TWM512494U - Metal structure with anti-corrosion nano film - Google Patents

Metal structure with anti-corrosion nano film Download PDF

Info

Publication number
TWM512494U
TWM512494U TW104208863U TW104208863U TWM512494U TW M512494 U TWM512494 U TW M512494U TW 104208863 U TW104208863 U TW 104208863U TW 104208863 U TW104208863 U TW 104208863U TW M512494 U TWM512494 U TW M512494U
Authority
TW
Taiwan
Prior art keywords
metal
corrosion
nano
nano ceramic
metal structure
Prior art date
Application number
TW104208863U
Other languages
Chinese (zh)
Inventor
Jung-Jie Huang
Pin-Hung Chen
Original Assignee
Jung-Jie Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jung-Jie Huang filed Critical Jung-Jie Huang
Priority to TW104208863U priority Critical patent/TWM512494U/en
Publication of TWM512494U publication Critical patent/TWM512494U/en

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)

Description

防腐蝕奈米薄膜金屬結構Anti-corrosion nano film metal structure

本創作為一種奈米薄膜金屬結構,尤其是指一種具有防腐蝕效果的奈米薄膜金屬結構。This creation is a nano-film metal structure, especially a nano-film metal structure with anti-corrosion effect.

當金屬或合金受外在環境的影響而產生化學或電化學變化,使其失去原有的特性,進而產生銹蝕現象,稱為腐蝕(Corrosion),金屬腐蝕的速度與本身材質特性、腐蝕因子種類、濃度、PH值均有密切之關係。腐蝕因子產生原因複雜種類繁多,環境中的水分、氧氣、雜質、灰塵及沉積物等,均是造成金屬腐蝕的外在環境影響因子,現代化的工業社會很難避免腐蝕因子與金屬的接觸。由於金屬受到腐蝕之後,會導致材料上出現孔洞甚至裂縫,進而影響其本身結構的強度,如此一來可能造成使用上的危險或者造成意外事故。When a metal or alloy is chemically or electrochemically changed by the external environment, it loses its original characteristics and causes rust, called corrosion (Corrosion), the speed of metal corrosion and its own material properties, types of corrosion factors. The concentration and pH value are closely related. The causes of corrosion factors are complex and complex. The moisture, oxygen, impurities, dust and sediments in the environment are the external environmental impact factors that cause metal corrosion. It is difficult for modern industrial society to avoid the contact of corrosion factors with metals. Since the metal is corroded, it may cause holes or even cracks in the material, which may affect the strength of the structure itself, which may cause danger in use or cause an accident.

習用技術中,有用塗層來保護被鍍物,以避免接觸腐蝕因子影響或者是增加被鍍物的機械強度等。目前塗層製備方式可分為真空式與非真空式,其中,真空式的方式如物理濺鍍、化學氣體沉積等,其優點為,有良好的機械性能,缺點則為成本高,並且容易受形狀限制等問題。而非真空方式之塗層以樹脂類被覆較多。然而,樹脂類之塗層,如油漆等,雖然價錢便宜,速度快,但是容易被強度較高的腐蝕因子侵蝕,如酸、鹽等,此外,工作溫度要較偏低,使用上較容易遭受限制。近年來也發展出聚合物系的塗層材料,如聚四氟乙烯(PTFE)等,此類型之塗層有良好的耐酸鹼性能,但耐溫性差,例如:如果長時間高溫環境(200℃)下工作,塗層會因散熱不佳導致變形或損壞。In conventional techniques, a coating is used to protect the object to be plated to avoid contact with corrosion factors or to increase the mechanical strength of the object to be plated. At present, the coating preparation method can be divided into vacuum type and non-vacuum type. Among them, the vacuum type method such as physical sputtering, chemical gas deposition, etc., has the advantages of good mechanical properties, disadvantages, high cost, and easy acceptance. Problems such as shape restrictions. Coatings other than vacuum are coated with a large amount of resin. However, resin coatings, such as paints, are cheap and fast, but are easily attacked by high-strength corrosion factors such as acids, salts, etc. In addition, the operating temperature is relatively low, and they are more susceptible to use. limit. In recent years, polymer-based coating materials such as polytetrafluoroethylene (PTFE) have also been developed. This type of coating has good acid and alkali resistance, but has poor temperature resistance, for example, if the temperature is high for a long time (200) Working under °C), the coating may be deformed or damaged due to poor heat dissipation.

此外,還有利用電化學的方式來防止腐蝕,例如,將要被保護的金屬接到陰極,而被覆的材料接上陽極,通電後使得被覆材料的金屬離子由陽極游離至被保護的金屬所屬的陰極,形成鍍層在被保護金屬的表面,像鍍鉻、鍍鎳、鍍鋅、鍍錫等方式。不過這種方式多半會造成環境的污染,而且物理強度與耐溫性能差,大概也不會超過200℃。In addition, there is also an electrochemical method to prevent corrosion. For example, the metal to be protected is connected to the cathode, and the coated material is connected to the anode. After energization, the metal tweezers of the coated material are moved from the anode to the protected metal. The cathode is formed on the surface of the metal to be protected, such as chrome plating, nickel plating, galvanization, tin plating, and the like. However, this method will mostly cause environmental pollution, and the physical strength and temperature resistance are poor, and probably will not exceed 200 °C.

綜合上述的問題,因此亟需一種防腐蝕奈米薄膜金屬結構,以解決習用技術所產生的問題。In order to solve the above problems, there is a need for an anti-corrosion nano film metal structure to solve the problems caused by conventional techniques.

本創作係將金屬氧化物、氮化物、碳化物以超音波、物理研磨等方式製備成奈米等級之陶瓷材料,並可以多種形式製備於被鍍物的表面上,形成防腐蝕奈米薄膜金屬結構以達抗腐蝕、耐磨損、耐高溫等保護效果。This creation is to prepare metal oxides, nitrides and carbides into nanometer grade ceramic materials by ultrasonic or physical grinding, and can be prepared on the surface of the object to be formed in various forms to form anti-corrosion nano film metal. The structure is resistant to corrosion, abrasion and high temperature.

本創作的防腐蝕奈米薄膜金屬結構中的奈米陶瓷材料塗層,具有緻密性高,抗化學性能強以及具耐高溫特性的特點,此外其在施作時具有良好的均勻性,可以進行大面積的施作,而且製程簡易,成本低、防腐蝕效果可以根據需求而客製化,應用面廣泛,更不會對環境造成污染。The nano ceramic material coating in the anti-corrosion nano film metal structure of the invention has the characteristics of high compactness, strong chemical resistance and high temperature resistance, and has good uniformity during application, and can be carried out. Large-scale application, and simple process, low cost, anti-corrosion effect can be customized according to demand, a wide range of applications, and will not pollute the environment.

在一實施例中,本創作提出一種防腐蝕奈米薄膜金屬結構,包括有一金屬材料以及一奈米陶瓷材料層。該奈米陶瓷材料層其係形成於該金屬材料的表面上,該奈米陶瓷材料層具有複數個奈米陶瓷顆粒。In one embodiment, the present application provides an anti-corrosion nanofilm metal structure comprising a metallic material and a layer of nano ceramic material. The nano ceramic material layer is formed on a surface of the metal material, and the nano ceramic material layer has a plurality of nano ceramic particles.

在一實施例中,奈米陶瓷材料層內含的奈米陶瓷顆粒係以金屬或非金屬(如矽、鋁、鐵、鉻、錳、鋯、鈦、鎢、硼等),所形成的氧化物質、碳化物質與氮化物質,再與有機樹脂或無機樹脂等結合,形成可隔絕高腐蝕因子之塗層塗佈在金屬材料上。In one embodiment, the nano ceramic particles contained in the nano ceramic material layer are oxidized by metal or non-metal (such as bismuth, aluminum, iron, chromium, manganese, zirconium, titanium, tungsten, boron, etc.). The substance, the carbonized substance and the nitrided substance are combined with an organic resin or an inorganic resin to form a coating capable of isolating a high corrosion factor and coated on the metal material.

在另一實施例中,該複數個奈米陶瓷顆粒之間更具有孔隙,其內填補有樹脂材料。透過樹脂類之黏著劑在與奈米金屬或非金屬的氧化物、碳化物或氮化物等材料結合後,可增加塗層之散熱性能,幫助塗層不因溫度而造成形變。In another embodiment, the plurality of nano ceramic particles further have pores between them filled with a resin material. The resin-based adhesive combines with a metal or non-metal oxide, carbide or nitride to increase the heat dissipation of the coating and help the coating not deform due to temperature.

在另一實施例中,該複數個奈米陶瓷顆粒經由燒結而相互連接。每一奈米陶瓷顆粒的晶粒尺度小於500 nm。該奈米陶瓷材料層的厚度在200nm 以上以及該奈米陶瓷材料層的鉛筆硬度值在9H以上。In another embodiment, the plurality of nano ceramic particles are interconnected via sintering. Each nanometer ceramic particle has a grain size of less than 500 nm. The thickness of the nano ceramic material layer is 200 nm or more and the pencil hardness value of the nano ceramic material layer is 9H or more.

請參閱圖1所示,本創作的一實施例中,防腐蝕奈米薄膜金屬結構1,包括有一金屬材料10以及一奈米陶瓷材料層11。該金屬材料,可以為各種型態的結構,例如:板狀結構、管狀結構、柱狀結構、不規則狀結構,或者是加工後的金屬件,例如:螺絲、螺帽、螺栓、閥體、鎖件或者是金屬工具等,但不以此為限制,只要是有需要進行防腐蝕處理的金屬材料或加工件都可以作為金屬材料的實施態樣。此外,金屬材料的材質並無特別限制,例如:鋼、鐵、銅或其相關的合金材料等,本實施例以碳鋼來作說明。Referring to FIG. 1, in an embodiment of the present invention, the anti-corrosion nano film metal structure 1 comprises a metal material 10 and a nano ceramic material layer 11. The metal material may be of various types of structures, such as a plate-like structure, a tubular structure, a columnar structure, an irregular structure, or a processed metal part, such as a screw, a nut, a bolt, a valve body, The lock member is a metal tool or the like, but is not limited thereto, and any metal material or workpiece which is required to be subjected to anti-corrosion treatment can be used as a metal material. Further, the material of the metal material is not particularly limited, and examples thereof include steel, iron, copper, or a related alloy material thereof, and the present embodiment is described by carbon steel.

而奈米陶瓷材料層11,在一實施例中,如圖2所示,其為樹脂111與奈米陶瓷材料顆粒110所構成。樹脂111填補在奈米陶瓷顆粒110之間。樹脂111可以為有機樹脂或者是無機樹脂。而奈米陶瓷顆粒的材料則可以為經過奈米化處理的金屬氧化物、金屬碳化物、金屬氮化物、非金屬氧化物、非金屬碳化物、非金屬氮化物其中之一或前述之至少兩種組合,其中的金屬材料可以為鋁、鎂、鐵、鉻、錳、鋯、鈦、鎢其中之一的材料;非金屬材料可以為矽或硼等材料,但不以此為限制,以形成例如:氧化鋁(Al2O3)、氧化鋯(ZrO2)、氧化鎂(MgO)、氧化鉻(Cr2O3)、二氧化鈦(TiO2)、二氧化矽(SiO2)、碳化鎢(WC)、碳化鈦(TiC)、碳化鉻(Cr3C2)、碳化矽(SiC)、碳化硼(B4C)、氮化鈦(TiN)或氮化硼(BN)等陶瓷材料。由於陶瓷顆粒材料有良好之耐熱、抗腐蝕及高硬度等特性,並依各材料之類別具有耐磨損、低摩擦係數及熱傳導等功能,因此可依不同環境腐蝕因子選擇適當之配方。而奈米化的方式可以利用超音波或物理研磨等方式製備成奈米等級之陶瓷材料。The nano ceramic material layer 11, in one embodiment, as shown in Fig. 2, is composed of a resin 111 and nano ceramic material particles 110. The resin 111 is filled between the nano ceramic particles 110. The resin 111 may be an organic resin or an inorganic resin. The material of the nano ceramic particles may be one of a metal oxide, a metal carbide, a metal nitride, a non-metal oxide, a non-metal carbide, a non-metal nitride, or at least two of the foregoing. a combination, wherein the metal material may be a material of one of aluminum, magnesium, iron, chromium, manganese, zirconium, titanium, tungsten; the non-metal material may be a material such as tantalum or boron, but is not limited thereto to form For example: alumina (Al2O3), zirconia (ZrO2), magnesium oxide (MgO), chromium oxide (Cr2O3), titanium dioxide (TiO2), cerium oxide (SiO2), tungsten carbide (WC), titanium carbide (TiC), Ceramic materials such as chromium carbide (Cr3C2), tantalum carbide (SiC), boron carbide (B4C), titanium nitride (TiN) or boron nitride (BN). Since the ceramic particulate material has good heat resistance, corrosion resistance and high hardness, and has the functions of abrasion resistance, low friction coefficient and heat conduction according to the category of each material, an appropriate formula can be selected according to different environmental corrosion factors. The nano-chemical method can be prepared into a nano-grade ceramic material by means of ultrasonic or physical grinding.

此外,該奈米陶瓷材料層11可達到9H以上的鉛筆硬度等級;百格密著性測試的ISO等級在0以下;而該奈米陶瓷材料層11的厚度在200nm以上。奈米陶瓷材料層11內的每一奈米陶瓷顆粒110的晶粒尺度小於500nm。要說明的是,前述的晶粒尺度或者是厚度係根據使用需求而定,本領域技術之人可以根據需要選擇合適的厚度或顆粒大小,因此並不以前述之範圍為限制。Further, the nano ceramic material layer 11 can achieve a pencil hardness level of 9H or more; the ISO level of the hundred-cell adhesion test is 0 or less; and the nano ceramic material layer 11 has a thickness of 200 nm or more. Each of the nano ceramic particles 110 in the nano ceramic material layer 11 has a grain size of less than 500 nm. It should be noted that the foregoing grain size or thickness is determined according to the use requirements, and those skilled in the art can select a suitable thickness or particle size as needed, and thus are not limited by the foregoing range.

透過樹脂111與奈米陶瓷顆粒110的混合所形成的如圖2的結構,可以增加塗層之散熱性能,幫助奈米陶瓷材料層11不因溫度而造成形變,在一實施例中,這樣的結構可以耐高溫至800℃以上,在一實施例中約800~1200℃。而樹脂111與奈米陶瓷顆粒110混參的材料可以經過慣用的塗佈方式,例如:氣壓噴塗、超音波噴塗或者是靜電噴塗的方式形成在金屬材料10的表面,再經過自然乾燥的方式來形成。由於金屬或非金屬的氧化物、碳化物或氮化物等材料經奈米化後所形成的奈米陶瓷材料顆粒的粒徑小,可以使得塗層較為緻密,必可填補金屬材料表面因為各種原因,例如:加工,所產生的縫隙。The structure of FIG. 2 formed by the mixing of the resin 111 and the nano ceramic particles 110 can increase the heat dissipation performance of the coating and help the nano ceramic material layer 11 not to be deformed by temperature. In an embodiment, such The structure can withstand temperatures up to 800 ° C or higher, in an embodiment about 800 to 1200 ° C. The material mixed with the resin 111 and the nano ceramic particles 110 can be formed on the surface of the metal material 10 by a conventional coating method such as air pressure spraying, ultrasonic spraying or electrostatic spraying, and then naturally dried. form. Since the particle size of the nano ceramic material particles formed by nano-materials such as metal or non-metal oxides, carbides or nitrides can be made dense, the surface of the metal material must be filled for various reasons. For example: processing, the resulting gap.

在另一實施例中,如圖3所示,本實施例是將如圖2的結構透過烘烤箱或火源烘烤的方式來進行去除樹脂以及燒結,使得奈米陶瓷材料層11內的奈米陶瓷顆粒110間的孔隙112縮小,形成更緻密的奈米陶瓷材料層11結構。In another embodiment, as shown in FIG. 3, in this embodiment, the resin is removed and sintered by baking the structure of FIG. 2 through a baking oven or a fire source, so that the nano ceramic material layer 11 is The pores 112 between the nano ceramic particles 110 are reduced to form a denser nano ceramic material layer 11 structure.

本創作的奈米陶瓷材料層11所形成的防腐蝕薄膜,相較於傳統的塗層或不銹鋼的特性如下表一所示:   表一<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td>   </td><td> 不銹鋼基材 </td><td> 油漆 </td><td> 鐵氟龍漆 </td><td> 奈米陶瓷 薄膜 </td></tr><tr><td> 固化時間 </td><td><b>不需要固化</b></td><td> 72~150 (分,min) </td><td> 20~30 (分,min) </td><td> 30 (分,min) </td></tr><tr><td> 薄膜厚度 </td><td><b>無鍍膜</b></td><td> 80~120 μm </td><td> 60 ± 5 μm </td><td> 20 ± 5 μm </td></tr><tr><td> 鉛筆硬度 </td><td><b>>10H</b></td><td> 1~3H </td><td> >7H </td><td> >9H </td></tr><tr><td> 百格密著性 </td><td><b>無鍍膜</b><b>所以無脫膜問題</b></td><td> ISO等級≦3 </td><td> ISO等級≦2 </td><td> ISO等級≦0 </td></tr><tr><td> 流砂衝擊測試 (10%固含量金剛沙,轉速500rpm<b>衝擊表面</b>) </td><td> 易產生沖蝕 </td><td> 差 </td><td> 尚可 </td><td> 佳 </td></tr></TBODY></TABLE>The anti-corrosion film formed by the nano ceramic material layer 11 of the present invention is as shown in the following Table 1 compared with the conventional coating or stainless steel: Table 1 <TABLE border="1" borderColor="#000000" width= "85%"><TBODY><tr><td> </td><td> Stainless Steel Substrate</td><td> Paint</td><td> Teflon Paint</td><td> Nano ceramic film</td></tr><tr><td> curing time</td><td><b>no curing</b></td><td> 72~150 (minutes, Min) </td><td> 20~30 (minutes, min) </td><td> 30 (minutes, min) </td></tr><tr><td> film thickness</td> <td><b>No coating</b></td><td> 80~120 μm </td><td> 60 ± 5 μm </td><td> 20 ± 5 μm </td>< /tr><tr><td> Pencil Hardness</td><td><b>>10H</b></td><td> 1~3H </td><td> >7H </td> <td> >9H </td></tr><tr><td> Hundreds of adhesions</td><td><b>No coating</b><b>So there is no release problem</ b></td><td> ISO grade ≦3 </td><td> ISO grade ≦2 </td><td> ISO grade ≦0 </td></tr><tr><td> Impact test (10% solid content diamond sand, speed 500rpm<b>impact surface</b>) </td><td> easy to produce erosion</td><td> poor</td><td> </td><td> Good</td d></tr></TBODY></TABLE>

由上表可以得知,本創作的奈米陶瓷材料所形成的奈米陶瓷材料層相較於習用技術的塗層或不銹鋼材的方式,具有高硬度,附著性高而不易脫落,以及固化時間短而有利於大量生產的優點。而在流砂衝擊測試中,利用10%固含量金剛沙,在轉速500rpm的速度下衝擊經過塗層保護的基材,可以看出本創作的奈米陶瓷薄膜相較於其他塗層或不銹鋼而言,不易被衝蝕剝落,有良好的耐衝蝕性,更可以擴大其應用的領域,例如:在深海或者是具有高速流體通過的區域。同時本創作的奈米陶瓷材料所形成的奈米陶瓷材料層也具有很好的抗鹽害性,例如:可以浸泡在10%鹽水溶液,溫度35℃下,超過400小時無脫膜以及銹蝕;再者也具有很好的抗酸性,例如:浸泡在20% 硫酸(H2SO4)下,超過1000小時,該奈米陶瓷材料層所形成的薄膜不會脫膜以及變色。It can be seen from the above table that the nano ceramic material layer formed by the nano ceramic material of the present invention has high hardness, high adhesion and not easy to fall off, and solidification compared with the conventional coating or stainless steel material. The short time is beneficial to the advantages of mass production. In the sand impact test, using 10% solid content of diamond sand, impacting the substrate protected by the coating at a speed of 500 rpm, it can be seen that the nano ceramic film of the present invention is compared with other coatings or stainless steel. It is not easy to be eroded and peeled off, has good erosion resistance, and can expand its application fields, for example, in the deep sea or in areas with high-speed fluids. At the same time, the nano ceramic material layer formed by the nano ceramic material of the invention also has good salt resistance, for example, it can be immersed in a 10% saline solution at a temperature of 35 ° C, without stripping and rusting for more than 400 hours; In addition, it also has good acid resistance. For example, when it is immersed in 20% sulfuric acid (H2SO4), the film formed by the nano ceramic material layer does not release film and discolor.

此外,由於陶瓷材料具高溫穩定性、耐腐蝕、高抗壓強度、耐磨損等性能,其在奈米化後粒徑小,比表面積大,因此可以呈現出較優異的抵抗破壞能力以及提升其韌性與可塑性,而且對於金屬材料的孔隙填補效果佳,提升金屬材料的抗化學性與強度。再者,奈米陶瓷材料分散較均勻,可達高均勻性,可以容易的進行大量生產。In addition, due to its high temperature stability, corrosion resistance, high compressive strength and wear resistance, ceramic materials have small particle size and large specific surface area after nanocrystallization, so they can exhibit superior resistance to damage and increase. Its toughness and plasticity, as well as the pore filling effect of metal materials, improve the chemical resistance and strength of metal materials. Moreover, the nano ceramic material is more evenly dispersed, can achieve high uniformity, and can be easily mass-produced.

惟以上所述之具體實施例,僅係用於例釋本創作之特點及功效,而非用於限定本創作之可實施範疇,於未脫離本創作上揭之精神與技術範疇下,任何運用本創作所揭示內容而完成之等效改變及修飾,均仍應為下述之申請專利範圍所涵蓋。However, the specific embodiments described above are only used to illustrate the features and functions of the present invention, and are not intended to limit the scope of implementation of the present invention, without departing from the spirit and technology of the present invention. The equivalent changes and modifications made by the present disclosure are still covered by the scope of the following patent application.

1‧‧‧防腐蝕奈米薄膜金屬結構
10‧‧‧金屬材料
11‧‧‧奈米陶瓷材料層
110‧‧‧奈米陶瓷顆粒
111‧‧‧樹脂
112‧‧‧孔隙
1‧‧‧Anti-corrosion nano film metal structure
10‧‧‧Metal materials
11‧‧‧Nano ceramic material layer
110‧‧‧Nano ceramic granules
111‧‧‧Resin
112‧‧‧ pores

圖1為應用本創作實施例之防腐蝕金屬結構示意圖。 圖2為本創作實施例之防腐蝕金屬結構所具有的奈米陶瓷材料層第一實施例示意圖。 圖3為本創作實施例之防腐蝕金屬結構所具有的奈米陶瓷材料層第二實施例示意圖。FIG. 1 is a schematic view showing the structure of a corrosion-resistant metal to which the present embodiment is applied. 2 is a schematic view showing a first embodiment of a nano ceramic material layer of the anticorrosive metal structure of the present embodiment. 3 is a schematic view showing a second embodiment of a nano ceramic material layer of the corrosion-resistant metal structure of the present embodiment.

1‧‧‧防腐蝕金屬結構 1‧‧‧Anti-corrosion metal structure

10‧‧‧金屬材料 10‧‧‧Metal materials

11‧‧‧奈米陶瓷材料層 11‧‧‧Nano ceramic material layer

Claims (9)

一種防腐蝕奈米薄膜金屬結構,包括:                       一金屬材料;以及                       一奈米陶瓷材料層,其係形成於該金屬材料的表面上,該奈米                          陶瓷材料層具有複數個奈米陶瓷顆粒。An anti-corrosion nano film metal structure comprising: a metal material; and a nano ceramic material layer formed on a surface of the metal material, the nano ceramic material layer having a plurality of nano ceramic particles. 如申請專利範圍第1項所述之防腐蝕奈米薄膜金屬結構,其中該奈米陶瓷顆粒係為金屬氧化物、金屬碳化物、金屬氮化物、非金屬氧化物、非金屬碳化物、非金屬氮化物或前述之至少兩種組合。The anti-corrosion nano film metal structure according to claim 1, wherein the nano ceramic particles are metal oxides, metal carbides, metal nitrides, non-metal oxides, non-metal carbides, non-metals. Nitride or at least two combinations of the foregoing. 如申請專利範圍第1項所述之防腐蝕奈米薄膜金屬結構,其中該金屬材料更具有縫隙,該奈米陶瓷材料層更填補該縫隙。The anti-corrosion nano film metal structure according to claim 1, wherein the metal material further has a gap, and the nano ceramic material layer further fills the gap. 如申請專利範圍第1或3項所述之防腐蝕奈米薄膜金屬結構,其中複數個奈米陶瓷顆粒之間具有複數個孔隙。The anti-corrosion nano film metal structure according to claim 1 or 3, wherein the plurality of nano ceramic particles have a plurality of pores therebetween. 如申請專利範圍第4項所述之防腐蝕奈米薄膜金屬結構,其中該複數個孔隙內具有樹脂。The anti-corrosion nano film metal structure of claim 4, wherein the plurality of pores have a resin therein. 如申請專利範圍第5項所述之防腐蝕奈米薄膜金屬結構,其中該樹脂係為無機樹脂或有機樹脂。The anti-corrosion nano film metal structure according to claim 5, wherein the resin is an inorganic resin or an organic resin. 如申請專利範圍第1項所述之防腐蝕奈米薄膜金屬結構,其中該複數個奈米陶瓷顆粒經由燒結而相互連接。The anti-corrosion nano film metal structure according to claim 1, wherein the plurality of nano ceramic particles are connected to each other via sintering. 如申請專利範圍第1項所述之防腐蝕奈米薄膜金屬結構,其中每一奈米陶瓷顆粒的晶粒尺度在500 nm以下。The anti-corrosion nano film metal structure according to claim 1, wherein each of the nano ceramic particles has a grain size of 500 nm or less. 如申請專利範圍第1項所述之防腐蝕奈米薄膜金屬結構,其中該奈米陶瓷材料層的厚度在200nm 以上。The anti-corrosion nano film metal structure according to claim 1, wherein the nano ceramic material layer has a thickness of 200 nm or more.
TW104208863U 2015-06-04 2015-06-04 Metal structure with anti-corrosion nano film TWM512494U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104208863U TWM512494U (en) 2015-06-04 2015-06-04 Metal structure with anti-corrosion nano film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104208863U TWM512494U (en) 2015-06-04 2015-06-04 Metal structure with anti-corrosion nano film

Publications (1)

Publication Number Publication Date
TWM512494U true TWM512494U (en) 2015-11-21

Family

ID=55219671

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104208863U TWM512494U (en) 2015-06-04 2015-06-04 Metal structure with anti-corrosion nano film

Country Status (1)

Country Link
TW (1) TWM512494U (en)

Similar Documents

Publication Publication Date Title
Saji et al. Nanomaterials for corrosion control
El Rayes et al. Erosion-corrosion of cermet coating
CN107500782B (en) Preparation method of modified antifriction wear-resistant corrosion-resistant nano ceramic powder material for additive manufacturing
Jafarzadeh et al. The effect of plasma spray parameters on the cavitation erosion of Al2O3–TiO2 coatings
Younes et al. Effect of TiO2 and ZrO2 reinforcements on properties of Al2O3 coatings fabricated by thermal flame spraying
Kuznetsov et al. Formation of wear-and corrosion-resistant ceramic coatings by combined technologies of spraying and micro-arc oxidation
Gheytani et al. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy
Hu et al. A robust, hydrophobic CeO2/NiCoCrAlY composite coating with excellent thermal stability and corrosion resistance prepared by air plasma spray
JP2000355752A (en) Sprayed ceramic coating applied on surface of movable parts
Belozerov et al. The influence of the conditions of microplasma processing (microarc oxidation in anode-cathode regime) of aluminum alloys on their phase composition
TW201609538A (en) Roll comprising an abradable coating
Van Nguyen et al. Sealing Treatment of Plasma-Sprayed Cr 3 C 2-NiCr/Al 2 O 3-TiO 2 Coating by Aluminum Phosphate Sealant Containing Al 2 O 3 Nanoparticles
CN102383093A (en) Coating, covered element having coating and preparation method of covered element
TWM512494U (en) Metal structure with anti-corrosion nano film
Lanzutti et al. Tribological Behavior of Thermal Spray Coatings, Deposited by HVOF and APS techniques, and composite electrodeposits Ni/SiC at both room temperature and 300 C
Ramesh et al. Slurry erosive wear behavior of plasma sprayed inconel-718 coatings on Al6061 alloy
Luo et al. Fabrication of a micro-nano structure on steel surface and surface wetting
Goyal et al. Effect of carbon nanotubes on properties of ceramics based composite coatings
CN106467959A (en) A kind of solid lubrication composite coating of matrix surface and preparation method thereof
TWI363812B (en)
Sun et al. Embedment of nano-graphene in metal deposits via cold spraying
Wen et al. Salt spray corrosion and electrochemical corrosion characteristics of CAIP and LTPN fabricated AlCrN/NL composite coating
Ghelichi et al. Experimental study of shot peening followed by cold spray coating on residual stresses of the treated parts
Wahab et al. Corrosion Resistance of Micro-Textured Surface Modified Alumina-Titania Coating
El Hachach et al. A Review on the Corrosion Behaviour of Nanocoatings on Metallic Substrates.

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees