TWM439895U - Crystalline silicon ingot - Google Patents

Crystalline silicon ingot Download PDF

Info

Publication number
TWM439895U
TWM439895U TW101208778U TW101208778U TWM439895U TW M439895 U TWM439895 U TW M439895U TW 101208778 U TW101208778 U TW 101208778U TW 101208778 U TW101208778 U TW 101208778U TW M439895 U TWM439895 U TW M439895U
Authority
TW
Taiwan
Prior art keywords
crystal
single crystal
ingot
twin
seed
Prior art date
Application number
TW101208778U
Other languages
Chinese (zh)
Inventor
yong-cheng Liu
Yu-Cheng Hsu
Kai-Yuan Pai
Wen-Chieh Lan
Yu-Min Yang
wen-huai Yu
Sung-Lin Hsu
Wen-Ching Hsu
Original Assignee
Sino American Silicon Prod Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sino American Silicon Prod Inc filed Critical Sino American Silicon Prod Inc
Priority to TW101208778U priority Critical patent/TWM439895U/en
Publication of TWM439895U publication Critical patent/TWM439895U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention provides a crystalline silicon ingot including a bottom. In particular, the bottom of the crystalline silicon ingot includes a silicon seed layer. The silicon seed layer is constituted by a plurality of single crystal silicon seeds and a plurality of nucleation promotion particles. A first gas exists between neighboring single crystal silicon seeds, and a second gap exists between an inner wall of a mold and the adjacent single crystal silicon seeds. The plurality of nucleation promotion particles are disposed into all of the first gaps and the second gaps.

Description

M439895 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種矽晶鑄錠(crystalline silicon ingot),並且 特別地’係關於利用多個單晶石夕晶種(single cryStai siiic〇n see(j) 以及多個成核促進顆粒(nucleation promotion particle)並基於方 向性凝固製程(directional solidification process)所製造的石夕曰 禱鍵。 【先前技術】 大多的太陽能電池是吸收太陽光,進而產生光伏效應 (photovoltaic effect)。目前太陽能電池的材料大部份都是以矽 材為主,主要是因矽材為目前地球上最容易取到的第二多元 素,並且其具有材料成本低廉、沒有毒性、穩定性高等優點, 並且其在半導體的應用上已有深厚的基礎。 以石夕材為主的太陽能電池有單晶矽、多晶矽以及非晶矽三 士類。以多晶矽做為太陽能電池的原材,主要是基於成本的考 量,因為相較於以現有的拉晶法(Czochralski method,CZ methof)以及浮動區域法(fl〇ating z〇ne meth〇d,FZ meth〇d)所製 造的單晶矽,多晶矽價格相對地便宜許多。 ,,使用在製造太陽能電池上的多晶矽,傳統上是利用一般鑄 f製程來^產。利用鑄造製程來製備多晶碎,進而應用在太陽 能,池上是本技術領域的現有的技術。簡言之,將高純度的矽 炫模内(例^ ’石英坩堝),在控制凝固下被冷卻以形成多 石夕晶鎊錠。接著,該多⑦晶鑄麵㈣成接近太陽能電池尺寸 大^的晶圓’進而應用在製造太陽能電池上。以這種方法製造 的多石夕晶鱗料雜晶晶粒的聚集體,其巾在由其製成的晶圓 中,晶粒相亙之間的晶向實際上是隨機的。 在現有的多晶石夕中,因為晶粒的隨機晶向而難以對所製成 3 -的―晶―片表面進行粗紋化。一表面粗_紋化—後可歷低光反射_並提蓋通 過電池表面的光能吸收,來提高光伏電池的效率。另外,在現 有的多晶矽晶粒之間的晶界中形成的”扭折",傾向形成成核差 排的簽集、或形成多條線差排形式的結構缺陷。這些差排以及 它們趨向吸引的雜質,造成了由現有的多晶矽製成的光伏電池 中電荷載子的快速復合。這會導致電池的效率降低。由這類多 晶矽製成的光電池通常比由單晶矽製成的等效光伏電池的效 率低’即使考慮了在由現有技術製造的單晶矽中所存在之缺陷 的控向分佈。然而’因為製造現有的多晶石夕相對簡單且成本更 低’以及在電池加工中有效的缺陷鈍化,多晶矽成了廣泛用於 製造光伏電池之石夕材料的形式。 現有技術揭露利用单晶石夕晶種詹並基於方向性凝固製成 矽晶鱗旋,且一般是利用大尺寸且晶向為(100)的單晶石夕立方 體作為主要晶種。其期望用於石夕單晶太陽能電池製造石夕晶圓的 晶向為(100)方向’因為利用刻蝕方法方便地形成光捕獲表面 (light-trapping surface)。不幸的是’在(100)晶向的晶粒^隨機 成核的晶粒競爭的結晶期間(100)晶向的晶粒表現差。為了最 大化在鑄錠中引晶的結晶體積,現有技術揭示利用(丨丨i)晶向的 矽的邊界包圍(100)晶向的矽晶種面積。該邊界非常成功地抑 制了其他晶向的晶體。以這種方法,能夠鑄造具有高性能的單 晶矽及/或雙晶(bi-crystal)矽塊狀體的鑄錠’其最大化所得的晶 圓的少數載流子之壽命’該晶圓用於製造高效太陽能電池。: 此,術語"單晶矽'•是指單晶矽的主體,其在整個範圍内且有一 個一致的晶體晶向。術語,,雙晶矽”是指如下的矽的主體:其 大於或等於該主雜積50%的範_具有—個„_致的晶&晶 向’且在主體_餘體積内具有另—個―致的晶體晶向。 如,這種雙砂可以包含具有—個晶體晶向的單糾主體,^ 緊鄰構成結晶補餘體積的另—種具有不同晶體晶向的^ 石夕主體。此外’現有的多晶石夕是指具有厘米規模的細微性分佈 M439895 的結晶梦’且在獨主體内具有多種隨機晶向的晶體。 然而,實際上利用⑽)晶向的單晶石夕作為主要晶種M439895 V. New description: [New technical field] The present invention relates to a crystalline silicon ingot, and in particular to the use of a plurality of single crystals (single cryStai siiic〇n see (j) and a plurality of nucleation promoting particles and based on the directional solidification process, the ray 曰 prayer key. [Prior Art] Most solar cells absorb sunlight and produce Photovoltaic effect. At present, most of the materials of solar cells are mainly coffins, mainly because coffins are the second most easily available elements on the earth, and they have low material cost and no It has the advantages of high toxicity and high stability, and it has a deep foundation in the application of semiconductors. The solar cells based on Shi Xiye are monocrystalline germanium, polycrystalline germanium and amorphous germanium. The use of polycrystalline germanium as a solar cell Raw materials, mainly based on cost considerations, because compared to the existing Czochralski method (CZ methof) As well as the single crystal germanium produced by the floating region method (FZ meth〇d, FZ meth〇d), the price of polycrystalline germanium is relatively cheaper. Moreover, the polycrystalline germanium used in the manufacture of solar cells is conventionally utilized. Casting f process to produce. Using the casting process to prepare polycrystalline crumb, and then applied to solar energy, the pool is a prior art in the art. In short, high purity 矽 模 模 ( (example ^ 'quartz 坩埚) , which is cooled under controlled solidification to form a multi-stone crystal ingot. Then, the multi-seven crystal casting surface (four) is formed into a wafer close to the size of the solar cell, and is then applied to the manufacture of a solar cell. The aggregate of the heterogeneous crystal grains of the stellate crystal, in which the crystal grain between the crystal grains is actually random in the wafer made of the same. In the existing polycrystalline stone, Because of the random crystal orientation of the grains, it is difficult to roughen the surface of the 3-crystal-sheet. A surface is coarse-grained--after low-light reflection _ and the light energy absorption through the surface of the battery is lifted. To improve the efficiency of photovoltaic cells. In addition, in Some "kneading" formed in the grain boundary between polycrystalline germanium grains tends to form a signature of nucleation difference rows or structural defects in the form of multiple line difference rows. These difference rows and their tendency to attract impurities This results in a rapid recombination of charge carriers in photovoltaic cells made from existing polycrystalline germanium, which leads to a decrease in the efficiency of the cell. Photovoltaic cells made from such polycrystalline germanium are generally more efficient than equivalent photovoltaic cells made from single crystal germanium. Low' even considering the controllable distribution of defects present in single crystal germanium made by the prior art. However, polycrystalline germanium has become a widely used form of stone materials for the manufacture of photovoltaic cells because of the relatively simple and cost-effective manufacturing of existing polycrystalline stones and the defect passivation that is effective in battery processing. The prior art discloses the use of single crystallites and the formation of twin scales based on directional solidification, and generally uses a single crystallite matrix having a large size and a crystal orientation of (100) as a main seed crystal. It is expected to be used in the (100) direction of the production of the Shixi single crystal solar cell as the light-trapping surface is conveniently formed by an etching method. Unfortunately, crystal grains in the (100) crystal orientation during the (100) crystal orientation of the grains are randomly granulated. In order to maximize the crystal volume of seeding in the ingot, the prior art discloses that the area of the seed crystal of the (100) crystal orientation is surrounded by the boundary of the (丨丨i) crystal orientation. This boundary has very successfully inhibited crystals in other crystal orientations. In this way, it is possible to cast an ingot having a high performance single crystal germanium and/or a bi-crystal germanium block which maximizes the lifetime of the minority carrier of the resulting wafer. Used to manufacture high efficiency solar cells. : This, the term "single crystal 矽'• refers to the bulk of a single crystal yt, which has a uniform crystal orientation over the entire range. The term "bimorph" refers to a body of bismuth that has a radius greater than or equal to 50% of the main product and has a crystallization and crystal orientation and has another - a crystal crystal orientation. For example, the double sand may comprise a single correcting body having a crystal crystal orientation, and the other adjacent to the crystalline residual volume may have a different crystal orientation. Further, the 'existing polycrystalline stone refers to a crystal having a fine distribution of M439895 on a centimeter scale' and having a plurality of crystal orientations in a single body. However, in fact, the single crystal seed of the (10) crystal orientation is used as the main seed crystal.

=所付_晶缺,經切片後之梦晶圓製成太陽能電池, 電轉換效率仍有提升的空間。也就是說 J ;、J 並非作為主要晶種的唯-選擇。 此外,為了降财晶種射軸鄰單抑晶種 【曰鎊錠製魏程巾魏敍害缺關解, 而,此種作法大幅增加矽晶鑄錠整體的製造成本。糸…、 其他财技術卿帛多健要單晶⑦晶雖彳如 2的早晶石夕)以及多個次要單晶石夕晶種(例如,(1〇〇)日曰曰向(:曰 曰構成梦晶種層’且每-主要單㈣晶種係緊鄰至少^次^ j石夕晶種,並與其他主要單晶⑦晶種關。藉此,該 錠製造方法也能抑制兩相鄰單㈣晶種的邊 ^鎮^ 造過程中舰财害缺陷。 上述現有技術翻關兩種晶向甚至兩種以上晶向 =日曰=晶種,大幅增加梦晶鑄錠整體的製造成本。此外向 ϋ現有猶所·的單晶教謂或長方體晶種無法緊靠 键装ί致製成的石夕晶禱鍵其邊緣的缺陷密度高,石夕晶鑄 =其^緣所製成社陽能電池光效率低,不利於商業上= 用,讓矽晶鑄錠整體可使用的部分大幅減少。 一 【新型内容】 S:陷的矽晶鑄錠。本創作之矽晶鑄錠其邊緣的“i度= The _ crystal is missing, and after the sliced dream wafer is made into a solar cell, there is still room for improvement in electrical conversion efficiency. That is to say, J;, J is not the only choice for the main seed. In addition, in order to reduce the grain of the seed, the axis of the single-suppressed seed crystals [曰 锭 锭 魏 Wei Wei towel Wei Xu 害 害 害 , , 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏 魏糸..., other financial technology 帛 帛 健 健 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶 单晶曰曰 constitutes a dream seed layer 'and each-major single (four) seed crystal is in close proximity to at least ^ ^ j j , , , , , , , , , , , , , , , , , , , 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Adjacent single (four) seed crystals in the process of manufacturing the ship's financial defects. The above-mentioned prior art turns over two crystal directions or even two or more crystal orientations = sundial = seed crystal, which greatly increases the manufacturing of the dream crystal ingot. Cost. In addition, the single crystal teaching of the existing Jewish or the cuboid seed crystal can not be made close to the key assembly. The density of the edge of the prayer key is high, and Shi Xijing cast = its edge The solar energy efficiency of Chengyang Solar Battery is not good, which is not conducive to commercial use. The total usable part of the twin crystal ingot is greatly reduced. [New content] S: The crystal ingot ingot. The crystal ingot of this creation The edge of the i

L:lS==rS 5L:lS==rS 5

---基本上」-本創—作係利用-不·同於先前技衡之發晶種層,並jL 基於方向性凝固製程來製造整體晶體品質佳的石夕晶鑄錠。 本創作之一較佳具體實施例之矽晶鑄錠包含底部。該底部 包含石夕晶種層❶特別地’石夕晶種層係由多個單晶石夕晶種以及多 個成核促進顆粒所構成。相鄰的單晶石夕晶種之間存有一第一間 隙’並且鄰接矽晶鑄錠之邊緣的單晶矽晶種與該邊緣之間存有 一第二間隙。多個成核促進顆粒係安置在所有第一間隙以及所 有第二間隙内。 ” 於一具體實施例_,每一單晶矽晶種具有一晶向,該 晶向可以是⑽)、(11G)、(ill)、(112)、(232)或其他所製 成的矽晶鑄錠後續可製成高轉換效率太陽能電池之晶向。 大於體實施射’多個單㈣晶種佔模之底部面積 10cm於一具體實施例中,每—單晶♦晶種之厚度小於約 體、=實單晶石夕晶種可以為長方體、圓柱 -角柱體、五角柱體、六脉體等柱體。 於一具體實施财,每―第―_之寬度小於約5cm。 於具體實施例令,每一第二間隙之寬度小於約5cm。 顆粒於單列1v曰多個成核促進顆粒可以是多晶石夕 之㈣形姐㈣他雜高於約 於具體實施例中 小於約5〇mm。 於具體實施例中 狀。 母一成核促進顆粒之顆粒尺寸係 每一成核促進顆粒具有不規則形 與先前技術不同,無須將兩相鄰單晶石夕晶種入, ======本創作利用在相鄰的單晶^種 個成核促進顆粒。在石夕晶鱗鍵製m陷^ 續製成的太雜電池的光電轉^質的^鑄鍵’後 附圖精神可崎由以下的實施方式及所 【實施方式】 具體截;作之-較佳 包含矽晶種仏f °該底部 以及多個細促進雌24 2触夠早轉晶種22 之間存有一第二間隙g2。多個成核促=fBa種22與该邊緣 第-間_麟有第二^ =规/^22係安置在所有 細顆粒24上成核,= 之方仏意地繪示本創作 在模4内的石夕晶種層2之—範例圖’係本創作絲 第3圖所示’關於石夕晶種層 石英_内底部安裝多個單晶彻J。二= ϋ K。—特·別地,如第5屬所示,相鄰的單晶碎晶種22 間气有第一間隙g1,並且鄰接模4之内壁的單晶矽晶種 ,杈4的内壁之間存有第二間隙以。接著,在所有第一 曰隙gl以及所有第二間隙g2内,填入多個成核促進顆粒 24 ’以構成石夕晶種層2。 另一方法,矽晶種層2可以是切割自另一本創作之矽 晶鑄旋1的底部。 接著,矽原料30安裝至模4内,且放置在矽晶種層2 子。裝入矽晶種層2以及矽原料3〇的模4放入方向性凝固 糸統長晶爐内,先行將矽原料3〇全部熔化成矽熔湯32,如 ,4圖所不。須注意,單晶矽晶種22不可以全部熔融。接 f ^基於方向性凝固製程冷卻模4,造成矽熔湯32由多個 單晶矽晶種22引晶,且多個矽晶粒34在多個成核促進顆 粒24上成核並沿該垂直方向Γ成長。最後,繼續基於方向 性凝固製程冷卻模4 ’讓多個單晶矽晶種22以及多個矽晶 粒34繼續沿垂直方向厂成長,且直至矽熔湯32全部凝固 以獲得如第1圖所示之石夕晶鑄錠1。 本創作之矽晶鑄錠1係具有高性能的類單晶 (mono-like crystal)矽塊狀體的鑄錠。於本案中,術語"類單 晶矽''是指如下的結晶矽的主體,其在超過主體體積的75〇/〇 的範圍内具有一個一致的晶體晶向,其中例如,這種類單 晶石夕可以包含與多晶區域相鄰的單晶石夕的主體,或其可以 包含大的、連續一致的矽晶體,該矽晶體一部分或全部包 含其他晶體取向的矽更小晶體。 於一具體實施例中,每一單晶矽晶種22具有一晶向, 該晶向可以是(100)、(110)、(111)、(112)、(232)或其他所 製成的矽晶鑄錠後續可製成高轉換效率太陽能電池之晶向。 於一具體實施例中,多個單晶矽晶種22佔模4之底部 M439895 =f 8ί)% ’或是㈣晶種層2之體積百分比大於約 於-具體實施例巾,每—單晶⑦晶種22之厚度小於約 10cm 〇 垤靜於:ίΪί施例中’單晶矽晶種22可以為長方體、圓 t'-U、五一角柱體、六角柱體等柱體。單晶矽晶 ·§#,二三角柱體、五角柱體、六角柱體等角柱 石々曰/播了 ^夕邊形的最短邊長為約1〇〇mm〜2〇〇mm。單晶 矽晶種22若A圓& μ Α H)〇mm〜300mm圓柱體,其頂部圓形的直徑為約 5 cm 5 cm 於一具體實施例中,每一第一間隙^之寬度小於約 於—具體實施例中,每一第二間隙g2之寬度小於約 石夕顆粒、3中i多日個山成核促進顆粒24可以是多晶 1400。(:之材料开彡点/ 早M奴化矽顆粒或其他熔點高於約 ’ ^成且有助於成核的結晶顆粒。 係小^約施例巾,每—成滅進顆粒24之顆粒尺寸 貝形^。、實包例巾母一成核促進顆粒24每具有不規 石夕晶種,單晶⑦晶種22可以是P型態單晶 族元素(例如,B可以是?形態石夕原料,即摻雜腿 本創作Γ/w晶種22以切轉3G。藉此, 成核促進'θ p型態石夕晶鎮錠1。進—步,多個 顆粒。 ’ β以疋Ρ型態多晶石夕顆粒或ρ型態單晶石夕 9 〜一 二具I實-施例中乂1晶瘦晶嚴以可以_^ n型冑i 種 糾料!0可妓η㈣彻ί ΐ—Ϊί 此,二丨作:如’的單晶石夕晶種22以及石夕原料30。藉 η ί創作之石夕晶•錠1為η型態石夕晶鑄錠1。進-步: 咖粒24可…型態多晶石夕顆粒或η型態單 抓elf作之⑦晶歌麟低_鄰單㈣晶種的 相饼=邊St早曰曰矽晶種22之一邊緣鄰近模的内壁,1 Ϊ3ίΪ:ί夕個本創作所採用的成核促進顆粒24,並矛; 曰方二固製程製成砂晶鑄錠。該石夕晶鑄錠沿垂直長 二第:中的金相照片係示於第6 錠對庫單曰代表缺陷。第6圖清楚顯示石夕晶鎊 曰鄰近模的内壁之邊緣其缺陷密度相當 :鑄錠ΐίΪ 2應單祕晶種a之區域其缺陷密度最低,石夕 密产Sri ’ f曰曰鱗鍵對應成核促進雛24之區域其缺陷 可以降低單晶石夕晶種的邊界以 升,ί晶_的整體晶體品質有明顯的提 太制:成的太陽能電池的光電轉換效率有明顯的提升, 換晶ίίί對照組石夕晶鱗鍵被取材做後續的光電轉 ϊ ί^°//作^晶鑄錠為高度約㈣顏之石夕晶缚 组石/曰^,第5圖所示石夕晶種層2來引晶、長晶。對职 方向僅利用(100)晶向單晶石夕晶種來引晶,並基於 方向^固製程所製造高度約250細之梦晶鑄錠。 域、7圖’取材於本創作之石夕晶鑄錠的底部區 - a。°域以及頂部區域製成太陽能電池的光電轉換效 率係標示於笫7财。做為對照,取材於對照_晶禱鍵 的底部區域L域以及頂部區域製紅陽能電池的光 電轉換效率也標示於第7圖中。從第7圖之數據可以清楚 看出,本創作之石夕Ba鎊錠整體有較佳的晶體品質,後續製成的 太陽能電池的光電轉換效率也較高。相較下,針照组 整體晶體品質較差’其後續製成的太陽能電池的^電轉g效率 也=。綜上所述’本創作之⑪晶鑄鍵製造方法,係利用不同 =前技狀⑦晶種層,並且基於方向性凝賴程來製造石夕晶 本創作之々晶鑄錠整體有較佳的晶體品質,後續 裟成的太%能電池的光電轉換效率也較高。 太創較佳具體實關之詳述’係希望能更加清楚描述 來ίΪ神’而並非^Λ述所揭露驗佳具體實施例 種改變及且奇加以限制。相反地’其目的是希望能涵蓋各 4内。因;^性的安排於本創作所欲申請之專利範圍的範 說明作作财請之專繼_鱗_根據上述的 等性的安排Γ的轉,以致使其涵蓋所有可能的改變以及具相 M439895 Γ圖式簡單說明】------------------------------------------- 第1圖係示意地繪示本創作之一較佳具體實施例之石夕晶 鑄錠。 第2圖係矽晶種層之一範例的頂視圖。 第3圖及第4圖係示意地繪示本創作之石夕晶鑄錠的製造方 法。 第5圖係安裝於模内之矽晶種層之一範倒的頂視圖。 第6圖係本創作之石夕晶铸錠之一範例的金相照片。 第7圖係本創作之矽晶鑄錠與其對照的矽晶鑄錠之後續 製成太陽能電池的平均光電轉換效率比較結果。 【主要元件符號說明】 1 .破晶禱知· 22 :單晶矽晶種 30 :矽原料 34 :石夕晶粒 垂直方向 g2 :第二間隙 2:矽晶種層 24 :成核促進顆粒 32 :矽熔湯 4 :模 gl :第一間隙 12---Basically"----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- A twinned ingot of a preferred embodiment of the present invention comprises a bottom. The bottom portion contains the Shiyue seed layer, and the 'Shixia seed layer' is composed of a plurality of single crystal seed crystals and a plurality of nucleation promoting particles. A first gap is present between adjacent single crystals and a single gap exists between the single crystal seed adjacent to the edge of the twin ingot and the edge. A plurality of nucleation promoting particle systems are disposed in all of the first gaps and all of the second gaps. In a specific embodiment, each single crystal seed crystal has a crystal orientation, which may be (10), (11G), (ill), (112), (232) or other defects. The crystal ingot can be subsequently formed into a crystal orientation of a high conversion efficiency solar cell. The larger than the body is irradiated, the plurality of single (four) crystal seeds occupy a bottom area of 10 cm. In a specific embodiment, the thickness of each single crystal ♦ seed crystal is less than The body, the real single crystal stone can be a rectangular parallelepiped, a cylinder-corner cylinder, a pentagonal cylinder, a six-pulse body, etc. In a specific implementation, the width of each "the _" is less than about 5 cm. For example, the width of each second gap is less than about 5 cm. The plurality of nucleation promoting particles in a single column of 1v 可以 may be polycrystalline 夕 之 (4) 形 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 〇mm. In a specific embodiment. The parent-nuclear promoted particle size of the particles is different for each nucleation-promoting particle. Unlike the prior art, it is not necessary to seed two adjacent single crystals, == ==== This creation utilizes nucleation-promoting particles in adjacent single crystals. The following is a detailed description of the following embodiments and [embodiments] of the present invention, and the preferred embodiment includes a seed crystal. f ° The bottom and a plurality of fine-promoting females 24 2 touches early enough to have a second gap g2 between the seed crystals 22. A plurality of nucleation promotes = fBa species 22 and the edge of the first-between_lin has a second ^ = The gauge/^22 system is placed on all the fine particles 24 to nucleate, and the square is arbitrarily drawn. The example of the Shih-jing seed layer 2 in the mold 4 is shown in the figure 3 of the original silk. About Shi Xijing seed layer quartz _The inner bottom is equipped with a plurality of single crystals. J. 2 = ϋ K. - Specially, as shown in the 5th genus, the adjacent single crystals have the first gas. a gap g1, and a single crystal seed crystal adjacent to the inner wall of the mold 4, a second gap exists between the inner walls of the crucible 4. Then, in all the first gaps gl and all the second gaps g2, a plurality of The nucleation promotes the particles 24' to form the sapphire seed layer 2. Alternatively, the enamel seed layer 2 may be the bottom of the twin crystal casting spin 1 cut from another creation. Next, the bismuth raw material 30 is mounted to the mold. 4, and placed in the twin seed layer 2, the mold 4 loaded into the twin seed layer 2 and the tantalum raw material 3〇 is placed in the directional solidified crystal growth furnace, and the raw material 3 is first melted into the crucible. Melt 32, as shown in Fig. 4. It should be noted that the single crystal twins 22 may not be completely melted. The f ^ is based on the directional solidification process to cool the mold 4, causing the tantalum melt 32 to be composed of a plurality of single crystal twins. 22 seeding, and a plurality of germanium crystal grains 34 nucleate on the plurality of nucleation promoting particles 24 and grow in the vertical direction. Finally, the cooling mold 4 based on the directional solidification process is continued to allow a plurality of single crystal twin crystal seeds to be grown. 22 and a plurality of tantalum grains 34 continue to grow in the vertical direction, and until the tantalum melt 32 is completely solidified to obtain the Shihuajing ingot 1 as shown in Fig. 1. The twin crystal ingot 1 of the present invention has an ingot of a high-performance mono-like crystal block. In the present case, the term "monocrystalline 矽" refers to a host of crystalline ruthenium having a uniform crystal orientation in the range of 75 Å/〇 over the bulk of the volume, wherein, for example, such a single crystal The stone may comprise a body of a single crystal stone adjacent to the polycrystalline region, or it may comprise a large, continuous uniform crystal of cerium, some or all of which comprise other crystal-oriented smaller crystals. In one embodiment, each single crystal seed crystal 22 has a crystal orientation, which may be (100), (110), (111), (112), (232), or the like. The twin crystal ingot can be subsequently formed into a crystal orientation of a high conversion efficiency solar cell. In a specific embodiment, the plurality of single crystal twins 22 occupy the bottom of the mold 4 M439895 = f 8 ))% ' or (4) the volume percentage of the seed layer 2 is greater than about - the specific embodiment, each - single crystal The thickness of the 7 seed crystal 22 is less than about 10 cm. In the example, the single crystal seed crystal 22 can be a cylinder such as a rectangular parallelepiped, a round t'-U, a pentagonal cylinder, or a hexagonal cylinder. Single crystal twins ·§#, two triangular cylinders, pentagonal cylinders, hexagonal cylinders, etc. Stones/castings The shortest side length of the square shape is about 1〇〇mm~2〇〇mm. The single crystal seed crystal 22 has an A circle & μ Α H) 〇 mm~300 mm cylinder, and the top circular shape has a diameter of about 5 cm 5 cm. In one embodiment, the width of each first gap ^ is smaller than In a specific embodiment, the width of each second gap g2 is less than about shi granules, and the plurality of nucleus nucleation promoting particles 24 may be poly 1400. (: material opening point / early M slave sputum granules or other crystalline particles having a melting point higher than about '^ and contributing to nucleation. Small small approximating the towel, each - into the particle size of the particle 24 The shape of the shell-shaped nucleus-promoting granules 24 has an irregular sapphire seed crystal, and the single crystal 7 seed crystal 22 may be a P-type single crystal group element (for example, B may be a morphological stone eve The raw material, that is, the doped leg, is created by Γ/w seed crystal 22 to cut 3G. Thereby, nucleation promotes 'θ p-type Shi Xijing town ingot 1. Step-by-step, multiple particles. Type polycrystalline granules or ρ-type single crystal eve 9 ~ one and two I - in the case of 乂 1 crystal thin crystal Yan can be _^ n type 胄i kind of correction! 0 妓 ( (four) thorough ΐ—Ϊί This, two works: such as 'single crystal sapphire seed 22 and Shixi raw material 30. by Shi ί creation of Shi Xijing • Ingot 1 is η type state Xixi crystal ingot 1. Step-by-step : 咖粒24 can be...type polycrystalline stone granules or η-type single-grab elf made of 7 crystal syllabus low _ o-single (four) seed crystal phase cake = edge St early 曰曰矽 seed crystal 22 edge adjacent The inner wall of the mold, 1 Ϊ 3ίΪ: 夕 个 个 本 本 本 本 本The granules 24 and the spears are formed into a sand crystal ingot by the two-part process of the square. The metallographic photograph of the sapphire ingot along the vertical length of the second: is shown in the sixth ingot to represent the defect. The figure clearly shows that the edge of the inner wall of the adjacent model of Shi Xijing is similar to the defect density: the ingot ΐίΪ 2 should have the lowest defect density in the area of the single crystal seed a, and the succulent nucleus of the Shi 'i S scale Promoting the defects of the area of the young 24 can reduce the boundary of the single crystal saplings to rise, and the overall crystal quality of the crystal _ crystal has obvious improvement: the photoelectric conversion efficiency of the solar cell is obviously improved, and the etching is improved. In the control group, the Shixi crystal scale key was taken as the subsequent photoelectric conversion ί ^ ^ ° / / ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ Layer 2 is used for seeding and crystal growth. The orientation direction is only using (100) crystal to crystallize the single crystal, and the crystal crystal ingot is made by the direction of the solidification process. Figure 'According to the bottom area of the Si Shijing ingot of the creation - a. ° domain and the top area to make the photoelectric conversion effect of the solar cell The rate is indicated on 笫7. As a comparison, the photoelectric conversion efficiency of the bottom region L field of the control _ pray key and the red cell battery of the top region is also shown in Fig. 7. The data from Fig. 7 It can be clearly seen that the overall stone quality of the Shixi Ba pound ingot of this creation has better crystal quality, and the photoelectric conversion efficiency of the subsequently produced solar cell is also higher. Compared with the lower one, the overall crystal quality of the needle group is poor. The efficiency of the solar cell of the solar cell is also =. In summary, the 11-crystal bond manufacturing method of the present invention utilizes a different seed layer of the prior art, and the lining is used to manufacture the stone eve. The crystal-infused ingots produced by Jingben have a better crystal quality as a whole, and the photoelectric conversion efficiency of the battery which is too high in the subsequent generation is also high. The details of Taichuang's better specific implementations are intended to be more clearly described. It is not intended to limit the specific embodiments of the invention. On the contrary, the purpose is to cover each of them. Because of the arrangement of the scope of the patents to be applied for in this creative office, the scope of the patent application is for the success of the financial _scale_ according to the above-mentioned arrangement of the equivalent, so that it covers all possible changes and M439895 Γ 式 simple description]------------------------------------------- BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic representation of a preferred embodiment of the present invention. Figure 2 is a top view of an example of a seed layer. Fig. 3 and Fig. 4 schematically illustrate the manufacturing method of the Si Xijing ingot of the present invention. Figure 5 is a top view of one of the twin layers installed in the mold. Figure 6 is a metallographic photograph of one of the examples of Shi Xijing ingots. Fig. 7 is a comparison result of the average photoelectric conversion efficiency of the solar cell produced by the tantalum ingot of the present invention and the subsequent twin crystal ingot. [Explanation of main component symbols] 1. Breaking prayers 22: Single crystal twins 30: germanium raw material 34: Shixi grain vertical direction g2: second gap 2: twin seed layer 24: nucleation promoting particles 32 : 矽 molten soup 4: mold gl: first gap 12

Claims (1)

M439895 六、申請專利範圍: 1、 一種矽晶鑄錠,包含一底部,其特徵在於該底部包含一矽 晶種層’該矽晶種層係由多個單晶矽晶種以及多個成核促進顆 粒所構成,相鄰的單晶矽晶種之間存有一第一間隙,鄰接該矽 晶鑄錠之邊緣的單晶矽晶種與該邊緣之間存有一第二間隙,該 多個成核促進顆粒係安置在該等第一間隙以及該等第二間隙 内。 2a'如請求項1所述之矽晶鑄錠’其中每一單晶矽晶種具有一 ▲晶向,該晶向係選自由(100)、(110)、(111)、(112)以及(232)所 鲁组成之群組中之其一。 ^如請求項丨所述之矽晶鑄錠,其中該多個單晶矽晶種佔該 夕日日種層之體積百分比大於約80%。 4j:於it項1所述之石夕晶鑄錠’其中每一單晶石夕晶種之厚度 $約2求項1所述之發晶敎,其中每—第—間隙之寬度小 ^約2求項1所述之發晶鑄錠’其中每-第二間隙之寬度小 i選晶鑄旋’其中該多個成核促進顆极包 •成之群^晶㈣粒以及—單晶碳化石夕_ ^尺以==晶鑄錠’其中每-成核促進顆粒, 規則求項1所述切晶鳞錠’其中每一成核促進顆粒具不 月长項1所述之石夕晶鑄旋,其中該多個單晶石夕晶中之— 13 M4J9895 五 種為if}—長方體麗枉體一^ 角柱體以及-六角柱體所組成之群組中之其—。 項1所述之石夕晶鑄錢,其中該多個單晶石夕晶中之一 ::曰曰種為選自由一長方體、一三角柱體、五角柱體以及 一六角柱體所組成之群組中之其一,該個單晶矽晶種之一頂部 多邊形的最短邊長為約l〇〇mm〜2〇〇mm。 12、如請求項1所述之矽晶鑄錠,其中該多個單晶矽晶中之一 個單晶石夕晶種為一圓柱體,該圓柱體之一頂部圓形的直徑為約 100mm〜300mm。M439895 VI. Patent application scope: 1. A twin crystal ingot comprising a bottom, characterized in that the bottom portion comprises a seed crystal layer, wherein the seed crystal layer is composed of a plurality of single crystal twin crystal seeds and a plurality of nucleation Promoting the formation of particles, a first gap exists between adjacent single crystal twins, and a second gap exists between the single crystal twins adjacent to the edge of the twin ingot and the edge, the plurality of A nuclear promoting particle system is disposed within the first gap and the second gap. 2a' The twinned ingot of claim 1, wherein each single crystal twin has a crystal orientation selected from (100), (110), (111), (112) and (232) One of the groups consisting of. The twin ingot as claimed in claim 3, wherein the plurality of single crystal twins account for more than about 80% by volume of the day seed layer. 4j: The thickness of each of the single crystals of the invention is the thickness of each of the single crystals of the invention, wherein the thickness of each of the first gaps is small. (2) The crystallized ingot of claim 1, wherein the width of each of the second gaps is small, and the plurality of nucleation promotes the formation of the particles, wherein the plurality of nucleation promotes the formation of the particles, the group of crystals, and the single crystal carbon. Fossil eve _ ^ 尺 to = = crystal ingot 'in which each - nucleation promoting particles, the rule 1 of the cutting crystal ingots, each of which nucleation promoting particles have no moon length item 1 Casting, in which the plurality of single crystals are in the same layer - 13 M4J9895 five kinds are if} - a rectangular parallelepiped, a corner cylinder and a hexagonal cylinder. The stone of the first embodiment of the present invention, wherein the one of the plurality of single crystal stones is selected from the group consisting of a rectangular parallelepiped, a triangular cylinder, a pentagonal cylinder and a hexagonal cylinder. One of the groups, the shortest side length of the top polygon of one of the single crystal twins is about l〇〇mm~2〇〇mm. 12. The twinned ingot according to claim 1, wherein one of the plurality of single crystal twins is a cylinder, and one of the cylinders has a circular top diameter of about 100 mm. 300mm.
TW101208778U 2012-05-10 2012-05-10 Crystalline silicon ingot TWM439895U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101208778U TWM439895U (en) 2012-05-10 2012-05-10 Crystalline silicon ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101208778U TWM439895U (en) 2012-05-10 2012-05-10 Crystalline silicon ingot

Publications (1)

Publication Number Publication Date
TWM439895U true TWM439895U (en) 2012-10-21

Family

ID=47720074

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101208778U TWM439895U (en) 2012-05-10 2012-05-10 Crystalline silicon ingot

Country Status (1)

Country Link
TW (1) TWM439895U (en)

Similar Documents

Publication Publication Date Title
TWM443938U (en) Solar cell
KR101815620B1 (en) Poly-crystalline silicon ingot, silicon wafer therefrom and method of fabricating poly-crystalline silicon ingot
TWI379020B (en) Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystaline cast silicon bodies for photovoltaics
TWI620838B (en) Crystalline silicon ingot including nucleation promotion particles and method of fabricating the same
CN102425008A (en) Method for preparing large-grain ingot casting polycrystalline silicon
TWI444509B (en) Method of manufacturing crystalline silicon ingot
TWI580825B (en) Method of preparing cast silicon by directional solidification
TWI452184B (en) Method of manufacturing crystalline silicon ingot
TWM439895U (en) Crystalline silicon ingot
TWI541389B (en) Method of manufacturing crystalline silicon ingot
CN112522782B (en) Polycrystalline silicon ingot and preparation method thereof
CN201729909U (en) Crucible for polysilicon ingot casting
CN203653755U (en) Crucible for polycrystalline silicon ingot based on quartz particle embedded layer
US10087080B2 (en) Methods of fabricating a poly-crystalline silcon ingot from a nucleation promotion layer comprised of chips and chunks of silicon-containing particles
TWI516645B (en) Crystalline silicon ingot, manufacture thereof and silicon wafer therefrom
US10065863B2 (en) Poly-crystalline silicon ingot having a nucleation promotion layer comprising a plurality of chips and chunks of poly-crystalline silicon on the bottom
CN102995103A (en) Crucible used for preparing quasi-monocrystalline silicon ingot, and quasi-monocrystalline silicon ingot growth method
JP5721207B2 (en) Si polycrystalline ingot manufacturing apparatus, Si polycrystalline ingot, and Si polycrystalline wafer
TWM459985U (en) Silicon seed
TWM444886U (en) Casting mold for fabricating crystalline silicon ingot
TW201402884A (en) Casting device for directional solidification, manufacturing method of ingot, platy seeding structure
JP2010269943A (en) Silicon polycrystal ingot and silicon polycrystal wafer

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees