JP2021148447A - Position detection device - Google Patents

Position detection device Download PDF

Info

Publication number
JP2021148447A
JP2021148447A JP2020045266A JP2020045266A JP2021148447A JP 2021148447 A JP2021148447 A JP 2021148447A JP 2020045266 A JP2020045266 A JP 2020045266A JP 2020045266 A JP2020045266 A JP 2020045266A JP 2021148447 A JP2021148447 A JP 2021148447A
Authority
JP
Japan
Prior art keywords
signal
conversion
detected
differential
bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020045266A
Other languages
Japanese (ja)
Inventor
達之 山口
Tatsuyuki Yamaguchi
達之 山口
和寛 北田
Kazuhiro Kitada
和寛 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2020045266A priority Critical patent/JP2021148447A/en
Publication of JP2021148447A publication Critical patent/JP2021148447A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a position detection device capable of quickly determining an operation state of an object to be detected without changing the number of magnetic poles of a magnet.SOLUTION: A differential processing unit 41 differentiates a first detection signal Sa1 and a second detection signal Sa2 input from a first bridge circuit 11a and a second bridge circuit 11b, respectively. A signal processing unit 43 generates and outputs a control signal Srot capable of determining a low-speed or stopped operation state of an object to be detected based on a first differential signal Sr1 obtained by differentiating the first detection signal Sa1 and a second differential signal Sr2 obtained by differentiating the second detection signal Sa2. Based on the control signal Srot, a determination unit 44 determines whether or not the object to be detected is at the low speed or the stopped operation state.SELECTED DRAWING: Figure 5

Description

本発明は、被検出体の位置を検出する位置検出装置に関する。 The present invention relates to a position detection device that detects the position of the object to be detected.

従来、この種の位置検出装置として、4つの磁気抵抗素子をブリッジ状に組み合わせた磁気センサを用いた回転検出装置が周知である(特許文献1等参照)。この磁気センサでは、磁気抵抗素子に付与された磁界に応じて抵抗値が変化し、その検出磁界に基づく検出信号を出力する。このような磁気センサは、例えば被検出体の2位置(オン位置、オフ位置)の切り替わりや、被検出体の位置をリニアに検出する場合に使用される。 Conventionally, as this type of position detection device, a rotation detection device using a magnetic sensor in which four magnetoresistive elements are combined in a bridge shape is well known (see Patent Document 1 and the like). In this magnetic sensor, the resistance value changes according to the magnetic field applied to the magnetoresistive element, and a detection signal based on the detected magnetic field is output. Such a magnetic sensor is used, for example, when switching between two positions (on position and off position) of the object to be detected and when the position of the object to be detected is linearly detected.

特開2011−027495号公報Japanese Unexamined Patent Publication No. 2011-027495

ここで、磁気センサから出力される検出信号をパルス状に変換し、パルス信号から被検出体の低速又は停止等の回転状態を検出する場合がある。具体的には、例えばパルス信号の立ち上がり/立ち下がりを監視することで、被検出体の低速や停止等の回転状態を判定する。しかし、この検出方法の場合、より低速な状態を検出したり、直ぐに停止を判定したりするなど、被検出体の作動状態を迅速に判定するには、磁石の回転に対してパルス信号の幅を小さくする高分解能化が必要となってしまう。この場合、例えば磁石の磁極数を増やす必要が生じ、製品の体格やコスト増に繋がる問題があった。 Here, the detection signal output from the magnetic sensor may be converted into a pulse shape, and a rotational state such as low speed or stop of the detected object may be detected from the pulse signal. Specifically, for example, by monitoring the rise / fall of the pulse signal, the rotational state such as low speed or stop of the detected object is determined. However, in the case of this detection method, in order to quickly determine the operating state of the object to be detected, such as detecting a slower state or immediately determining a stop, the width of the pulse signal with respect to the rotation of the magnet It is necessary to increase the resolution to reduce the size. In this case, for example, it becomes necessary to increase the number of magnetic poles of the magnet, which leads to a problem of increasing the physique and cost of the product.

本発明の目的は、磁石の磁極数を変えなくとも被検出体の作動状態を迅速に判定可能にした位置検出装置を提供することにある。 An object of the present invention is to provide a position detecting device capable of quickly determining an operating state of a detected body without changing the number of magnetic poles of a magnet.

前記問題点を解決する位置検出装置は、磁気抵抗素子がブリッジ状に組まれたブリッジ回路を2つ有するブリッジ対が設けられ、前記ブリッジ回路から正余弦の関係を有する波形で出力される検出信号を基に、前記磁気抵抗素子に磁界を付与する磁石と一体に動く被検出体の位置検出を行う構成であって、前記ブリッジ対又はそれと組をなす他ブリッジ対から、正余弦の関係を有する第1検出信号及び第2検出信号を入力し、これらをそれぞれ微分する微分処理部と、前記第1検出信号を微分して得られる第1微分信号と、前記第2検出信号を微分して得られる第2微分信号とを基に、前記被検出体の低速又は停止の作動状態を判定可能な制御信号を生成して出力する信号処理部と、前記信号処理部によって生成された前記制御信号を基に、前記被検出体が低速又は停止の作動状態か否かを判定する判定部とを備えた。 The position detection device that solves the above problem is provided with a bridge pair having two bridge circuits in which magnetic resistance elements are assembled in a bridge shape, and a detection signal output from the bridge circuit as a waveform having a positive cosine relationship. Based on the above, the position of the object to be detected that moves integrally with the magnet that applies a magnetic field to the magnetic resistance element is detected, and the bridge pair or another bridge pair that is paired with the bridge pair has a positive cosine relationship. A differentiation processing unit that inputs the first detection signal and the second detection signal and differentiates them, a first differential signal obtained by differentiating the first detection signal, and a second detection signal obtained by differentiating the second detection signal. A signal processing unit that generates and outputs a control signal capable of determining the low speed or stop operating state of the detected object based on the second differential signal, and the control signal generated by the signal processing unit. Based on this, a determination unit for determining whether or not the detected object is in a low-speed or stopped operating state is provided.

本発明によれば、磁石の磁極数を変えなくとも被検出体の作動状態を迅速に判定できる。 According to the present invention, the operating state of the detected object can be quickly determined without changing the number of magnetic poles of the magnet.

位置検出装置の構成図。The block diagram of the position detection device. 磁気センサのセンサエレメントのレイアウト図。Layout diagram of the sensor element of the magnetic sensor. 磁気センサの回路図。Circuit diagram of the magnetic sensor. 増幅信号及びパルス信号の波形図。Waveform diagram of amplified signal and pulse signal. 位置検出装置の電気ブロック図。Electrical block diagram of the position detector. 被検出体が低速又は停止する際の各信号の変化を示すタイミングチャート。A timing chart showing changes in each signal when the object to be detected slows down or stops. 別例の位置検出装置の電気ブロック図。An electric block diagram of another example position detector. 他の別例の位置検出装置の構成を示す斜視図。The perspective view which shows the structure of the position detection apparatus of another example. 図8の位置検出装置の平面図。The plan view of the position detection apparatus of FIG. 図8の位置検出装置の側面図。FIG. 8 is a side view of the position detection device of FIG.

以下、位置検出装置の一実施形態を図1〜図6に従って説明する。
図1に示すように、位置検出装置1は、回転する被検出体2の位置(回転位置)を検出する回転検出装置3である。この回転検出装置3は、被検出体2と一体回転するように設けられた磁石4と、基板5に設けられたセンサIC6とを備える。センサIC6は、磁石4から付与される磁界を検出する磁気センサ7を備える。磁石4は、例えば円板形状をなし、被検出体2と同一軸心上に配置されている。磁石4は、周方向に沿ってN極及びS極が交互に入れ替わるように磁極が配列されている。被検出体2は、円環状の磁石4の孔8に一体回転可能に挿通固定されている。
Hereinafter, an embodiment of the position detection device will be described with reference to FIGS. 1 to 6.
As shown in FIG. 1, the position detection device 1 is a rotation detection device 3 that detects the position (rotation position) of the rotating object 2 to be detected. The rotation detection device 3 includes a magnet 4 provided so as to rotate integrally with the body to be detected 2, and a sensor IC 6 provided on the substrate 5. The sensor IC 6 includes a magnetic sensor 7 that detects a magnetic field applied from the magnet 4. The magnet 4 has, for example, a disk shape and is arranged on the same axis as the detected body 2. The magnets 4 have magnetic poles arranged so that the north and south poles alternate along the circumferential direction. The object to be detected 2 is integrally rotatably inserted and fixed in the hole 8 of the annular magnet 4.

磁気センサ7は、被検出体2の径方向の外側に配置されている。このように、磁気センサ7は、磁石4(磁石4の外周面)の横、すなわち磁石4に対して横置き配置されている。被検出体2及び磁石4が軸L1回りに回転すると、磁石4から磁気センサ7に付与される磁界方向(磁界の向き)が変化する。磁気センサ7は、磁石4から付与される磁界に対し、磁界方向の変化を検出し、検出した磁界方向に応じた検出信号Saを出力する。 The magnetic sensor 7 is arranged outside the detected body 2 in the radial direction. In this way, the magnetic sensor 7 is arranged horizontally on the side of the magnet 4 (outer peripheral surface of the magnet 4), that is, horizontally with respect to the magnet 4. When the object to be detected 2 and the magnet 4 rotate around the axis L1, the direction of the magnetic field (direction of the magnetic field) applied from the magnet 4 to the magnetic sensor 7 changes. The magnetic sensor 7 detects a change in the magnetic field direction with respect to the magnetic field applied from the magnet 4, and outputs a detection signal Sa corresponding to the detected magnetic field direction.

図2に示すように、磁気センサ7は、磁気抵抗素子Rmをフルブリッジ状に組んだブリッジ回路11を複数有するブリッジ対10を備える。本例の場合、ブリッジ対10は、第1ブリッジ回路11a及び第2ブリッジ回路11bの計2組のブリッジ回路11を備える。第1ブリッジ回路11aの出力と第2ブリッジ回路11bは、出力が正余弦の関係を有する検出信号Saを各々出力する。 As shown in FIG. 2, the magnetic sensor 7 includes a bridge pair 10 having a plurality of bridge circuits 11 in which magnetic resistance elements Rm are assembled in a full bridge shape. In the case of this example, the bridge pair 10 includes a total of two sets of bridge circuits 11 including a first bridge circuit 11a and a second bridge circuit 11b. The output of the first bridge circuit 11a and the second bridge circuit 11b each output a detection signal Sa whose output has a positive cosine relationship.

第1ブリッジ回路11a及び第2ブリッジ回路11bの各磁気抵抗素子Rmは、センサエレメント12を交互に折り返した形状に形成されるとともに、エレメント中心P回りに沿って周方向に等間隔で並ぶように配列されている。センサエレメント12の折り返し形状とは、例えばセンサパターンを交互に何度も折り返したつづら折りの形状である。 The reluctance elements Rm of the first bridge circuit 11a and the second bridge circuit 11b are formed in a shape in which the sensor elements 12 are alternately folded back, and are arranged at equal intervals in the circumferential direction along the element center P. It is arranged. The folded shape of the sensor element 12 is, for example, a zigzag shape in which the sensor pattern is alternately folded many times.

図3に示すように、第1ブリッジ回路11aは、第1磁気抵抗素子R1、第2磁気抵抗素子R2、第3磁気抵抗素子R3及び第4磁気抵抗素子R4の4素子がフルブリッジ状に組まれている。第2ブリッジ回路11bは、第5磁気抵抗素子R5、第6磁気抵抗素子R6、第7磁気抵抗素子R7及び第8磁気抵抗素子R8の4素子がフルブリッジ状に組まれている。第1ブリッジ回路11a及び第2ブリッジ回路11bは、位相が45度ずれるように配置されている。 As shown in FIG. 3, in the first bridge circuit 11a, four elements of the first magnetic resistance element R1, the second magnetic resistance element R2, the third magnetic resistance element R3, and the fourth magnetic resistance element R4 are assembled in a full bridge shape. It is rare. In the second bridge circuit 11b, four elements of the fifth magnetic resistance element R5, the sixth magnetic resistance element R6, the seventh magnetic resistance element R7, and the eighth magnetic resistance element R8 are assembled in a full bridge shape. The first bridge circuit 11a and the second bridge circuit 11b are arranged so as to be out of phase by 45 degrees.

第1ブリッジ回路11aは、第1磁気抵抗素子R1及び第3磁気抵抗素子R3の中点14が電源Vccの端子15に接続され、第2磁気抵抗素子R2及び第4磁気抵抗素子R4の中点16が接地の端子17に接続されている。第1磁気抵抗素子R1及び第2磁気抵抗素子R2の中点18は、第1ブリッジ回路11aにおける磁界検出の+側出力を取り出す第1プラス側出力端子19に接続されている。第3磁気抵抗素子R3及び第4磁気抵抗素子R4の中点20は、第1ブリッジ回路11aにおける磁界検出の−側出力を取り出す第1マイナス側出力端子21に接続されている。第1ブリッジ回路11aは、第1プラス側出力端子19及び第1マイナス側出力端子21の間の電位差を、検出磁界に応じた検出信号Sa(本例は、第1検出信号Sa1)として出力する。 In the first bridge circuit 11a, the midpoint 14 of the first reluctance element R1 and the third reluctance element R3 is connected to the terminal 15 of the power supply Vcc, and the midpoint of the second reluctance element R2 and the fourth reluctance element R4 is connected. 16 is connected to the grounded terminal 17. The midpoint 18 of the first reluctance element R1 and the second reluctance element R2 is connected to the first plus side output terminal 19 that takes out the + side output of the magnetic field detection in the first bridge circuit 11a. The midpoint 20 of the third reluctance element R3 and the fourth reluctance element R4 is connected to the first negative side output terminal 21 that takes out the negative side output of the magnetic field detection in the first bridge circuit 11a. The first bridge circuit 11a outputs the potential difference between the first positive side output terminal 19 and the first negative side output terminal 21 as a detection signal Sa (in this example, the first detection signal Sa1) according to the detection magnetic field. ..

第2ブリッジ回路11bは、第5磁気抵抗素子R5及び第7磁気抵抗素子R7の中点24が電源Vccの端子15に接続され、第6磁気抵抗素子R6及び第8磁気抵抗素子R8の中点25が接地の端子17に接続されている。第5磁気抵抗素子R5及び第6磁気抵抗素子R6の中点26は、第2ブリッジ回路11bにおける磁界検出の+側出力を取り出す第2プラス側出力端子27に接続されている。第6磁気抵抗素子R6及び第7磁気抵抗素子R7の中点28は、第2ブリッジ回路11bにおける磁界検出の−側出力を取り出す第2マイナス側出力端子29に接続されている。第2ブリッジ回路11bは、第2プラス側出力端子27及び第2マイナス側出力端子29の間の電位差を、検出磁界に応じた検出信号Sa(本例は、第2検出信号Sa2)として出力する。 In the second bridge circuit 11b, the midpoint 24 of the fifth reluctance element R5 and the seventh reluctance element R7 is connected to the terminal 15 of the power supply Vcc, and the midpoint of the sixth reluctance element R6 and the eighth reluctance element R8. 25 is connected to the grounded terminal 17. The midpoint 26 of the fifth reluctance element R5 and the sixth reluctance element R6 is connected to the second plus side output terminal 27 that takes out the + side output of the magnetic field detection in the second bridge circuit 11b. The midpoint 28 of the sixth magnetoresistive element R6 and the seventh magnetic resistance element R7 is connected to the second negative side output terminal 29 that takes out the negative side output of the magnetic field detection in the second bridge circuit 11b. The second bridge circuit 11b outputs the potential difference between the second positive side output terminal 27 and the second negative side output terminal 29 as a detection signal Sa (in this example, the second detection signal Sa2) according to the detection magnetic field. ..

図5に示すように、回転検出装置3は、増幅器35、比較部36及び演算部37を備える。増幅器35は、第1ブリッジ回路11aから出力される第1検出信号Sa1を増幅する第1増幅器35aと、第2ブリッジ回路11bから出力される第2検出信号Sa2を増幅する第2増幅器35bとを備える。比較部36は、増幅器35から出力される増幅信号Stをコンパレートする。本例の比較部36は、第1増幅器35aから出力される交流波状の第1増幅信号St1をコンパレートする第1比較部36aと、第2増幅器35bから出力される交流波状の第2増幅信号St2をコンパレートする第2比較部36bとを備える。 As shown in FIG. 5, the rotation detection device 3 includes an amplifier 35, a comparison unit 36, and a calculation unit 37. The amplifier 35 includes a first amplifier 35a that amplifies the first detection signal Sa1 output from the first bridge circuit 11a, and a second amplifier 35b that amplifies the second detection signal Sa2 output from the second bridge circuit 11b. Be prepared. The comparison unit 36 compares the amplification signal St output from the amplifier 35. The comparison unit 36 of this example is a first comparison unit 36a that compares the AC wave-shaped first amplification signal St1 output from the first amplifier 35a, and an AC wave-like second amplification signal output from the second amplifier 35b. It is provided with a second comparison unit 36b that compares St2.

図4に示すように、第1増幅器35aは、例えば正弦波の第1検出信号Sa1を増幅した第1増幅信号St1を生成する。第2増幅器35bは、例えば余弦波の第2検出信号Sa2を増幅した第2増幅信号St2を生成する。これら第1増幅信号St1及び第2増幅信号St2は、正余弦の関係を有する波形の信号として生成される。第1比較部36a及び第2比較部36bは、コンパレート後の信号として矩形波のパルス信号Spを出力する。第1比較部36aの第1パルス信号Sp1と第2比較部36bの第2パルス信号Sp2とは、位相が所定量(例えば1/4周期)ずれた信号となっている。 As shown in FIG. 4, the first amplifier 35a generates, for example, a first amplification signal St1 that amplifies the first detection signal Sa1 of a sine wave. The second amplifier 35b generates, for example, a second amplification signal St2 that amplifies the second detection signal Sa2 of the cosine wave. The first amplified signal St1 and the second amplified signal St2 are generated as signals having a waveform having a positive cosine relationship. The first comparison unit 36a and the second comparison unit 36b output a rectangular wave pulse signal Sp as a signal after comparison. The first pulse signal Sp1 of the first comparison unit 36a and the second pulse signal Sp2 of the second comparison unit 36b are signals whose phases are out of phase by a predetermined amount (for example, 1/4 period).

図5に示す通り、演算部37は、比較部36から出力された矩形波のパルス信号Spを基に、被検出体2の回転(角度、回転量、回転方向など)を検出する。演算部37は、第1比較部36aから入力する第1パルス信号Sp1と、第2比較部36bから入力する第2パルス信号Sp2とを基に、被検出体2の回転検出を実行する。一例としては、例えば第1パルス信号Sp1及び第2パルス信号Sp2の矩形波のパルスをカウントすることにより、被検出体2の角度を演算したり、矩形波のパルスの立ち上がり及び立ち下がりの組み合わせにより、被検出体2の回転方向を演算したりする。 As shown in FIG. 5, the calculation unit 37 detects the rotation (angle, rotation amount, rotation direction, etc.) of the object to be detected 2 based on the pulse signal Sp of the rectangular wave output from the comparison unit 36. The calculation unit 37 executes rotation detection of the detected body 2 based on the first pulse signal Sp1 input from the first comparison unit 36a and the second pulse signal Sp2 input from the second comparison unit 36b. As an example, for example, by counting the pulses of the square wave of the first pulse signal Sp1 and the second pulse signal Sp2, the angle of the object to be detected 2 can be calculated, or by the combination of the rise and fall of the pulse of the square wave. , The rotation direction of the detected object 2 is calculated.

回転検出装置3は、被検出体2が正常作動ではなく低速又は停止の作動状態か否かを検出する機能(正常作動監視機能)を備える。本例のように、被検出体2が回転する動きをとる場合、正常作動監視機能は、被検出体2の回転状態が低速又は停止となっているか否かを検出する。本例の場合、被検出体2の回転状態を即座に判定することにより、被検出体2の回転演算に係る制御の応答性をよくする。 The rotation detection device 3 has a function (normal operation monitoring function) of detecting whether or not the detected body 2 is not operating normally but is in a low-speed or stopped operating state. When the detected body 2 takes a rotating motion as in this example, the normal operation monitoring function detects whether or not the rotating state of the detected body 2 is low speed or stopped. In the case of this example, the responsiveness of the control related to the rotation calculation of the detected body 2 is improved by immediately determining the rotation state of the detected body 2.

この場合、回転検出装置3は、微分処理部41、絶対値変換部42、信号処理部43及び判定部44を備える。微分処理部41は、第1ブリッジ回路11a側の第1微分処理部41aと、第2ブリッジ回路11b側の第2微分処理部41bとを備える。絶対値変換部42は、第1ブリッジ回路11a側の第1絶対値変換部42aと、第2ブリッジ回路11b側の第2絶対値変換部42bとを備える。 In this case, the rotation detection device 3 includes a differential processing unit 41, an absolute value conversion unit 42, a signal processing unit 43, and a determination unit 44. The differential processing unit 41 includes a first differential processing unit 41a on the first bridge circuit 11a side and a second differential processing unit 41b on the second bridge circuit 11b side. The absolute value conversion unit 42 includes a first absolute value conversion unit 42a on the first bridge circuit 11a side and a second absolute value conversion unit 42b on the second bridge circuit 11b side.

微分処理部41は、正余弦の関係を有する第1検出信号Sa1及び第2検出信号Sa2をブリッジ対10から入力し、これらをそれぞれ微分する。本例の場合、微分処理部41は、増幅器35を経て入力する第1検出信号Sa1及び第2検出信号Sa2、すなわち増幅信号St(第1増幅信号St1、第2増幅信号St2)を微分する。具体的には、第1増幅信号St1が第1微分処理部41aで微分されて第1微分信号Sr1が生成され、第2増幅信号St2が第2微分処理部41bで微分されて第2微分信号Sr2が生成される。 The differentiation processing unit 41 inputs the first detection signal Sa1 and the second detection signal Sa2 having a positive cosine relationship from the bridge pair 10, and differentiates them respectively. In the case of this example, the differentiation processing unit 41 differentiates the first detection signal Sa1 and the second detection signal Sa2, that is, the amplification signals St (first amplification signal St1, second amplification signal St2) input via the amplifier 35. Specifically, the first amplification signal St1 is differentiated by the first differential processing unit 41a to generate the first differential signal Sr1, and the second amplification signal St2 is differentiated by the second differential processing unit 41b to generate the second differential signal. Sr2 is generated.

絶対値変換部42は、第1微分信号Sr1及び第2微分信号Sr2をそれぞれ絶対値変換する。本例の場合、絶対値変換部42は、絶対値変換として、第1微分信号Sr1及び第2微分信号Sr2を全波整流する。また、本例においては、第1微分信号Sr1が第1絶対値変換部42aで絶対値変換されて第1変換信号Sv1が生成され、第2微分信号Sr2が第2絶対値変換部42bで絶対値変換されて第2変換信号Sv2が生成される。 The absolute value conversion unit 42 converts the first differential signal Sr1 and the second differential signal Sr2 into absolute values, respectively. In the case of this example, the absolute value conversion unit 42 full-wave rectifies the first differential signal Sr1 and the second differential signal Sr2 as absolute value conversion. Further, in this example, the first differential signal Sr1 is subjected to absolute value conversion by the first absolute value conversion unit 42a to generate the first conversion signal Sv1, and the second differential signal Sr2 is absolutely converted by the second absolute value conversion unit 42b. The value is converted and the second conversion signal Sv2 is generated.

信号処理部43は、第1変換信号Sv1及び第2変換信号Sv2を基に、被検出体2の低速又は停止の作動状態を判定可能な制御信号Srotを生成して出力する。本例の場合、信号処理部43は、比較部46及び信号生成部47を備える。比較部46は、第1変換信号Sv1及び第2変換信号Sv2を各々コンパレートする。本例の比較部46は、第1変換信号Sv1をコンパレートする第1比較部46aと、第2変換信号Sv2をコンパレートする第2比較部46bとを備える。 Based on the first conversion signal Sv1 and the second conversion signal Sv2, the signal processing unit 43 generates and outputs a control signal Srot capable of determining the operating state of the low speed or stop of the detected object 2. In the case of this example, the signal processing unit 43 includes a comparison unit 46 and a signal generation unit 47. The comparison unit 46 compares the first conversion signal Sv1 and the second conversion signal Sv2, respectively. The comparison unit 46 of this example includes a first comparison unit 46a that compares the first conversion signal Sv1 and a second comparison unit 46b that compares the second conversion signal Sv2.

信号生成部47は、第1変換信号Sv1を比較部46(第1比較部46a)でコンパレートして得られる第1矩形波Sw1と、第2変換信号Sv2を比較部46(第2比較部46b)でコンパレートして得られる第2矩形波Sw2とを基に、制御信号Srotを生成する。制御信号Srotは、例えば第1変換信号Sv1及び第2変換信号Sv2がともに閾値Sk未満となった場合に、それまでとはHi/Loが反転する信号波形をとることが好ましい。 The signal generation unit 47 combines the first conversion signal Sv1 with the comparison unit 46 (first comparison unit 46a) to obtain the first rectangular wave Sw1 and the second conversion signal Sv2 with the comparison unit 46 (second comparison unit 46a). The control signal Srot is generated based on the second rectangular wave Sw2 obtained by comparing with 46b). For example, when both the first conversion signal Sv1 and the second conversion signal Sv2 are less than the threshold value Sk, the control signal Srot preferably takes a signal waveform in which Hi / Lo is inverted.

判定部44は、信号処理部43によって生成された制御信号Srotを基に、被検出体2の低速又は停止の作動状態か否かを判定する。判定部44は、制御信号SrotのHi/Loの切り換わりを基に、被検出体2が低速又は停止の作動状態か否かを判定する。例えば、正常作動時、制御信号SrotがHiレベルをとる場合、判定部44は、制御信号SrotがLoレベルになったことを検出すると、被検出体2が低速又は停止の作動状態となったと判定する。 The determination unit 44 determines whether or not the detected body 2 is in a low speed or stop operating state based on the control signal Srot generated by the signal processing unit 43. The determination unit 44 determines whether or not the detected body 2 is in a low speed or stopped operating state based on the Hi / Lo switching of the control signal Srot. For example, when the control signal Srot takes a Hi level during normal operation, when the determination unit 44 detects that the control signal Srot has reached the Lo level, it determines that the detected body 2 is in a low speed or stop operating state. do.

次に、図6を用いて、本実施形態の位置検出装置1の作用について説明する。
図6に示すように、第1微分信号Sr1や第2微分信号Sr2は、増幅信号Stを微分した信号であるので、増幅信号Stの瞬間的な変化量に応じた信号波形で出力される。第1変換信号Sv1は、第1微分信号Sr1を全波整流した信号で出力される。また、第2変換信号Sv2は、第2微分信号Sr2を全波整流した信号で出力される。第1矩形波Sw1は、第1変換信号Sv1において閾値Sk以上のときにHiレベルをとり、閾値Sk未満のときにLoレベルをとる信号で出力される。また、第2矩形波Sw2は、第2変換信号Sv2において閾値Sk以上のときにHiレベルをとり、閾値Sk未満のときにLoレベルをとる信号で出力される。
Next, the operation of the position detection device 1 of the present embodiment will be described with reference to FIG.
As shown in FIG. 6, since the first differential signal Sr1 and the second differential signal Sr2 are signals obtained by differentiating the amplified signal St, they are output as signal waveforms corresponding to the momentary change amount of the amplified signal St. The first conversion signal Sv1 is output as a signal obtained by full-wave rectifying the first differential signal Sr1. Further, the second conversion signal Sv2 is output as a signal obtained by full-wave rectifying the second differential signal Sr2. The first square wave Sw1 is output as a signal that takes the Hi level when the threshold value Sk or more and takes the Lo level when the threshold value Sk is less than the threshold value Sk in the first conversion signal Sv1. Further, the second square wave Sw2 is output as a signal that takes the Hi level when the threshold value Sk or more and takes the Lo level when the threshold value Sk is less than the threshold value Sk in the second conversion signal Sv2.

信号生成部47は、例えば第1矩形波Sw1及び第2矩形波Sw2の論理和をとることにより、制御信号Srotを生成する。この場合、信号生成部47は、OR回路から構成される。このように、本例の制御信号Srotは、第1矩形波Sw1のHi/Loと、第2矩形波Sw2のHi/Loの論理和をとった信号で出力される。よって、第1矩形波Sw1及び第2矩形波Sw2がともにLoレベルの場合に、Loレベルの制御信号Srotが出力され、第1矩形波Sw1及び第2矩形波Sw2の少なくとも一方がHiレベルの場合、Hiレベルの制御信号Srotが出力される。 The signal generation unit 47 generates the control signal Srot by, for example, ORing the first square wave Sw1 and the second square wave Sw2. In this case, the signal generation unit 47 is composed of an OR circuit. As described above, the control signal Srot of this example is output as a signal obtained by ORing the Hi / Lo of the first square wave Sw1 and the Hi / Lo of the second square wave Sw2. Therefore, when both the first square wave Sw1 and the second square wave Sw2 are at the Lo level, the Lo level control signal Srot is output, and when at least one of the first square wave Sw1 and the second square wave Sw2 is at the Hi level. , Hi level control signal Srot is output.

ここで、図6に示す時刻t1のとき、例えば被検出体2の回転が低速又は停止の状態をとったとする。被検出体2の回転が低速又は停止となる原因としては、例えば被検出体2の回転に外部から負荷がかかることや、被検出体2又はその周囲部品の作動不良などがある。 Here, at the time t1 shown in FIG. 6, for example, it is assumed that the rotation of the detected body 2 is in a low speed or stopped state. The cause of the low speed or stop of the rotation of the detected body 2 is, for example, an external load applied to the rotation of the detected body 2 or a malfunction of the detected body 2 or its peripheral parts.

被検出体2の回転が低速又は停止となった際、第1増幅信号St1及び第2増幅信号St2(第1検出信号Sa1及び第2検出信号Sa2)の波形変化は、正常時のような変化をとらない。例えば、被検出体2が停止してしまった場合には、第1増幅信号St1及び第2増幅信号St2は変化せず、一定値のまま維持される。また、被検出体2が低速となってしまった場合には、第1増幅信号St1及び第2増幅信号St2は、変化の傾きが小さくなる。 When the rotation of the object to be detected 2 is slow or stopped, the waveform changes of the first amplification signal St1 and the second amplification signal St2 (first detection signal Sa1 and second detection signal Sa2) are the same as in the normal state. Do not take. For example, when the detected body 2 is stopped, the first amplified signal St1 and the second amplified signal St2 do not change and are maintained at constant values. Further, when the speed of the detected body 2 becomes low, the slope of change of the first amplified signal St1 and the second amplified signal St2 becomes smaller.

このため、被検出体2の回転が低速又は停止となった場合、第1微分信号Sr1(第1変換信号Sa1)や第2微分信号Sr2(第2変換信号Sa2)は、一定のまま値が変化しない信号波形をとる。これにより、第1変換信号Sv1及び第2変換信号Sv2が、ともに閾値Sk未満となり、結果、第1矩形波Sw1及び第2矩形波Sw2がともにLoレベルに切り換わる。このとき、制御信号Srotは、それまでのHiレベルからLoレベルに切り換わり、被検出体2が低速又は停止の間、Loレベルの状態で出力される。 Therefore, when the rotation of the object to be detected 2 is slow or stopped, the values of the first differential signal Sr1 (first conversion signal Sa1) and the second differential signal Sr2 (second conversion signal Sa2) remain constant. Take a signal waveform that does not change. As a result, both the first conversion signal Sv1 and the second conversion signal Sv2 become less than the threshold value Sk, and as a result, both the first square wave Sw1 and the second square wave Sw2 are switched to the Lo level. At this time, the control signal Srot switches from the Hi level up to that point to the Lo level, and the detected object 2 is output in the Lo level state during low speed or stop.

判定部44は、制御信号Srotの信号レベルを常時監視し、制御信号SrotがLoレベルとなったことを検出すると、被検出体2が低速又は停止の状態をとったと判断する。そして、判定部44は、被検出体2の回転状態が正常でない旨の非正常状態通知を、例えば演算部37や他のECUなどに出力する。よって、演算部37や他のECUは、判定部44から非正常状態通知を入力すると、例えば演算を停止したり、被検出体2の回転を止めたりするなどして、種々の対処を実行する。 The determination unit 44 constantly monitors the signal level of the control signal Srot, and when it detects that the control signal Srot has reached the Lo level, it determines that the detected body 2 has taken a low speed or stopped state. Then, the determination unit 44 outputs a non-normal state notification to the effect that the rotation state of the detected body 2 is not normal, for example, to the calculation unit 37 or another ECU. Therefore, when the calculation unit 37 and other ECUs input the abnormal state notification from the determination unit 44, they take various measures such as stopping the calculation or stopping the rotation of the detected body 2. ..

ところで、被検出体2が正常な回転状態をとる場合、第1矩形波Sw1や第2矩形波Sw2は、Loレベルの信号状態をとる。しかし、被検出体2が正常回転のときは、仮に第1矩形波Sw1がLoレベルとなっても、そのタイミングでは、第2矩形波Sw2がHiレベルをとるので、制御信号SrotがHiレベルで出力される。これは、第1矩形波Sw1及び第2矩形波Sw2のHi/Loが逆のときも同様である。よって、被検出体2が正常回転する場合、判定部44は、Hiレベルの制御信号Srotを入力して、被検出体2が正常回転していることを認識できる。 By the way, when the detected body 2 takes a normal rotation state, the first square wave Sw1 and the second square wave Sw2 take a Lo level signal state. However, when the detected body 2 is rotating normally, even if the first square wave Sw1 becomes the Lo level, the second square wave Sw2 takes the Hi level at that timing, so that the control signal Srot is at the Hi level. It is output. This also applies when the Hi / Lo of the first square wave Sw1 and the second square wave Sw2 are opposite. Therefore, when the detected body 2 rotates normally, the determination unit 44 can input the Hi level control signal Srot and recognize that the detected body 2 rotates normally.

上記実施形態の位置検出装置1によれば、以下のような効果を得ることができる。
(1)位置検出装置1は、磁気抵抗素子Rmがブリッジ状に組まれたブリッジ回路11を2つ有するブリッジ対10が設けられ、ブリッジ回路11から正余弦の関係を有する波形で出力される検出信号Saを基に、磁気抵抗素子Rmに磁界を付与する磁石4と一体に動く被検出体2の位置検出を行う。位置検出装置1は、微分処理部41、信号処理部43及び判定部44を備える。微分処理部41は、ブリッジ対10から、正余弦の関係を有する第1検出信号Sa1及び第2検出信号Sa2を入力し、これらをそれぞれ微分する。信号処理部43は、第1検出信号Sa1を微分して得られる第1微分信号Sr1と、第2検出信号Sa2を微分して得られる第2微分信号Sr2とを基に、被検出体2の低速又は停止の作動状態を判定可能な制御信号Srotを生成して出力する。判定部44は、信号処理部43によって生成された制御信号Srotを基に、被検出体2が低速又は停止の作動状態か否かを判定する。
According to the position detection device 1 of the above embodiment, the following effects can be obtained.
(1) The position detection device 1 is provided with a bridge pair 10 having two bridge circuits 11 in which the reluctance elements Rm are assembled in a bridge shape, and is output from the bridge circuit 11 as a waveform having a positive cosine relationship. Based on the signal Sa, the position of the object to be detected 2 that moves integrally with the magnet 4 that applies a magnetic field to the magnetoresistive element Rm is detected. The position detection device 1 includes a differentiation processing unit 41, a signal processing unit 43, and a determination unit 44. The differentiation processing unit 41 inputs the first detection signal Sa1 and the second detection signal Sa2 having a positive cosine relationship from the bridge pair 10, and differentiates them respectively. The signal processing unit 43 of the detected object 2 is based on the first differential signal Sr1 obtained by differentiating the first detection signal Sa1 and the second differential signal Sr2 obtained by differentiating the second detection signal Sa2. A control signal Srot that can determine the operating state of low speed or stop is generated and output. The determination unit 44 determines whether or not the detected body 2 is in a low speed or stopped operating state based on the control signal Srot generated by the signal processing unit 43.

本例の構成によれば、第1微分信号Sr1及び第2微分信号Sr2は、ブリッジ対10(ブリッジ回路11)の出力を微分して得られる信号である。このため、被検出体2が低速又は停止の作動状態となった場合、第1微分信号Sr1及び第2微分信号Sr2には、その作動状態の変化が直ちに表れる。従って、第1微分信号Sr1及び第2微分信号Sr2から生成される制御信号Srotを基に被検出体2の作動状態を判定するようにすれば、被検出体2が低速又は停止となった場合には、これら状態が制御信号Srotから直ぐに判定することが可能となる。よって、磁石4の磁極数を変えなくとも被検出体2の作動状態を迅速に判定することができる。ひいては、制御の応答性も向上することができる。 According to the configuration of this example, the first differential signal Sr1 and the second differential signal Sr2 are signals obtained by differentiating the output of the bridge pair 10 (bridge circuit 11). Therefore, when the detected body 2 is in the operating state of low speed or stop, the change in the operating state immediately appears in the first differential signal Sr1 and the second differential signal Sr2. Therefore, if the operating state of the detected body 2 is determined based on the control signal Srot generated from the first differential signal Sr1 and the second differential signal Sr2, when the detected body 2 slows down or stops. These states can be immediately determined from the control signal Srot. Therefore, the operating state of the detected body 2 can be quickly determined without changing the number of magnetic poles of the magnet 4. As a result, the responsiveness of the control can be improved.

(2)絶対値変換部42は、第1微分信号Sr1及び第2微分信号Sr2を、それぞれ絶対値変換する。信号処理部43は、第1微分信号Sr1を絶対値変換して得られる第1変換信号Sv1と、第2微分信号Sr2を絶対値変換して得られる第2変換信号Sv2とを基に、制御信号Srotを生成して出力する。この場合、第1微分信号Sr1及び第2微分信号Sr2をそのまま用いて回転状態を判定するのではなく、第1微分信号Sr1及び第2微分信号Sr2を絶対値変換した値から状態判定を行うので、簡便な信号処理によって、回転状態を判定することができる。 (2) The absolute value conversion unit 42 converts the first differential signal Sr1 and the second differential signal Sr2 into absolute values, respectively. The signal processing unit 43 controls based on the first conversion signal Sv1 obtained by converting the first differential signal Sr1 to an absolute value and the second conversion signal Sv2 obtained by converting the second differential signal Sr2 to an absolute value. Generates and outputs the signal Srot. In this case, the rotation state is not determined by using the first differential signal Sr1 and the second differential signal Sr2 as they are, but the state is determined from the values obtained by converting the first differential signal Sr1 and the second differential signal Sr2 into absolute values. , The rotation state can be determined by simple signal processing.

(3)絶対値変換部42は、第1微分信号Sr1及び第2微分信号Sr2をそれぞれ全波整流することにより、第1変換信号Sv1及び第2変換信号Sv2を生成する。この場合、第1微分信号Sr1及び第2微分信号Sr2をそれぞれ全波整流することにより生成した第1変換信号Sv1及び第2変換信号Sv2から、被検出体2の低速又は停止の作動状態を判定することができる。 (3) The absolute value conversion unit 42 generates the first conversion signal Sv1 and the second conversion signal Sv2 by full-wave rectifying the first differential signal Sr1 and the second differential signal Sr2, respectively. In this case, the low speed or stop operating state of the detected body 2 is determined from the first conversion signal Sv1 and the second conversion signal Sv2 generated by full-wave rectification of the first differential signal Sr1 and the second differential signal Sr2, respectively. can do.

(4)信号処理部43は、比較部46及び信号生成部47を備える。比較部46は、前記第1変換信号及び前記第2変換信号を各々コンパレートする。信号生成部47は、第1変換信号Sv1をコンパレートして得られる第1矩形波Sw1と、第2変換信号Sv2をコンパレートして得られる第2矩形波Sw2とを基に、制御信号Srotを生成する。この構成によれば、被検出体2が低速又は停止となった場合、例えば第1矩形波Sw1及び第2矩形波Sw2がとともにLoレベルとなるので、このレベル状態の検出を以て、被検出体2が低速又は停止の作動状態になったと判定することができる。一方、被検出体2の作動状態が正常のとき、例えば第1矩形波Sw1がLoレベルになっても、第2矩形波Sw2がHiレベルをとり、また第2矩形波Sw2がLoレベルになっても、第1矩形波Sw1がHiレベルをとるので、制御信号Srotは異常を示す状態とならない。よって、このときの作動状態が低速又は停止と判定されてしまうこともない。 (4) The signal processing unit 43 includes a comparison unit 46 and a signal generation unit 47. The comparison unit 46 compares the first conversion signal and the second conversion signal, respectively. The signal generation unit 47 is based on the first square wave Sw1 obtained by comparing the first conversion signal Sv1 and the second square wave Sw2 obtained by comparing the second conversion signal Sv2, and the control signal Srot. To generate. According to this configuration, when the detected body 2 becomes low speed or stopped, for example, the first rectangular wave Sw1 and the second rectangular wave Sw2 become Lo level together with the detected body 2. Therefore, the detected body 2 is detected by detecting this level state. Can be determined to be in a low speed or stop operating state. On the other hand, when the operating state of the detected object 2 is normal, for example, even if the first square wave Sw1 reaches the Lo level, the second square wave Sw2 takes the Hi level and the second square wave Sw2 becomes the Lo level. However, since the first square wave Sw1 takes the Hi level, the control signal Srot does not show an abnormality. Therefore, the operating state at this time is not determined to be low speed or stopped.

(5)信号処理部43は、第1変換信号Sv1及び第2変換信号Sv2がともに閾値Sk未満となる場合、それまでとはHi/Loが反転した制御信号Srotを出力する。判定部44は、制御信号SrotのHi/Loの切り換わりを基に、被検出体2が低速又は停止の作動状態か否かを判定する。よって、制御信号SrotのHi/Loレベルを確認するという簡素な方法により、被検出体2の作動状態を迅速に判定することができる。 (5) When both the first conversion signal Sv1 and the second conversion signal Sv2 are less than the threshold value Sk, the signal processing unit 43 outputs a control signal Srot in which Hi / Lo is inverted. The determination unit 44 determines whether or not the detected body 2 is in a low speed or stopped operating state based on the Hi / Lo switching of the control signal Srot. Therefore, the operating state of the detected body 2 can be quickly determined by a simple method of confirming the Hi / Lo level of the control signal Srot.

(6)磁石4は、被検出体2と同一軸心上で回転するように環状に形成されるとともに、周方向にN極及びS極の磁極が交互に並び配置されている。ブリッジ対10を備える磁気センサ7は、磁石4の径方向に沿って磁石4に横配置されている。よって、磁石4からの磁界を好適な向きで磁気センサ7に付与することが可能となるので、位置検出の精度確保に寄与する。 (6) The magnet 4 is formed in an annular shape so as to rotate on the same axis as the body 2 to be detected, and the magnetic poles of the N pole and the S pole are arranged alternately in the circumferential direction. The magnetic sensor 7 provided with the bridge pair 10 is arranged laterally on the magnet 4 along the radial direction of the magnet 4. Therefore, the magnetic field from the magnet 4 can be applied to the magnetic sensor 7 in a suitable direction, which contributes to ensuring the accuracy of position detection.

なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・図7に示すように、位置演算に用いるブリッジ対10とは別に、他ブリッジ対51を設け、この他ブリッジ対51から入力する信号(正弦波信号、余弦波信号)を基に、被検出体2の低速又は停止の作動状態の判定を実施してもよい。同図の例の場合、他ブリッジ対51は、検出磁界の向きに応じて正弦波を出力する第3ブリッジ回路52aと、検出磁界の向きに応じて余弦波を出力する第4ブリッジ回路52bとを備える。第3ブリッジ回路52aの信号は、増幅器53aを介して第1微分処理部41aに入力される。第4ブリッジ回路52bの信号は、増幅器53bを介して第2微分処理部41bに入力される。以降の動作は、実施形態に記載の動作例を同じであるので、説明を省略する。
In addition, this embodiment can be implemented by changing as follows. The present embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-As shown in FIG. 7, another bridge pair 51 is provided separately from the bridge pair 10 used for position calculation, and is detected based on the signals (sine wave signal, cosine wave signal) input from the other bridge pair 51. The determination of the low speed or stop operating state of the body 2 may be performed. In the case of the example of the figure, the other bridge pair 51 includes a third bridge circuit 52a that outputs a sine wave according to the direction of the detected magnetic field and a fourth bridge circuit 52b that outputs a cosine wave according to the direction of the detected magnetic field. To be equipped. The signal of the third bridge circuit 52a is input to the first differential processing unit 41a via the amplifier 53a. The signal of the fourth bridge circuit 52b is input to the second differential processing unit 41b via the amplifier 53b. Since the subsequent operations are the same as the operation examples described in the embodiment, the description thereof will be omitted.

・ブリッジ回路11は、フルブリッジに限定されず、ハーフブリッジでもよい。
・検出信号Saの周期は、180度に限定されず、例えば360度としてもよい。
・第1検出信号Sa1と第2検出信号Sa2との位相差は、45度以外の他の値に変更してもよい。
-The bridge circuit 11 is not limited to a full bridge, but may be a half bridge.
The period of the detection signal Sa is not limited to 180 degrees, and may be, for example, 360 degrees.
The phase difference between the first detection signal Sa1 and the second detection signal Sa2 may be changed to a value other than 45 degrees.

・第1検出信号Sa1を余弦波信号とし、第2検出信号Sa2を正弦波信号としてもよい。
・第1検出信号Sa1は、正弦波信号に限定されず、これ以外の波形の信号としてもよい。また、第2検出信号Sa2は、余弦波信号に限定されず、これ以外の波形の信号としてもよい。
The first detection signal Sa1 may be a cosine wave signal, and the second detection signal Sa2 may be a sine wave signal.
-The first detection signal Sa1 is not limited to the sine wave signal, and may be a signal having a waveform other than this. Further, the second detection signal Sa2 is not limited to the cosine wave signal, and may be a signal having a waveform other than this.

・絶対値変換部42は、全波整流部(全波整流回路)に限定されず、他の回路を用いてもよい。
・絶対値変換部42は、位置検出装置1の構成要素から省略してもよい。
The absolute value conversion unit 42 is not limited to the full-wave rectifier unit (full-wave rectifier circuit), and other circuits may be used.
The absolute value conversion unit 42 may be omitted from the components of the position detection device 1.

・信号処理部43は、比較部46及び信号生成部47から構築されることに限定されず、第1変換信号Sv1及び第2変換信号Sv2を、所定波形の制御信号Srotに変換できる回路であればよい。 The signal processing unit 43 is not limited to being constructed from the comparison unit 46 and the signal generation unit 47, and may be a circuit capable of converting the first conversion signal Sv1 and the second conversion signal Sv2 into a control signal Srot having a predetermined waveform. Just do it.

・信号生成部47は、OR回路に限定されず、種々の論理回路が適用できる。
・図8〜図10に示すように、センサIC6(磁気センサ7)は、磁石4に対して横配置されることに限らず、例えば被検出体2の軸方向に並んで配置された縦配置としてもよい。この場合、磁石4は、厚み方向に着磁された構造であることが好ましい。また、センサIC6(磁気センサ7)は、磁石4の極よりも、磁石4の径方向外側にオフセットして配置されてもよい。
The signal generation unit 47 is not limited to the OR circuit, and various logic circuits can be applied.
As shown in FIGS. 8 to 10, the sensor IC 6 (magnetic sensor 7) is not limited to being arranged horizontally with respect to the magnet 4, and is arranged vertically, for example, arranged side by side in the axial direction of the object to be detected 2. May be. In this case, the magnet 4 preferably has a structure magnetized in the thickness direction. Further, the sensor IC 6 (magnetic sensor 7) may be arranged offset radially outward of the magnet 4 with respect to the pole of the magnet 4.

・位置検出装置1は、回転検出する装置(回転検出装置3)に限定されず、例えば被検出体2が直線方向に動くリニア検出の装置としてもよい。 The position detection device 1 is not limited to the device for detecting rotation (rotation detection device 3), and may be, for example, a device for linear detection in which the object to be detected 2 moves in a linear direction.

1…位置検出装置、2…被検出体、3…回転検出装置、4…磁石、7…磁気センサ、10…ブリッジ対、11…ブリッジ回路、11a…第1ブリッジ回路、11b…第2ブリッジ回路、41…微分処理部、42…絶対値変換部、43…信号処理部、44…判定部、46…比較部、47…信号生成部、51…他ブリッジ対、52a…第3ブリッジ回路、52b…第4ブリッジ回路、Rm…磁気抵抗素子、Sa…検出信号、Sa1…第1検出信号、Sa2…第2検出信号、Sa3…第3検出信号、Sa4…第4検出信号、Sr1…第1微分信号、Sr2…第2微分信号、Sv1…第1変換信号、Sv2…第2変換信号、Sw1…第1矩形波、Sw2…第2矩形波、Srot…制御信号、Sk…閾値、L1…軸。 1 ... position detection device, 2 ... detected object, 3 ... rotation detection device, 4 ... magnet, 7 ... magnetic sensor, 10 ... bridge pair, 11 ... bridge circuit, 11a ... first bridge circuit, 11b ... second bridge circuit , 41 ... Differential processing unit, 42 ... Absolute value conversion unit, 43 ... Signal processing unit, 44 ... Judgment unit, 46 ... Comparison unit, 47 ... Signal generation unit, 51 ... Other bridge pair, 52a ... Third bridge circuit, 52b ... 4th bridge circuit, Rm ... Magnetic resistance element, Sa ... Detection signal, Sa1 ... 1st detection signal, Sa2 ... 2nd detection signal, Sa3 ... 3rd detection signal, Sa4 ... 4th detection signal, Sr1 ... 1st differentiation Signal, Sr2 ... 2nd differential signal, Sv1 ... 1st conversion signal, Sv2 ... 2nd conversion signal, Sw1 ... 1st rectangular wave, Sw2 ... 2nd rectangular wave, Srot ... control signal, Sk ... threshold, L1 ... axis.

Claims (6)

磁気抵抗素子がブリッジ状に組まれたブリッジ回路を2つ有するブリッジ対が設けられ、前記ブリッジ回路から正余弦の関係を有する波形で出力される検出信号を基に、前記磁気抵抗素子に磁界を付与する磁石と一体に動く被検出体の位置検出を行う回転検出装置であって、
前記ブリッジ対又はそれと組をなす他ブリッジ対から、正余弦の関係を有する第1検出信号及び第2検出信号を入力し、これらをそれぞれ微分する微分処理部と、
前記第1検出信号を微分して得られる第1微分信号と、前記第2検出信号を微分して得られる第2微分信号とを基に、前記被検出体の低速又は停止の作動状態を判定可能な制御信号を生成して出力する信号処理部と、
前記信号処理部によって生成された前記制御信号を基に、前記被検出体が低速又は停止の作動状態か否かを判定する判定部と
を備えた位置検出装置。
A bridge pair having two bridge circuits in which the reluctance elements are assembled in a bridge shape is provided, and a magnetic field is applied to the reluctance element based on a detection signal output from the bridge circuit in a waveform having a positive cosine relationship. It is a rotation detection device that detects the position of the object to be detected that moves integrally with the magnet to be applied.
A differentiation processing unit that inputs a first detection signal and a second detection signal having a positive cosine relationship from the bridge pair or another bridge pair that forms a pair with the bridge pair and differentiates them, respectively.
Based on the first differential signal obtained by differentiating the first detection signal and the second differential signal obtained by differentiating the second detection signal, the low speed or stop operating state of the detected object is determined. A signal processing unit that generates and outputs possible control signals,
A position detection device including a determination unit for determining whether or not the object to be detected is in a low speed or stop operating state based on the control signal generated by the signal processing unit.
前記第1微分信号及び前記第2微分信号を、それぞれ絶対値変換する絶対値変換部を備え、
前記信号処理部は、前記第1微分信号を絶対値変換して得られる第1変換信号と、前記第2微分信号を絶対値変換して得られる第2変換信号とを基に、前記制御信号を生成して出力する
請求項1に記載の位置検出装置。
An absolute value conversion unit that converts the first differential signal and the second differential signal into absolute values is provided.
The signal processing unit uses the control signal based on the first conversion signal obtained by converting the first differential signal into an absolute value and the second conversion signal obtained by converting the second differential signal into an absolute value. The position detection device according to claim 1, wherein the position detection device is generated and output.
前記絶対値変換部は、前記第1微分信号及び前記第2微分信号をそれぞれ全波整流することにより、前記第1変換信号及び前記第2変換信号を生成する
請求項2に記載の位置検出装置。
The position detection device according to claim 2, wherein the absolute value conversion unit generates the first conversion signal and the second conversion signal by full-wave rectifying the first differential signal and the second differential signal, respectively. ..
前記信号処理部は、
前記第1変換信号及び第2変換信号を各々コンパレートする比較部と、
前記第1変換信号をコンパレートして得られる第1矩形波と、前記第2変換信号をコンパレートして得られる第2矩形波とを基に、前記制御信号を生成する信号生成部と
を備えた請求項2又は3に記載の位置検出装置。
The signal processing unit
A comparison unit that compares the first conversion signal and the second conversion signal, respectively.
A signal generation unit that generates the control signal based on the first square wave obtained by comparing the first conversion signal and the second square wave obtained by comparing the second conversion signal. The position detecting device according to claim 2 or 3.
前記信号処理部は、前記第1変換信号及び前記第2変換信号がともに閾値未満となる場合、それまでとはHi/Loが反転した前記制御信号を出力し、
前記判定部は、前記制御信号のHi/Loの切り換わりを基に、前記被検出体が低速又は停止の作動状態か否かを判定する
請求項4に記載の位置検出装置。
When both the first conversion signal and the second conversion signal are less than the threshold value, the signal processing unit outputs the control signal in which Hi / Lo is inverted.
The position detection device according to claim 4, wherein the determination unit determines whether or not the object to be detected is in an operating state of low speed or stop based on the switching of Hi / Lo of the control signal.
前記磁石は、前記被検出体と同一軸心上で回転するように環状に形成されるとともに、周方向にN極及びS極の磁極が交互に並び配置され、
前記ブリッジ対を備える磁気センサは、前記磁石の径方向に沿って前記磁石に横配置されている
請求項1〜5のうちいずれか一項に記載の位置検出装置。
The magnet is formed in an annular shape so as to rotate on the same axis as the object to be detected, and the magnetic poles of the north and south poles are alternately arranged and arranged in the circumferential direction.
The position detecting device according to any one of claims 1 to 5, wherein the magnetic sensor including the bridge pair is laterally arranged on the magnet along the radial direction of the magnet.
JP2020045266A 2020-03-16 2020-03-16 Position detection device Pending JP2021148447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020045266A JP2021148447A (en) 2020-03-16 2020-03-16 Position detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020045266A JP2021148447A (en) 2020-03-16 2020-03-16 Position detection device

Publications (1)

Publication Number Publication Date
JP2021148447A true JP2021148447A (en) 2021-09-27

Family

ID=77848345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020045266A Pending JP2021148447A (en) 2020-03-16 2020-03-16 Position detection device

Country Status (1)

Country Link
JP (1) JP2021148447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038050A1 (en) 2021-09-13 2023-03-16 株式会社エネコートテクノロジーズ Photoelectric conversion element and compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038050A1 (en) 2021-09-13 2023-03-16 株式会社エネコートテクノロジーズ Photoelectric conversion element and compound

Similar Documents

Publication Publication Date Title
US10495485B2 (en) Magnetic field sensors and output signal formats for a magnetic field sensor
US7365530B2 (en) Method and apparatus for vibration detection
JP5427248B2 (en) Magnetic field detector with variable threshold
US9664748B2 (en) Systems and methods for providing signal encoding representative of a signature region in a target
US20050225318A1 (en) Methods and apparatus for vibration detection
EP2678639B1 (en) Circuits and methods for motion detection
JP5221494B2 (en) Rotation detection device and bearing with rotation detection device
US8058894B2 (en) Method for detecting a fault condition
US9739637B2 (en) Magnetic field motion sensor and related techniques
WO2010014309A1 (en) Apparatus and method for providing an output signal indicative of a speed of rotation and a direction of rotation of a ferromagnetic object
JP2016509229A (en) Speed sensor
JP2021148447A (en) Position detection device
JP2009243992A (en) Multiple-rotation absolute encoder
JP6984454B2 (en) Motor control system
JP6337842B2 (en) Rotation detector
JP6006069B2 (en) Encoder and encoder error detection method
JP2019060694A (en) Rotation angle detector
JP6406114B2 (en) Brushless motor
JP5175684B2 (en) Three-phase rotation angle detector
JP3764103B2 (en) Rotation angle sensor
US8736298B2 (en) Method for detecting a step loss condition
JPH0712589A (en) Malfunction detector for magnetic type encoder
JP2001201364A (en) Anomaly detecting circuit for magnetic encoder
KR20240018467A (en) motion detector
JPH0580846A (en) Open circuit detecting means

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231017