TWM495504U - Absolute encoder - Google Patents
Absolute encoder Download PDFInfo
- Publication number
- TWM495504U TWM495504U TW103219459U TW103219459U TWM495504U TW M495504 U TWM495504 U TW M495504U TW 103219459 U TW103219459 U TW 103219459U TW 103219459 U TW103219459 U TW 103219459U TW M495504 U TWM495504 U TW M495504U
- Authority
- TW
- Taiwan
- Prior art keywords
- hall element
- square wave
- wave signal
- signal
- absolute encoder
- Prior art date
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
Description
本創作係關於一種絕對式編碼器,特別是關於一種能量測轉軸單圈內的角度位置和量測轉軸的旋轉圈數的絕對式編碼器。This paper is about an absolute encoder, especially an absolute encoder for the angular position of a single axis of the energy measuring shaft and the number of revolutions of the measuring shaft.
編碼器(Encoder)是用來檢測角度、位置、速度和加速度的感測器。當用於電機設備時,可將輸入資訊例如旋轉位置或旋轉量,藉由具有編碼功能的邏輯電路,轉換為類比或數位訊號。常見的編碼器類型例如有機械式、光學式和磁感應式。編碼器從功能上還可分為增量式和絕對式。An encoder is a sensor used to detect angle, position, velocity, and acceleration. When used in a motor device, input information such as a rotational position or a rotational amount can be converted into an analog or digital signal by a logic circuit having an encoding function. Common encoder types are, for example, mechanical, optical and magnetic induction. Encoders can also be functionally divided into incremental and absolute.
一般而言,增量式編碼器只能用於提供當前位置相對於前一位置的訊息,也就是說,只能用於獲得相對位置訊號。另一方面,增量式編碼器也不具有記憶當前的絕對位置的功能。因此,增量式編碼器應用在電機設備上,當電機設備斷電時,假若機械位置因外力移動或轉動而改變,導致位置產生偏移,而當電機設備重新啟動時,因增量式編碼器無法獲得當前的絕對位置訊號,也就無法判斷當前位置的訊號是否相同於停機前所記錄的訊號,因而必須調整編碼器進行原點復歸的流程。In general, an incremental encoder can only be used to provide a message with the current position relative to the previous position, that is, it can only be used to obtain a relative position signal. On the other hand, the incremental encoder does not have the function of remembering the current absolute position. Therefore, the incremental encoder is applied to the motor equipment. When the motor equipment is de-energized, if the mechanical position changes due to the external force moving or rotating, the position is shifted, and when the motor equipment is restarted, the incremental coding is performed. The device cannot obtain the current absolute position signal, and it is impossible to judge whether the signal at the current position is the same as the signal recorded before the stop, so the encoder must be adjusted to perform the process of returning to the origin.
有別於增量式編碼器,絕對式編碼器除了有增量式編碼器的功能外,還能實現絕對位置的測量。也就是說,能即時輸出電機設備的轉軸旋轉角度或位置的絕對值。當電機設備斷電後再復電時,絕對式編碼器 能夠即時讀取當前轉軸旋轉角度或位置的絕對值訊號。Unlike incremental encoders, absolute encoders provide absolute position measurement in addition to the functions of incremental encoders. In other words, the absolute value of the rotation angle or position of the shaft of the motor device can be output immediately. Absolute encoder when the motor equipment is powered off and then re-powered The absolute value signal of the current rotation angle or position of the shaft can be read instantly.
在工業生產中廣泛應用的絕對式編碼器多為光電式。然而,光電式編碼器的光柵盤的抗衝擊、抗振動性低。因此當光電式編碼器的光柵盤在繞軸旋轉時,容易因為軸振動使得光柵盤破碎。另一方面,光電式編碼器的環境適應性差,對於濕氣、塵埃和溫度變化的抵抗能力較弱。Absolute encoders widely used in industrial production are mostly photoelectric. However, the grating disk of the photoelectric encoder has low impact resistance and vibration resistance. Therefore, when the grating disk of the photoelectric encoder is rotated about the axis, it is easy to break the grating disk due to the vibration of the shaft. On the other hand, photoelectric encoders have poor environmental adaptability and are less resistant to moisture, dust and temperature changes.
有鑑於此,現今機電設備逐漸發展為使用磁感應式的絕對式編碼器,磁感應式編碼器結構簡單、反應速度快並且對環境抗干擾能力強。目前市面上販售多種磁感應式編碼器晶片,其中之一為一種非接觸式磁性旋轉式編碼器,在單一元件中整合霍爾元件、類比前端與數位訊號處理功能,用於準確量測電機設備於一圈360°全範圍內的旋轉角度。使用上,只需在晶片的相對位置設置對應於晶片中央位置旋轉的簡單雙極磁體,通常該磁體會設置在電機設備的轉軸上,伴隨電機設備的轉軸轉動,並藉由磁極的變化,轉換為特定的位置訊號。In view of this, today's electromechanical equipment has gradually developed into a magnetic induction type absolute encoder, which has a simple structure, a fast response speed and strong anti-interference ability to the environment. A variety of magnetic inductive encoder chips are currently on the market, one of which is a non-contact magnetic rotary encoder that integrates Hall elements, analog front end and digital signal processing functions in a single component for accurate measurement of motor equipment. The angle of rotation in a 360° range. In use, it is only necessary to set a simple bipolar magnet corresponding to the rotation of the central position of the wafer at the relative position of the wafer. Usually, the magnet is disposed on the rotating shaft of the motor device, and the shaft of the motor device rotates and is converted by the change of the magnetic pole. Signal for a specific location.
然而,上述絕對式編碼器晶片在轉動超過一圈後,編碼就會回到原點。當電機設備正常運作時,往往需要藉由外加的邏輯電路,用以輔助記錄目前的轉動圈數。假若電機設備斷電且遺失所記錄的轉動圈數的資料時,當電機設備重新啟動後,即使該絕對式編碼器能讀取出當前的絕對位置訊號,卻無法得知目前轉軸位在第幾圈的轉動上,因此必須耗費時間進行轉軸的原點復歸流程。However, after the above absolute encoder chip is rotated more than one turn, the code returns to the origin. When the motor equipment is in normal operation, it is often necessary to use an additional logic circuit to assist in recording the current number of revolutions. If the motor equipment is powered off and the recorded number of revolutions is lost, after the motor equipment is restarted, even if the absolute encoder can read the current absolute position signal, it is impossible to know the current rotation position. The rotation of the circle, so it must take time to carry out the origin return process of the shaft.
本創作之目的在提供一種絕對式編碼器,其可在電機設備斷電時,記錄和計算轉軸的旋轉圈數,並且於電機設備重新啟動後,量測轉 軸於單圈內的旋轉角度以及獲得轉軸當前的旋轉圈數訊號。The purpose of this creation is to provide an absolute encoder that records and calculates the number of revolutions of the shaft when the motor is powered off, and after the motor equipment is restarted, the measurement is turned The angle of rotation of the shaft in a single turn and the current number of revolutions of the shaft.
為達上述之目的,本創作提供一種絕對式編碼器,其包含:一中央磁鐵和一外環磁鐵,該中央磁鐵和該外環磁鐵同心設置於一轉軸上;一磁感應式編碼器,對應該中央磁鐵旋轉的中央位置間隔設置,用於量測該轉軸於單圈內的旋轉角度;一磁感應組件,用於感應該外環磁鐵旋轉時的磁極變化,以輸出一包含高準位訊號和低準位訊號的方波訊號;以及一控制器,與該磁感應組件電性連接,用於接收該方波訊號,並且根據所接收的該方波訊號,轉換為一旋轉圈數訊號。For the above purposes, the present invention provides an absolute encoder comprising: a central magnet and an outer ring magnet, the central magnet and the outer ring magnet being concentrically disposed on a rotating shaft; a magnetic inductive encoder corresponding to The central position of the central magnet is spaced apart to measure the rotation angle of the rotating shaft in a single turn; a magnetic induction component is used to sense the magnetic pole change when the outer ring magnet rotates to output a high level signal and a low a square wave signal of the level signal; and a controller electrically connected to the magnetic induction component for receiving the square wave signal and converting into a rotating circle signal according to the received square wave signal.
本創作之一較佳實施例中,當該磁感應組件感應到該外環磁鐵的北極時,輸出該高準位訊號,以及當該磁感應組件感應到外環磁鐵的南極時,輸出該低準位訊號。該磁感應組件包含一第一霍爾元件和一第二霍爾元件,並且該第一霍爾元件感應該外環磁鐵旋轉時的磁極變化,輸出第一方波訊號,以及該第二霍爾元件感應該外環磁鐵旋轉時的磁極變化,輸出第二方波訊號。In a preferred embodiment of the present invention, when the magnetic induction component senses the north pole of the outer ring magnet, the high level signal is output, and when the magnetic induction component senses the south pole of the outer ring magnet, the low level is output. Signal. The magnetic induction component includes a first Hall element and a second Hall element, and the first Hall element senses a magnetic pole change when the outer ring magnet rotates, outputs a first square wave signal, and the second Hall element The magnetic pole change when the outer ring magnet rotates is sensed, and the second square wave signal is output.
本創作之另一較佳實施例中,該絕對式編碼器進一步包含一電池,以及該控制器包含一記憶單元,用以記錄該旋轉圈數訊號。當該轉軸停止轉動時,該電池提供一電流至該磁感應組件和該記憶單元。此外,該控制器包含一清除功能,用以接收一清除圈數訊號,將所記錄之該旋轉圈數訊號歸零。In another preferred embodiment of the present invention, the absolute encoder further includes a battery, and the controller includes a memory unit for recording the rotation number signal. The battery provides a current to the magnetic sensing component and the memory unit when the spindle stops rotating. In addition, the controller includes a clear function for receiving a clearing loop signal and zeroing the recorded number of revolutions.
本創作之另一較佳實施例中,當轉軸為正轉時,該控制器接收到該第一霍爾元件輸出該第一方波訊號的上升緣,並且該第二霍爾元件輸出該低準位訊號,或該控制器接收到該第一霍爾元件輸出該第一方波訊 號的下降緣,並且該第二霍爾元件輸出該高準位訊號。當轉軸為逆轉時,該控制器接收到該第一霍爾元件輸出該第一方波訊號的上升緣,並且該第二霍爾元件輸出該高準位訊號,或該控制器接收到該第一霍爾元件輸出該第一方波訊號的下降緣,並且該第二霍爾元件輸出該低準位訊號。In another preferred embodiment of the present invention, when the rotating shaft is forward rotation, the controller receives the rising edge of the first square wave signal from the first Hall element, and the second Hall element outputs the low edge. a level signal, or the controller receives the first Hall element to output the first square wave The falling edge of the number, and the second Hall element outputs the high level signal. When the rotating shaft is reversed, the controller receives the rising edge of the first square wave signal from the first Hall element, and the second Hall element outputs the high level signal, or the controller receives the first A Hall element outputs a falling edge of the first square wave signal, and the second Hall element outputs the low level signal.
本創作之另一較佳實施例中,當該控制器接收到該第二霍爾元件輸出該第二方波訊號的上升緣,並且該第一霍爾元件輸出為該高準位訊號時,該控制器將該旋轉圈數訊號的計數加一;當該控制器接收到該第一霍爾元件輸出該第一方波訊號的上升緣,並且該第二霍爾元件輸出為該高準位訊號時,該控制器將該旋轉圈數訊號的計數減一。In another preferred embodiment of the present invention, when the controller receives the rising edge of the second square wave signal from the second Hall element, and the first Hall element outputs the high level signal, The controller increases the count of the number of revolutions by one; when the controller receives the rising edge of the first square wave signal from the first Hall element, and the output of the second Hall element is the high level When the signal is received, the controller decrements the count of the number of revolutions by one.
100‧‧‧絕對式編碼器100‧‧‧Absolute encoder
110‧‧‧磁感應組件110‧‧‧Magnetic sensing components
112‧‧‧第一霍爾元件112‧‧‧First Hall element
114‧‧‧第二霍爾元件114‧‧‧Second Hall element
120‧‧‧控制器120‧‧‧ Controller
130‧‧‧磁感應式編碼器130‧‧‧Magnetic Inductive Encoder
140‧‧‧中央磁鐵140‧‧‧Central Magnet
145‧‧‧外環磁鐵145‧‧‧Outer ring magnet
150‧‧‧轉軸150‧‧‧ shaft
160‧‧‧電路板160‧‧‧ boards
170‧‧‧單圈內的旋轉角度170‧‧‧Rotation angle in a single circle
122‧‧‧記憶單元122‧‧‧ memory unit
161‧‧‧電壓轉換單元161‧‧‧Voltage conversion unit
162‧‧‧充電電路162‧‧‧Charging circuit
163、165‧‧‧電壓偵測單元163, 165‧‧‧ voltage detection unit
164‧‧‧電源轉換開關164‧‧‧Power switch
270‧‧‧外部電路270‧‧‧External circuit
280‧‧‧外部電源280‧‧‧External power supply
282‧‧‧電池282‧‧‧Battery
284‧‧‧電容284‧‧‧ Capacitance
D‧‧‧清除圈數訊號D‧‧‧Clear lap signal
Rx‧‧‧旋轉圈數訊號Rx‧‧‧ rotating circle number signal
H1‧‧‧第一方波訊號H1‧‧‧First Square Wave Signal
H2‧‧‧第二方波訊號H2‧‧‧Second Square Wave Signal
H‧‧‧高準位訊號H‧‧‧High level signal
L‧‧‧低準位訊號L‧‧‧ low level signal
A、B、Z‧‧‧訊號A, B, Z‧‧‧ signals
第1A圖繪示本創作之絕對式編碼器。Figure 1A shows the absolute encoder of the present creation.
第1B圖繪示本創作之絕對式編碼器之局部視圖。Figure 1B shows a partial view of the absolute encoder of the present invention.
第2圖繪示繪示本創作之絕對式編碼器之電路方塊圖。Figure 2 is a block diagram showing the circuit of the absolute encoder of the present invention.
第3A圖繪示本創作之磁感應組件在外環磁鐵正轉時輸出的方波訊號。FIG. 3A is a diagram showing the square wave signal outputted by the magnetic induction component of the present invention when the outer ring magnet is rotating forward.
第3B圖繪示本創作之磁感應組件在外環磁鐵逆轉時輸出的方波訊號。FIG. 3B is a diagram showing the square wave signal outputted by the magnetic induction component of the present invention when the outer ring magnet is reversed.
本創作之較佳實施例藉由所附圖式與下面之說明作詳細描述,在不同的圖式中,相同的元件符號表示相同或相似的元件。The preferred embodiment of the present invention is described in detail with reference to the accompanying drawings
請參照第1A圖和第1B圖,第1A圖繪示本創作之絕對式編碼器,第1B圖繪示本創作之絕對式編碼器之局部視圖。絕對式編碼器 100包含同心地設置於轉軸150上的中央磁鐵140與外環磁鐵145、磁感應組件110、控制器120、磁感應式編碼器130、和電路板160。磁感應式編碼器130位在中央磁鐵140與外環磁鐵145旋轉的中央軸線上,並且對應中央磁鐵140旋轉的中央軸線位置與中央磁鐵140間隔設置。Please refer to FIG. 1A and FIG. 1B. FIG. 1A shows the absolute encoder of the present invention, and FIG. 1B shows a partial view of the absolute encoder of the present invention. Absolute encoder 100 includes a central magnet 140 and an outer ring magnet 145, a magnetic induction assembly 110, a controller 120, a magnetic induction encoder 130, and a circuit board 160 that are concentrically disposed on the rotating shaft 150. The magnetic inductive encoder 130 is positioned on a central axis of rotation of the central magnet 140 and the outer ring magnet 145, and is disposed at a position spaced apart from the central magnet 140 by a central axis position corresponding to the rotation of the central magnet 140.
磁感應組件110與磁感應式編碼器130相鄰,並且與外環磁鐵145間隔地設置。磁感應組件110用於感應外環磁鐵145旋轉時的磁極變化,並且輸出相應的方波訊號。更明確地說,如第1B圖所示,外環磁鐵145為雙極磁鐵,舉例來說,當本創作之外環磁鐵145的外型為環形時,外環磁鐵145的其中一半環形為北極(N極),另一半環形則為南極(S極)。因此當外環磁鐵145隨著轉軸150旋轉時,磁感應組件110在感應到外環磁鐵145的N極時,輸出高準位訊號,反之,當磁感應組件110感應到外環磁鐵145的S極時,輸出低準位訊號。The magnetic induction component 110 is adjacent to the magnetic induction encoder 130 and is spaced apart from the outer ring magnet 145. The magnetic induction component 110 is configured to sense a magnetic pole change when the outer ring magnet 145 rotates, and output a corresponding square wave signal. More specifically, as shown in FIG. 1B, the outer ring magnet 145 is a bipolar magnet. For example, when the outer shape of the ring magnet 145 is annular, the half of the outer ring magnet 145 is an arc. (N pole), the other half of the ring is the South Pole (S pole). Therefore, when the outer ring magnet 145 rotates with the rotating shaft 150, the magnetic induction component 110 outputs a high level signal when sensing the N pole of the outer ring magnet 145, and conversely, when the magnetic sensing component 110 senses the S pole of the outer ring magnet 145. , output low level signal.
本創作藉由在轉軸150上設置兩個不同的磁鐵(該中央磁鐵140和該外環磁鐵145)以分別對應該磁感應式編碼器130和該磁感應組件110,因而能避免當該中央磁鐵140和該磁感應組件110彼此之間距離過遠時,該磁感應組件110因外部訊號干擾導致無法準確的輸出相應的高準位訊號或低準位訊號之問題。The present invention can avoid the central magnet 140 and the magnetic induction encoder 130 and the magnetic induction assembly 110 by respectively providing two different magnets (the central magnet 140 and the outer ring magnet 145) on the rotating shaft 150. When the magnetic induction components 110 are too far apart from each other, the magnetic induction component 110 cannot accurately output the corresponding high-level signal or low-level signal due to external signal interference.
根據本創作之較佳實施例,磁感應組件110可進一步包含第一霍爾元件112和第二霍爾元件114。第一霍爾元件112和第二霍爾元件114分別與磁感應式編碼器130相鄰地設置,並且第一霍爾元件112與磁感應式編碼器130的連線和第二霍爾元件114與磁感應式編碼器130的連線形成一夾角。根據本創作之較佳實施例,該夾角角度介於80度至90度之 間。According to a preferred embodiment of the present invention, the magnetic sensing component 110 can further include a first Hall element 112 and a second Hall element 114. The first Hall element 112 and the second Hall element 114 are disposed adjacent to the magnetic inductive encoder 130, respectively, and the connection of the first Hall element 112 to the magnetic inductive encoder 130 and the second Hall element 114 and magnetic induction The lines of the encoder 130 form an angle. According to a preferred embodiment of the present invention, the angle of the angle is between 80 and 90 degrees. between.
控制器120與磁感應組件110電性連接。控制器120接收磁感應組件110所輸出之方波訊號,並且將所接收的該方波訊號轉換為旋轉圈數訊號。更明確地說,磁感應組件110感應到外環磁鐵145旋轉時磁極在N極與S極之間交替地變化,再根據感應到N極與S極相應的輸出包含高準位訊號和低準位號的方波訊號。控制器120接收磁感應組件110輸出的方波訊號,判斷當前的外環磁鐵145為正轉或逆轉,以及轉動的圈數,再將所得的旋轉圈數訊號加以記錄保存於控制器120內部。另外,根據本創作之另一較佳實施例,控制器120進一步包含記憶單元,用於記錄旋轉圈數訊號。The controller 120 is electrically connected to the magnetic induction component 110. The controller 120 receives the square wave signal output by the magnetic induction component 110, and converts the received square wave signal into a rotating circle number signal. More specifically, the magnetic induction component 110 senses that the magnetic pole alternates between the N pole and the S pole when the outer ring magnet 145 rotates, and then includes a high level signal and a low level according to the output corresponding to the sensed N pole and the S pole. The square wave signal of the number. The controller 120 receives the square wave signal output by the magnetic induction component 110, determines whether the current outer ring magnet 145 is forward or reverse, and the number of rotations, and records and records the obtained rotation ring number signal inside the controller 120. In addition, according to another preferred embodiment of the present invention, the controller 120 further includes a memory unit for recording the number of revolutions.
磁感應式編碼器130位在中央磁鐵140旋轉的中央軸線上,並且對應中央磁鐵140旋轉的中央軸線位置,與中央磁鐵140間隔設置。磁感應式編碼器130為非接觸式磁性旋轉式編碼器,在單一元件中整合霍爾元件、類比前端與數位訊號處理功能。磁感應式編碼器130在使用上,將轉軸150轉動時中央磁鐵140相應所產生的磁極的變化,轉換為特定的位置訊號,因而準確量測轉軸150於單圈內的旋轉角度170。The magnetic inductive encoder 130 is located on the central axis of rotation of the central magnet 140 and is spaced from the central magnet 140 at a central axis position corresponding to the rotation of the central magnet 140. The magnetic inductive encoder 130 is a non-contact magnetic rotary encoder that integrates a Hall element, an analog front end, and a digital signal processing function in a single component. In use, the magnetic inductive encoder 130 converts the change of the magnetic pole generated by the central magnet 140 when the rotating shaft 150 is rotated into a specific position signal, thereby accurately measuring the rotation angle 170 of the rotating shaft 150 in a single turn.
根據本創作之較佳實施例,磁感應組件110、控制器120和磁感應式編碼器130可設置在同一電路板160上。According to a preferred embodiment of the present invention, the magnetic sensing component 110, the controller 120, and the magnetic inductive encoder 130 can be disposed on the same circuit board 160.
請參照第2圖,第2圖繪示繪示本創作之絕對式編碼器之電路方塊圖。當本創作之絕對式編碼器應用至一電機設備時,在電機設備正常運作下,電機設備外部電路270的外部電源280提供電力至絕對式編碼器的電路板160。外部電源280所提供的電壓進入電路板160後,經過電 壓轉換單元161,轉換為工作電壓。該外部電源280主要是用以提供電路板160內之第一霍爾元件112、第二霍爾元件114、控制器120和磁感應式編碼器130運轉所需的電力。磁感應式編碼器130根據中央磁鐵140轉動時所產生的磁極的變化,轉換為特定之訊號,例如位置以及角度的A、B和Z訊號,因而能準確量測電機設備的轉軸於單圈內的旋轉角度。控制器120接收第一霍爾元件112和第二霍爾元件114感應電機設備的轉軸在旋轉時外環磁鐵的磁極變化,所輸出之相應的方波訊號,進而輸出相應的旋轉圈數訊號Rx。Please refer to FIG. 2, which is a block diagram showing the circuit of the absolute encoder of the present invention. When the absolute encoder of the present invention is applied to a motor device, the external power source 280 of the motor device external circuit 270 provides power to the circuit board 160 of the absolute encoder under normal operation of the motor device. After the voltage provided by the external power source 280 enters the circuit board 160, the power is passed. The voltage conversion unit 161 is converted to an operating voltage. The external power source 280 is primarily used to provide the power required to operate the first Hall element 112, the second Hall element 114, the controller 120, and the magnetic inductive encoder 130 within the circuit board 160. The magnetic induction encoder 130 converts the specific magnetic signals, such as the position and angle A, B and Z signals, according to the change of the magnetic pole generated when the central magnet 140 rotates, so that the rotation axis of the motor device can be accurately measured in a single circle. Rotation angle. The controller 120 receives the first Hall element 112 and the second Hall element 114 to induce a change in the magnetic pole of the outer ring magnet when the rotating shaft of the motor device rotates, and outputs a corresponding square wave signal, thereby outputting a corresponding rotation number signal Rx. .
另外,外部電源280轉換為工作電壓後,會再經過充電電路162,用以向電容284充電。因此,當電機設備斷電時,即使外部電源280不再提供電力至絕對式編碼器的電路板160,電路板160可藉由電容284提供所需電力。根據本創作之較佳實施例,進一步包含一外部的電池282與電路板160電性連接。因此當外部電源280停止供電時,亦可藉由電池282持續提供電力至電路板160。另外,電路板160內部包含電壓偵測單元163、165與電源轉換開關164。電壓偵測單元163用於偵測外部電源280和電容284當前的電壓,而電源轉換開關164根據電壓偵測單元163所傳遞的訊號,切換提供至第一霍爾元件112、第二霍爾元件114和控制器120的電力來源,該電力來源為外部電源280、電池282或電容284其中之一。In addition, after the external power source 280 is converted to the operating voltage, it will pass through the charging circuit 162 to charge the capacitor 284. Thus, when the electrical equipment is powered down, even if the external power supply 280 no longer provides power to the circuit board 160 of the absolute encoder, the circuit board 160 can provide the required power by the capacitor 284. According to a preferred embodiment of the present invention, an external battery 282 is further electrically coupled to the circuit board 160. Therefore, when the external power source 280 stops supplying power, the battery 282 can continue to provide power to the circuit board 160. In addition, the circuit board 160 internally includes voltage detecting units 163 and 165 and a power conversion switch 164. The voltage detecting unit 163 is configured to detect the current voltage of the external power source 280 and the capacitor 284, and the power switch 164 is switched to the first Hall element 112 and the second Hall element according to the signal transmitted by the voltage detecting unit 163. 114 and a source of power for controller 120, the source of which is one of external power source 280, battery 282, or capacitor 284.
可以理解的是,根據第2圖所示,當電機設備正常運作下,外部電源280會提供電力至磁感應式編碼器130、第一霍爾元件112、第二霍爾元件114和控制器120。當外部電源280停止供電時,第一霍爾元件112、第二霍爾元件114和控制器120可藉由電容284或電池282持續供電, 更明確地說,電容284或電池282不用於提供電力至磁感應式編碼器130。根據本創作之較佳實施例,當外部電源280停止供電且電機設備無轉動下,電容284或電池282僅會提供電力至第一霍爾元件112、第二霍爾元件114和控制器120的記憶單元122。值得注意的是,第一霍爾元件112、第二霍爾元件114和控制器120的記憶單元122消耗電流小於50μA,使得本創作之絕對式編碼器在無外部電源供電時,能保持在相對低的耗電量,達到省電的功能。也就是說,控制器120內部記憶單元122所儲存的旋轉圈數訊號Rx的資料不會因電機設備長時間停電而遺失。It can be understood that, according to FIG. 2, when the motor device is operating normally, the external power source 280 provides power to the magnetic inductive encoder 130, the first Hall element 112, the second Hall element 114, and the controller 120. When the external power source 280 stops supplying power, the first Hall element 112, the second Hall element 114, and the controller 120 can be continuously powered by the capacitor 284 or the battery 282. More specifically, capacitor 284 or battery 282 is not used to provide power to magnetic inductive encoder 130. According to a preferred embodiment of the present invention, when the external power source 280 is powered off and the motor device is not rotating, the capacitor 284 or battery 282 will only provide power to the first Hall element 112, the second Hall element 114, and the controller 120. Memory unit 122. It should be noted that the first Hall element 112, the second Hall element 114, and the memory unit 122 of the controller 120 consume less than 50μA, so that the absolute encoder of the present invention can remain in relative when no external power supply is provided. Low power consumption and power saving. That is to say, the data of the rotation number signal Rx stored by the internal memory unit 122 of the controller 120 is not lost due to the long-term power failure of the motor equipment.
根據本創作之較佳實施例,控制器120進一步包含清除功能,用以接收清除圈數訊號D,將所記錄之該旋轉圈數訊號歸零。According to a preferred embodiment of the present invention, the controller 120 further includes a clear function for receiving the clear circle number signal D and zeroing the recorded number of revolutions.
請參照第3A圖和第3B圖。第3A圖繪示本創作之磁感應組件在外環磁鐵正轉時輸出的方波訊號。第3B圖繪示本創作之磁感應組件在外環磁鐵逆轉時輸出的方波訊號。根據本創作之較佳實施例,本創作之磁感應組件進一步包含第一霍爾元件和第二霍爾元件。第3A圖和第3B圖中,第一霍爾元件所輸出之第一方波訊號H1和第二霍爾元件所輸出之第二方波訊號H2具有90度相位差。當外環磁鐵正轉時,第一霍爾元件所輸出之第一方波訊號H1的相位在前;當外環磁鐵逆轉時,第二霍爾元件所輸出之第二方波訊號H2的相位在前。Please refer to Figures 3A and 3B. FIG. 3A is a diagram showing the square wave signal outputted by the magnetic induction component of the present invention when the outer ring magnet is rotating forward. FIG. 3B is a diagram showing the square wave signal outputted by the magnetic induction component of the present invention when the outer ring magnet is reversed. According to a preferred embodiment of the present invention, the magnetic induction assembly of the present invention further includes a first Hall element and a second Hall element. In FIGS. 3A and 3B, the first square wave signal H1 output by the first Hall element and the second square wave signal H2 output by the second Hall element have a phase difference of 90 degrees. When the outer ring magnet rotates forward, the phase of the first square wave signal H1 output by the first Hall element is in front; and when the outer ring magnet is reversed, the phase of the second square wave signal H2 output by the second Hall element in front.
如第3A圖所示,當轉軸為正轉時,控制器會接收到第一霍爾元件輸出第一方波訊號H1的上升緣,並且第二霍爾元件當前輸出為低準位訊號L,或控制器會接收到第一霍爾元件輸出第一方波訊號H1的下降緣,並且第二霍爾元件當前輸出為高準位訊號H。反之,參照第3B圖所示, 當轉軸為逆轉時,控制器會接收到第一霍爾元件輸出第一方波訊號H1的上升緣,並且第二霍爾元件當前輸出為高準位訊號H,或控制器會接收到第一霍爾元件輸出第一方波訊號H1的下降緣,並且第二霍爾元件當前輸出為低準位訊號L。As shown in FIG. 3A, when the rotating shaft is forward rotation, the controller receives the rising edge of the first square element outputting the first square wave signal H1, and the current output of the second Hall element is the low level signal L, Or the controller receives the falling edge of the first square element outputting the first square wave signal H1, and the current output of the second Hall element is the high level signal H. On the contrary, referring to Figure 3B, When the rotating shaft is reversed, the controller receives the rising edge of the first square element output first square wave signal H1, and the current output of the second Hall element is the high level signal H, or the controller receives the first The Hall element outputs a falling edge of the first square wave signal H1, and the second Hall element currently outputs a low level signal L.
參照第3A圖和第3B圖所示,由第一霍爾元件所輸出之第一方波訊號H1和第二霍爾元件所輸出之第二方波訊號H2所劃分的第0區至第3區,是用以表示將磁鐵旋轉一圈中劃分為4個區域,其中第0區表示原點。也就是說,當控制器接收到觸發第0區的訊號時,即會增加或減少旋轉圈數。當控制器接收到第二霍爾元件輸出第二方波訊號的上升緣,並且第一霍爾元件輸出為低準位訊號時,表示磁鐵目前為順轉並且經過第0區,因此,控制器會將旋轉圈數訊號的計數加1。同理,當控制器接收到第一霍爾元件輸出第一方波訊號的上升緣,並且第二霍爾元件輸出為高準位訊號時,表示磁鐵目前為逆轉並且經過第0區,因此,控制器會將旋轉圈數訊號的計數減1。Referring to FIGS. 3A and 3B, the first square wave signal H1 output by the first Hall element and the second square wave signal H2 output by the second Hall element are divided into the 0th to the 3rd. The area is used to indicate that the magnet is divided into four regions by one rotation, and the zeroth region represents the origin. That is to say, when the controller receives the signal triggering the 0th zone, it will increase or decrease the number of revolutions. When the controller receives the rising edge of the second square element outputting the second square wave signal, and the first Hall element outputs a low level signal, it indicates that the magnet is currently in the forward direction and passes through the 0th zone, therefore, the controller The count of the number of revolutions is increased by one. Similarly, when the controller receives the rising edge of the first square wave signal output by the first Hall element, and the second Hall element outputs a high level signal, it indicates that the magnet is currently reversed and passes through the 0th zone, therefore, The controller will decrement the count of the number of revolutions by one.
雖然本創作已以較佳實施例揭露,然其並非用以限制本創作,任何熟習此項技藝之人士,在不脫離本創作之精神和範圍內,當可作各種更動與修飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in its preferred embodiments, it is not intended to limit the present invention, and anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application.
100‧‧‧絕對式編碼器100‧‧‧Absolute encoder
110‧‧‧磁感應組件110‧‧‧Magnetic sensing components
112‧‧‧第一霍爾元件112‧‧‧First Hall element
114‧‧‧第二霍爾元件114‧‧‧Second Hall element
120‧‧‧控制器120‧‧‧ Controller
130‧‧‧磁感應式編碼器130‧‧‧Magnetic Inductive Encoder
140‧‧‧中央磁鐵140‧‧‧Central Magnet
145‧‧‧外環磁鐵145‧‧‧Outer ring magnet
150‧‧‧轉軸150‧‧‧ shaft
160‧‧‧電路板160‧‧‧ boards
Claims (11)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103219459U TWM495504U (en) | 2014-11-03 | 2014-11-03 | Absolute encoder |
CN201520013717.XU CN204388870U (en) | 2014-11-03 | 2015-01-09 | absolute encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103219459U TWM495504U (en) | 2014-11-03 | 2014-11-03 | Absolute encoder |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM495504U true TWM495504U (en) | 2015-02-11 |
Family
ID=53017788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103219459U TWM495504U (en) | 2014-11-03 | 2014-11-03 | Absolute encoder |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN204388870U (en) |
TW (1) | TWM495504U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612278B (en) * | 2015-11-18 | 2018-01-21 | 國立清華大學 | Ring magnetic encoder, manufacturing device for ring magnetic encoder, rotary shaft offset detecting method, and human-machine interface device thereof |
US10139247B2 (en) | 2015-12-16 | 2018-11-27 | Smc Corporation | Position detecting device |
TWI669490B (en) * | 2015-12-03 | 2019-08-21 | 英商任尼紹公司 | Sealed encoder module , sealed optical encoder module , and method for setting up saida sealedencoder module |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201617586A (en) * | 2014-11-03 | 2016-05-16 | 盟立自動化股份有限公司 | Absolute encoder and method for operating the same |
-
2014
- 2014-11-03 TW TW103219459U patent/TWM495504U/en not_active IP Right Cessation
-
2015
- 2015-01-09 CN CN201520013717.XU patent/CN204388870U/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI612278B (en) * | 2015-11-18 | 2018-01-21 | 國立清華大學 | Ring magnetic encoder, manufacturing device for ring magnetic encoder, rotary shaft offset detecting method, and human-machine interface device thereof |
TWI669490B (en) * | 2015-12-03 | 2019-08-21 | 英商任尼紹公司 | Sealed encoder module , sealed optical encoder module , and method for setting up saida sealedencoder module |
US10907997B2 (en) | 2015-12-03 | 2021-02-02 | Renishaw Plc | Encoder apparatus |
US11009374B2 (en) | 2015-12-03 | 2021-05-18 | Renishaw Plc | Encoder |
US11549828B2 (en) | 2015-12-03 | 2023-01-10 | Renishaw Plc | Encoder |
US10139247B2 (en) | 2015-12-16 | 2018-11-27 | Smc Corporation | Position detecting device |
TWI647434B (en) * | 2015-12-16 | 2019-01-11 | 日商Smc股份有限公司 | Position detection device |
Also Published As
Publication number | Publication date |
---|---|
CN204388870U (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11359936B2 (en) | Rotation sensor | |
JP5480967B2 (en) | Multi-period absolute position detector | |
US7771121B2 (en) | Bearing assembly with built-in absolute encoder | |
CN107655510B (en) | Multi-turn absolute value encoder and position detection method | |
CN206291915U (en) | A kind of encoder of Hall-type | |
TWM495504U (en) | Absolute encoder | |
JP6445310B2 (en) | Multi-turn rotary encoder | |
CN207515803U (en) | A kind of multi-turn magnetism encoder of wide temperature range | |
CN104634367A (en) | Magnetoelectric type absolute position sensor with large central hole structure and method for measuring absolute position | |
CN200996830Y (en) | Non-contact and magnetic-inductive senser of angular displacement | |
JP5402313B2 (en) | Encoder and signal processing method | |
TW201617586A (en) | Absolute encoder and method for operating the same | |
CN107367226A (en) | Digital angle sensor | |
CN105387879A (en) | Absolute position magnetic encoder of large center hole axial magnetization structure | |
CN202281615U (en) | High-precision absolute encoder | |
CN102401665A (en) | New motor magnetic encoder | |
JP4480453B2 (en) | Rotation angle sensor | |
CN202329653U (en) | Novel magnetic motor encoder | |
JP4521808B2 (en) | Encoder | |
WO2006013622A1 (en) | Bearing with absolute angle sensor | |
JP2021148447A (en) | Position detection device | |
CN205352419U (en) | Magnetic resistance absolute encoder | |
CN116499501B (en) | Magnetic sensor | |
JP2013257158A (en) | Encoder, code disc, position information detection sensor, driving device, and robot device | |
KR101582529B1 (en) | The absolute encoder of counter type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |