TWM437412U - Tri-shaft motion simulating platform - Google Patents

Tri-shaft motion simulating platform Download PDF

Info

Publication number
TWM437412U
TWM437412U TW101204943U TW101204943U TWM437412U TW M437412 U TWM437412 U TW M437412U TW 101204943 U TW101204943 U TW 101204943U TW 101204943 U TW101204943 U TW 101204943U TW M437412 U TWM437412 U TW M437412U
Authority
TW
Taiwan
Prior art keywords
platform
axis
axis motion
motion
cam
Prior art date
Application number
TW101204943U
Other languages
Chinese (zh)
Inventor
Chung-Shu Liao
Song-Kuei Chang
Original Assignee
Injoy Motion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Injoy Motion Corp filed Critical Injoy Motion Corp
Priority to TW101204943U priority Critical patent/TWM437412U/en
Publication of TWM437412U publication Critical patent/TWM437412U/en

Links

Description

M437412 五、新型說明·· 【新型所屬之技術領域】 本創作係關於一種模擬二軸運動平台,特別是一種不使用液 壓或氣壓系統的三軸動態模擬装置。 【先前技術】 傳統的三軸動態模擬裝置,大都採用液壓或氣壓技術來達成 3D動態模擬的目的,但其缺點為體積較龐大,所需·元件與維護需 求多,且組裝困難及不易維修,在成本與維護效益的考量下較 不經濟。 而不採用液壓或氣壓技術的機械式三軸運動平台,例如,美 國第5036724號專利公開的機械裝置,其缺點為機構設計繁複, 且造成運動控制不易及機構整體剛性不足,無法完全輸出扭力。 【新型内容】 有鑑於此,本創作的目的在於創作一種模擬三軸運動平台, 不使用液壓或氣壓技術、具結構設計簡化、工作空間不受限制及 製造成本降低的優點。 所述模擬三軸運動平台,包括一兩軸運動平台及一第三軸運 動機組,其中,該兩軸運動平台包括一舖設於地面基礎上的基底 平台、一固設在該基底平台上的立柱、一固設在該立柱的頂部上 的萬向關節輛機構、一可進行兩個自由度旋轉運動的活動平台及 兩組呈正交配置的模組化凸輪驅動組,而且,該活動平台設有二 個呈正交配置的承接座;每組凸輪驅動組包括一可進行一個自由 3 M437412 度運動的凸輪逹捍,且該凸輪連桿的上端部與該活動平台的立中 一個承接座構雜接聯結;該萬__機構為具_個自由度 旋轉運動的連接結構,鎖咖立柱與該活動平台之間,以支樓 =該活動平台相對該基底平台進行兩個自由度旋轉運動,·而 •所述第三轴運動機組包括一可進行一個自由度運動的轉動平台, 且該轉動平台樞設於該兩軸運動平台的活動平台上面。 本創作的模擬三轴運動平台,於每一軸的ς動轴上設有一光 籲侧、-編喝器或一電位計的其中一種,當該模擬三轴運動平 台的每一轴進行一個自由度旋轉運動時,可用於感測每一抽的旋 轉εϊ域。 本創作的模擬三轴運動平台’於所述兩軸運動平台的基底平 台與:動平台之間’至少設有—組位置回饋編,可用於感測 該平台進行一個或二個自由度旋轉運動時的運動位移訊號; 而且’該位置_感_可線性電阻器、編碼^、電位計、 加速計、光學表尺賊顿㈣卜種。 ° 本創作的模擬―轴運動平台,於所述_運動平台的活動平 台與第三軸運動機組之間’設有—第三軸位置回饋感測器,以感 _第二軸運動機組的轉動平台進行第三轴旋轉運動時的運動位 移資訊,而且,該第三轴位置回饋感測器可選用線性電阻器、編 碼器、電位計、加速計、光學表尺或陀螺儀的其中—種。 本創作的模擬三軸運動平台,於所述第三軸運動機組的轉動 平台的侧邊’設有-第三減遮斷片,配合設置在所述兩轴運動 M437412 平台的活動平台上面的光遮斷感測器,可用於感測該轉動平台的 旋轉區域。 本創作的模擬三軸運動平台,於所述第三轴運動機組的轉動 平台上,設有一編碼器或一電位計的其中一種,可用於感測該轉 動平台的旋轉區域。 本創作的模擬三軸運動平台,於所述第三轴運動機組的轉動 平台上,設有一座艙,且經過介面由電腦系統即時控制所述轉動 平台及座艙一起進行3D動態模擬運動,而且,該座艙至少設有一 顯示單元、一光效單元或一音效單元,由電腦系統按照預設的據 本情節即時產生具虛擬實境場景及適時搭配光、音效果的模擬 3D動態運動。 本創作的模擬三軸運動平台,可運用於遊戲系統、教學訓練 系統、導覽系統、動感電影院與虛擬實境等系統。 【實施方式】 如圖1及圖2所示,本創作的槪三轴運動平台10,包括一 兩轴運動平台20及一第三軸運動機組60,不使用液屋或氣壓系 統,而具備三個自由度旋轉運動。 包括一基底平台21、一立M437412 V. New Description·· [New Technology Field] This creation is about an analog two-axis motion platform, especially a three-axis dynamic simulation device that does not use a hydraulic or pneumatic system. [Prior Art] Traditional three-axis dynamic simulation devices mostly use hydraulic or pneumatic technology to achieve 3D dynamic simulation. However, the disadvantages are that they are bulky, require many components and maintenance requirements, and are difficult to assemble and difficult to repair. It is less economical considering the cost and maintenance benefits. A mechanical three-axis motion platform that does not employ hydraulic or pneumatic techniques, for example, the mechanical device disclosed in U.S. Patent No. 5,067,724 has a disadvantage in that the mechanism design is complicated, and the motion control is not easy and the overall rigidity of the mechanism is insufficient to completely output the torque. [New content] In view of this, the purpose of this creation is to create an analog three-axis motion platform that does not use hydraulic or pneumatic technology, has a simplified structural design, unlimited work space, and reduced manufacturing costs. The simulated three-axis motion platform includes a two-axis motion platform and a third-axis motion unit, wherein the two-axis motion platform includes a base platform laid on the ground foundation, and a column fixed on the base platform. a universal joint mechanism fixed on the top of the column, an active platform capable of two degrees of freedom of rotation, and two sets of modular cam drive groups arranged orthogonally, and the movable platform is provided There are two sockets arranged in an orthogonal configuration; each set of cam drives includes a cam cymbal that can perform a free 3 M437412 degree movement, and the upper end of the cam link and the center of the movable platform Miscellaneous connection; the __ mechanism is a connection structure with _ degrees of freedom rotational movement, between the lock coffee column and the movable platform, with a branch = the movable platform performs two degrees of freedom rotation movement with respect to the base platform, The third axis motion unit includes a rotation platform that can perform a degree of freedom movement, and the rotation platform is pivoted on the movable platform of the two-axis motion platform. The simulated three-axis motion platform of the present invention has one of a light-appearing side, a brewer or a potentiometer on the tilting axis of each axis, and one degree of freedom is performed on each axis of the simulated three-axis motion platform. When rotating, it can be used to sense the rotation ε field of each pumping. The simulated three-axis motion platform of the present invention is provided with at least a set of position feedback between the base platform of the two-axis motion platform and the movable platform, which can be used to sense the platform for one or two degrees of freedom rotational motion. The motion displacement signal of the time; and 'the position _ sense _ linear resistance, code ^, potentiometer, accelerometer, optical scale thief (four) species. ° The simulation-axis motion platform of the present creation is provided with a third-axis position feedback sensor between the movable platform of the _motion platform and the third-axis motion unit, so as to sense the rotation of the second-axis motion unit The platform performs motion displacement information during the third axis rotational motion, and the third axis position feedback sensor may select one of a linear resistor, an encoder, a potentiometer, an accelerometer, an optical scale, or a gyroscope. The simulated three-axis motion platform of the present invention is provided with a third damper on the side of the rotating platform of the third-axis motion unit, and cooperates with the light shielding disposed on the movable platform of the two-axis motion M437412 platform. A break sensor can be used to sense the area of rotation of the rotating platform. The simulated three-axis motion platform of the present invention is provided with one of an encoder or a potentiometer on the rotating platform of the third-axis motion unit for sensing the rotation area of the rotating platform. The simulated three-axis motion platform of the present invention is provided with a cabin on the rotating platform of the third-axis motion unit, and the 3D dynamic simulation motion is performed by the computer system to control the rotating platform and the cabin together through the interface. The cockpit is provided with at least one display unit, one light effect unit or one sound effect unit, and the computer system instantly generates the simulated 3D dynamic motion with the virtual reality scene and the timely matching of light and sound effects according to the preset scenario. The simulated three-axis motion platform of this creation can be applied to games systems, teaching and training systems, navigation systems, dynamic cinemas and virtual reality systems. [Embodiment] As shown in FIG. 1 and FIG. 2, the three-axis motion platform 10 of the present invention includes a two-axis motion platform 20 and a third-axis motion unit 60, and does not use a liquid house or a pneumatic system, but has three One degree of freedom of rotation. Including a base platform 21, a stand

該兩轴運動平台20的基本構造 柱22、一萬向關節軛機構23、一活! 的凸輪驅動組30。其中,該兩軸運鸯 二個自由度旋轉運動,而所沭盆= 曰担Γ基底平台21是具堅_性的減,舖設於地面基礎上, 所述立杈22及所述凸輪驅動組30鎖固於上面。 鎖固^: 22是具—定高度及具堅闕性的柱狀物體,其底部 m 基底平台21上面,其頂部供所述萬向關節輛機構23鎖 固於上面D μ該活動平台24是具堅固剛性的板材,其底面與所述萬向關 卽輛機構23連接一起。 該萬向關節輛機構23是具備兩個自由度旋轉運動的習知機 ^冓,其用途為_在所述立柱22的頂部與所述活動平台Μ的底 部之間,且作為支撐且限制該活動平台24相對所述基底平台21 進行至少兩個自由度旋轉運動的連接結構。 如圖2或圖3所示,該萬向關節軛機構23可以進行X軸方 向的單軸旋轉運動(以下簡稱第-軸旋轉運動)、或γ軸方向的 單軸旋轉運動(以下_第二滅轉運動)、姐合χ轴與作 方向的雙滅轉運動(町_兩減轉運動)1所述萬向關 節輛機構23產生第—概轉運動或第二_轉運動或兩輛旋轉 運動的時候,該活動平台24將一起伴隨該萬向關節軛機構23同 步進行旋轉運動。 如圖2至圖4所示,該活動平台24的底面,以所述立柱22 的縱向轴線為中心點、再朝著X抽方向與Υ轴方向以相等跨距為 條件’各設置一承接座25,而且,當所述活動平台24駐留在水 平的位置時,該活動平台24的二個承接座25是呈現正交配置。 M437412 每個承接座25各設有一樞軸26,該二個承接座25的配置方 式,除滿足上述正交配置的條件外,該二個承接座25的樞軸26 還需滿足相互平行的排列條件,而且其中一個承接座25的樞軸 26配置方向,需滿足該樞軸26的轴線與所述立柱22的縱向軸線 構成相交的條件。 為簡潔文字綱,於下文巾或於申請柄細畴求項中, 凡提到“該活動平台24設有二個呈正交配置的承接座25„ ,即 代表所述二贿接座25及其所枢軸26都滿足上文中所述及 的配置條件。 5所不’每組凸輪贿組%微成具模喊的結 包含-馬達31、一減速機構32、一驅動軸%、一 :一 =5及-凸輪連⑽其中,所述凸輪連料的上端部及= W各设有—軸孔37,且每個轴孔W内部有配置減 :;該驅動軸33為所述減速機構32的輸出軸 ζ 結於該堪咖3上;贴輪34价“轴m 桿36的下端觸球面軸承38構成_組合。、’L凸輪連 每組凸輪驅動組30都是由所設的馬達3 ^經過所述減賴構32_減速目的,也軸該馬達 馬達31的動力從驅輸33傳輸出來,進而帶動構32將 生旋轉運動,再_34的偏叫35帶輪輪34產 36產生一個自由度運動。 動斤述凸輪連桿 如圖2及圖3所示,該凸輪連 部 上端。P’是藉著所設 财37412 的球面軸承38與該活動平台24的承接座25的樞軸26構成柩接 聯結。所以,當所述凸輪驅動組30的驅動軸33帶動所述凸輪% 作旋轉運動的時候,該凸輪34的偏心轴35將帶動該凸輪連桿% 進行-個自由度運動的上下往復運動,進而驅動與其構雜接聯 結的活動平台24相對於所述基底平台21進行-個自由度旋轉蓮 動。 如圖2至圖4所示,當二組凸輪驅動組3〇與各自對應的活 動平台24的承接座25絲枢接組合後,該二組凸輪驅動組% 相對於該萬向關_機構23的配置方式,亦呈現収交配置方 式設置於該基底平台21的上面。 同樣地,為簡潔文字說明,於下文中或於申請專利範圍的請 求項中’凡提到“凸輪驅動組3〇包括—可進行—個自由度運動 的凸輪連桿36 ’即代表所述凸輪驅動組%是由上文中所述及 的模組化結構所構成; 凡提到“凸輪驅動組30的驅動轴33” ,即代表是用於將動 力傳輸出來且帶動所述凸輪34倾轉運動的該驅動轴而言; 凡提到二組呈正交配置的凸輪驅動組3〇” ,即代表所述二 組所述凸輪軸組3G是滿足上文巾所述及的正賊置條件。 當-組呈正交配置的凸輪驅動組3〇的馬達31分別在不同時 間輸出動力或铜-時㈣步輸㈣力所述活動平台%將相 對於所述基底平台21進行二個自由度旋轉運動。 所以’本創作的模擬三轴運動平台1G的兩軸運動平台20, M4J/412 -備使得所箱動平* 24實施兩個自由麟轉運動的功能,包 括可以進行帛(X轴)旋轉運動或第二轴(Y轴)旋轉運動 或兩軸旋轉運動。 如圖3至圖5所示,為了感測每組凸輪驅動組30的凸輪34 的旋轉區域,於每組凸輪驅触%的減賴構32的驅動轴33 亡’至少設有―片光遮斷片,優縣所述驅動# 33設有-第-•光遮斷片51及一第二光遮斷片52,與設置於所述基底平台21上 Φ的相對應规_« 53 -起搭配航。 而所述第—光遮斷片51(或第二光遮斷# 52)與相對應的 光遮斷感測H 53的組合,可由設置於每組凸輪祕組3G的驅動 I* 33上的編碼器或電位計的其中一種取代。當所述活動平台24 進行(X軸或Υ轴)單轴或兩抽旋轉運動時,可以精確感測到每 組凸輪驅動組3〇的凸輪34的旋轉區域。 此外’如圖2至圖4所示,為了獲得所述活動平台24進行 _ (X軸或Υ軸)單軸或触雜運動時的運動位移訊號 ,該兩軸 運動平纟20於所述基底平纟21與所述活動平台24之間至少設 有一組位置回饋感測器55,優選為比照所述二個承接座25呈正 交配置方式而設有二組呈正交配置的位置回饋感測器55。 如圖3所示,所述位置回饋感測器55可選用具相同或類同 功能的線性電阻器、編碼器、電位計、加速計、光學表尺或陀螺 儀的其中一種。舉所述位置回饋感測器55是選用線性電阻器56 為例,將線性電阻器56設於該基底平台21與該活動平台24之 9 M437412 間,當所述活動平# 24撕(χΜγ軸)單軸或兩軸旋轉運 動時,該線性電阻器56將隨同該活動平台24的運動而改變電阻 值’藉著電阻值的變化’該線性電阻器56將精確感測到所述活 動平台24進行兩個自由度旋轉運動時的絕對位移資訊,再經過 預設程式的轉換,將可獲得可供回饋與控制的位移訊號。 如圖2及圖3所示’本創作的模擬三轴運動平台1〇的第三 軸運動機組60,是設置於所述兩軸運動平台2〇的活動平台%上 面進行一個自由度旋轉運動(以下簡稱第三軸旋轉運動),包括 一轉動平台61、一第三轴馬達62、一減速機構63、一第一齒輪 64、一第二齒輪65、一固定軸66及一轴承6> 所述活動平台24設-容納座27,供所述第三轴馬達62或/ 和所述減賴構63 _其上。所麟―錄64職於所述減速 機構63的輸出軸,第三軸馬達62的動力經過所述減速機構幻 的輸出軸帶動所述第一齒輪64旋轉。 所述固定轴66固設在所述活動平纟24上面,且提供給所述 轴承67套設於其上。將所述第二齒輪&與所述軸承67構成插 接組合,再將所述轉動平台61套設於所述固定轴&上,且使用 螺栓將所述轉動平自61與所料二綠65細-起。 該第二齒輪65與所述第一齒輪64構成唾合,所以該第三轴 馬達62的動力輸出後,將透過所述減速機構63使所述第-齒輪 64帶動所述第二齒輪65旋轉’進而帶動所述轉動平台61進行同 步旋轉’故所述轉動平台61相對於所述活動平台24而另外具備 M437412 一個自由度旋轉運動。 同樣地m文字购,於下文中或於申請專纖圍的請 求項中’凡提至il ®三轴運動機組60包括一可進行一個自由度 運動的轉動平台61”,即代表所述第三轴運動機組㈤是-上文中 所述及的麵組合,而且該轉動平台61是滿足上文中所述及的 配置條件。 如圖1至圖3所示’為了感測第三轴運動機組60的轉動平 台61的旋轉區域,該轉動平台61的側邊設有一第三轴光遮斷片 71,與設置顧述活動平台24 ±面的補應光__器73 一 起搭配使用。 所述第二轴光遮斷片71與所述光遮斷感測器73的組合,可 為由-編碼器或-電位計的其卜種取代,當所述轉動平台& 進行第三做轉運動時,可以精確感測騎述轉動平台61的旋 轉區域。 此外,如圖1及圖2所示,於所述活動平台24與所述第三 轴運動機組60之間進-步設有一第三轴位置回鑛感測器%,其 使用目的在於精確感測到所述轉動平台61進行第三軸旋轉運動 時的運動位移資訊。 所述第三轴位置回餚感測器75可選用具相同或類同功能的 線性電阻^、編碼H、f位計、加速計、光學表尺或陀螺儀的其 中一種。 綜前所述,本創作的模擬三轴運動平台1〇,不使用液麼或氣 M437412 系統,且具備各自獨响合的三個自由度旋轉運動躲 2所述兩軸運動平台2〇的活動平台24,具備二個自由^轉 :由二組呈正交配置的凸輪驅動組_進行第= 轉運動或/及第二轴旋轉運動,而第三轴運動機組6〇包括2 飾-個自由度運動的轉動平台61,且插設於所述活動: 上面,除具備所述活動平台24的二個自由度旋轉運動外,。 述第二軸運動機組60的第三軸斤 動。 *軸馬達62控制其進行第三轴旋轉運 如圖6解’本解的難三軸縣平",在所述轉 台的上面,進-步設置一座艙9〇,而共同組成一種遊戲機, 且經過介面由電腦系統的-輸入/輪出單元8〇控制所述轉動平台 61及絲90 -起進行模擬三轴運動,所以,該錄9〇是具備: 自獨立不耦合的三個自由度旋轉運動功能。 該座艙90具備座椅等基本乘座結構之外,還附設〜顯示單 元W、-光效單元92及-音效單元93,由所述輸w輸出單元 94進行即時動態控制,包括控制該座艙9〇的顯示單元%按照劇 本情節傳送3D虛擬實境場景、控制該座艙9〇配合虛擬實境情節 產生模擬3D動態運動、以及適時控制該光效單元92及該音效單 元93配合虛擬實境產生聲光效果,使得玩家(乘座者)充分體 驗及反應3D虛擬實境的遊戲情境。 本創作的模擬三軸運動平台10 ’具備以下突出的優點,可運 用於如遊戲系統、教學訓練系統、導覽系統、動感電影院與虛擬 12 M437412 實境等系統: 1. 使用二組呈正交配置的凸輪驅動組’可以簡化驅動機構與運動 控制設計的複雜度,尤其將二組凸輪驅動組採用模組化結構設 計’更有利於簡化設計、縮小工作空間限制及降低製造成本; 2. 俵用光遮斷片與光遮斷感測器的組合感測凸輪驅動組的凸輪旋 轉區域,可避免凸輪驅動組遇到運動學上的分支多解問題,大 幅降低控制的複雜度; 鲁3.使用位置回饋感測器(例如線性電阻)感測兩轴運動平台的活 動平台進行X軸或γ轴旋轉運動的位移訊號,可以避免機械式 感测=常因加工尺寸公差與組裝誤差而造成發生訊號感測誤差 ,以提高兩轴運動平台的控制精確度。 【圖式簡單說明】 圖1為本創作的模擬三軸運動平台示意圖。 圖2為圖1的模擬三軸運動平台包括一兩轴運動平台及一 鲁 第三軸運動機組的分解圖。 圖3為圖1的模擬三軸運動平台的局部剖面放大圖。 為® 1的模擬二軸運動平台的局部俯視放大圖,以及 說月圖1賴擬三軸物平台使用二組呈正交配置的凸輪驅 動組的示意圖。 圖5為本創作的凸輪驅動組示意圖。 為圖1的模擬二轴運動平台結合座艙共同組成一種遊 戲機的示意圖。 13 M437412 【主要元件符號說明】The basic structure of the two-axis motion platform 20 is a column 22, a universal joint yoke mechanism 23, and a cam drive group 30. Wherein, the two axes carry two degrees of freedom rotational motion, and the base plate 21 is a sturdy reduction, is laid on the ground, the vertical raft 22 and the cam drive group 30 is locked on top. The locking body ^: 22 is a columnar body having a fixed height and a firmness, the bottom of which is above the base platform 21, the top of which is fixed to the universal joint mechanism 23 on the top D. The movable platform 24 is The rigid rigid plate has a bottom surface connected to the universal joint mechanism 23. The universal joint mechanism 23 is a conventional machine having two degrees of freedom of rotational motion, and is used between the top of the upright 22 and the bottom of the movable platform, and serves as a support and limits the A connecting structure of the movable platform 24 relative to the base platform 21 for at least two degrees of freedom of rotational movement. As shown in FIG. 2 or FIG. 3, the universal joint yoke mechanism 23 can perform a uniaxial rotational motion in the X-axis direction (hereinafter referred to as a first-axis rotational motion) or a uniaxial rotational motion in the γ-axis direction (hereinafter _ second The non-rotation movement), the double-rotation movement of the sister-in-axis and the direction (the _ two-reduction movement) 1 the universal joint mechanism 23 generates a first-to-synchronous movement or a second-to-one movement or two rotations During the movement, the movable platform 24 will rotate together in synchronization with the universal joint yoke mechanism 23. As shown in FIG. 2 to FIG. 4, the bottom surface of the movable platform 24 is centered on the longitudinal axis of the column 22, and is equally positioned along the X-pumping direction and the X-axis direction with equal spans. Seat 25, and when the movable platform 24 resides in a horizontal position, the two sockets 25 of the movable platform 24 are in an orthogonal configuration. Each of the sockets 25 of the M437412 is provided with a pivot 26, and the two sockets 25 are arranged in such a manner that the pivots 26 of the two sockets 25 are arranged in parallel with each other except that the orthogonal arrangement is satisfied. Conditions, and the pivot 26 of one of the receiving seats 25 is disposed in a direction that satisfies the condition that the axis of the pivot 26 intersects the longitudinal axis of the post 22. For the sake of conciseness, in the following paragraph or in the application of the handle, the reference to "the movable platform 24 is provided with two orthogonally arranged sockets 25", which means the two bribes 25 and Its pivot 26 meets the configuration conditions described above. 5 non-per-group cam bribe group % micro-informed knots include - motor 31, a speed reduction mechanism 32, a drive shaft %, a: a = 5 and - cam connection (10) where the cam is contiguous The upper end portion and the = W are each provided with a shaft hole 37, and each of the shaft holes W has an internal arrangement: the drive shaft 33 is an output shaft of the speed reduction mechanism 32 and is attached to the Kancha 3; The price "the lower end contact ball bearing 38 of the shaft m rod 36 constitutes a combination. The 'L cam is connected to each set of the cam drive group 30 by the set motor 3 ^ through the deceleration frame 32_ deceleration purpose, and also the axis The power of the motor 31 is transmitted from the drive 33, which in turn drives the structure 32 to rotate, and the bias 35 of the _34 wheel 36 produces a degree of freedom motion. As shown in Fig. 3, the upper end of the cam joint P. is formed by the spherical bearing 38 of the set money 37412 and the pivot 26 of the receiving seat 25 of the movable platform 24. Therefore, when the cam drive group When the drive shaft 33 of the 30 drives the cam % to rotate, the eccentric shaft 35 of the cam 34 will drive the cam link % to perform The up and down reciprocating motion of the degree of motion, in turn, drives the movable platform 24 coupled with the structure to perform a degree of freedom rotation with respect to the base platform 21. As shown in Figures 2 to 4, when the two sets of cam drive groups 3 After the yokes are pivotally combined with the corresponding receiving bases 25 of the movable platform 24, the arrangement of the two sets of cam driving groups % relative to the universal closing mechanism 23 is also disposed on the base platform 21 Similarly, for the sake of brevity, in the following claims or in the claims of the patent application, the reference to the "cam drive group 3" includes a cam link 36 that can perform a degree of freedom movement The cam drive group % is constituted by the modular structure described above; where "the drive shaft 33 of the cam drive group 30" is referred to, it is used to transmit power and drive the cam 34. For the drive shaft of the tilting movement; where the two sets of cam drive groups 3′′ in an orthogonal configuration are mentioned, that is, the two sets of the camshaft sets 3G are satisfied with the thief described above. Condition. When - group is positive The motor 31 of the configured cam drive group 3 outputs power or copper at different times respectively (four) step (four) force. The movable platform % will perform two degrees of freedom rotational motion with respect to the base platform 21. Therefore, 'this creation The two-axis motion platform 20 of the simulated three-axis motion platform 1G, M4J/412 - is equipped to perform the functions of two free slewing movements, including the 帛 (X-axis) rotary motion or the second axis (Y-axis) rotational motion or two-axis rotational motion. As shown in Figures 3 to 5, in order to sense the rotational area of the cam 34 of each set of cam drive groups 30, the % of each set of cam drives is reduced by 32 The driving shaft 33 is at least provided with a sheet-shaped light blocking piece, and the driver #33 of the county is provided with a ----the light-blocking piece 51 and a second light-blocking piece 52, and is disposed on the base platform 21 The corresponding regulation _« 53 - from the match. And the combination of the first light blocking piece 51 (or the second light blocking #52) and the corresponding light blocking sensing H 53 may be encoded by the driving I* 33 of each set of the cam group 3G. Replace one of the devices or potentiometers. When the movable platform 24 performs a single-axis or two-pulling rotational motion (X-axis or x-axis), the rotation area of the cam 34 of each set of cam driving groups 3 can be accurately sensed. In addition, as shown in FIG. 2 to FIG. 4, in order to obtain the motion displacement signal when the movable platform 24 performs _ (X-axis or x-axis) single-axis or touch motion, the two-axis motion flat 20 is on the base. At least one set of position feedback sensors 55 is disposed between the flat jaws 21 and the movable platform 24. Preferably, two sets of position feedback feelings are arranged orthogonally according to the orthogonal arrangement of the two sockets 25. Detector 55. As shown in Fig. 3, the position feedback sensor 55 may be provided with one of a linear resistor, an encoder, a potentiometer, an accelerometer, an optical scale or a gyroscope of the same or similar function. The position feedback sensor 55 is an example of a linear resistor 56. The linear resistor 56 is disposed between the base platform 21 and 9 M437412 of the movable platform 24, when the active flat #24 tears (χΜγ axis During a single or two-axis rotational motion, the linear resistor 56 will change the resistance value 'by a change in resistance value' along with the movement of the movable platform 24. The linear resistor 56 will accurately sense the movable platform 24 The absolute displacement information of the two degrees of freedom rotation motion, and then the conversion of the preset program, will obtain the displacement signal for feedback and control. As shown in FIG. 2 and FIG. 3, the third-axis motion unit 60 of the simulated three-axis motion platform of the present invention is disposed on the movable platform % of the two-axis motion platform 2 to perform a degree of freedom rotational motion ( Hereinafter, the third axis rotational motion includes a rotating platform 61, a third shaft motor 62, a speed reducing mechanism 63, a first gear 64, a second gear 65, a fixed shaft 66, and a bearing 6> The movable platform 24 is provided with a accommodating seat 27 for the third shaft motor 62 or/and the damper 63. The lining-recording 64 operates on the output shaft of the speed reduction mechanism 63, and the power of the third-axis motor 62 drives the first gear 64 to rotate via the phantom output shaft of the speed-reduction mechanism. The fixed shaft 66 is fixed to the movable raft 24 and is provided to the bearing 67 to be sleeved thereon. The second gear & is combined with the bearing 67, and the rotating platform 61 is sleeved on the fixed shaft & and the rotation is flattened from 61 and 2 Green 65 fine - up. The second gear 65 and the first gear 64 are slid together. Therefore, after the power output of the third shaft motor 62, the second gear 65 is rotated by the first gear 64 through the speed reduction mechanism 63. In turn, the rotating platform 61 is rotated synchronously. Therefore, the rotating platform 61 additionally has a degree of freedom rotational motion of M437412 with respect to the movable platform 24. Similarly, in the following, or in the request for the special fiber package, the il ® three-axis motion unit 60 includes a rotating platform 61 that can perform a degree of freedom movement, that is, the third The shaft motion unit (5) is the surface combination described above, and the rotation platform 61 is configured to satisfy the above-described configuration conditions. As shown in FIGS. 1 to 3, 'to sense the third-axis motion unit 60 The rotating area of the rotating platform 61 is provided with a third axial light blocking piece 71 on the side of the rotating platform 61 for use together with a supplemental light __ 73 that is provided with a surface of the movable platform 24 . The combination of the light blocking piece 71 and the light blocking sensor 73 can be replaced by a - encoder or a potentiometer, and can be accurately performed when the rotating platform & performs the third turning motion The rotation area of the riding rotation platform 61 is sensed. Further, as shown in FIG. 1 and FIG. 2, a third axis position returning is provided between the movable platform 24 and the third axis motion unit 60. Sensor %, which is used for the purpose of accurately sensing the rotating platform 61 Motion displacement information when the third axis rotates. The third axis position return sensor 75 can be equipped with the same or similar linear resistance ^, code H, f position meter, accelerometer, optical scale or gyro One of the instruments. As mentioned above, the simulated three-axis motion platform of this creation is 1〇, does not use liquid or gas M437412 system, and has three degrees of freedom rotary motion of each unique harmony to avoid the two-axis motion The movable platform 24 of the platform 2 has two free rotations: two sets of cam drive groups arranged in an orthogonal manner _ performing a second rotation movement and/or a second axis rotation movement, and the third axis motion unit 6 〇 includes 2 a rotating platform 61 of a degree of freedom movement, and interposed in the activity: above, in addition to the two degrees of freedom rotational movement of the movable platform 24, the third axis of the second axis motion unit 60 The shaft motor 62 controls the third axis to rotate. As shown in Fig. 6, the solution is difficult to "three-axis county flat". On the top of the turntable, a cabin is set up in a step-by-step manner. a game machine, and the interface is input/rounded by the computer system The unit 8 〇 controls the rotating platform 61 and the wire 90 to perform analog three-axis motion, so the recording 9 〇 has: three independent degrees of rotational motion function that are independent and uncoupled. The cockpit 90 has a basic seat and the like. In addition to the pedestal structure, a display unit W, a light effect unit 92, and a sound effect unit 93 are attached, and the dynamic output control unit 94 performs instantaneous dynamic control, including controlling the display unit of the cockpit 9〇 according to the scenario of the script. Transmitting a 3D virtual reality scene, controlling the cockpit 9〇 to cooperate with the virtual reality scenario to generate simulated 3D dynamic motion, and timely controlling the light effect unit 92 and the sound effect unit 93 to cooperate with the virtual reality to generate sound and light effects, so that the player (passing the seat) Experience and fully understand the game situation of 3D virtual reality. The simulated three-axis motion platform 10' has the following outstanding advantages and can be applied to systems such as game systems, teaching and training systems, navigation systems, dynamic cinemas and virtual 12 M437412 realities: 1. Orthogonal using two groups The configured cam drive group 'simplifies the complexity of the drive mechanism and motion control design, especially the modular design of the two sets of cam drive groups' is more conducive to simplifying the design, reducing the working space constraints and reducing the manufacturing cost; The combination of the light blocking piece and the light blocking sensor senses the cam rotating area of the cam driving group, which can avoid the problem of the kinematic branching problem of the cam driving group and greatly reduce the complexity of the control; Position feedback sensor (such as linear resistance) senses the displacement signal of the X-axis or γ-axis rotary motion of the movable platform of the two-axis motion platform, which can avoid mechanical sensing = often caused by machining dimensional tolerance and assembly error Sensing errors to improve the control accuracy of the two-axis motion platform. [Simple diagram of the diagram] Figure 1 is a schematic diagram of the simulated three-axis motion platform. 2 is an exploded view of the simulated three-axis motion platform of FIG. 1 including a two-axis motion platform and a Lu-axis third-axis motion unit. 3 is a partial cross-sectional enlarged view of the simulated three-axis motion platform of FIG. 1. A partial top-down view of the analog two-axis motion platform for the ® 1 and a schematic diagram of two sets of cam-driven groups in an orthogonal configuration using the three-axis platform. Figure 5 is a schematic view of the cam drive set of the present invention. For the analog two-axis motion platform of Figure 1, combined with the cockpit to form a schematic diagram of a game machine. 13 M437412 [Key component symbol description]

10.. •…模擬三轴運動平台 20… 21- …·基底平台 22… …立柱 23·· •…萬向關卽輛機構 24… 25.. …·承接座 26… 27·. …·容納座 30- …凸輪驅動組 31- …·馬達 32… …減速機構 33·. …·驅動軸 34… …凸輪 35.· 36… …凸輪連桿 37" …·軸孔 38… 51- •…第一光遮斷片 52… …第二光遮斷片 53.· …·光遮斷感測器 55··· 56- …•線性電阻器 60- 61- …·轉動平台 62… …第三軸馬達 63·. …·減速機構 64… 65·. …·第二齒輪 66… …固定軸 67·. 7l··· 73·. •…光遮斷感測器 75… …線性電阻器 80·· …·輸入/輸出單元 90- …座搶 91- …·顯示單元 92- …光效單元 93.· …·音效單元10.. • Simulate a three-axis motion platform 20... 21- ...·Base platform 22...column 23··•...Universal closing mechanism 24... 25.....·Receiving seat 26...27·....·Accommodating Block 30 - ... cam drive group 31 - ... motor 32 ... speed reduction mechanism 33 · ... ... drive shaft 34 ... cam 35. · 36 ... cam link 37 " ... ... shaft hole 38 ... 51- • ... a light blocking piece 52... a second light blocking piece 53. ..... light blocking sensor 55··· 56- ...• linear resistor 60-61- ...·rotating platform 62...third axis motor 63 ···Deceleration mechanism 64...65·....·Second gear 66...Fixed shaft 67·. 7l··· 73·. •...Light blocking sensor 75... Linear resistor 80··...· Input/output unit 90-...seat 91-...display unit 92-...light effect unit 93.·...·sound unit

Claims (1)

M437412 六、申請專利範圍: 包括-兩轴運動平台及一第三軸運動 1· 一種模擬三軸運動平台, 機組,其特徵在於: 該兩軸運動平台包括一舖設於地面基礎上的基底平台、一固設 ^該基底平台上的立柱_在該立柱的卿上的萬向= 節軛機構、一可進行兩個自由度旋轉運動的活動平台及兩組 呈正父配置的凸輪驅動組,其中, 該活動平台設有二個呈正交配置的承接座; 每組凸輪凝動組包括-可進行一個自由度運動的凸輪連桿, 且該凸輪連桿的上端部與該活動平台的其中一個承接座構 成樞接聯結; 該萬向關節軛機構為具備兩個自由度旋轉運動的連接結構, 鎖固在該立柱與該活動平台之間,以支撐且限制該活動平 台相對該基底平台進行兩個自由度旋轉運動; 第二軸運動機組包括一可進行一個自由度運動的轉動平台,且 該轉動平台樞設於該兩軸運動平台的活動平台上面。 .如申4專利範圍第1項所述之一種模擬三軸運動平台其中, 該凸輪驅動組的驅動軸上設有一凸輪,且同一驅動軸上還設有 一光遮斷片、一編碼器或一電位計的其中一種,以感測該凸輪 的旋轉區域。 3·如申請專利第1項或第2項所述之-種觀三轴運動平台 其中,於該基底平台與該活動平台之間至少設有一組位置回 饋感測器,以感測該活動平台的運動位移訊號。 15 M437412 4. 如申請專利範圍第3項所述之一種模擬三轴運動平台,其中, 所述位置回饋感測器為線性電阻器、編碼器、電位計、加速計 、光學表尺或陀螺儀的其中一種。 5. 如申請專利範圍第4項所述之一種模擬三轴運動平台’於所述 兩轴運動平台的活動平台與所述第三軸運動機組之間進一步設 - 有一第三軸位置回饋感測器,以感測該第三軸運動機組的轉動 . 平台進行第三軸旋轉運動時的運動位移資訊。 φ 6.如申請專利範圍第5項所述之一種模擬三軸運動平台,其中, 所述第三軸位置回饋感測器為線性電阻器、編碼器、電位計、 加速計、光學表尺或陀螺儀的其中一種。 7. 如申請專利範圍第4項所述之一種模擬三軸運動平台,其中, 該第三軸運動機組的轉動平台的侧邊,設有一第三軸光遮斷片 ,以感測該轉動平台的旋轉區域。 8. 如申請專利範圍第4項所述之一種模擬三軸運動平台,其中, _ 該第三軸運動機組的轉動平台,設有一編碼器或一電位計的其 中一種,以感測該轉動平台的旋轉區域。 9. 如申請專利範圍第1項所述之一種模擬三軸運動平台,其中, 該第三軸運動機組的轉動平台上,設有一座餘。 10. 如申請專利範圍第9項所述之一種模擬三軸運動平台,其中 ,該座搶至少設有一顯示單元、一光效單元或一音效單元。 16M437412 VI. Patent application scope: Included-two-axis motion platform and a third-axis motion platform 1. An analog three-axis motion platform, the unit is characterized in that: the two-axis motion platform comprises a base platform laid on the ground, a fixed column on the base platform _ a universal yoke mechanism on the slab of the column, a movable platform capable of two degrees of freedom of rotation, and two sets of cam drive groups in a parental configuration, wherein The movable platform is provided with two sockets arranged in an orthogonal configuration; each group of cam condensing groups includes a cam link capable of one degree of freedom movement, and the upper end portion of the cam link is engaged with one of the movable platforms The seat constitutes a pivotal joint; the universal joint yoke mechanism is a joint structure having two degrees of freedom of rotational movement, and is locked between the upright and the movable platform to support and limit the movable platform to perform two opposite to the base platform Degree of freedom rotary motion; the second axis motion unit includes a rotation platform capable of performing a degree of freedom motion, and the rotation platform is pivotally disposed on the two axis motion plane The movable platform above. An analog three-axis motion platform according to claim 1, wherein the driving shaft of the cam driving group is provided with a cam, and the same driving shaft is further provided with a light blocking piece, an encoder or a potential. One of the meters to sense the area of rotation of the cam. 3. A three-axis motion platform as described in claim 1 or 2, wherein at least one set of position feedback sensors is provided between the base platform and the movable platform to sense the movable platform. Motion displacement signal. 15 M437412. 4. An analog triaxial motion platform according to claim 3, wherein the position feedback sensor is a linear resistor, an encoder, a potentiometer, an accelerometer, an optical scale or a gyroscope. one of them. 5. An analog three-axis motion platform as described in claim 4 is further provided between the movable platform of the two-axis motion platform and the third-axis motion unit - a third-axis position feedback sensing To sense the rotation of the third-axis motion unit. The motion displacement information of the platform during the third-axis rotational motion. An analog three-axis motion platform according to claim 5, wherein the third axis position feedback sensor is a linear resistor, an encoder, a potentiometer, an accelerometer, an optical scale or a gyro One of the instruments. 7. The analog triaxial motion platform of claim 4, wherein a side of the rotating platform of the third axis motion unit is provided with a third axial light blocking piece for sensing the rotating platform. Rotating area. 8. An analog three-axis motion platform according to claim 4, wherein the rotating platform of the third-axis motion unit is provided with one of an encoder or a potentiometer to sense the rotating platform. The area of rotation. 9. An analog three-axis motion platform according to claim 1, wherein the third axis motion unit has a rest on the rotating platform. 10. An analog three-axis motion platform according to claim 9, wherein the seat is provided with at least one display unit, one light effect unit or one sound effect unit. 16
TW101204943U 2012-03-20 2012-03-20 Tri-shaft motion simulating platform TWM437412U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101204943U TWM437412U (en) 2012-03-20 2012-03-20 Tri-shaft motion simulating platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101204943U TWM437412U (en) 2012-03-20 2012-03-20 Tri-shaft motion simulating platform

Publications (1)

Publication Number Publication Date
TWM437412U true TWM437412U (en) 2012-09-11

Family

ID=47224474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101204943U TWM437412U (en) 2012-03-20 2012-03-20 Tri-shaft motion simulating platform

Country Status (1)

Country Link
TW (1) TWM437412U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727421B (en) * 2019-09-16 2021-05-11 藏識科技有限公司 Mixed reality system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727421B (en) * 2019-09-16 2021-05-11 藏識科技有限公司 Mixed reality system

Similar Documents

Publication Publication Date Title
EP3316735B1 (en) Motion control seat input device
US20160320862A1 (en) Motion control seat input device
CN106063090A (en) Actuator and robot arm apparatus
US20090119030A1 (en) Force feedback and interactive system
KR20150005805A (en) Virtual hiking sysdtem and method thereof
CN107003689A (en) Input-output operation device
WO2019222525A1 (en) Tactile responsive surface for virtual reality training device
CN104956648B (en) Method and apparatus for sensing the orientation of object in space in fixed reference frame
US20090275451A1 (en) Interactive training device
JP4339847B2 (en) Measuring head for probe
KR101492372B1 (en) Virtual Reality Simulation Apparatus Having Motion Control Unit
US20200097069A1 (en) Virtual Reality Input Device
CN102023643A (en) 3-PRP planar three-degree-of-freedom parallel mechanism positioning method
CN202622805U (en) Simulated three-axis movement platform
KR100366179B1 (en) Motion simulation pad
US9126121B1 (en) Three-axis ride controlled by smart-tablet app
TWM437412U (en) Tri-shaft motion simulating platform
CN101890237A (en) Game controller and control method thereof
JPH10247054A (en) Angle control unit for body
KR102182974B1 (en) System for supporting virtual reality indoor bike exercise and method thereof
JP2004024299A (en) Motion base
JP4980029B2 (en) Vibration device
CN208591517U (en) VR slides platform
CN209263944U (en) A kind of simulation scalpel space orientation equipment
TW587952B (en) Motion-simulation pad