TWM439267U - Light-emitting device package structure, backlight module, and illumination apparatus - Google Patents

Light-emitting device package structure, backlight module, and illumination apparatus Download PDF

Info

Publication number
TWM439267U
TWM439267U TW101209307U TW101209307U TWM439267U TW M439267 U TWM439267 U TW M439267U TW 101209307 U TW101209307 U TW 101209307U TW 101209307 U TW101209307 U TW 101209307U TW M439267 U TWM439267 U TW M439267U
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting
emitting element
item
Prior art date
Application number
TW101209307U
Other languages
Chinese (zh)
Inventor
Hong-Che Chen
Chien-Fu Shen
Chao-Hsing Chen
Yu-Chen Yang
Jia-Kuen Wang
Chih-Nan Lin
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW101209307U priority Critical patent/TWM439267U/en
Publication of TWM439267U publication Critical patent/TWM439267U/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

A light-emitting device package structure is provided. It comprises a light-emitting device and a transparent substrate, wherein the light-emitting structure on a main surface of the transparent substrate; a carrier supporting the light-emitting device; and a packaging component having an opening and a curved inner surface, wherein a light generated by the light-emitting structure penetrates the transparent substrate, the carrier, and is reflected by the curved inner surface then radiates out through the opening.

Description

M439267 五、新型說明: 【新型所屬之技術領域】. 本創作係有關於半導體封裝結構,且特別是有關於一 種發光元件的封裝結構。 【先前技術】 具體而言,光電元件係包含發光二極體(light-emitting diode ’ LED )、光電二極體(photodiode )、光敏電阻(photo 鲁 resister )、雷射(laser )、紅外線發射體(infrared emitter )、 有機發光二極體(organic light-emitting diode )及太陽能電 池(solar cell)中至少其一。其中發光二極體為一種可將 電能轉化為光能的固態半導體元件,其結構至少包括一由 第一電性半導體層及一第二電性半導體層所形成之接面, 例如一由p型半導體及η型半導體構成之p-n接面。當施 加一適當偏壓至此p_n接面時,n型半導體中的電子由高能 量狀態掉回低能量狀態並在p-n接面處與ρ型半導體中的 ®電洞結合’此能量以光的形式釋放而產生發光現象。 使用透光基板的發光二極體可分為直立式(face_up type)與覆晶式(flip-chip type),直立式發光二極體一般 使用膠材或金屬接合於載體上,覆晶式發光二極體則以金 屬或焊錫作為接合材料,其接合面一般為發光二極體的正 向發光面或其平行面。由於發光二極體活性層之出光為全 向性(omnidirectional ),即活性層所發出的光線是往36〇 度的方向發射’故一般會在發光二極體晶粒的晶背鍍上反 射層’將往晶背發射的光線反射回正向發光面出光。然而 M439267 當發光二極體尺寸越大時,會有越多反射光經過活性層之 多重量子井(multiple quantum well,MQW )結構及半導體 層區域,造成因吸光效應使光取出效率(light extraction efficiency,LEE)降低的問題。 【新型内容】 有鑑於上述問題,本創作提供一種發光元件封裝結 構,以克服習知發光元件光取出效率低下的問題。 本創作提供一種發光元件封裝結構,包括:一發光元 件和一透光基板 > 其中此發光結構設置於此透光基板之主 表面上;一載體,用以承載該發光元件;以及一封裝構件, 具有一開口,以及一曲面之内壁,其中上述發光結構所發 射的光線穿透透光基板、載體並經封裝構件之内壁反射後 形成一出射光由上述開口射出。 為讓本創作之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳 細說明如下: 【實施方式】 本創作提供數個實施例用以說明本創作之技術特徵, 實施例之内容及繪製之圖式僅作為例示說明之用,並非用 以限縮本創作保護範圍。本創作所揭示内容可能在不同實 施例中使用重複的元件符號,並不代表不同實施例或圖式 間具有關聯。此外,一元件形成於另一元件「上方」、「之 上」、「下方」或「之下」可包含兩元件直接接觸的實施 / 包含兩元件之間夾設有其它額外元件的實施 ::式中可能省略非必要元件,各種元件可能以任意不 丨。J比例顯不以使圖示清晰簡潔。 結構^i)、: 為根據本創作—實施例之發光元件封裝 Γιο星右、光70件110設置於載體120上,此發光元件 声,/以tr透光基板114’且其底部原則上不設有任何反射 二,發發71結構112所發射的光線穿透。在此實施例 # it卜恭I凡件UG為—發光二極體元件。載體120用以承 型電極16ΓΓ10並連接至—引線架160,此引線架具有p η型電極164。封裝構件13G包圍上述發光 :0及載體120,發光元件110的接合焊塾(b〇福邱 電性2、154分別與引線架之15型電極162、n型電極164 此引線架可用以支撐晶片並將發光元件110的 =功:傳輪至外部電路,其與封裝構件13G共同 發先70件110封裝結構。 ⑴f裝構件m具有一反射層134形成於一封袭材料層 射發反射層134構成封裝構件ϊ30的内壁,用以反 件no在各個方向所發射的光線。反射層134可 反射金屬層’例如銀,、金、銅、鈦、鈿、鈀、或 二,:且合。上述封裝材料層132可為環氧樹脂、丙稀酸M439267 V. New description: [New technical field] The present invention relates to a semiconductor package structure, and in particular to a package structure of a light-emitting element. [Prior Art] Specifically, the photovoltaic element includes a light-emitting diode 'LED, a photodiode, a photoresist, a laser, and an infrared emitter. At least one of an infrared emitter, an organic light-emitting diode, and a solar cell. The light emitting diode is a solid state semiconductor device capable of converting electrical energy into light energy, and the structure comprises at least a junction formed by the first electrical semiconductor layer and a second electrical semiconductor layer, for example, a p-type A pn junction formed by a semiconductor and an n-type semiconductor. When an appropriate bias is applied to the p_n junction, the electrons in the n-type semiconductor fall back from the high energy state to the low energy state and combine with the ® hole in the p-type semiconductor at the pn junction. This energy is in the form of light. Released to produce luminescence. The light-emitting diode using the light-transmitting substrate can be divided into a face_up type and a flip-chip type, and the vertical light-emitting diode is generally bonded to the carrier by a glue or a metal, and the flip-chip light is emitted. The diode is made of metal or solder as a bonding material, and the bonding surface is generally a positive light emitting surface of the light emitting diode or a parallel surface thereof. Since the light emitted from the active layer of the light-emitting diode is omnidirectional, that is, the light emitted by the active layer is emitted in the direction of 36 degrees, the reflective layer of the crystal back of the light-emitting diode is generally plated. 'Reflect the light emitted from the back of the crystal back to the positive emitting surface. However, when the size of the light-emitting diode is larger, the more the multiple quantum well (MQW) structure and the semiconductor layer region of the reflected light pass through the active layer, the light extraction efficiency is caused by the light absorption effect. , LEE) reduced problems. [New Content] In view of the above problems, the present invention provides a light-emitting element package structure to overcome the problem of low light extraction efficiency of conventional light-emitting elements. The present invention provides a light emitting device package structure, comprising: a light emitting device and a light transmissive substrate, wherein the light emitting structure is disposed on a main surface of the light transmissive substrate; a carrier for carrying the light emitting device; and a package member And having an opening and an inner wall of a curved surface, wherein the light emitted by the light emitting structure penetrates the transparent substrate, the carrier and is reflected by the inner wall of the package member to form an outgoing light emitted from the opening. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The embodiments are used to illustrate the technical features of the present invention, and the contents of the embodiments and the drawings are only for illustrative purposes, and are not intended to limit the scope of the present invention. The disclosure of the present disclosure may use repeated element symbols in different embodiments, and does not represent an association between different embodiments or drawings. In addition, an element formed "above", "above", "below" or "below" another element may include the implementation of the direct contact of the two elements / the implementation of the inclusion of other additional elements between the two elements: Non-essential components may be omitted from the formula, and various components may be arbitrary. The J ratio is not obvious to make the illustration clear and concise. Structure ^i), is a light-emitting device package according to the present invention - the light-emitting device package Γιο star right, light 70 member 110 is disposed on the carrier 120, the light-emitting element sounds, / tr transmissive substrate 114' and its bottom is not in principle With any reflection 2, the light emitted by the structure 71 112 is penetrated. In this embodiment, #其卜恭I UG is a light-emitting diode element. The carrier 120 is used to receive the electrodes 16A and is connected to a lead frame 160 having a p-n-type electrode 164. The package member 13G surrounds the above-mentioned light-emitting: 0 and the carrier 120, and the bonding pads of the light-emitting elements 110 (b〇福邱2, 154 and the lead-type 15 electrode 162, n-type electrode 164, respectively, the lead frame can be used to support the wafer And the work of the light-emitting element 110 is transferred to an external circuit, which together with the package member 13G, 70 pieces of 110 package structure. (1) The f-mount member m has a reflective layer 134 formed on the striking material layer, the emission reflection layer 134 The inner wall of the package member 30 is configured to reflect the light emitted by the element no in all directions. The reflective layer 134 can reflect the metal layer 'eg, silver, gold, copper, titanium, tantalum, palladium, or two. The encapsulating material layer 132 can be epoxy resin, acrylic acid

ι氧樹脂、或前述之組合。封裝構件W r球面’二Γ及一曲面内壁13〇b,此曲面可為球面、 或拋物面。在一實施例中,封裝構件13〇的整個 内土為一連續曲面,發光元件u …曲面—反射後形: 涵 92—67 130a射出。在另一實施例中,封裝構件】3〇的整個内壁為 一拋物面,且發光元件11〇置於該拋物面焦點上,由於發 光元件110相對於封裝構件130可視為一點光源,且光的 入射角等於出射角,發光元件110經封裝構件曲面内壁 130b反射後所得的出射光可為一近似平行光,故根據本創 作實施例所製作之發光元件封裝結構可應用於平行光源產 品,例如汽車前燈、手電筒頭燈、探照燈等。 在本創作一實施例中,封裝構件13〇開口 13〇a邊緣任 二點A、B形成一虛擬連接線;發光元件110的主表面11 〇a 與此虛擬連接線間具有一失角5»,此夾角β範圍介於約45 度〜約135度之間,例如9〇度。由於發光元件11〇底部不 具反射層,且透光基板114能使波長範圍約4〇〇〜700奈米 的光線通過,故發光元件11〇的上下表面皆可出光,其出 光面不限於正向發光面或其平行面,故發光結構112之活 f生層在發光元件11〇透光基板114方向所發射的大部分光 線不會被反射回發光元件11〇.之正向發光面,而可穿透透 光基板114、載體120並經由封裝構件丨3〇之曲面内壁13〇b 反射後形成一出射光18〇由封裝構件13〇開口 13〇a射出, 因此可減少反射光被活性層或半導體層吸收的問題,使發 光元件 110 的光取出效率(light extraction efficiency,LEE) 提昇。 發光7L件110包括一發光結構112及一透光基板114, 此透光基板114係為-成長及/或承載基礎,能使波長範圍 .,,勺γο〜700奈米的光線通過。在一實施例中,透光基板 m能使-波長範圍介於約遍〜彻奈米的藍光通過。透 M439267 光基板11·4可為導體或非導體,透光基板材料可為藍寶石 (Sapphire)、鋁酸鋰(LiA102)、氧化鋅(Ζη〇)、氮化 錄(GaN)、氮化銘(Α1Ν)、玻璃、鑽石、cVD鑽石、 類鑽碳(Diamond-Like Carbon ; DLC )、尖晶石(Spinei MgAl204)、氧化石夕(SiOx) '鎵酸鋰(LiGa02)、或前述之組 合。上述發光結構112至少包括一第一電性半導體層 112a 、一活性層112b及一第二電性半導體層112c,在一 貫施例中,此第一電性半導體層112a為一 η型半導體,例 如η型推雜之氮化鎵(n-GaN),此活性層為一多重量子 井結構’此苐二電性丰導體層112c為一 p型半導體,例如 p型按雜之氮化鎵(p-GaN )。上述膜層可使用一蠢晶成長 製程形成,在一實施例中,此磊晶成長製程使用有機金屬 化學氣相沈積法(Metal-Organic Chemical Vapor Deposition,MOCVD)進行。且發光結構發射的光線為全 向性(omnidirectional)。 發光元件110設置於一載體120上,此截體12〇包括 一承載層122及一導熱層124 ,承載層122可提供發光元 件110機械性支持,導熱層124則失設於承載層122與發 光元件110之間,用以散逸發光元件110所產生的熱。此 承載層122、導熱層124皆能使波長範圍4〇〇〜7〇()奈米的 光線穿透,在一實施例中,此承栽層122、導熱層124能 使一波長範圍介於360〜480奈米的藍光通過。上述承載層 122可包括碳化矽、磷化鎵、磷化砷鎵、藍寶石、硒化鋅、 ,石、或前述之組合。上述導熱層124可包括鑽石,在一 實施例中,此導熱層124為類鑽薄膜。上述發光元件11〇 7 與载體120以-連接材料14〇連接,此連接材料14〇能使 波長範圍40(3〜700奈米的光線通過,在一實施例中,此連 接材料140能使-波長範圍介於遍〜彻奈米的藍光通 過。此連接材料MG可為—膠材,包括旋塗玻璃層⑽⑺、 石夕氧樹脂、苯環丁稀(BCB)、環氧樹脂、聚亞_樹脂 (P〇lyimide )、全氣環丁院(PFCB )、或前述之組合。 第2圖為根據本創作另一實施例所繪示之發光元件封 瘃結構200,除引線架26〇的電極遍、向大抵垂 述封裝構件開π所形成之虛擬連接線方向延伸穿過封 件130外,其它與第1圖相同。 、秦 參照第3圖,係本創作又—實施例之發光元件封》 媾300。在此實施例中,發光元件ιι〇的主表面⑽= 7L 元 於上述封裝構件開π所形成之虛擬連接線,且承載發:仃 件110的載體no設置於上述封楚構件的頂部,而一 件1 ίο設置於封裳構件之曲面的球心或焦點以外“八 參光元件no設置於引線架360上,引線架的電極: 364向大抵垂直上述封裝構件開口所形成之虛擬連 、 方向延伸穿過封裝構件130。由於發光元件u〇底部不的 反射層且其主表面ll〇a平行於上述封裝構件開口所具 么虛擬連接線,活性層射向發光元件11〇透光基板方:成 光線180會穿透透光基板m ’载體丨2〇並經封裝=的 相面内壁130b反射後由封裝構件開口射出。此外,之 光元件110設置於封裝構件之曲面的球心或焦點心卜^發 f ’曲面内壁13此反射的光線180不會被發光元件勺位 身擋住,因此可以提昇發光元件110的光取出效率。本 册切267 構。二,示本創作實施例之背光模㈣置結 稱其中月tU旲组裝置4〇〇包括由上述 。 封裝結構100、200或3〇 、 天光兀件 學裝置置於先請…先 當處理後出井.以;^ _ 將光線做適 裝置需先之電源供應系統伽,提供上述先源 >…、第5圖,其顯示本創作實施 日 上述照明裝置500可以是車产、心主:月衣置結構。 示燈等。其中照明裝置Si括=== ^作上,之發光元件繼構1〇〇、2〇。或3。〇: 源.以及應糸統520 ’提供光源褒置510所需之電 ’、 &制7°件530控制電源輸入光源裝置5丨〇。 上述第-電性半導體層U2a =彼此中至少二個部分之電 tins”子與電洞之半導體材料單層或多層 θ」系才曰—層或二層以上,以下同。),苴電性選 型、及i型中至少任意二者之組合。活性 ^ U2C之第雷一電性半導體層U2a及第二電性半導體 間’為電能與光能可能發生轉換或被誘發轉換之 3 = = = —及第二 /、材枓包含一種或一種以上之元辛ip :=:叫姻⑽、鲁_、氮⑼心 依據本創作之另一實施例之光電元 體,其發光頻譜可以藉由改變半導體單層或多層 9 M439267 … 化學要素進行調整。常用之材料係如磷化鋁鎵銦(AlGalnP ) 系列、氮化鋁鎵銦(AlGahiN)系列、氧化鋅(ZnO)系列 等。活性層112b之結構係如··單異質結構(single heterostructure ; SH)、雙異質結構(double heterostructure ; DH )、雙侧雙異質結構(double_side double heterostructure ; DDH)、或多層量子井(multi-quantum well ; MQW)。再 者,調整量子井之對數亦可以改變發光波長。 於本創作之一實施例中,第一電性半導體層112a與透 光基板114間尚可選擇性地包含一緩衝層(buffer layer,圖 未示)。此緩衝層係介於二種材料系統之間,使基板之材料 系統”過渡”至半導體系統之材料系統。對發光二極體之結 構而言,一方面’缓衝層係用以降低二種材料間晶格不匹 配之材料層。另一方面,緩衝層亦可以是用以結合二種材 料或二個分離結構之單層、多層或結構,其可選用之材料 係如.有機材料、無機材料、金屬、及半導體等;其可選 用之結構係如:反射層、導熱層、導電層、歐姆接觸(〇hmic contact)層、抗形變層、應力釋放(stress release)層 '應 力調整(stress adjustment)層、接合(bonding)層、波長 轉換層、及機械固定構造等。在一實施例中,此缓衝層之 材料可為AIN、GaN,且形成方法可為濺鏡(Sputter)或原子 層沉積(Atomic Layer Deposition,ALD)。 第二電性半導體層102c上更可選擇性地形成一第二 電性接觸層108。接觸層係設置於第二電性半導體層 遠離活性層112b之一侧。具體而言,第二電性接觸層1〇8 可以為光學層、電學層、或其二者之組合。光學層係可以 M439267 改變來自於或進入活性層(未顯示)的電磁輻射或光線。在 此所稱之「改變」係指改變電磁輻射或光之至少一種光學 特性,前述特性係包含但不限於頻率、波長、強度、通量、 效率、色溫、演色性(rendering index )、光場(light field )、 及玎視角(angle0fview)。電學層係可以使得第二電性接 觸層1〇8之任一組相對側間之電壓、電阻、電流、電容中 至少其,之數值、密度、分布發生變化或有發生變化之趨 勢。第108之構成材料係包含氧化物、導電 氧化物:、具有5〇%或以上穿透率之氧化物、 金屬、相對透光金屬、具有50% ~v、、 機質、無則、螢絲、料物5 W上穿透率之金屬、有 IS體、及無推雜之半導=少,、半導體、換雜之 第二電性接觸層108之材料::。於某些應用中’ 化録錫、氧化銦辞、氣化鋅銘為=化鋼锡、氧化編錫、氧 若為相對透光金屬,其厚度俜約:氧化鋅錫中至少其-。 以上各圖式與說明雖僅八:4 〇.〇〇5哗〜〇·6_。 各個實施例中所說1¾應特定實施例,然而’ 及技術原理除在彼此顯相衝突疋件、實施方式、設計準則、 交換、搭配、協調、或 外,吾人當可依其所需饪意^酽矛盾、或難以共同實施之 合併 雖然本創作已說明女j 範圍、貫施順序、或使用 所作之各種修飾與變更, 上,然其並非用以限制本創作之 才料與製程方法。對於本創作 音不脫本創作之精神與範圍。 【圖式簡單說明】 第1圖為一剖面圖,田 發光元件封裝結構。用以說明根據本創作一實施例之 用以說明根據本創作另一實施例 第2圖為一剖面圖, 之發光元件封裝結構。 第3圖為一剖面圖 之發光元件封裝結構。 苐4圖為一示意圖, 光模組裝置結構。 '用以說明根據本創作又一實施例 用以說明根據本創作又一實施例之背 用以說明根據本創作又一實施例 弟5圖為一示意圖, 之照明裝置結構。 【主要元件符號說明】 100、·、·〜發光轉封裳結構 108〜第二電性接觸層 110〜發光元件 110a〜發光元件之主表面 112〜發光結構 112a〜第一電性半導體層 112c〜第二電性半導體層 114〜透光基板 112b〜活性層 120〜載體 122〜承載層 124〜導熱層 12 M439267 130〜封裝構件 13 0a~ 開口 130b〜曲面内壁 132〜封裝材料層 134〜反射層 140〜連接材料 152、154〜接合焊墊 160、260、360〜引線架 162、262、362、164、264、364〜電極 180〜出射光 400〜背光模組裝置 410,510〜光源裝置 420〜光學裝置 430,520〜電源供應系統 500〜照明裝置 530〜控制元件 A ’ B〜開口邊緣任二點 0〜平面110a與AB二點形成一虛擬連接線之夹角 13An oxy-resin, or a combination of the foregoing. The package member W r is spherical Γ and a curved inner wall 13 〇 b, and the curved surface may be a spherical surface or a paraboloid. In one embodiment, the entire inner soil of the package member 13 is a continuous curved surface, and the light-emitting element u ... curved-reflected shape: the culvert 92-67 130a is emitted. In another embodiment, the entire inner wall of the package member is a paraboloid, and the light-emitting element 11 is placed on the paraboloid focus, since the light-emitting element 110 can be regarded as a light source with respect to the package member 130, and the incident angle of the light Equal to the exit angle, the light emitted from the light-emitting element 110 after being reflected by the curved inner wall 130b of the package member may be an approximately parallel light. Therefore, the light-emitting element package structure fabricated according to the present creative embodiment can be applied to a parallel light source product, such as a car headlight. , flashlight headlights, searchlights, etc. In an embodiment of the present invention, the edge of the opening 13〇a of the package member 13 defines a virtual connection line; the main surface 11 〇a of the light-emitting element 110 and the virtual connection line have a lost angle 5» The angle β ranges from about 45 degrees to about 135 degrees, such as 9 degrees. Since the bottom of the light-emitting element 11 has no reflective layer, and the transparent substrate 114 can pass light having a wavelength range of about 4 〇〇 to 700 nm, the upper and lower surfaces of the light-emitting element 11 皆 can emit light, and the light-emitting surface is not limited to the forward direction. The light emitting surface or the parallel surface thereof, so that most of the light emitted by the active layer of the light emitting structure 112 in the direction of the light emitting element 11 〇 the transparent substrate 114 is not reflected back to the positive light emitting surface of the light emitting element 11 The light-transmitting substrate 114 and the carrier 120 are penetrated and reflected by the curved inner wall 13〇b of the package member 〇3〇 to form an outgoing light 18, which is emitted by the package member 13〇 opening 13〇a, thereby reducing the reflected light by the active layer or The problem of absorption of the semiconductor layer increases the light extraction efficiency (LEE) of the light-emitting element 110. The light-emitting 7L member 110 includes a light-emitting structure 112 and a light-transmitting substrate 114. The light-transmitting substrate 114 is a growth-and/or-bearing foundation capable of passing light of a wavelength range of γο~700 nm. In one embodiment, the light transmissive substrate m enables the passage of blue light having a wavelength range of about ~per nanometer. The M439267 optical substrate 11·4 can be a conductor or a non-conductor, and the transparent substrate material can be Sapphire, Liadium Lithium Oxide (LiA102), Zinc Oxide (GaN), Nitride (GaN), Niobium (玻璃1Ν), glass, diamond, cVD diamond, diamond-like carbon (DLC), spinel (Spinei MgAl204), oxidized stone (SiOx) 'lithium gallate (LiGa02), or a combination thereof. The light emitting structure 112 includes at least a first electrical semiconductor layer 112a, an active layer 112b, and a second electrical semiconductor layer 112c. In a consistent embodiment, the first electrical semiconductor layer 112a is an n-type semiconductor, such as N-type push-mixed gallium nitride (n-GaN), the active layer is a multiple quantum well structure. The second electrically conductive conductor layer 112c is a p-type semiconductor, such as p-type hetero-doped gallium nitride ( p-GaN). The above film layer can be formed using a doped crystal growth process. In one embodiment, the epitaxial growth process is carried out using Metal-Organic Chemical Vapor Deposition (MOCVD). And the light emitted by the illuminating structure is omnidirectional. The light-emitting element 110 is disposed on a carrier 120. The body 12 includes a carrier layer 122 and a heat-conducting layer 124. The carrier layer 122 can provide mechanical support for the light-emitting component 110. The heat-conducting layer 124 is lost to the carrier layer 122 and emits light. Between the elements 110, the heat generated by the light-emitting element 110 is dissipated. The carrier layer 122 and the heat conducting layer 124 can penetrate light of a wavelength range of 4 〇〇 7 〇 () nm. In an embodiment, the bearing layer 122 and the heat conducting layer 124 can make a wavelength range between 360 to 480 nm of blue light passed. The carrier layer 122 may include tantalum carbide, gallium phosphide, gallium arsenide phosphide, sapphire, zinc selenide, stone, or a combination thereof. The thermally conductive layer 124 can comprise a diamond, and in one embodiment, the thermally conductive layer 124 is a diamond-like film. The light-emitting element 11〇7 is connected to the carrier 120 by a connection material 14〇, and the connection material 14〇 enables light having a wavelength range of 40 (3 to 700 nm). In an embodiment, the connection material 140 can - The wavelength range is between blue light passing through ~ Chennai. The connecting material MG can be - glue material, including spin-on glass layer (10) (7), Shihe oxygen resin, benzene ring butyl (BCB), epoxy resin, poly Asia _ Resin (P〇lyimide), Full Gas Ring Hospital (PFCB), or a combination thereof. Figure 2 is a light-emitting element sealing structure 200 according to another embodiment of the present invention, except for the lead frame 26 The electrode extends through the package 130 in a direction perpendicular to the virtual connecting line formed by the opening of the package member π, and the other is the same as in the first figure. FIG. 3 refers to the light-emitting element of the present invention.封300. In this embodiment, the main surface (10) of the illuminating element ιι = = 7L is a virtual connecting line formed by the π of the above-mentioned package member, and the carrier no of the carrier 110 is disposed in the above-mentioned seal The top of the member, and a piece of 1 ίο is placed on the curved surface of the cover member Outside the center or focus, the "eight-parameter element" is disposed on the lead frame 360, and the electrode of the lead frame: 364 extends through the package member 130 in a virtual connection formed substantially perpendicular to the opening of the package member. The reflective layer and the main surface 11〇a are parallel to the virtual connection line of the opening of the package member, and the active layer is directed toward the light-emitting element 11 〇 the transparent substrate: the light ray 180 penetrates the transparent substrate m 'carrier丨2〇 is reflected by the phase inner wall 130b of the package= and then emitted by the opening of the package member. Further, the light element 110 is disposed on the surface of the curved surface of the package member or the focus of the core. 180 will not be blocked by the light-emitting element spoon body, so the light extraction efficiency of the light-emitting element 110 can be improved. This booklet is 267. Second, the backlight module (4) of the present embodiment is shown as the month tU group device 4〇 〇 Included from the above. Package structure 100, 200 or 3 〇, 天 兀 学 装置 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 置于 先 先 先 先 先 先 先 先 先 先 先 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ The first source >..., the fifth figure, which shows that the lighting device 500 can be a car production, a main body: a moon clothing structure, a lamp, etc., wherein the lighting device Si includes === ^, The illuminating element is configured to be 1 〇〇, 2 〇 or 3. 〇: source and 糸 520 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 510 510 7 7 7 7 7 7 7 7 530 530 530 530 530 530 530 530 530 530 530 530 530 The above-mentioned first-electroconductive semiconductor layer U2a = at least two of the electric tins" and the semiconductor material of the hole, a single layer or a plurality of layers θ" is the layer or the second layer or more, the same below.) A combination of at least any of the sexual selection and the i-type. The activity ^ U2C of the first electrical semiconductor layer U2a and the second electrical semiconductor 'for the conversion of electrical energy and light energy may be converted or induced conversion 3 = = = - and the second / material 枓 contains one or more Yuanxin ip :=: called marriage (10), Lu _, nitrogen (9) heart According to another embodiment of the present invention, the light-emitting spectrum can be adjusted by changing the semiconductor single layer or multiple layers of 9 M439267 ... chemical elements. Commonly used materials are such as aluminum phosphide indium (AlGalnP) series, aluminum gallium indium (AlGahiN) series, and zinc oxide (ZnO) series. The structure of the active layer 112b is such as a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or a multi-quantum quantum well (multi-quantum). Well ; MQW). Furthermore, adjusting the logarithm of the quantum well can also change the wavelength of the illumination. In one embodiment of the present invention, a buffer layer (not shown) may be selectively included between the first electrical semiconductor layer 112a and the light transmissive substrate 114. This buffer layer is interposed between the two material systems to "transition" the material system of the substrate to the material system of the semiconductor system. For the structure of the light-emitting diode, on the one hand, the buffer layer is used to reduce the material layer of the lattice mismatch between the two materials. In another aspect, the buffer layer may also be a single layer, a plurality of layers or a structure for combining two materials or two separate structures, such as organic materials, inorganic materials, metals, and semiconductors; The selected structure is: reflective layer, thermally conductive layer, conductive layer, ohmic contact layer, anti-deformation layer, stress release layer 'stress adjustment layer, bonding layer, A wavelength conversion layer, a mechanical fixing structure, and the like. In one embodiment, the material of the buffer layer may be AIN, GaN, and the formation method may be Sputter or Atomic Layer Deposition (ALD). A second electrical contact layer 108 is more selectively formed on the second electrically conductive semiconductor layer 102c. The contact layer is disposed on a side of the second electrical semiconductor layer away from the active layer 112b. Specifically, the second electrical contact layer 1 8 may be an optical layer, an electrical layer, or a combination of both. The optical layer system can change the electromagnetic radiation or light from or into the active layer (not shown) by M439267. As used herein, "change" means changing at least one optical property of electromagnetic radiation or light, including but not limited to frequency, wavelength, intensity, flux, efficiency, color temperature, rendering index, light field. (light field), and 玎 angle (angle0fview). The electrical layer may cause at least a change in the value, density, distribution, or variation of voltage, resistance, current, and capacitance between opposite sides of any of the second electrical contact layers 1〇8. The constituent material of the 108th layer comprises an oxide, a conductive oxide: an oxide having a transmittance of 5% or more, a metal, a relatively light-transmissive metal, having 50% to v, a medium, a no, a filament The material of the material having a transmittance of 5 W, the body of the IS, and the semiconducting without the doping = less, the material of the semiconductor, the second electrically contact layer 108 of the impurity::. In some applications, the recording of tin, indium oxide, zinc oxide is = steel tin, oxidized copper, oxygen, if it is a relatively light-transmissive metal, its thickness is about: at least - in zinc tin oxide. Although the above figures and descriptions are only eight: 4 〇.〇〇5哗~〇·6_. In the various embodiments, the specific embodiments should be described, however, and the technical principles can be used in accordance with the requirements of the components, the implementation, the design criteria, the exchange, the collocation, the coordination, or the酽 Contradictions, or mergers that are difficult to implement together Although this creation has described the scope, implementation order, or use of various modifications and changes, it is not intended to limit the material and process methods of this creation. For the purpose of this creation, the spirit and scope of this creation are not lost. [Simple description of the drawing] Fig. 1 is a cross-sectional view showing the structure of the light-emitting element package. A light-emitting element package structure for explaining a cross-sectional view according to another embodiment of the present invention, which is a cross-sectional view according to an embodiment of the present invention. Fig. 3 is a view showing a light-emitting element package structure of a cross-sectional view. Figure 4 is a schematic diagram of the structure of the optical module device. BRIEF DESCRIPTION OF THE DRAWINGS In order to explain still another embodiment according to the present invention, a description will be given of a lighting device structure according to still another embodiment of the present invention. [Description of main component symbols] 100, 、, 〜 发光 发光 发光 108 108 108 108 108 108 108 108 108 108 108 108 108 108 108 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 110 The second electrical semiconductor layer 114 to the transparent substrate 112b to the active layer 120 to the carrier 122 to the carrier layer 124 to the heat conductive layer 12 M439267 130 to the package member 13 0a~ the opening 130b to the curved inner wall 132 to the encapsulating material layer 134 to the reflective layer 140 〜Connecting materials 152, 154 to bonding pads 160, 260, 360 to lead frames 162, 262, 362, 164, 264, 364 to electrodes 180 to outgoing light 400 to backlight module devices 410, 510 to light source devices 420 to optical Device 430, 520 ~ power supply system 500 ~ illumination device 530 ~ control element A ' B ~ open edge any two points 0 ~ plane 110a and AB two points form a virtual connection line angle 13

Claims (1)

六、申請專利範圍: 1.一種發光元件封裝結構,包括: He發光70件’包括—發光結構與—透絲板,其中兮 發光結構設置於該透光基板之主表面上; 、中該 一載體,用以承載該發光元件;以及 :封裝構件’具有一開口,以及一曲面之内壁,且該 幵口邊緣任一點形成一虛擬連接線; 5 其中該主表面與該虛擬連接線間具一失角; 其巾該發枝騎發射㈣料透該透光 =該封裝構件之曲面内壁反射後形成一出射光由= 圍第1項所述之發光元件封震結構, /、中該载體迠使波長400〜7〇〇奈米的光線穿透。 盆中:广封=]細1項所述之發光元件封裳結構, :封裝構件之内壁為-連續曲面,且該曲面包括球 面、橢球面、或拋物面。 ' i二=範圍第3項所述之發光元物結構, 置U曲面為拋物面,且該發光元件置於該曲面焦點的位 其4:::=:項所述之發光元件物構, 6. 如申請專職㈣丨項所狀發光元件封裝 八中該主表面與該虛擬連接線間的夾角約為45〜U5戶 7. 如申請專利範圍$ i項所述之發*元件封事 14 其中該主表面與該虛擬連接線間的夾角約為90戶。 其發㈣繼構, 其中請,範圍第8項所述之發歧件_構, itt 置於該曲面之球心或焦點以外的位置。 狀恤她構, 其二 =:==*【 反射層構成_裝構㈣内=成於封切抑上,該 脂二脂及層包括雜、丙稀酸樹 項結構, 該承載層及該發光錢’域導熱層夹設於 14.如申請專利蔚圍 該承載層包括碳切:==封= 石或=:膜鑽石、或前述之組合,及/或該導熱層包括鑽 項=發光元件封裝結構, 能使波長彻〜奈米的材料連接,該連接材料 16.如申請專利範圍第15項所述之發光元件封裂結 M439267 構,其中該連接材料包括:旋塗玻璃層、矽氧樹脂、苯環 丁烯、環氧樹脂、聚亞醯胺樹脂、全氟環丁烷、或前述之 組合。 17. —種背光模組裝置,包括: 一光源裝置,係由申請專利範圍第1項所述之發光元件封裝 結構所組成; 一光學裝置,置於該光源裝置之出光路徑上;以及 一電源供應系統,提供該光源裝置所需之電源。 18. —種照明裝置,包括: 一光源裝置,係由申請專利範圍第1項所述之發光元件封裝 結構所組成, 一電源供應系統,係提供該光源裝置所需之電源;以及 一控制元件,係控制該電源輸入該光源裝置。 16Sixth, the scope of application for patents: 1. A light-emitting device package structure, comprising: He illuminating 70 pieces 'including a light-emitting structure and a light-transmitting plate, wherein the 兮 light-emitting structure is disposed on a main surface of the light-transmitting substrate; a carrier for carrying the light-emitting element; and: the package member ' has an opening, and an inner wall of a curved surface, and the edge of the edge forms a virtual connecting line; 5 wherein the main surface and the virtual connecting line have a Deviation; the towel is emitted by the hairpin (4) through the light transmission = the inner wall of the curved surface of the package member is reflected to form an outgoing light by the light-emitting element according to the first item, and the carrier迠 Make the light of the wavelength 400~7〇〇 nanometer penetrate. In the basin: Guangfeng =] the light-emitting element sealing structure according to item 1, wherein the inner wall of the packaging member is a continuous curved surface, and the curved surface includes a spherical surface, an ellipsoidal surface, or a paraboloid. ' i two = range of the illuminant structure described in item 3, the U curved surface is a paraboloid, and the illuminating element is placed at the position of the focus of the curved surface, and the illuminating element structure described in the item 4:::=: For example, if the application is full-time (4), the angle between the main surface and the virtual connection line is about 45~U5. 7. As described in the patent application scope, the device is sealed. The angle between the main surface and the virtual connecting line is about 90. The hair (4) is constructed, wherein, in the range of item 8 of the range, the itt is placed at a position other than the center of the sphere or the focus. Twisted her structure, the second =: == * [reflective layer composition _ assembly (four) inside = into the sealing and cutting, the lipid bismuth and layer including heterogeneous, acrylic tree structure, the bearing layer and the luminescence The money 'domain heat conducting layer is sandwiched between 14. The patent application layer includes the carbon cut: == seal = stone or =: film diamond, or a combination thereof, and/or the heat conductive layer includes a drill item = a light-emitting element The package structure is capable of connecting a material having a wavelength of ~ nanometer. The connecting material is a light-emitting element sealing junction M439267 according to claim 15 wherein the connecting material comprises: a spin-on glass layer and a silicon oxide layer. Resin, benzocyclobutene, epoxy resin, polyamidene resin, perfluorocyclobutane, or a combination of the foregoing. 17. A backlight module device, comprising: a light source device comprising: the light emitting device package structure according to claim 1; an optical device disposed on a light exiting path of the light source device; and a power source A supply system that supplies the power required by the light source device. 18. A lighting device comprising: a light source device comprising the light emitting device package structure of claim 1 , a power supply system for providing a power source required for the light source device; and a control device The power source is controlled to input the light source device. 16
TW101209307U 2012-05-17 2012-05-17 Light-emitting device package structure, backlight module, and illumination apparatus TWM439267U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101209307U TWM439267U (en) 2012-05-17 2012-05-17 Light-emitting device package structure, backlight module, and illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101209307U TWM439267U (en) 2012-05-17 2012-05-17 Light-emitting device package structure, backlight module, and illumination apparatus

Publications (1)

Publication Number Publication Date
TWM439267U true TWM439267U (en) 2012-10-11

Family

ID=47719469

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101209307U TWM439267U (en) 2012-05-17 2012-05-17 Light-emitting device package structure, backlight module, and illumination apparatus

Country Status (1)

Country Link
TW (1) TWM439267U (en)

Similar Documents

Publication Publication Date Title
US10644202B2 (en) Electrode of light-emitting device
JP7022997B2 (en) Semiconductor devices and semiconductor device packages containing them
JP5011154B2 (en) III-nitride diodes on low refractive index carrier substrate
TWI625868B (en) Optoelectronic device and method for manufacturing the same
TW201214765A (en) Light emitting device and light emitting device package
JP5371252B2 (en) Transparent LED chip
TW200937610A (en) Radiation-emitting device
TW201034252A (en) Light emitting device
TWI557941B (en) Optoelectronic device and method for manufacturing the same
TWI610462B (en) Light-emitting device
TWI618264B (en) Optoelectronic device and method for manufacturing the same
KR102507447B1 (en) Light emitting device
CN103943748B (en) Light-emitting component
TWM439267U (en) Light-emitting device package structure, backlight module, and illumination apparatus
CN203659930U (en) Metallic reflecting layer-equipped semiconductor illuminating device
TWI528592B (en) Optoelectronic device
TWI790911B (en) Optoelectronic device
TWI790912B (en) Optoelectronic device
TWI662720B (en) Optoelectronic device and method for manufacturing the same
TWI669834B (en) Optoelectronic device and method for manufacturing the same
TWI589025B (en) Light-emitting device
TWI625869B (en) Optoelectronic device and method for manufacturing the same
CN106169529A (en) High efficient LED
US20150194574A1 (en) Optoelectronic device and method for manufacturing the same
KR20160014341A (en) Optoelectronic device and method for manufacturing the same

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model