layer

Publications (1)

Publication Number Publication Date
TWM513882U true TWM513882U (en) 2015-12-11

Family

ID=55408856

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104212316U TWM513882U (en) 2015-07-31 2015-07-31 Nano ceramic coating micro particle structure having active tree-like support layer

Country Status (1)

Country Link
TW (1) TWM513882U (en)

Similar Documents

Publication Publication Date Title
Wang et al. Sol–gel coatings on metals for corrosion protection
Zheng et al. Inorganic–organic sol gel hybrid coatings for corrosion protection of metals
Figueira et al. Organic–inorganic hybrid sol–gel coatings for metal corrosion protection: a review of recent progress
Du et al. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates
Metroke et al. Passivation of metal alloys using sol–gel-derived materials—a review
TWI411702B (en) A non-chromium rust-preventive surface treatment agent for a metal member having a zinc surface, and a metal member having a zinc surface coated with the rust preventive coating
Aparicio et al. Consolidated melting gel coatings on AZ31 magnesium alloy with excellent corrosion resistance in NaCl solutions: an interface study
EP2850140B1 (en) Radiation curable composition, and method for preparing a hybrid sol-gel layer on a surface of a substrate using said composition
Guin et al. Corrosion behavior of nanohybrid titania–silica composite coating on phosphated steel sheet
Zhu et al. Water-based sol–gel coatings for military coating applications
EP3526279B1 (en) A hybrid sol-gel corrosion-resistant coating composition
JP2004307897A (en) Surface-treated metal having silica-zirconia film, and method of manufacturing the same
Li Sol-gel coatings to improve the corrosion resistance of magnesium (Mg) alloys
CN102134409A (en) Anti-corrosion protective nano-film containing epoxy-terminated silsesquioxane/titanium dioxide
KR20090006695A (en) The ceramic coating agent for metal face and ceramic coating method of metal face using it
TWM513882U (en) Nano ceramic coating micro particle structure having active tree-like support layer
TWM510330U (en) Nano ceramic coating particulate structure for surface protection of lithium-aluminum cum lithium-aluminum alloy having active siloxane tree-like multi-core body
TWM510329U (en) Nano ceramic coating particulate structure for surface protection of lithium-aluminum cum lithium-aluminum alloy having active tree-like core body
JP2022526705A (en) Nanostructured hybrid sol-gel coating for surface protection
CN102134447B (en) Methyl-terminated acryloyloxy silsesquioxane/titanium dioxide nano anticorrosion protective film
CN101643906A (en) Titanium-containing organic-inorganic hybridized nano preservative protective film
Kumar et al. Corrosion protection and self-healing by sol-gel process: a review of recent patent literature
TW201514260A (en) A neutral metal surface modifier containing aluminosiloxane composite interpenetrating network oligomer and its manufacturing method
KR101254065B1 (en) Coating solution for magnesium materials having excellent corrosion resistance, method of preparing the same, and coating method of magnesium materials using the same
JPH07246364A (en) Steel plate coated with inorganic and organic fused body and its production

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees