TWM439819U - Reflective liquid crystal projection system - Google Patents
Reflective liquid crystal projection system Download PDFInfo
- Publication number
- TWM439819U TWM439819U TW100224280U TW100224280U TWM439819U TW M439819 U TWM439819 U TW M439819U TW 100224280 U TW100224280 U TW 100224280U TW 100224280 U TW100224280 U TW 100224280U TW M439819 U TWM439819 U TW M439819U
- Authority
- TW
- Taiwan
- Prior art keywords
- illumination
- light
- liquid crystal
- projection system
- reflective liquid
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
M439819 五、新型說明: 【新型所屬之技術領域】 影乐統 Γ作係—種投影系統’尤其關於—種反射式液晶acos)投 【先前技術】 曰常生活中,投影线經常制來將圖文或影像資料投射放 大於投射面上’令使用者觀看時更具有視覺上的舒適性,且電子 設備均有朝向輕、薄、短小之設計趨勢來符合人性的需求,因此 投影系統也不例外地趨於微小化,俾能應用於3G手機、PDA等 電子產。口口’亦或成為一種可隨身攜帶的小型投影系統,藉此使用 者可隨處利用投影系統來播放欲觀賞的影片,輕鬆地達到娛樂之 效果。 請參閱圖I,其為習知反射式液晶(LC〇s)投影系統之結構與 光路示意圖。反射式液晶投影系統丨包括照明裝置丨丨、準直透鏡 模組丨2、中間具有反射式偏光膜丨3丨的偏光分離稜鏡(pBS)丨3、場 透鏡丨4、反射式液晶元件丨5以及光學鏡頭丨6,且偏光分離稜鏡 丨3設置於照明裝置丨卜反射式液晶元件15以及光學鏡頭丨6之間, 準直透鏡模組丨2設置於照明裝置π與偏光分離稜鏡丨3之間,場 4 ¥ 达成丨4 又置於反射式液晶元件丨5與偏光分離稜鏡丨3之間 其中,準直透鏡模组丨2以及場透鏡丨4皆用以調整其所接收 之光束的入射角度並予以輸出,且偏光分離棱鏡13中間的反射: 偏光膜Π1則用以供任—p偏極光束穿透其令並供任: 光束於其上產錢射。 偏極M439819 V. New description: [New technology field] Film and television system - a kind of projection system 'especially related to a kind of reflective liquid crystal acos) cast [previous technology] In the normal life, the projection line is often made The projection of the text or image data on the projection surface makes the user more visually comfortable when viewing, and the electronic device has a design trend of light, thin and short to meet the needs of humanity, so the projection system is no exception. The terrain tends to be miniaturized, and it can be applied to electronic products such as 3G mobile phones and PDAs. The mouth can also be a small projection system that can be carried around, so that users can use the projection system to play the movies they want to enjoy, and easily achieve entertainment effects. Please refer to FIG. 1 , which is a schematic diagram of the structure and optical path of a conventional reflective liquid crystal (LC〇s) projection system. The reflective liquid crystal projection system includes an illumination device 丨丨, a collimating lens module 丨 2, a polarization separation 稜鏡 (pBS) 具有 3 with a reflective polarizing film 丨 3 中间 in the middle, a field lens 丨 4, and a reflective liquid crystal element 丨5 and the optical lens 丨6, and the polarization separation 稜鏡丨3 is disposed between the illumination device 反射 reflective liquid crystal element 15 and the optical lens 丨6, and the collimator lens module 丨2 is disposed on the illumination device π and the polarization separation 稜鏡Between 3, field 4 ¥ 丨 4 is placed between the reflective liquid crystal element 丨 5 and the polarization separation 稜鏡丨 3, wherein the collimating lens module 丨 2 and the field lens 丨 4 are used to adjust the reception thereof. The incident angle of the beam is output and the reflection in the middle of the polarization separation prism 13: The polarizing film Π1 is used to supply the -p-polar beam to penetrate and make it available: the beam is incident on the beam. Polar
士再者’反射式液晶^件15„以呈現一電子式影像畫面照 明裝置11則用以提供照明光源予反射式液晶元件15,使照明裝置 1 1與反射式液晶元件1 5之間形成有複數個照明光路,以及反射式 液晶元件15與光學鏡頭16之間形成有複數個成像光路,進而令 電子式影像畫面可藉由光學鏡頭丨6而被顯示於—投射面9上。 砰吕之’照明裝置11所提供之光源令部份為屬於p偏極性之 照明光束L"、’而另一部分為屬於s偏難之照明光束k,且該些 屬 偏W生之照明光束LIP以及該些屬於S偏極性之照明光束 k係分別沿著其所相對應的照明光路行進。圖丨中實線箭頭所示 為部分照明光束LIP、LIS的傳輸路徑。 又’照明裝置11所提供之照明光朿k、L,s於穿經過準直透 ϋ组12後入射至偏光分離稜鏡13中的反射式偏光膜⑶,該些 屬Ρ偏極〖生的Μ明光束1,會穿經過偏光分離稜鏡丨3後投射至 其它處,而該些屬於S偏極性的照明光束k則在反射式偏光臈⑶ 上產生反射,進而於穿經過場透鏡M後人射至反射式液晶元件 15;接著’該些屬於s偏極性的照明光東^會於反射式液晶元件 M439819 、 上產生反射,並因應電子式影像畫面而被轉換為複數個屬於p 偏極性的成像光束I|P,且該些屬於P偏極性的成像光束^係分別 ./。著其所相對應的成像光路行進。圖】中虛線箭頭所示為部分的 .成像光路,即為屬於p偏極性之成像光束I|p的傳輸路徑。 又,來自於反射式液晶元件丨5的成像光束丨^於穿經過場透鏡 丨4後g入射至偏光分離稜鏡丨3 ’接著,屬於p偏極性的成像光束 I丨^則穿透偏光分離稜鏡丨3中的反射式偏光膜丨3丨而入射至光學鏡 頭16,進而能夠使反射式液晶元件15所呈現的電子式影像畫面被 光學鏡頭丨6投射至投射面9上。 由以上說明可知,反射式液晶元件15僅需要被提供單一偏極 性的照明光朿’因此照明裝置Η所提供之照明光束^k於投 射至反射式液晶元件15的過程中,只有屬於s偏極性的照明光束 LIS會投射至反射式液晶元件15’而屬於卩偏極性的照明光束^因 籲沒有用途而朝其它處投射造成流失;是以,由光學鏡頭Μ所輸出 之光量會遠小於照明裝置所提供之光量。 • 4參關2 ’其為另—習知反射式液晶投料、統之結構與光路 示意圖。反射式液晶投影系統2包括照明裝置2丨、準直透鏡模組 22'反射式偏光片23、場透鏡24 '反射式液晶元件^、檢光片 28以及光學鏡頭26 ’且反射式偏光片23設置於照明裝置a、反 射式液晶^件25以及光學鏡頭26之間,準直透鏡模組設置^於 照明裝置與反射式偏光片23之間,而場透鏡24則設置於反射 6 M439819 式液晶元件25與反射式偏光片幻之間。 其中’準直透鏡模組29以月,夫^l 1 一及場地1 兄24皆用以調整其所接收 之光束的入射角度並予以輸出, 耵iU爲九片23則用以供任— 偏極光朿穿透其中,並供任— 场楂九朿於其上產生反射。再者, 反射式液晶元件25係用以呈現一 弘十式.v像畫面,照明裝置2 1 則用以提供照明光源予反射式液晶元件25,使照明裝置Μ與反射 式液晶元件25之間形成有複數個照明光路,以及反射式液晶元件 25與光學鏡頭26之間形成有複數個成像光路,進而令電子式影像 畫面可藉由光學鏡頭26而被顯示於投射面9上。 詳言之,照明裝置2丨所提供之«中部份為屬於P偏極性之 照明光束L2P ’而另一部分為屬於S偏極性之照明光束L2S,且該 些屬於P偏極性之照明光束L一㈣㈣ L2S係分別沿著其所相對應的照明光路行進。目2中實線箭頭所示 為部分,日·?、明光束L^p ' L2S的傳輸路徑。 又’照明裝置21所提供之照明光束L2P、L2S於穿經過準直透 鏡模組22後而入射至反射式偏光片23,該些屬於s偏極性的照明 光束l2S會在反射式偏光片23上產生反射而往其它處行進,而屬 於p偏極性的照明光束L2p則繼續依序穿經過反射式偏光片23以 及场透^ 24 ’進而入射至反射式液晶元件25,且該些屬於p偏極 性的照明光朿l2I,會於反射式液晶元件25上產生反射,並因應電 子式影像畫面而被轉換為複數個屬於s偏極性的成像光束^,且 7 M439819 遠些屬於s偏極性之成像光束丨2s係分職著其所相對應的成像光 路仃進。圖2中虛線箭頭所示為屬於s偏極性之成像光束^的傳 輸硌徑。 · 又,來自於反射式液晶元件25的成像光束^會於穿經過場透 鏡後24會人射至反射式偏光片23,且屬於S偏極性的成像光束^ 曰方、反射式偏Μ 2」上產生反射,並接著穿透檢光片μ而入射 至光學鏡頭26’進而能夠使反射式液^件25所呈現的電子式參 像畫面被光學鏡頭26投射至投射面9上。 / 由以上5兒明可知’反射式液晶元件25僅需要被提供單一偏極 性的照明光束,因此照明妒 月展置21所提供之照明光束、l2s於投 射至反射式液晶元件2 5的過程中,只有屬於p偏極性的照明光束 會投射至反射式液晶以6而屬於s偏極性的照明光束^因 沒有用途而反射至立它步.Α + ”匕處k成流失:是以’由光學鏡頭26所輸出 之光量會遠小於照明裝置所提供之光量。 。乂上所述為造成習知反射式液晶投影系統令人話病的主 :之即習知反射式液晶投影系統因其照明裝置所提供 光量的使用效率太彳 ’、 -&件其所能輸出之光流明數不足,不符八 使用者的需求,亦因此& ° 0 逐漸破數位光學處理(DLP)投影系統取代。 是以’如何增進習知及 。 反射式液晶投影系統的光使用效率應為 解決的地方。 寻 iV1^y8l9 【新型内容】 本創作之主要目的在提供一種反射式液晶(LCOS)投影系統, 尤其係關於一種具有光束回收模組以減少光流失的反射式液晶投 影系統。 於一較佳實施例中,本創作提供一種反射式液晶投影系統, 包括: 一照明裝置,用以提供複數個照明光束; 一反射式液晶(LCOS)元件’用以呈現一電子式影像畫面; 一偏光分離元件(PBS),用以供該些照明光束中之一第一部分 照明光束入射至該反射式液晶元件,且該第一部分照明光束於該 反射式液晶元件上產生反射,並因應該電子式影像畫面而被轉換 為另一複數個成像光束; 一光學鏡頭,用以接收並投射該些成像光束至一投射面;以 及 一光朿回收模組,用以供該些照明光束中之一第二部分照明 光束自。玄偏光π離元件入射其中,並予以轉換極性後輸出,以使 轉換極性後之該第二部分照明光束再次入射至該偏光分離元件; 其中,έ玄光束回收模組至少包括一全内反射(TIR)稜鏡,其供 來自於該照明裝置之該些照明光束穿透其中,並供來自於該偏光 分離元件之該第二部分照明光束於其上產生全反射。 方、韨佳實施例中,該偏光分離元件係用以供該些照明光束 9 M439819Further, the 'reflective liquid crystal element 15' is used to present an electronic image display device 11 for providing the illumination source to the reflective liquid crystal element 15 so that the illumination device 11 and the reflective liquid crystal element 15 are formed between A plurality of illumination light paths, and a plurality of imaging optical paths are formed between the reflective liquid crystal element 15 and the optical lens 16, so that the electronic image frame can be displayed on the projection surface 9 by the optical lens 丨6. 'The light source provided by the illuminating device 11 is a part of the illumination beam L" which belongs to the p-polarity, and the other part is the illumination beam k which belongs to the s-difficulty, and these are the illumination beams LIP which are partial to the W and these The illumination beam k belonging to the S-polarity travels along the corresponding illumination light path. The solid arrows in the figure show the transmission paths of the partial illumination beams LIP and LIS. The illumination light provided by the illumination device 11朿k, L, s are incident on the reflective polarizing film (3) which is incident on the polarization separation 稜鏡13 after passing through the collimating ϋ group 12, and the Μ-polar 〖 光束 光束 光束 会 会 会 会 会 会 生稜鏡丨3 after casting to At the same time, the illumination beam k belonging to the S-polarity is reflected on the reflective polarization yoke (3), and then passes through the field lens M to be incident on the reflective liquid crystal element 15; then 'these are s-polar The illumination light is reflected on the reflective liquid crystal element M439819, and is converted into a plurality of imaging light beams I|P belonging to p-polarity according to the electronic image frame, and the imaging beams belonging to the P-polarity ^ is the corresponding .. /. The corresponding imaging optical path travels. The dotted arrow in the figure shows the partial imaging path, which is the transmission path of the imaging beam I|p belonging to p-polarity. The imaging beam of the reflective liquid crystal element 丨5 is incident on the polarization separation 稜鏡丨3 after passing through the field lens 丨4. Then, the imaging beam I 丨^ belonging to the p-polarity penetrates the polarization separation 稜鏡丨3 The reflective polarizing film 入射 3 丨 enters the optical lens 16 , and the electronic image frame presented by the reflective liquid crystal element 15 can be projected onto the projection surface 9 by the optical lens 丨 6 . Liquid crystal element 15 only It is necessary to provide a single polarized illumination diaphragm ′ so that the illumination beam provided by the illumination device is projected into the reflective liquid crystal element 15 , and only the illumination beam LIS belonging to the s-polarity is projected onto the reflective liquid crystal element. 15' and the polarized illumination beam ^ is thrown away from other places due to no use; therefore, the amount of light output by the optical lens is much smaller than the amount of light provided by the illumination device. It is a schematic diagram of another conventional reflective liquid crystal feeding, structure and optical path. The reflective liquid crystal projection system 2 includes an illumination device 2, a collimating lens module 22' reflective polarizer 23, and a field lens 24' reflective liquid crystal. The component ^, the light detecting sheet 28 and the optical lens 26' and the reflective polarizer 23 are disposed between the illumination device a, the reflective liquid crystal element 25 and the optical lens 26, and the collimating lens module is disposed on the illumination device and the reflective type Between the polarizers 23, the field lens 24 is disposed between the reflective 6 M439819 type liquid crystal element 25 and the reflective polarizer. The 'collimation lens module 29 is used to adjust the incident angle of the received beam and output it, and the 耵iU is nine pieces 23 for the purpose of The aurora penetrates through it and serves as a reflection. Furthermore, the reflective liquid crystal element 25 is used to present a picture of the image, and the illumination device 21 is used to provide the illumination source to the reflective liquid crystal element 25 to form the illumination device Μ and the reflective liquid crystal element 25. A plurality of illumination light paths are formed, and a plurality of imaging optical paths are formed between the reflective liquid crystal element 25 and the optical lens 26, so that the electronic image frame can be displayed on the projection surface 9 by the optical lens 26. In detail, the illumination device 2 丨 provides a part of the illumination beam L2P belonging to the P-polarity and the other part is the illumination beam L2S belonging to the S-polarity, and the illumination beam L belonging to the P-polarity (iv) (iv) The L2S system travels along its corresponding illumination path. The solid arrow in item 2 shows the transmission path of the part, the day, and the bright beam L^p ' L2S. Further, the illumination light beams L2P and L2S provided by the illumination device 21 are incident on the reflective polarizer 23 after passing through the collimator lens module 22, and the illumination light beams 12S belonging to the s-polarity are on the reflective polarizer 23. The reflection beam is generated to travel to other places, and the illumination light beam L2p belonging to the p-polarity is continuously passed through the reflective polarizer 23 and the field lens 24' to be incident on the reflective liquid crystal element 25, and the pixels are p-polarized. The illumination diaphragm l2I will reflect on the reflective liquid crystal element 25, and is converted into a plurality of imaging beams belonging to the s-polarity according to the electronic image frame, and 7 M439819 is far from the s-polar imaging beam. The 丨2s department is divided into its corresponding imaging optical path. The dotted arrow in Fig. 2 shows the transmission path of the imaging beam ^ which is s-polar. · In addition, the imaging beam from the reflective liquid crystal element 25 will be incident on the reflective polarizer 23 after passing through the field lens, and the image beam belonging to the S-polarity is square and reflective. Reflection occurs thereon, and then passes through the light detecting sheet μ to be incident on the optical lens 26', so that the electronic image frame presented by the reflective liquid member 25 can be projected onto the projection surface 9 by the optical lens 26. / It can be seen from the above 5 that the reflective liquid crystal element 25 only needs to be provided with a single polarized illumination beam, so that the illumination beam provided by the illumination 21 is illuminated, and l2s is projected into the reflective liquid crystal element 25. Only the illumination beam belonging to the p-polarity will be projected onto the reflective liquid crystal to be 6 and the s-polar illumination beam will be reflected to the stand-up due to no use. Α + ” k 成 流失 : : : : : : : The amount of light output by the lens 26 will be much smaller than the amount of light provided by the illumination device. The above is the main cause of the conventional reflective liquid crystal projection system: the conventional reflective liquid crystal projection system is known for its illumination device. The efficiency of the provided light is too high, and the light output of the device is insufficient, which does not meet the needs of the eight users, and therefore the & ° 0 progressively breaks the digital optical processing (DLP) projection system. To improve the light and use efficiency of the reflective liquid crystal projection system should be the solution. Find iV1^y8l9 [New content] The main purpose of this creation is to provide a reflective liquid crystal ( LCOS) projection system, in particular, a reflective liquid crystal projection system having a beam recovery module to reduce light loss. In a preferred embodiment, the present invention provides a reflective liquid crystal projection system comprising: a lighting device Providing a plurality of illumination beams; a reflective liquid crystal (LCOS) element 'for presenting an electronic image frame; and a polarization separation element (PBS) for receiving a first portion of the illumination beams into the illumination beam a reflective liquid crystal element, wherein the first partial illumination beam is reflected on the reflective liquid crystal element and converted into another plurality of imaging beams according to the electronic image frame; an optical lens for receiving and projecting the plurality of imaging beams The imaging beam is directed to a projection surface; and a diaphragm recovery module is provided for the second portion of the illumination beams to illuminate the beam from the oscillating light π from the component and outputting the polarity for conversion The second partial illumination beam after the polarity is again incident on the polarization separation element; wherein the έ 光束 beam recovery module includes at least a total internal reflection (TIR) 穿透 for the illumination beams from the illumination device to penetrate therethrough and for the second portion of the illumination beam from the polarization separation element to produce total reflection thereon. In a preferred embodiment, the polarizing separation element is used to supply the illumination beam 9 M439819
中之任一 p偏極光束穿透其中,並供該些照明光束中之铵—S 極光束於其上產生反射,且該全内反射稜鏡設置於該照明裝置以 及έ玄偏光分離元件之間。 於-較佳實施例中’該全内反射稜鏡包括一第—稜鏡與—第 二稜鏡’且該ρ棱鏡具有—第—人光面以及—第—相對面,: 乂第才夂鏡具有一第二入光面以及一第二相對面,且該第—相對 面與該第二相對面係相對設置;其中,該投影系統内形成有—职 月光軸’且忒第一稜鏡之該第一相對面與該照明光軸之間的失角 以及該第二稜鏡之該第二相對面與該照明光軸之間的夾角皆為“ 度,抑或疋當該照明裝置被偏離該照明光軸處設置時,該第—稜 之側面與該第二稜鏡之一側面皆呈一直角三角形,而當該照 明裝置未被偏離該照明光軸處設置時,該第一稜鏡之該側面與該 第二稜鏡之該侧面的組合係呈一平行四邊形。 於—較佳實施例中,反射式液晶投影系統更包括-檢光片, :、:以、』偏光分離兀件以及該光學鏡頭之間,用以阻絕該些成 像光束卜之任P偏極光束人射至該光學鏡頭,抑或是阻絕該些 成像光束中之任-s偏極光朿人射至該光學鏡頭。 於-較佳實施例中’該光朿回收模組更包括一光極性轉換結 構’用以轉換錢照明光朿中之該第二部分照明光束的極性且 自Μ偏光77心件輪出之該第二部分照明光束係於通過該光極性 轉換結構後人射至該全内反射稜鏡。 10 M4^9819 該光極性轉換結構係為一丨/2波長片。Any one of the p-polar beams penetrates therein, and the ammonium-S pole beam of the illumination beams is reflected thereon, and the total internal reflection 稜鏡 is disposed on the illumination device and the έ 偏 偏 偏 separation element between. In the preferred embodiment, the total internal reflection 稜鏡 includes a first 稜鏡 and a second 稜鏡, and the ρ prism has a first-human light surface and a first-right surface, The mirror has a second light incident surface and a second opposite surface, and the first opposite surface and the second opposite surface are opposite to each other; wherein the projection system has a frontal axis and a first axis The angle between the first opposing face and the illumination optical axis and the angle between the second opposite face of the second turn and the illumination optical axis are both degrees, or when the illumination device is deflected When the illumination optical axis is disposed, the side of the first rib and the side of the second cymbal are all equilateral triangles, and when the illumination device is not disposed away from the illumination optical axis, the first 稜鏡The combination of the side surface and the side surface of the second side is a parallelogram. In the preferred embodiment, the reflective liquid crystal projection system further comprises a light detecting sheet, ::, and a polarizing separation element. And between the optical lenses, to block the P-polar beams of the imaging beams When the person shoots the optical lens, or blocks any of the imaging beams from being incident on the optical lens. In the preferred embodiment, the optical recovery module further includes a light polarity conversion structure. 'The second portion of the illumination beam used to convert the polarity of the second portion of the illumination beam in the illumination illumination pupil and the self-contrast polarization 77 is rotated by the person to the total internal reflection after passing through the optical polarity conversion structure M 10 M4^9819 The optical polarity conversion structure is a 丨/2 wavelength plate.
於一較佳實施例中,投影系統更包括: 於一較佳實施例中, 於一較佳實施例中, 一準直透倾,設置於該照明裝置與該全岐㈣鏡之間In a preferred embodiment, the projection system further includes: in a preferred embodiment, in a preferred embodiment, a collimating tilt is disposed between the illumination device and the full-four (four) mirror
於一較佳實施例中,該光路規劃元件組係至少包括·· 一梯形鏡,用以供來自於該偏光分離元件之該第二部分照明 光朿至少於穿經過其中後人射至該全内反射稜鏡之該第二棱鏡; 其中,該光極性轉換結構係設置於該偏光分離元件與該梯形 鏡之間,抑或是設置於該梯形鏡與該第二稜鏡之間; 抑或是該光路規劃元件組係至少包括: 一第一反射元件與及一第二反射元件,分別用以供入射至其 上之每一照明光束產生反射;以及 一第二聚焦鏡組,用以調整其所接收之每一照明光束的入射 角度並予以輸出; 其中,έ亥第一反射元件係設置於該第二聚焦鏡組與該全内反 射稜鏡之間,且該反射式液晶元件上之光強度以及光均勻度係因 應該第二反射元件之位置以及傾斜角度而改變。 I!In a preferred embodiment, the optical path planning component group includes at least a trapezoidal mirror for the second portion of the illumination pupil from the polarized light separating element to pass through at least the rear person to the full Internally reflecting the second prism; wherein the light polarity switching structure is disposed between the polarized light separating element and the trapezoidal mirror, or between the ladder mirror and the second dome; or The optical path planning component group includes at least: a first reflective component and a second reflective component respectively for reflecting each of the illumination beams incident thereon; and a second focusing lens group for adjusting the Receiving an incident angle of each illumination beam and outputting the same; wherein the first reflective element is disposed between the second focusing mirror and the total internal reflection, and the light intensity on the reflective liquid crystal element And the light uniformity changes depending on the position of the second reflecting element and the tilt angle. I!
P偏極光朿,而該些照明光束中之該第二部P-polarized aperture, and the second of the illumination beams
反射’其中’來自於該偏光分離元件之該第二部分照明光束係於 於一較佳實施例中 中的任一者皆係為一 p 分照明光朿中的任_者 一較佳貫施例中 別為一第一第一反射I音Reflecting 'where' the second portion of the illumination beam from the polarized separation element is in any of the preferred embodiments as a preferred embodiment of the p-light illumination pupil In the example, it is a first first reflection I sound.
元件後入射至4全内反射稜鏡之該第二稜鏡,並於該第二棱鏡之 〆第才目對面上產生全反射,其中,該光極性轉換結構係設置於 該偏光分,離元件與該第一反射元件之間,抑或是s置於該第一反 射元件與該第二聚焦鏡組之間,抑或是設置於該第二聚焦鏡組與 該第二反射元件之間,抑或是設置於該第二反射元件與該第二稜 鏡之間。 於一較佳實施例中,該些照明光束中之該第一部分照明光束 中的任一者皆係為一 s偏極光束,而該些照明光束中之該第二部 分明光朿中的任—者皆係為一 P偏極光束。 於一較佳實施例中,該光路規劃元件組更包括: 一第二反射元件,用以供入射至其上之每一照明光束產生反 12 M439819 射,以及 第二♦焦鏡組,分別用以調整其所接收之每一照明光東的 入射角度並予以輸出; 其中,來自於該偏光分離元件之該第二部分照明光束係於依 序經過該第三聚焦鏡組、該第一反射元件'該第三反射元件、該 第一水焦鏡組以及該第二反射元件後入射至該全内反射稜鏡之該 第二稜鏡,並於該第二稜鏡之該第二入光面上產生全反射;其中, /光極ht [換結構设置於該偏光分離元件與該第三聚焦鏡組之 mu置於該第三聚焦鏡組與該第—反射^件之間,抑或 疋。又置方…玄第一反射元件與該第三反射元件之間,抑或是設置於 該第三反射元件與該m鏡組之間,抑或是設置於該第二聚 焦鏡組與該第二反射元件之間’抑或是設置於該第二反射元件與 該第二稜鏡之間。 於-較佳實施例中,該照明裝置具有—發㈣,該發光源係 為-發光二極體(LED)光源’抑或是—高壓氣体光源(㈣),且該 發光源之-發光範圍介於〇度與刚度之間;其中,該照明裝置 係設置於—照明綠處’抑或是偏向設置於該照明光軸之-側。 於-較佳實施例中,本創作亦提供一種反射式液晶投影系 統,包括: -照明裝置’用以輪出第—複數個屬於一第一偏極性之照明 光束以及第二複數個屬於―第:偏極性之照明光東; 13 M439819 % -反射式液晶(LCQS)^t件,用以呈現—電子式影像畫面且 任-投射至該反射式液晶元件之照明光束係於該反射式液晶元件 上產生反射’並因應該電子式影像畫面而被轉換為―成像光束; 一光學鏡頭;以及 -光束處_組’設置於該照明裝置、該反射歧晶元件以 及該光學鏡頭之間,該光束處理模組純收之任—屬於該第一偏 極性之照明光束並予以輸出至該反射式液晶元件,且接收任一屬 於該第二偏極性之照明光束並予以轉換極性後輪出至該反射式液 晶元件’以及接收任—該成像光束並予以輸出至該光學鏡頭; 其中’該光束處理模組至少包括_全内反射⑽)稜鏡,且該 全内反射稜鏡係同時設置於該些屬於該第二極性之照明光束於被 轉換極性後的傳輸路徑上,以及設置於自該照明裝置所輸出之該 些屬於該第—極性與該第m照《束的傳輸路徑上。 方、較佳實〜例中’該光束處理模組更包括—偏光分離元件 (PBS),其用以供任— , 烏桎先束牙透其中,並供任_ s偏極光束 方;、其上產生反射,日 且忒王内反射稜鏡設置於該照明裝置以及該偏 光分離元件之間。 K實知例中’該全内反射稜鏡包括-第—稜鏡與一第 二稜鏡,且該第—狭拉ra 一 夂兄"有一第一入光面以及一第一相對面,而 古玄弟-一棱鏡具有_.货一 弟一入光面以及一第二相對面;其中,該第一 相對面與該第二相對面 & 小相對a又置,其中,該投影系統内形成有 14 M439819 一照明光軸,且該第一稜鏡之該第一相料 乐相對面與該照明光軸之間的 失角以及該第二賴之該第二相對面與該照明光轴之間的夹角皆 為45度,抑或是當該照明裝置被偏離該照明光軸處設置時,該第 一稜鏡之一惻面與該第二稜鏡之—側面冑 & ^ 直角二角形,而當 该照明裝置未被偏離該照明光轴處設置時 沒。又置日守,忒弟一稜鏡之該側面 與該第二稜鏡之該側面的組合係呈一平行四邊形。 於-較佳實施财,該光束處理模組更包括—檢光片,其設 之間,用以阻絕任一 p偏極 置於該偏光分離元件以及該光學鏡頭 s偏極光束入射至該光 光束入射至該光學鏡頭,抑或是阻絕任 學鏡頭 於一較佳實施例中,該光束處理模組更包括—光極性轉換結 構’其用以轉換該些屬於該第二極性之照明光束的極性,且自該 偏光分離元件輸出之些屬於該第二極性之照明光束係於通過該光 極性轉換結構後入射至該全内反射稜鏡。 方、較佳實施例中,該光極性轉換結構係為一 1/2波長片。 於一較佳實施例中,該光朿處理模組更包括—光路規劃元件 組’用以改變來自於該偏光分離^件之該些屬於㈣二極性之照 明光束的傳輸方向。 於I較佳實施例中,該光束處理模組更包括: 、:準直透鏡組’設置於該照明裝置與該全内反射稜鏡之間, 用以騎其所接收之每—照明光束的人射角度並予以輸出;以及 15 第一1焦鏡組, 之間,用以調整其所接 °又置於該全内反射稜鏡與該偏光分離元件 於一 收之每—照明光束的入射角度並予以輸出。 —較:實施例中,該光路規劃元件組係至少包括: 弟14肖Μ供來自於該偏光分離S件之該些屬於該第二 極性之照明光束至少 、穿·座過其中後入射至該全内反射稜鏡之該 第二稜鏡; 中4光極性轉換結構係、設置於該偏光分離^件與該梯形 k之間’抑或是設置於該梯形鏡與該第二稜鏡之間; 抑或是該光路規釗元件組係至少包括: 第反射元件與及一第二反射元件,分別用以供入射至其 上之每一照明光束產生反射;以及 一第二聚焦鏡組,用以調整其所接收之每一照明光朿的入射 角度並予以輸出; 其中,該第二反射元件係設置於該第二聚焦鏡組與該全内反 射稜鏡之間’且該反射式液晶元件上之光強度以及光均勻度係因 應該第二反射元件之位置以及傾斜角度而改變。 於一較佳赏施例中,任一屬於該第一偏極性之照明光束皆係 為一丨3偏極光東,而任一屬於該第二偏極性之照明光束係為一 s 偏極光束。 於一較佳實施例中,該第一反射元件與該第二反射元件係分 別為一第一第一反射鏡與一第二反射鏡’抑或是該第一反射元件 16 M439819 與έ玄第二反射元件係分別為一第一反射式偏光片與一第二反射式 偏光片,且該第-反射式偏光片與該第二反射式偏光片係分別用 以ί、任ρ偏極光束穿透其中並供任一 s偏極光束於其上產生 反射’其中’來自於該偏光分離元件之該些屬於該第二極性之照 光术ίτ·方、依序至少經過該第一反射元件' 該第二聚焦鏡組以及 該第二反射元件後入射至該全内反射稜鏡之該第二稜鏡,並於該After the component is incident on the second turn of the total internal reflection 稜鏡, and total reflection is generated on the opposite side of the second prism, wherein the optical polarity conversion structure is disposed on the polarized component, away from the component Between the first reflective element and the first reflective element, or s between the first focusing element and the second focusing element, or between the second focusing lens group and the second reflecting element, or And disposed between the second reflective element and the second ridge. In a preferred embodiment, any one of the first partial illumination beams of the illumination beams is an s-polar beam, and any one of the illumination beams is the second portion of the illumination beam. All are connected to a P-polar beam. In a preferred embodiment, the optical path planning component group further includes: a second reflective component for generating an inverse 12 M439819 shot for each illumination beam incident thereon, and a second ♦ focal focus group, respectively Adjusting the incident angle of each illumination light received by the illumination light, and outputting the second partial illumination beam from the polarization separation element sequentially through the third focusing mirror group, the first reflective component The third reflective element, the first hydrofocal lens group and the second reflective element are incident on the second pupil of the total internal reflection pupil, and the second illumination surface of the second pupil A total reflection is generated thereon; wherein, the light pole ht is changed between the third focusing mirror group and the first reflecting mirror, or 疋. And between the first reflecting element and the third reflecting element, or between the third reflecting element and the m mirror, or the second focusing lens group and the second reflection Between the elements is either disposed between the second reflective element and the second turn. In a preferred embodiment, the illumination device has a light source (four), and the light source is a light emitting diode (LED) light source or a high pressure gas light source ((4)), and the light source is illuminated. Between the twist and the stiffness; wherein the illumination device is disposed at the illumination green or is biased to the side of the illumination optical axis. In a preferred embodiment, the present invention also provides a reflective liquid crystal projection system comprising: - an illumination device for rotating a plurality of illumination beams belonging to a first polarity and a second plurality of : Polarized illumination light east; 13 M439819 % - Reflective liquid crystal (LCQS) ^t piece for presenting - an electronic image frame and optionally - an illumination beam projected onto the reflective liquid crystal element is attached to the reflective liquid crystal element A reflection is generated and converted into an "imaging beam" due to the electronic image frame; an optical lens; and a beam portion _ group is disposed between the illumination device, the reflective dislocation element, and the optical lens, the beam The processing module is purely received - belongs to the first polarized illumination beam and is output to the reflective liquid crystal element, and receives any illumination beam belonging to the second polarization and converts the polarity to rotate to the reflection The liquid crystal element 'and receives the imaging beam and outputs it to the optical lens; wherein 'the beam processing module includes at least _ total internal reflection (10)) 稜鏡, and the whole The shooting system is simultaneously disposed on the transmission path of the illumination beam belonging to the second polarity on the polarity after being converted, and is disposed on the first polarity and the mth photo that are output from the illumination device. On the transmission path of the bundle. In the case of a preferred embodiment, the beam processing module further includes a polarization separation element (PBS) for supplying the — 桎 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , A reflection is generated thereon, and the inner reflection of the king is disposed between the illumination device and the polarization separation element. In the example of K, 'the total internal reflection 稜鏡 includes - the first 稜鏡 and the second 稜鏡, and the first 狭 ra 夂 & 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一 有一The ancient mystery-a prism has a light-emitting surface and a second opposite surface; wherein the first opposite surface and the second opposite surface are smaller than a, wherein the projection system Forming an illumination optical axis of 14 M439819, and a lost angle between the opposite surface of the first phase of the first phase and the illumination optical axis and the second opposite surface of the second illumination and the illumination light The angle between the axes is 45 degrees, or when the illuminating device is disposed away from the illumination optical axis, the first 恻 surface and the second — side 胄 &; ^ right angle A square shape, but not when the illumination device is not positioned away from the illumination optical axis. Also placed in the sun, the combination of the side of the younger brother and the side of the second jaw is a parallelogram. Preferably, the beam processing module further includes a light detecting sheet disposed between the pair of polarizing elements and the polarized light beam of the optical lens to be incident on the light The light beam is incident on the optical lens, or is blocked in a preferred embodiment. In a preferred embodiment, the beam processing module further includes a light polarity switching structure for converting the polarity of the illumination beam belonging to the second polarity. And the illumination beam of the second polarity outputted from the polarization separation element is incident on the total internal reflection 后 after passing through the light polarity conversion structure. In the preferred embodiment, the optical polarity conversion structure is a 1/2 wavelength plate. In a preferred embodiment, the aperture processing module further includes an optical path planning component group for changing a transmission direction of the illumination beams belonging to the (four) two polarities from the polarization separation component. In a preferred embodiment, the beam processing module further includes: a collimating lens group disposed between the illumination device and the total internal reflection , for riding each of the received illumination beams The person shoots the angle and outputs it; and 15 the first 1 focus lens group, between which is used to adjust the contact thereof, and the total internal reflection 稜鏡 and the polarization separation element are incident on each of the illumination beams. Angle and output. - In the embodiment, the optical path planning component group includes: at least: the illumination beam from the second polarity from the polarization separation S component is at least passed through and then incident on the optical path The second 稜鏡 of the total internal reflection 稜鏡; the middle 4 light polarity conversion structure is disposed between the polarization separation member and the trapezoid k or is disposed between the ladder mirror and the second ridge; Or the optical path component group includes at least: a first reflective component and a second reflective component for respectively reflecting each of the illumination beams incident thereon; and a second focusing mirror for adjusting The incident angle of each illumination pupil received is outputted; wherein the second reflective component is disposed between the second focusing mirror and the total internal reflection ' and the reflective liquid crystal element The light intensity and the light uniformity are varied depending on the position of the second reflecting element and the tilt angle. In a preferred embodiment, any of the illumination beams belonging to the first polarity are one 丨3 pole-polar light, and any illumination beam belonging to the second polarity is an s-polar beam. In a preferred embodiment, the first reflective element and the second reflective element are respectively a first first mirror and a second mirror or the first reflective element 16 M439819 and the second The reflective elements are respectively a first reflective polarizer and a second reflective polarizer, and the first reflective polarizer and the second reflective polarizer are respectively used to penetrate the ρ and ρ polarized beams. Wherein any s-polar beam of light is reflected thereon, wherein the light-emitting elements of the polarized light separating element belong to the second polarity, and at least through the first reflective element The second focusing mirror group and the second reflecting element are incident on the second cymbal of the total internal reflection 稜鏡, and
〃夂·兄之β第—相對面上產生全反射;其中,該光極性轉換結 構係設置於該偏光分離元件與該第一反射元件之間,抑或是設置 第反射兀件與邊第二聚焦鏡組之間,抑或是設置於該第二 聚焦鏡組與該第二反射元件之間,抑或是設置於該第二反射元件 與該第二稜鏡之間。 於一The total reflection is generated on the opposite side of the β-the same; wherein the light polarity conversion structure is disposed between the polarized light separating element and the first reflective element, or is the second reflecting element disposed on the opposite side Between the mirror groups, whether it is disposed between the second focusing mirror group and the second reflecting element, or between the second reflecting element and the second cymbal. Yu Yi
之照明光束係為一 P ^ f h例中,任-屬於該第—偏極性之照明光束皆係 為S偏極光東,而任一屬於該第二偏極性 偏極光束。The illumination beam is in a P ^ f h example, and any of the illumination beams belonging to the first-polarity are S-polarized light, and any of the second-polar polarized beams.
於—較佳實施例中 .一第三反射元件, 射:以及 ,忒光路規劃元件組更包括: 用以供入射至其上之每一照明&束產生反 第二聚焦鏡組,分別用以調蚊苴 η正其所接收之每一照明光束的 入射角度並予以輸出; '、卜’來自於該偏光分離元件 十<6亥些屬於該第二極性之照明 光朿係於依序經過該第三聚焦 兄,,且8玄第一反射元件、該第三反 17 M439819 射元件4第一聚焦釦組以及該第二反射元件後入射至該全内反 射梭鏡之該第二賴,並於該第二稜鏡之該第二人光面上產生全 反射;其中’該光㈣轉換結構係設置於該偏光分離元件與該第 三聚焦鏡組之間,抑或是設置於該第三聚焦鏡組與該第一反射元 件之間,抑或是設置於該第—反射元件與該第三反射元件之間, 抑或是設置於該第三反射元件與該第二聚焦鏡組之間,抑或是設 置於該第二聚焦鏡組與該第二反射元件之間,抑或是設置於該第 二反射元件與該第二稜鏡之間。 於-較佳實施例中,該照明裝置具有—發光源,該發光源係 為-發光二極體(LED)光源,抑或是—高壓氣体规(UHp),且該 發光源之-發光範圍介於〇度與18〇度之間;其中,該照明裝置 係設置於-照明光軸處’抑或是偏向設置於該照明光軸之一側。 【實施方式】 請參閱圖3,其為本創作投影系統於第—較佳實施例之結構方 塊示意圖。投影系統3包括照明裝置3卜光束處理模組32、反射 式液晶(LC〇S);t件33以及光學鏡頭34 ;其中,照明裝f 31具有 -發光源,該發光源可為-發光二極體(咖)光源,抑或是一高壓 氣体光源⑴Η P ),X該發光源具有寬廣的發光範圍,較佳者,發光 源的电光!ihi於〇度# 1 8G度之間,且照明裝置係·可設置於照 18 M439819 明光轴處’抑或是偏向設置於照明光軸之—側。 又,照明裝置3!所提供之光源中部份為屬於p偏極性的照明 光朿丨m,另一部分則為屬於s偏極 .曰_ …' 昍九朿L3S,而反射式· 液“件33用以呈現—電子式影像畫面,並且僅需要被提供屬於 P偏極性的照日歧朿,亦即反射式液晶元们3不需要屬於s偏極 性的照明光束。 再者,光束處理模組32至少包括—光束回收模組321,且設 置於照明裝置31、反射式液晶元件33以及光學鏡頭Μ之間·二 中,照明裝置3丨所提供之日s明光束 ,^ Α . 、,…庀术會入射至光束處理模 組3 2,屬於P偏極性之照明光束‘直接被輸出至反射式液晶元 件3WW_ S偏極性的照明光束^則會被光束回收模組切轉 換為屬於p偏極性之照明光朿’以進而被輸出至反射式液晶元 件33。 日曰 ^缸射至反射式液晶元件33且屬於P偏極性的照明光 J丨丨312 έ方、反射式液晶元件3 3上產生反射,並因應電子式影 像畫面而被轉換為屬於s騎性的讀光束13 s,且該㈣於s偏 ^ ^的成像光束丨^會於經由光束處理模組32後再入射至光學鏡 頭,而光學鏡頭34則接收該些成像光束13S ’益予以投射至一 才又射面’進而能夠使反射式液晶S件33所呈現的電子式影像畫面 顯示於投射面上。 以此限定本 以下將单出數種本較佳實施例的實施態樣’但不 19 ^439819 創作的應用範疇,且任何熟知本技藝人皆可由下列數種實施態樣 所得到之啟示及依據實際應用需求進行任何均等的變化設計。 • 請參閱圖心其為圖3所示之投影系統於第一實施態樣的具體 - 、”。構與光路示意圖》於本實施態樣之投影系統3 A中,光朿處理模 組J2除包括上述光朿回收模組32丨之外,更包括準直透鏡模組 322、第一聚焦鏡組323、偏光分離元件(pBS)324以及檢光片, • 而光束回收模組321包括全内反射(T1R)稜鏡3211、光極性轉換結 構3212以及光路規劃元件組32丨3。 其中’準直透鏡模組322設置於照明裝置31與全内反射稜鏡 1丨之間,第一聚焦鏡組323設置於全内反射稜鏡32丨1與偏光分 離元件324之間,偏光分離元件324設置於第一聚焦鏡組323與 反射式’夜as元件33之間,而檢光片325則設置於偏光分離元件324 與光學鏡頭3 4之間。 鲁於第一實施態樣中,全内反射稜鏡3211包括第一稜鏡32丨丨丨 與第二稜鏡32115,第一稜鏡32111與第二稜鏡32U5皆係為三角 稜鏡,且第一種鏡32丨丨丨具有一第一入光面32n2、一第一相對面 32113以及介於第一入光面32丨丨2與第一相對面32n3之間的第一 稜鏡面32114,而第二稜鏡32丨丨5具有一第二入光面32丨丨6、一第 二相對面32117以及介於第二入光面32丨丨6與第二相對面32丨]7 之間的第二稜鏡面32118,其中,第一稜鏡321η的第一相對面 J2丨丨j與第二稜鏡32丨15的第二相對面32丨丨7係相對設置,且該二 20 M439819 者間具有間隙》 再者’偏光分離元件324係用以供任一屬於P偏極性之光束 穿透其中,並供任一屬於S偏極性之光束於其上產生反射,也就 疋只有屬於P偏極性之光朿能夠穿透偏光分離元件3 24 ;相反地, 松光片3 2 5則用以阻絕屬於屬於p偏極性之光束穿透其中,而僅 允。千屬於S偏極性之光朿能夠穿透其中,其主要目的是為了過濾 非义4c之光束進入光學鏡頭3 4 ’惟檢光片3 2 5並非是用以限定本 實施態樣之必要元件。 又‘直透$兄模姐3 2 2與第一聚焦鏡組3 2 3皆用以調整其所 接收之光束的入射角度並予以輸出,且經由準直透鏡模組322所 而光路規劃元件組In a preferred embodiment, a third reflective element, and the optical path planning component group further includes: an illumination unit for incident on each of the illumination & beam generating an inverse second focusing lens group, respectively Taking the angle of incidence of each illumination beam received by the mosquito 苴 η η and outputting it; ', 卜' from the polarization separation element ten < 6 Hai belongs to the second polarity of the illumination light system in order After the third focusing brother, and the 8th first reflecting element, the third reverse 17 M439819 element 4, the first focusing button set and the second reflecting element are incident on the second reflection of the total internal reflection bobbin And generating total reflection on the second person's light surface of the second layer; wherein the 'light (four) conversion structure is disposed between the polarization separation element and the third focusing lens group, or is disposed in the first Between the three focusing mirrors and the first reflecting element, or between the first reflecting element and the third reflecting element, or between the third reflecting element and the second focusing mirror, Or is it set to the second focusing mirror group and the first Between the reflective member, or is disposed between the second element and the second reflective Prism. In a preferred embodiment, the illumination device has a light source, which is a light-emitting diode (LED) light source, or a high-pressure gas gauge (UHp), and the light-emitting range of the light source Between the twist and 18 degrees; wherein the illumination device is disposed at the illumination optical axis or is disposed on one side of the illumination optical axis. [Embodiment] Please refer to FIG. 3, which is a schematic structural diagram of a creation projection system in a first preferred embodiment. The projection system 3 includes a lighting device 3, a beam processing module 32, a reflective liquid crystal (LC〇S), a t-piece 33, and an optical lens 34. The illumination device f 31 has a light source, and the light source can be a light-emitting device. A polar (cafe) light source, or a high-pressure gas source (1) Η P), X. The light source has a wide range of illumination, preferably, the electro-optic source of the illumination source! Ihi is between #1 and 8G degrees, and the illumination device can be placed at the light axis of 18 M439819 or at the side of the illumination optical axis. Moreover, part of the light source provided by the illumination device 3! is an illumination pupil m belonging to p-polarity, and the other part belongs to s-polarization. 曰_...' 昍 朿 朿 L3S, and reflective 液 liquid 33 is used to present an electronic image frame, and only needs to be provided with P-polarity, that is, the reflective liquid crystal cells 3 do not need to belong to the s-polar illumination beam. Furthermore, the beam processing module 32 includes at least a beam recovery module 321 and is disposed between the illumination device 31, the reflective liquid crystal element 33, and the optical lens unit ,, the illumination device 3 丨 provides the day s bright beam, ^ Α . , , ... The 庀 会 入射 入射 入射 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束 光束The illumination diaphragm 进而 is further outputted to the reflective liquid crystal element 33. The illuminating light is incident on the reflective liquid crystal element 33, and the illumination light J 312 which is P-polarized, and the reflective liquid crystal element 3 3 are generated. Reflecting and responding to electronic imagery It is converted into a read beam 13 s belonging to the s riding, and the imaging beam of the (4) s bias is incident on the optical lens after passing through the beam processing module 32, and the optical lens 34 receives the imaging. The light beam 13S is projected onto the front surface and then the electronic image frame presented by the reflective liquid crystal S member 33 can be displayed on the projection surface. The implementation aspect of the application, but not the application scope of 19 ^ 439819, and any skilled person can be inspired by the following implementations and any equal changes according to the actual application requirements. It is the specific -, "" of the projection system shown in FIG. 3 in the first embodiment. In the projection system 3 A of the present embodiment, the pupil processing module J2 includes a collimating lens module 322 and a first focusing lens group in addition to the above-mentioned diaphragm recovery module 32 323, a polarization separating element (pBS) 324 and a light detecting sheet, and the beam recovery module 321 includes a total internal reflection (T1R) 稜鏡 3211, a light polarity switching structure 3212, and an optical path planning component group 32 丨 3. The 'collimation lens module 322 is disposed between the illumination device 31 and the total internal reflection 稜鏡1丨, and the first focusing lens group 323 is disposed between the total internal reflection 稜鏡32丨1 and the polarization separating element 324, and the polarization separation is performed. The element 324 is disposed between the first focusing mirror group 323 and the reflective 'night as element 33, and the light detecting sheet 325 is disposed between the polarizing separating element 324 and the optical lens 34. In the first embodiment, the total internal reflection 稜鏡3211 includes a first 稜鏡32丨丨丨 and a second 稜鏡32115, and the first 稜鏡32111 and the second 稜鏡32U5 are both triangular 稜鏡, and The first type of mirror 32 has a first light incident surface 32n2, a first opposite surface 32113, and a first surface 32114 between the first light incident surface 32丨丨2 and the first opposite surface 32n3. The second 32稜鏡5 has a second light incident surface 32丨丨6, a second opposite surface 32117, and between the second light incident surface 32丨丨6 and the second opposite surface 32丨7 a second face 32118, wherein the first opposite face J2丨丨j of the first turn 321η is opposite to the second opposite face 32丨丨7 of the second turn 32丨15, and the two 20 M439819 There is a gap between the two. Further, the polarized light separating element 324 is used for any light beam belonging to the P-polarity to penetrate therethrough, and any light beam belonging to the S-polarity is reflected thereon, and only the P-bias is generated. The polar light can penetrate the polarized light separating element 3 24; conversely, the loose light piece 3 2 5 is used to block the light beam belonging to the p-polarity from penetrating therein, and only allow. The light source of the S-polarity can penetrate therethrough, and its main purpose is to filter the beam of the non-sense 4c into the optical lens 34'. However, the photodetector 3 2 5 is not a necessary element for defining the embodiment. And ‘through the $ brother model 3 2 2 and the first focusing lens group 3 2 3 are used to adjust the incident angle of the received beam and output it, and through the collimator lens module 322 and the optical path planning component group
照明光束的入射角度並予以輪出。 »周整且輸出之光朿皆位於一小角度範圍内,而为 3213則用以改變及規釗屬於8偏極性之照明光束l 收模組32 1的傳輸方向,於本實施態樣中, 第一反射元件32131與 補充說明的是,於第—實施態樣中, 21 第二反射元件㈣A可分別為—第一第一反射鏡與一第二反射 .兄亦可以為第-反射式偏光片與第二反射式偏光片;盆中, 第一反射式偏光片與第:反射式偏光片是分洲以供任-P、偏極 光朿穿透其中’並供任-s偏極光束於其上產生反射。The angle of incidence of the illumination beam is turned out. » The circumference of the output and the output pupil are all located within a small angle range, and the 3213 is used to change and regulate the transmission direction of the illumination beam receiving module 32 1 belonging to the 8-polarity. In this embodiment, The first reflective element 32131 and the supplementary description are that, in the first embodiment, the second reflective element (four) A can be - the first first mirror and the second reflection respectively. The brother can also be the first-reflective polarized light. a sheet and a second reflective polarizer; in the basin, the first reflective polarizer and the first: reflective polarizer are divided into continents for allowing -P, a polarized aperture to penetrate therein and supplying a -s polarized beam A reflection is generated thereon.
光極吐tV換,.'。構j2 1 2係用以將進入光朿回收模組32】且 屬於S偏極性的照明光朿丨遍為屬於丨)偏極性的照明光束 J,>2方、第W 樣中,光極性轉換結構3212可為一丨/2波長 片’且没置於第二反射元件32Π2α與全内反射棱鏡32H之間, 仁不以此為限’如光極性轉換結豸32丨2亦可設置於偏光分離元件 324與第-反射元件32|31之間,抑或是設置於第一反射元件 32131與第二聚焦鏡組32133之間,抑或是設置於第二聚焦鏡組Light spit tV change, .'. The structure j2 1 2 is used to enter the pupil recovery module 32] and belongs to the S-polarized illumination pupil as the illumination beam J of the polarity ,), > 2, W, and the polarity of the light The conversion structure 3212 can be a 丨/2 wavelength plate 'and is not disposed between the second reflective element 32 Π 2α and the total internal reflection prism 32H, and is not limited thereto. For example, the light polarity conversion junction 32 丨 2 can also be set in Between the polarized light separating element 324 and the first reflecting element 32|31, or between the first reflecting element 32131 and the second focusing lens group 32133, or the second focusing lens group
32m與第二反射元件32I312A之間(以上所述之變化設計圖式 均不不出)’纟要目白勺是使由光束回收模.组321回收且進入全内反 射k知3 2 1 1的知、明光朿皆能是屬於p偏極性的照明光束。 接下來說明本實施態樣中之投影系統3A的作動過程。照明裝 置j丨所提供之照明光束會於依序穿經過準直透鏡模組322、第一 稜鏡32111的第一入光面32丨丨2、第—稜鏡32in的第一相對面 w丨丨3、第二稜鏡32丨丨5的第二相對面32丨丨7、第二稜鏡32u5的 第一枝銳面32118以及第一聚焦鏡組323後入射至偏光分離元件 d4 ’屬於p偏極性之照明光朿丨係穿經過偏光分離元件324而 才又射至反射式液晶元件3 3 ’而屬於s偏極性的照明光束匕^則於偏 22 M439819 光分離7L件324上產生反射,並於繼續依序經過第一反射元件 j21j1、第二聚焦鏡組32丨33 '第二反射元件32Π2α以及光極性 轉換結構3212後轉換為屬於Ρ偏極性的照明光朿^^。接著該 些屬t Ρ偏極性的照明光束L3i>2由第二稜鏡32115的第二入光面 j21丨6進入第二稜鏡321 15 ’並於第二相對面32丨丨7上產生全反 射以再度於穿經過第二稜鏡321丨5的第二梭鏡面321 18、第—聚 … 兒’.· j_3後入射至偏光分離元件324,因而能夠穿經過偏光分離 元件324而投射至反射式液晶元件33。 又4些屬於丨3偏極性的照明光束ΐ^ρ|、L3p2投射至反射式液 曰曰凡件》上會產生反射,並因應電子式影像畫面而被轉換為屬於 S偏知|±的成像光束丨π,且該些屬於$偏極性的成像光束^會再 度入射至偏光分離元件324,並於偏光分離元件324上產生反射 迕礼夠灰牙經過檢光片325後入射至光學鏡頭34,光學鏡頭34Between 32m and the second reflective element 32I312A (the above-mentioned changes are not shown in the design drawings), the main purpose is to recover the beam recovery mode group 321 and enter the total internal reflection k 2 1 1 1 Both knowing and bright light can be p-polarized illumination beams. Next, the operation of the projection system 3A in the present embodiment will be described. The illumination beam provided by the illumination device is sequentially passed through the collimating lens module 322, the first light incident surface 322 of the first weir 32111, and the first opposite surface w第 of the first 32in丨3, the second opposite surface 32丨丨7 of the second 稜鏡32丨丨5, the first acute surface 32118 of the second 稜鏡32u5, and the first focusing mirror group 323 are incident on the polarization separating element d4′, belonging to p The polarized illumination pupil is passed through the polarizing separation element 324 and is incident on the reflective liquid crystal element 3 3 ', and the illumination beam belonging to the s-polarity is reflected on the 22 L439819 light separation 7L member 324. And continuing to pass through the first reflective element j21j1, the second focusing mirror group 32丨33 'the second reflecting element 32Π2α and the light polarity switching structure 3212, and then converted into an illumination diaphragm belonging to the Ρ-polarity. Then, the illumination light beams L3i>2 which are t Ρ polarized are entered into the second 稜鏡321 15 ′ by the second light incident surface j21 丨 6 of the second 稜鏡 32115 and are generated on the second opposite surface 32 丨丨 7 The reflection is again incident on the second separation mirror surface 321 18, the first ... s. j_3 after passing through the second 稜鏡321丨5, and is incident on the polarization separating element 324, so that it can be passed through the polarization separating element 324 and projected to the reflection. Liquid crystal element 33. Four other illumination beams belonging to 丨3, which are polarized, ΐ^ρ|, L3p2, projected onto the reflective liquid 曰曰, will produce reflections, and will be converted into S-predicted |± images in response to the electronic image. The light beam 丨π, and the image light beams belonging to the $bias polarity are again incident on the polarization separating element 324, and the reflection light is generated on the polarization separating element 324. The gray teeth are incident on the optical lens 34 after passing through the light detecting sheet 325. Optical lens 34
、= 並輻出省些成像光束丨π,使得反射式液晶元件33所呈現的 t 了式衫像畫面被投射至投射面9上。 h特別說明的是,基於司乃耳定律(Sndl.sLaw),任-光束若 疋^適田的人射角度人射至第二稜鏡32115的第二相對面32117, ’射^透第二稜鏡32丨丨5的第二相對面32丨丨7,否則會於第二稜鏡 n ;,第—相對面32丨丨7上產生全全反射:同樣地,任一光束若 是以適當的人射角度人射至第:稜鏡32丨15的第二相對面3川7 、J Γ方' 第一稜鏡32丨丨5的第二相對面32丨丨7上產生全反射, 23 M439819 否則會穿运弟二棱鏡32115的第二相對面321丨7。其中,司乃耳定 律為熟知此技藝人士所知悉,故在此即不再予以贅述。 因此’本實施態樣中來自於照明裝置31所輸出之該些屬於p 偏極性以及屬於S偏極性的照明光束Lp,、Lis,以及該些藉由光 極性轉換結構32 1 2而自屬於S偏極性的照明光束l3s轉換為p極 性的照明光束丨1>2 ’雖然都會於傳輸路徑上入射至全内反射棱鏡 j 2 1 1之第二稜鏡32 I 1 5的第二相對面32丨丨7,但本創作藉由調整 心’、明裝置3 1、準直透鏡模組3 22、第一聚焦鏡組323、第一反射元 件32131、第二聚焦鏡組32133及/或第二反射元件32】32a所設置 的位置,或疋上述任一元件間的相對位置關係,或是全内反射稜 j _丨1中第稜知> 3 2丨1丨與第二稜鏡3 21丨5的形狀,並調整與規 劃出適當之任一照明光束於入射至第二稜鏡32丨丨5之第二相對面 32117時的入射角度,將可使得.全内反射棱鏡2]丨之第二稜鏡 J-丨丨5的第一相對面32丨丨7還是能夠提供來自照明裝置3 1所輸出 之該些屬於P偏極性的照明光束h n與該些屬於s偏極性的照明光 朿π穿透其中,並提供該些藉由光極性轉換結構κ丨2而從屬於§ 而I·生的,日.?、明光束k轉換& p極性的照明光束匕把於其上產生反 射。 柃佳者’照明裝置3丨係設置偏離投影系統3A的照明光轴35, S反射稜^3211中之第—稜鏡32ιη的側面與第二棱鏡 的側面白匕呈直角三角形,其如圖4所示。抑或是,照明裝置 24 M439819 3丨未設置偏離照明光軸35處(圊未示出),且全内反射稜鏡32丨丨 中之第一稜鏡32丨丨丨之側面與第二稜鏡32115之側面的組合係呈 —平行四邊形(圖未示出)。 再者’為了避免直接穿透第二棱鏡32丨丨5之第二相對面32丨17 的照明光束L3l>i、hs以及於第二稜鏡332之第二相對面產生反射 的照明光束於第二稜鏡321丨5的第二稜鏡面321丨8輸出時失去 對稱性,造成反射式液晶元件33所呈現的電子式影像畫面於投射 面9上成象時產生不對稱像差的情況,因此,於照明裝置3丨設置 偏離照明光軸的前提下’本實施態樣中的第一稜鏡32丨1丨的第一 相對面32丨丨3與照明光軸35之間的夾角以及第二稜鏡32u5的第 二相對面32117與照明光軸35之間的夾角皆為45度。 由以上說明並比較先前技術中的投影系統2可知,當二者照 明裝置31、21所提供之照明光源的光量皆相同的情况下,因本實 施態樣之投影系統3 A能夠將投射至偏光分離元件3 2 4上且產洼反 射的照明光束Lls;,即反射式液晶元件33不需要的照明光束,予 以回收轉換極性後再度利用,使得本實施態樣之投影系統3A能夠 令光學鏡頭34接收到較多的成像光束y,進而提高投影系統从 所能輸出的光流明數。 請參閱圖5’其為圖3所示之投影系統於第二實施態樣的具體 結構與光路示意圖。本實施態樣之投影系統扣大致類似於前述第 z實施態樣之投影系統3A所述者,在此即不再予以 25 M439819 施態樣與前述第一實施態樣的不同之處在於,光路規劃元件組 •;)2丨3係包括第一反射元件32丨31、第二反射元件3213213以及第二 聚焦鏡組32丨33;其中,第二反射元件32132B所設置之位置與角 度被改變(虛線所示為第一實施態樣中第一反射元件32132a所設 置之位置與角度),如此會改變該些從屬於s偏極性的照明光束 轉換為該些P極性的照明光束^ η於入射至第二稜鏡3 2 n 5的第二 相對面321 17上時發生全反射的位置,進而提升反射式液晶元件 33上的光強度以及光均勻度。 請參閱圖6’其為圖3所示之投影系統於第三實施態樣的具體 結構與光路示意圖。本實施態樣之投影系統3C大致類似於前述第 一實施態樣之投影系統3A所述者,在此即不再予以贅述。 而本赏施態樣與前述第一實施態樣的不同之處在於,前述第 一赏施態樣中之第一反射元件32丨3卜第二聚焦鏡組32丨33以及第 二反射元件32132A,係被本實施態樣之投影系統3C的梯形鏡 32134取代;其中,光極性轉換結構3212係設置於梯形鏡 與第二稜鏡32115 ,亦可設置於梯形鏡32134與偏光分離元 件324之間。 請參閱圖7 ’其為本創作投影系統於第二較佳實施例之結構方 塊不意圖。投影系統4包括照明裝置4卜光朿處理模組42、反射 式漱晶(LCOS)元件43以及光學鏡頭44 ;其中,照明裝置4丨具有 一發光源,該發光源可為—發光二極體(LED)光源,抑或是—高壓 26 M4J9819 乳体光源(UHP)’且該發光源具有寬廣的發光範圍,較佳者笋光 源的發光範圍介於°度與18〇度之間,且照明袭置係可設置:照 月光袖處’抑或是偏向設置於照明光軸之一側。 ,又h明裝置41所提供之光源令部份為屬於p偏極性的照明 光束吣3 4分則為屬於s偏極性之照明光束[⑸而反射式 液晶元件43用以呈現—f子式影像f面,並且僅需要被提供屬於And = and the imaging beam 丨π is radiated, so that the image of the shirt image presented by the reflective liquid crystal element 33 is projected onto the projection surface 9. hSpecially stated, based on the Snell's law (Sndl.sLaw), the beam-beam 疋^ 适 的 的 人 人 人 人 人 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115第二32丨丨5 the second opposite face 32丨丨7, otherwise it will produce total reflection at the second 稜鏡n;, the first opposite face 32丨丨7: Similarly, any beam is appropriate The person shoots the angle to the person: the second opposite face of 稜鏡32丨15 3, J Γ方' the second opposite face 32丨丨7 of the first 稜鏡32丨丨5 produces total reflection, 23 M439819 Otherwise, the second opposing face 321丨7 of the second prism 32115 will be worn. Among them, the Syner's Law is known to those skilled in the art, so it will not be repeated here. Therefore, the illumination light beams Lp, Lis belonging to the p-polarity and belonging to the S-polarity output from the illumination device 31 in the present embodiment are self-owned by the light polarity conversion structure 32 1 2 The polarized illumination beam l3s is converted into a p-polar illumination beam 丨1>2', although it is incident on the transmission path to the second opposite face 32 of the second 稜鏡32 I 1 5 of the total internal reflection prism j 2 1 1丨丨7, but the creation is by adjusting the heart, the device 3 1 , the collimating lens module 3 22 , the first focusing lens group 323 , the first reflecting element 32131 , the second focusing lens group 32133 and/or the second reflection The position of the element 32] 32a, or the relative positional relationship between any of the above elements, or the first internal knowledge of the total internal reflection edge j _ 丨 1 > 2 2 丨 1 丨 and the second 稜鏡 3 21 丨The shape of 5, and the angle of incidence of any suitable illumination beam when it is incident on the second opposing face 32117 of the second 稜鏡32丨丨5, can be made such that the total internal reflection prism 2] The first opposing face 32丨丨7 of the second J-丨丨5 is still capable of providing the output from the illumination device 31 The illumination beam hn belonging to the P-polarity and the illumination pupils π belonging to the s-polarity penetrate therein, and provide the λ and I are born by the light polarity conversion structure κ丨2, and the day. The illumination beam of the bright beam k-converts & p-polarity produces a reflection thereon. The illumination device 3 is disposed away from the illumination optical axis 35 of the projection system 3A, and the side of the first reflection edge 3222 of the S reflection edge 3211 is a right triangle with the white side of the second prism, as shown in FIG. Shown. Or, the illumination device 24 M439819 3丨 is not provided offset from the illumination optical axis 35 (not shown), and the first side 32全 of the total internal reflection 稜鏡32丨丨 and the second side The combination of the sides of 32115 is a parallelogram (not shown). Furthermore, in order to avoid the illumination beam L3l>i, hs which directly penetrates the second opposite surface 32丨17 of the second prism 32丨丨5 and the illumination beam which is reflected on the second opposite surface of the second pupil 332, The second surface 321 丨 8 of the second 321 丨 5 loses symmetry at the output, causing an asymmetrical aberration when the electronic image frame presented by the reflective liquid crystal element 33 is imaged on the projection surface 9, thus Under the premise that the illumination device 3 is disposed away from the illumination optical axis, the angle between the first opposite surface 32丨丨3 of the first 稜鏡32丨1丨 and the illumination optical axis 35 in the present embodiment and the second The angle between the second opposing surface 32117 of the 稜鏡32u5 and the illumination optical axis 35 is 45 degrees. As can be seen from the above description and comparison of the projection system 2 of the prior art, when the light amounts of the illumination sources provided by the illumination devices 31 and 21 are the same, the projection system 3 A of the present embodiment can project the polarization to the polarized light. The illumination beam Lls on the separation element 3 2 4 and the pupil-reflected illumination beam, that is, the illumination beam not required by the reflective liquid crystal element 33 is recovered and converted and then reused, so that the projection system 3A of the present embodiment can make the optical lens 34 More imaging beams y are received, thereby increasing the optical flow output from the projection system. Please refer to FIG. 5' which is a schematic diagram of a specific structure and an optical path of the projection system shown in FIG. The projection system of the present embodiment is substantially similar to the projection system 3A of the foregoing z-th embodiment, and the difference between the 25 M439819 and the first embodiment is that the optical path is different. The planning component group; 2) 3 includes a first reflective component 32丨31, a second reflective component 3213213, and a second focusing mirror 32丨33; wherein the position and angle of the second reflective component 32132B are changed ( The dashed line shows the position and angle of the first reflective element 32132a in the first embodiment, so that the illumination beam subordinate to the s-polarity is converted into the illumination beam of the P-polarity. The position where total reflection occurs on the second opposing surface 321 17 of the second 稜鏡 3 2 n 5 further enhances the light intensity and uniformity of light on the reflective liquid crystal element 33. Please refer to FIG. 6' which is a schematic diagram of the specific structure and optical path of the projection system shown in FIG. 3 in the third embodiment. The projection system 3C of the present embodiment is substantially similar to that of the projection system 3A of the first embodiment described above, and will not be further described herein. The present embodiment differs from the foregoing first embodiment in that the first reflective element 32 丨 3 in the first preferred embodiment and the second focusing mirror 32 丨 33 and the second reflective element 32 132A The image is replaced by a trapezoidal mirror 32134 of the projection system 3C of the embodiment; wherein the photopolarity conversion structure 3212 is disposed between the trapezoidal mirror and the second crucible 32115, or between the trapezoidal mirror 32134 and the polarized light separating component 324. . Please refer to FIG. 7 ' which is a structural block of the second preferred embodiment of the present creative projection system. The projection system 4 includes a lighting device 4, a light processing module 42, a reflective crystal (LCOS) element 43 and an optical lens 44. The illumination device 4 has a light source, and the light source can be a light emitting diode. (LED) light source, or - high voltage 26 M4J9819 milk light source (UHP)' and the light source has a wide range of light, preferably the light source of the bamboo shoot light source range between ° degrees and 18 degrees, and the illumination The setting can be set: according to the moonlight sleeve or biased to one side of the illumination optical axis. And the light source provided by the device 41 is a part of the illumination beam belonging to the p-polarity 吣3 4 is an illumination beam belonging to the s-polarity [(5) and the reflective liquid crystal element 43 is used to present the -f sub-image f face, and only need to be provided to belong
爲m’J光束’亦即反射式液晶元件43不需要屬於p偏極 性的照明光束。 再者,光束處理模組42至少包括一光朿 q η人俠組 置於照明裝置41、及Μ -V· ,¾曰-从丨, 夂射式液3日兀件.4j以及光學鏡頭44之間;其 中’照明裝置41所楛佴夕ep ω 土才, '、,,?、月光束匕仆、U丨SI會入射至光束處理模 組42 ’屬於S偏極性之照明光束L⑸直接被輸出至反射式液晶元 件43’而相P偏極性的照明光束則會被光束回收模組切 轉換為屬於S偏極性之照明光束、,以進而被輸出至反射式液晶 元件4 3。 又,任一投射至反射式液晶元件43且屬於s偏極性的照明光 朿hsi匕‘⑸會於反射式液晶元件43上產生反射,並因應電子式影 像畫面而被轉換為屬於P偏極性的成像光朿丨",,且該些屬於卩偏 極性的成像光束丨^,會於經由光束處理模組42後再入射至光學鏡 頭44,而光學鏡頭44則接收該些成像光束丨扑,並予以投射至一 投射面,進而能夠使反射式液晶元件43所呈現的電子式影像畫面 27 M439819 顯示於投射面上。 以下將舉出數種本較佳實施例的實施態樣,但不以此限定本 創作的應用範疇,且任何熟知本技藝人皆可由下列數種實施態樣 所得到之啟示及依據實際應用需求進行任何均等的變化設計。 請參閱圊8,其為圖7所示之投影系統於第一實施態樣的具體 結構與光路示意圖。於本實施態樣之投影系統4a中,光束處理模 組42除包括光束回收模組421之外,更包括準直透鏡模組422、 第一聚焦鏡組423、偏光分離元件(PBS) 424以及檢光片425 ;其 中’而光朿回收模組421包括全内反射(TIR)稜鏡4211、光極性轉 換結構42丨2以及光路規劃元件組42 1 3。 其中’準直透鏡模組422設置於照明裝置41與全内反射稜鏡 4211之間’第一聚焦鏡組423設置於全内反射稜鏡4211與偏光分 離元件424之間,偏光分離元件424設置於反射式液晶元件43與 檢光片425之間’而檢光片525則設置於偏光分離元件424與光 學鏡頭44之間。 於第一實施態樣之投影系統4A中’全内反射稜鏡42 1丨包括 第一稜鏡42111與第二稜鏡42115,第一稜鏡4211丨與第二棱鏡 42115皆係為三角稜鏡,且第一稜鏡42丨丨丨具有一第—入光面 42 1 1 2、—第一相對面42 1丨3以及介於第一入光面42 1 1 2與第一相 對面42丨丨3之間的第一稜鏡面42丨丨4,而第二稜鏡421 15具有一第 二入光面42116、一第二相對面42117以及介於第二入光面42丨16 28 與第二相對面42丨i7之間的第二稜鏡 42丨丨丨的第一相對面42丨丨3與第二稜鏡 係相對設置,且該二者間具有間隙。The m'J beam, that is, the reflective liquid crystal element 43, does not require an illumination beam belonging to p-polarity. Furthermore, the beam processing module 42 includes at least one aperture, a group of people, a lighting device 41, and a Μ-V·, a 3⁄4曰-slave, a sputum liquid, a 3D element, and an optical lens 44. Between the illuminating device 41, the epoch ω soil, ',,,?, the moon beam 匕 servant, U 丨 SI will be incident on the beam processing module 42 'the S-polarized illumination beam L (5) is directly The illumination beam that is output to the reflective liquid crystal element 43' and whose phase P is polarized is converted into an illumination beam belonging to the S-polarity by the beam recovery module, and is further output to the reflective liquid crystal element 43. Further, any illumination diaphragm hsi匕' (5) that is projected to the reflective liquid crystal element 43 and belongs to the s-polarity will be reflected on the reflective liquid crystal element 43 and converted into P-polarity in response to the electronic image frame. The imaging apertures, and the imaging beams belonging to the polarities are incident on the optical lens 44 after passing through the beam processing module 42, and the optical lens 44 receives the imaging beams. The projection image is projected onto a projection surface, and the electronic image frame 27 M439819 presented by the reflective liquid crystal element 43 can be displayed on the projection surface. The embodiments of the preferred embodiment are exemplified below, but the scope of application of the present invention is not limited thereto, and any person skilled in the art can obtain the following several embodiments to realize the application and the actual application requirements. Make any equal change design. Please refer to FIG. 8, which is a schematic diagram of the specific structure and optical path of the projection system shown in FIG. 7 in the first embodiment. In the projection system 4a of the present embodiment, the beam processing module 42 further includes a collimating lens module 422, a first focusing lens group 423, a polarization separating element (PBS) 424, and the like, including a beam recovery module 421. The light detecting sheet 425; wherein the 'light recovery module 421 includes total internal reflection (TIR) 稜鏡 4211, a light polarity conversion structure 42 丨 2, and an optical path planning element group 42 1 3 . The 'collimation lens module 422 is disposed between the illumination device 41 and the total internal reflection 稜鏡 4211. The first focusing lens group 423 is disposed between the total internal reflection 稜鏡 4211 and the polarization separating element 424, and the polarization separating element 424 is disposed. The light detecting sheet 525 is disposed between the reflective liquid crystal element 43 and the light detecting sheet 425, and is disposed between the polarized light separating element 424 and the optical lens 44. In the projection system 4A of the first embodiment, the 'total internal reflection 稜鏡 42 1 丨 includes a first 稜鏡 42111 and a second 稜鏡 42115, and the first 稜鏡 4211 丨 and the second prism 42115 are both triangular 稜鏡And the first 稜鏡42丨丨丨 has a first light incident surface 42 1 1 2, a first opposite surface 42 1丨3, and a first light incident surface 42 1 1 2 and a first opposite surface 42丨The first side 42 丨丨 4 between the 丨 3, and the second 稜鏡 421 15 has a second light incident surface 42116, a second opposite surface 42117, and a second light incident surface 42 丨 16 28 and The first opposing face 42丨丨3 of the second turn 42丨丨丨 between the opposite faces 42丨i7 is disposed opposite the second tether and has a gap therebetween.
*再者,偏光分離元件424係用以供任一屬於p偏極性之光束 穿遠其中’並提供任-屬於s偏極性之光束於其上產生反射也 就是只有屬於丨)偏極性之光束能夠穿透偏光分㈣件424;相反 地’檢光片425則用以阻絕屬於屬於8偏極性之光束穿透其中, 而僅允許屬於P偏極性之光朿能夠穿透檢光片心,其主要目的是 為了過遽、非必要之光庚谁人氺妈^止5S ,, 术選光千1兄碩3ό ’惟檢光片425並非是用 以限定本實施態樣之必要元件。In addition, the polarized light separating element 424 is used to allow any beam belonging to the p-polarity to pass through the beam and to provide a light beam on which the light beam of the s-polarity is reflected, that is, only belongs to the erbium. Penetrating the polarized light (four) piece 424; on the contrary, the 'light-measuring piece 425 is used to block the light beam belonging to the 8-polarity from penetrating therein, and only the light-emitting element belonging to the P-polarity can penetrate the light-detecting piece core, and the main The purpose is to pass the blasphemy, the non-essential light Geng who is aunt and the mother to stop 5S, the choice of light thousand 1 brothers master 3 ό 'only the light film 425 is not the necessary elements to limit the implementation of this embodiment.
面42丨丨8 ’其中,第一稜鏡 42丨丨5的第二相對面42H 7 又’準直这鏡模組422與第一聚焦鏡組423皆用以調整其所 接收之光朿的人射角度Η以輪出,且經㈣直透鏡模組似所 調整且輸出之光束皆位於一小角度範圍内,而光路規劃元件組 4」j則用以改變及規|彳屬於ρ偏極性之照明光束丨1於進入光束 回收k組42 1的傳輪方向,於本實施態樣中,光路規劃元件組4川 係包括第-反射元件42m、第二反射元件42132、第三反射元件 42134 '第二聚焦、鏡組42133以及第三聚焦鏡組42丨35 ;其中’第 三聚焦鏡組42135設置於偏光分離元件424與第一反射元件斗以^ 之間,第二反射元件42134設置於第一反射元件4213丨與第二聚 焦鏡組42133之間,且第二反射元件42132言史置於第二聚焦鏡組 4 - 3人王内反射棱鏡4 2丨丨之間;又,第一反射元件4 3丨、第 29 M439819 二反射7C件42132以及第三反射元件42丨34係分別用以供入射至 其上之每一照明光束產生反射,而第二聚焦鏡組42丨以及第三 聚焦鏡組42135則分別用以調整其所接收之每一照明光束的入射 角度並予以輪出。 又,光極性轉換結構42丨2係用以將進入光束回收模組421且 屬於P偏極性的照明光朿L叩轉換為屬於S偏極性的照明光朿 Us? ’於本貫施態樣中,光極性轉換結構可42丨2為一 1 /2波長片, 且設置於第二反射元件42132與全内反射稜鏡4211之間,但不以 此為限’如光極性轉換結構42丨2亦可設置設置於偏光分離元件 424與第三聚焦鏡組42丨35之間,抑或是設置於第三聚焦鏡組 42135與第一反射元件4213丨之間’抑或是設置於第一反射元件 4213丨與第三反射元件42丨34之間,抑或是設置於第三反射元件 42134與第二聚焦鏡組42133之間,抑或是設置於第二聚焦鏡組 42133與第二反射元件42132之間(以上所述之變化設計,圖式均 未不出)’主要目的是使由光束回收模組回收且進入全内反射稜鏡 42 1 1的照明光束皆能是屬於s偏極性的照明光朿。 接下來說明本實施態樣中之投影系統4 A的作動過程。照明裝 置4丨所提供之照明光朿L4p、L⑸會於依序穿經過準直透鏡模組 422、第—稜鏡42丨丨1的第一入光面42丨丨2、第一稜鏡4211丨的第 一相對面421 13、第二稜鏡42丨15的第二相對面42丨丨7、第二稜鏡 421 15的第二稜鏡面42丨丨8以及第一聚焦鏡組423後入射至偏光分 30 M439819 fi在元件424屬於S偏極性之照明光束L,ISI係於偏光分離元件424 上產生反射,進而投射至反射式液晶元件43 ,而屬於P偏極性的 照明光束匕仆則直接穿經過偏光分離元件424,並於繼續依序經過 弟二聚焦鏡組42135、第一反射元件4213卜第三反射元件42丨34、 苐二聚焦鏡組42133、第二反射元件42132以及光極性轉換結構 42 1 2後轉換為屬於s偏極性的照明光束 接著些屬於S偏極性的照明光朿l;|S2由第二稜鏡42丨丨5的 第二入光面42116進入第二稜鏡,並於第二相對面42n7上產生 全反射,以再度於穿經過第二稜鏡42丨丨5的第二稜鏡面42n8、第 +焦知J且423後入射至偏光分離元件424,以進而能夠在偏光分 離7C件424上產生反射而投射至反射式液晶元件43。 又,該些屬於S偏極性的照明光束l也、匕说投射至反射式液 晶7L件43上會產生反射,並因應電子式影像畫面而被轉換為屬於 丨3偏極性的成像光朿丨’且該些屬於p偏極性的成像光束丨仆會再 度投射至偏光分離元件424,並穿經過偏光分離元件424 ,進而能 夠方;;、穿經過檢光片425後入射至光學鏡頭44,光學鏡頭44則接收 並牵刖出泫些成像光束丨仆’使得反射式液晶元件43所呈現的電子式 影像畫面被投射至投射面9上。 特別說明的是,基於司乃耳定律(Sne丨丨,s Law),任一光束若 是以適當的入射角度入射至第二稜鏡42 n 5的第二相對面42 n 7 則可穿透第二稜鏡421 15的第二相對面42丨丨7,否則會於第二稜鏡 31 M439819 同樣地,任一光束若是 42 1 I 5的第二相對面42丨丨7上產生全反射; 以適當的人射角度入射至第二射竟42n5的第二相對面切口 上’則於第二棱鏡42丨丨5的第二相對面42丨丨7上產生全反射, 否則會穿透第二稜鏡42 1 1 5的第二相對面42 n 7。其中,司乃耳定 律為熟知此技藝人士所知悉,故在此即不再予以贅述。The face 42 丨丨 8 ′, wherein the second opposite face 42H 7 of the first 稜鏡 42 丨丨 5 is 'collimated', the mirror module 422 and the first focusing mirror group 423 are both used to adjust the aperture of the received lens The angle of the human shot is rounded out, and the beam is adjusted by the (four) straight lens module and the output beam is located in a small angle range, and the optical path planning component group 4"j is used to change and the 彳 is ρ bias The illumination beam 丨1 enters the direction of the transmission of the beam recovery group k 42. In this embodiment, the optical path planning component group 4 includes a first reflection element 42m, a second reflection element 42132, and a third reflection element 42134. 'Second focus, mirror group 42133 and third focusing mirror group 42丨35; wherein 'the third focusing mirror group 42135 is disposed between the polarization separating element 424 and the first reflecting element bucket, and the second reflecting element 42134 is disposed at Between the first reflective element 4213丨 and the second focusing mirror group 42133, and the second reflective element 42132 is placed between the second focusing mirror group 4-3 the inner reflection prism 4 2丨丨; Reflecting element 4 3丨, 29th M439819 second reflecting 7C piece 42132 and third reflecting element 42丨34 The two focusing mirrors 42A and the third focusing mirrors 42135 are respectively used to adjust the incident angle of each illumination beam received by the illumination lens, and the second focusing lens group 42135 is respectively used to adjust the incident angle of each illumination beam received by the illumination lens. Take out. Moreover, the light polarity switching structure 42丨2 is used to convert the illumination light 朿L叩 entering the beam recovery module 421 and belonging to the P-polarity into the illumination light 朿Us that belongs to the S-polarity in the present embodiment. The light polarity conversion structure can be 42 丨 2 as a 1 /2 wavelength plate, and is disposed between the second reflective element 42132 and the total internal reflection 稜鏡 4211, but is not limited thereto. For example, the light polarity conversion structure 42 丨 2 It can also be disposed between the polarizing separation element 424 and the third focusing lens group 42丨35, or between the third focusing lens group 42135 and the first reflective element 4213丨 or disposed on the first reflective element 4213. Between the third focusing element 42134 and the second reflecting element 42132, or between the second focusing element 42134 and the second focusing element 42132 (or between the second focusing element 42134 and the second focusing element 42132) The above-mentioned changes in the design, the drawings are not shown) 'The main purpose is to make the illumination beam recovered by the beam recovery module and enter the total internal reflection 稜鏡 42 1 1 can be the s-polarity illumination diaphragm. Next, the operation of the projection system 4 A in the present embodiment will be described. The illumination apertures L4p, L(5) provided by the illumination device 4 are sequentially passed through the collimating lens module 422, the first light incident surface 422 of the first 42稜鏡1, and the first 4211 The first opposing surface 421 13 of the crucible, the second opposing surface 42丨丨7 of the second crucible 42丨15, the second crucible surface 42丨丨8 of the second crucible 421 15 and the first focusing mirror group 423 are incident rearward To the polarized light 30 M439819 fi, the element 424 belongs to the S-polarized illumination beam L, the ISI is reflected on the polarization separation element 424, and is then projected onto the reflective liquid crystal element 43, and the illumination beam belonging to the P-polarity is directly Passing through the polarizing separation element 424, and continuing through the second focusing mirror group 42135, the first reflecting element 4213, the third reflecting element 42丨34, the second focusing mirror group 42133, the second reflecting element 42132, and the light polarity switching After the structure 42 1 2 is converted into an illumination beam belonging to the s-polarity, then the illumination light 属于1 belonging to the S-polarity; |S2 is entered into the second 由 by the second light-incident surface 42116 of the second 稜鏡42丨丨5, And generating total reflection on the second opposite surface 42n7 to re-wear through the second 稜鏡 42丨The second pupil face 42n8 of the crucible 5 and the third focus surface J and 423 are incident on the polarization separation element 424, and further, can be reflected by the polarization separation 7C member 424 and projected onto the reflective liquid crystal element 43. Moreover, the illumination light beams 1 belonging to the S-polarity are also reflected on the reflective liquid crystal 7L member 43 and converted into the imaging apertures belonging to the 丨3 polarity in response to the electronic image frame. And the imaging beam belonging to the p-polarity is again projected onto the polarization separating element 424 and passes through the polarization separating element 424, thereby being able to pass through the light detecting sheet 425 and then incident on the optical lens 44, the optical lens 44 then receives and pulls out some of the imaging beams, so that the electronic image frame presented by the reflective liquid crystal element 43 is projected onto the projection surface 9. In particular, based on the Sne丨丨's law (Sne丨丨, s Law), any beam that is incident on the second opposing face 42 n 7 of the second turn 42 n 5 at a suitable angle of incidence is permeable. The second opposite face 42丨丨7 of the second 421 15 , otherwise it will be at the second 稜鏡 31 M439819. Similarly, any beam of light will be totally reflected on the second opposite face 42 丨丨 7 of 42 1 I 5 ; A suitable human incident angle is incident on the second opposite face slit of the second shot 42n5, and then a total reflection is generated on the second opposite surface 42丨丨7 of the second prism 42丨丨5, otherwise the second edge is penetrated. The second opposite face 42 n 7 of the mirror 42 1 15 . Among them, the Syner's Law is known to those skilled in the art, so it will not be repeated here.
因此,本實施態樣中來自於照明裝置4丨所輸出之該些屬於p 偏極性的與該些屬於S偏極性的照明光束^、、L⑸以及該些藉 由光極性轉換結構4 2丨2而自屬於P偏極性的照明光束匕仆轉換為s 極性的照明光束L^2 ’雖然都會於傳輸路徑上入射至第二稜鏡 42 1丨5的苐二相對面42 1丨7 ,但本創作藉由調整照明裝置4丨、準直 透換組422 '第一聚焦鏡組423、第三聚焦鏡組42丨35、第一反 射元件42131、第三反射元件42丨34、第二聚焦鏡組42133及/或第 二反射元件42132所設置的位置,或是上述任二元件間的相對位 置關係’或是全内反射棱鏡421 1中第一稜鏡4211丨與第二棱鏡 421 15的形狀,而調整與規劃出適當之任一照明光束於入射至第二 棱銳4 2丨1 5之第二相對面4 2 I 1 7時的入射角度,使得第二棱梦 421 1 5的第二相對面421丨7還是能夠供來來自照明裝置所輸出之該 些屬於P偏極性的照明光朿丨、與該些s偏極性的照明光東丨 穿 透其中’並供該些籍由光極性轉換結構4212而從屬於P偏極性的 照明光朿L<IP轉換為S極性的照明光束匕松於其上產生反射。 較佳者,照明裝置4丨係設置偏離投影系統4A的照明光轴45 32 M439819 且全内反射稜鏡421丨中之第一稜鏡42n丨的側面與第二稜鏡 4_ 1丨5的側面皆呈直角二角形,其如圖8所示。抑或是’照明裝置 41未設置偏離照明光軸45處(圖未示出),且全内反射稜鏡42】丨 中之第一稜鏡42丨丨丨之側面與第二稜鏡42丨丨5之側面的組合係呈 一平行四邊形(圖未示出)。 再者’為了避免直接穿透第二稜鏡42Π5之第二相對面421丨7 的知、明光束匕仆、L<isi以及於第二稜鏡42丨1 5之第二相對面42丨1 7 產生反射的照明光朿丨1μ於第二稜鏡42丨丨5的第二稜鏡面42 n 8輸 出時失去對稱性,造成反射式液晶元件43所呈現的電子式影像畫 面於投射面9上成象時產生不對稱像差的情況,因此,於照明裝 i 41設置偏離照明光軸45的前提下,本實施態樣中的第一棱鏡 42丨丨丨的第一相對面42丨13與照明光軸45之間的夾角以及第二稜 鏡42丨丨5的第二相對面42 1 1 7與照明光軸45之間的夾角皆為45 度。 由以上說明並比較先前技術中的投影系統丨可知,當二者照 明裝置4A、1所提供之照明光源的光量皆相同的情況下,因本實 施態樣之投景^吊統4 A能夠將投射至偏光分離元件424上且穿經過 偏光分離元件424的照明光束L仆,即反射式液晶元件43不需要 的照明光朿’予以回收轉換極性後再度利用,使得本實施態樣之 投影系統4A能夠令光學鏡頭44接收到較多的成像光束丨仆,進而 提高投影糸統4 A所能輪出的光流明數。 請參閱圖9 ’其為圆7所示之投影系統於第二實施態樣的具體 結構與光路示意圖。本實施態樣之投影系統4B大致類似於前述第 〜實施態樣之投影系統4A中所述者,在此即不再予以贅述。而本 貫施態樣與前述第一實施態樣的不同之處在於,前述第一實施離 樣中之第三反射元件42丨34、第二聚焦鏡組42丨33以及第二反射元 件42132係被本實施態樣的梯形鏡42丨36取代,亦即,本實施綠Therefore, in the embodiment, the illumination light beams from the illumination device 4 are the p-polarized and the S-polarized illumination beams ^, L(5) and the light-polarity conversion structures 4 2丨2 The illumination beam L^2' which is converted into the s-polarity of the illumination beam which belongs to the P-polarity is incident on the transmission path to the opposite surface 42 1丨7 of the second 稜鏡42 1丨5, but Creation by adjusting the illumination device 4丨, the collimation translating group 422 'the first focusing mirror group 423, the third focusing mirror group 42丨35, the first reflecting element 42131, the third reflecting element 42丨34, the second focusing mirror The position where the group 42133 and/or the second reflective element 42132 are disposed, or the relative positional relationship between the above two elements or the shape of the first 稜鏡 4211 丨 and the second prism 421 15 of the total internal reflection prism 421 1 And adjusting and planning the incident angle of any suitable illumination beam to the second opposite surface 4 2 I 1 7 of the second sharp edge 4 2 1 1 such that the second edge of the dream 4211 5 The opposite surface 421丨7 can still supply the photos of the P-polarity output from the illumination device. The pupil, and the s-polar illumination light penetrates through the 'and the illumination beam that is subordinated to the P-polarity illumination light 朿L<IP to the S-polarity by the light polarity conversion structure 4212 The pine produces a reflection on it. Preferably, the illumination device 4 is disposed offset from the illumination optical axis 45 32 M439819 of the projection system 4A and the side of the first 稜鏡 42n 全 of the total internal reflection 稜鏡 421 与 and the side of the second 稜鏡 4 丨 1 丨 5 They are all right-angled, which is shown in Figure 8. Or is the 'lighting device 41 not provided off the illumination optical axis 45 (not shown), and the total internal reflection 稜鏡 42 丨 稜鏡 稜鏡 丨丨丨 丨丨丨 丨丨丨 丨丨丨 丨丨丨 侧面 侧面 侧面 侧面 侧面The combination of the sides of 5 is in the form of a parallelogram (not shown). Furthermore, in order to avoid direct penetration of the second opposing face 421丨7 of the second 稜鏡42Π5, the illuminating beam, the L<isi and the second opposing face 42丨1 of the second 稜鏡42丨15 7 The illuminating pupil 产生1μ of the second 稜鏡42丨丨5 of the second 稜鏡42丨丨5 loses symmetry when outputting, causing the electronic image frame presented by the reflective liquid crystal element 43 to be projected on the projection surface 9. In the case of imaging, asymmetrical aberration occurs. Therefore, under the premise that the illumination device 41 is disposed away from the illumination optical axis 45, the first opposite face 42丨13 of the first prism 42丨丨丨 in the present embodiment is The angle between the illumination optical axes 45 and the angle between the second opposing faces 42 1 1 7 of the second turns 42丨丨5 and the illumination optical axis 45 are both 45 degrees. From the above description and comparison of the projection system of the prior art, when the light amounts of the illumination sources provided by the illumination devices 4A, 1 are the same, the projection system 4 A of the present embodiment can The illumination light beam L projected onto the polarization separating element 424 and passing through the polarization separating element 424 is used, that is, the illumination diaphragm 不需要 that is unnecessary for the reflective liquid crystal element 43 is recovered and converted and then reused, so that the projection system 4A of the present embodiment is used. The optical lens 44 can receive more imaging beams, thereby increasing the optical flow of the projection system 4 A. Please refer to FIG. 9 ' for a specific structure and optical path diagram of the projection system shown by the circle 7 in the second embodiment. The projection system 4B of the present embodiment is substantially similar to that described in the projection system 4A of the foregoing first embodiment, and will not be described again. The present embodiment differs from the foregoing first embodiment in that the third reflective element 42丨34, the second focusing mirror group 42丨33, and the second reflective element 42132 in the first embodiment are separated from each other. Replaced by the trapezoidal mirror 42丨36 of the present embodiment, that is, the present embodiment is green
樣之投影系統413中的光路規劃元件組42丨3,係包括第—反射元件 42131、第三聚焦鏡組42135、梯形鏡42丨36 ;其中,光極性轉換 結搆4212係設置於梯形鏡42丨36與第二稜鏡42丨丨5之間;當然, 亦心設置於梯形鏡42136與第一反射元件42ΐ3ι之間(圖未示 出)0The optical path planning component group 42丨3 in the projection system 413 includes a first reflective component 42131, a third focusing mirror group 42135, and a ladder mirror 42丨36. The optical polarity switching structure 4212 is disposed on the ladder mirror 42丨. 36 is between the second 稜鏡 42 丨丨 5; of course, it is also disposed between the trapezoidal mirror 42136 and the first reflective element 42 ΐ 3 ι (not shown).
上所㈣為本創作之較佳f施例,並❹以限定本創作之 肀Μ ’利牝圍’因此凡其它未脫離本創作所揭示之精神下所完成 之等效改變或修飾,均應包含於本案之巾請專利範圍内。 34 M439819 【圖式簡單說明】 圖1 :係為習知反射式液晶投影系統之結構與光路示意圖。 圖2 :係為另一習知反射式液晶投影系統之結構與光路示意圖。 圖3 :係為本創作投影系統於第一較佳實施例之結構方塊示意圖。 圖4:係為圖3所示之投影系統於第一實施態樣的具體結構與光路 示意圖。 圖5:係為圖3所示之投影系統於第二實施態樣的具體結構與光路 示意圖。 圖6:係為圖3所示之投影系統於第三實施態樣的具體結構與光路 示意圖。 圖7 :係為本創作投影系統於第二較佳實施例之結構與光路的方塊 示意圖。 圖8:係為圖7所示之投影系統於第一實施態樣的具體結構與光路 示意圖。 圖9:係為圖7所示之投影系統於第二實施態樣的具體結構與光路 示意圖。 35 M439819 【主要元件符號說明】 1投影系統 3投影系統 3B投影系統 4投影系統 4B投影系統 11照明裝置 1 3偏光分離稜鏡 1 5反射式液晶元件 21照明裝置 23反射式偏光片 25反射式液晶元件 28檢光片 32光束處理模組 34光學鏡頭 41照明裝置 43反射式液晶元件 4 5照明光軸 321光束回收模組 323第一聚焦鏡組 325檢光片 422準直透鏡模組 424偏光分離元件 3211全内反射稜鏡 2投影系統 3A投影系統 3C投影系統 4A投影系統 9投射面 12準直透鏡模組 1 4場透鏡 16光學鏡頭 22準直透鏡模組 24場透鏡 26光學鏡頭 31照明裝置 33反射式液晶元件 3 5照明光軸 42光朿處理模組 44光學鏡頭 131反射式偏光膜 322準直透鏡模組 324偏光分離元件 421光朿回收模組 423第一聚焦鏡組 425檢光片 3212光極性轉換結構 36The above is the best example of the creation of the creation, and is intended to limit the scope of the creation of the 'Lee Wai Wai' and therefore any other equivalent changes or modifications that have been made without the spirit of this creation should be It is included in the patent scope of this case. 34 M439819 [Simple description of the diagram] Figure 1 is a schematic diagram of the structure and optical path of a conventional reflective liquid crystal projection system. FIG. 2 is a schematic diagram showing the structure and optical path of another conventional reflective liquid crystal projection system. FIG. 3 is a block diagram showing the structure of the first preferred embodiment of the present projection system. Fig. 4 is a schematic view showing the specific structure and optical path of the projection system shown in Fig. 3 in the first embodiment. Fig. 5 is a schematic view showing the specific structure and optical path of the projection system shown in Fig. 3 in the second embodiment. Fig. 6 is a schematic view showing the specific structure and optical path of the projection system shown in Fig. 3 in the third embodiment. Figure 7 is a block diagram showing the structure and optical path of the second preferred embodiment of the present projection system. Fig. 8 is a schematic view showing the specific structure and optical path of the projection system shown in Fig. 7 in the first embodiment. Fig. 9 is a schematic view showing the specific structure and optical path of the projection system shown in Fig. 7 in the second embodiment. 35 M439819 [Description of main components] 1 Projection system 3 Projection system 3B Projection system 4 Projection system 4B Projection system 11 Illumination device 1 3 Polarization separation 稜鏡1 5 Reflective liquid crystal element 21 Illumination device 23 Reflective polarizer 25 Reflective liquid crystal Element 28 Light detector 32 Light beam processing module 34 Optical lens 41 Illumination device 43 Reflective liquid crystal element 4 5 Illumination optical axis 321 Beam recovery module 323 First focusing mirror group 325 Light detecting sheet 422 Collimating lens module 424 Polarized light separation Component 3211 total internal reflection 稜鏡 2 projection system 3A projection system 3C projection system 4A projection system 9 projection surface 12 collimation lens module 1 4 field lens 16 optical lens 22 collimation lens module 24 field lens 26 optical lens 31 illumination device 33 reflective liquid crystal element 3 5 illumination optical axis 42 optical processing module 44 optical lens 131 reflective polarizing film 322 collimating lens module 324 polarized light separating element 421 optical recovery module 423 first focusing mirror group 425 light detecting sheet 3212 optical polarity conversion structure 36
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100224280U TWM439819U (en) | 2011-12-22 | 2011-12-22 | Reflective liquid crystal projection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW100224280U TWM439819U (en) | 2011-12-22 | 2011-12-22 | Reflective liquid crystal projection system |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM439819U true TWM439819U (en) | 2012-10-21 |
Family
ID=47720003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100224280U TWM439819U (en) | 2011-12-22 | 2011-12-22 | Reflective liquid crystal projection system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM439819U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104914654A (en) * | 2014-03-12 | 2015-09-16 | 香港科技大学 | Projection device and fabrication method of polarization grating |
US9743054B2 (en) | 2014-03-12 | 2017-08-22 | The Hong Kong University Of Science And Technology | Projection device and fabrication method of a polarization grating |
-
2011
- 2011-12-22 TW TW100224280U patent/TWM439819U/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104914654A (en) * | 2014-03-12 | 2015-09-16 | 香港科技大学 | Projection device and fabrication method of polarization grating |
US9743054B2 (en) | 2014-03-12 | 2017-08-22 | The Hong Kong University Of Science And Technology | Projection device and fabrication method of a polarization grating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019154430A1 (en) | Wearable ar system, ar display device, and projection source module thereof | |
TWI474100B (en) | Multiple image projection apparatus | |
TWI694297B (en) | Projection apparatus | |
TWI287166B (en) | Projection display system | |
TW201213869A (en) | Polarization conversion system and stereoscopic projection system employing same | |
JP5363061B2 (en) | Single-panel projection display | |
TWI490547B (en) | Autofocus head mounted display | |
TW201327012A (en) | Reflective liquid crystal projection system | |
WO2018176613A1 (en) | Infrared projection system | |
TWI524128B (en) | Projection system | |
TW201137502A (en) | Projector | |
TW201019031A (en) | Projecting system capable of forming 3D images and related method | |
TWM439819U (en) | Reflective liquid crystal projection system | |
JP2008191629A (en) | Stereoscopic projection adapter | |
TW201224563A (en) | Projection lens of an imaging module and imaging module | |
CN115145097A (en) | Two-piece type 3D projection system and imaging method thereof | |
JP5199016B2 (en) | Single-panel projection display | |
US8955975B2 (en) | Three dimensional image projector with circular light polarization | |
TW201234096A (en) | Optical system and electrical device having the same | |
TW201821861A (en) | Head mounted display | |
TWI282439B (en) | L-shaped projection lens and optical projection apparatus | |
TWI476447B (en) | Stereoscopic projection display apparatus | |
JP2007072049A (en) | Image display device | |
TW201140224A (en) | Projection system for alternately outputting different polarized image light sources and method of using the same | |
TWM439822U (en) | Projection system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |