M435621 • 五、新型說明: 【新型所屬之技術領域】 本創作係有關液晶顯示器,尤其係指_種應用於液a 顯示器之背光板裝置。 【先前技術】 隨著家電產品電腦化的趨勢,為符合顯示器在重量要 輕、尺寸要薄、輻射要低等需求、具有尺寸薄、高解析度、 _ 低輻射的液晶顯示器(LCD) ’由於其製造成本下降,近年 來成為顯示器市場的主流。 然而,液晶本身不發光所以LCD必須藉由外來光源 以it供光能如背光板。貪光板係為液晶顯示器之關鍵零組 件,其亮度充份且均勻之光源’使液晶面板顯示影像。 而背光板依光源位置大致可分為「側光式」及「直下 式」設計,其中直下式設計係將發光二極體(LED)之光源 # 設置於液晶面板下方’利用光束行進方向’使光束投射至 面板下方之擴散板而提供液晶面板均勻光束如請參閱圖 1 0 現存直下式背光板照明機構實施時有缺點如下: 1 .因結構設計要求薄型化’混光空間變小,光源混 光的均句度變差。 2.使用大量的發光二極體(LED)。 3 M435621 •現存背光板照明機構如圖一屬於多層結 組裝’程序較煩,製作成本高。 4·發光二極體光源(LED)未能充份發揮,造 的浪費。 基於習用背光板的缺點,本案創作人提出一種 結構,該背光板運用光學元件產生分散光束,而分 經由光束擴散器反射至光學漫射面,使光源得充份 利用並產生均勻的平面光源。 【新型内容】 本創作之一目的,係提供一種背光板結構,可 光和色的均勻性同時降低LED數目,達到節省能 保效益。 本創作之再一目的,係提供一種背光板結構, 學元件之設置’以減少照明損失,而達到高光效率 明。 本創作之另一目的,係提供一種背光板結構, 射光學元件之設置,而達到高度簡化的薄型結。 本創作之又一目的,係提供一種背光板結構, 不同光學元件之組合之設置,而達到高機構穩定伯 為達上述目的本創作之背光板裝置包括至少 明光源陣列,它由LED光源和相應的光學元件組 構製造 ,成光能 背光板 散光束 有效的 提高度 源之環 利用光 背光照 利用反 可利用 〇 一個照 成;光 M435621 -源發出發散光照明光經分光器分解成至少兩束光、至少一 光束擴散元件組成的光束擴散器它將光束反射或折射至 光于!射面,它是一個微型光學結構的表面,將入射光 轉變成向各個方向漫射的,肖勻的液晶屏照明光。 【實施方式] 為使能對本創作之目的,形狀構造裝置特徵及功效作 更進一步的認識與暸解,茲舉實施例配合圖示,詳細說明 # 如下: 请參閱圖2a所示本創作一實施例之放大示意圖其係 一種「直射型液晶顯示器背光板」,其系由多個直射塑液 .明顯不器背光結構所排列組成,各個直射型液晶顯示器背 光結構請參閱圖2b,其包括有: 至少一個照明光源陣列E,其至少由一個照明光源所 組成’一分光器’其至少由兩個反射面組成的錐形體反射 • ® ( 1 2 1 a、1 2 1 d) ’將光源發出的發散光分解成至少兩束 光’ 一光束擴散器,由兩個透鏡(122a、122d)所組成,將 上述之分解的兩束光之發散角擴大;以及一光學漫射面 126匕是一個微型光學結構的表面,將光束擴散器擴散 的光束轉變成向各個方向漫射的,均勻的液晶屏照明光。 照明光源的光束經由光分光器將光束分解成至少兩束 光’分解後的先束經由光束擴散器將分解的光束之發散角 5 M435621 擴大,而後經由光學漫射面而形成均勻的液晶屏照明光。 上述之光學元件亦可以組合成成更簡單,更堅固,可 靠的單一背景光光學組合體。本創作直射型液晶顯示器背 光結構之細節在下文有更詳細說明。以下,係參照圖式說 明直射型液晶顯示器背光板之各種實施形態。 (第一直射型液晶顯示器背光板實施型態) 一直射型液晶顯示器背光板其實施案例請參閱圖 2a。直射型液晶顯示器背光板其系由多個直射型液晶顯示 器背光結構所組成的反射型矩陣。其直射型液晶顯示器背 光結構其實施案例請參閱圖2 b。照明光源陣列E,其至 少由一個光源所組成。照明光源陣列E可以方便地使用 發光二極體(L E D)照明陣列或冷陰極螢光燈(c c F L )光 源。LED光束是為入射光B〇,藉由分光器其至少由兩個 反射面組成的錐形體反射面(1 2丨a、p丨d)將入射光分解 成至少兩束反射光B1 1 ’後續反射面(丨丨u、丨nd)將上述 反射光B 1 1反射到相同的方向,形成相應的多束二次反 射光Β12»上述之分光器可為鍍有反射膜的反:射面、全反 射面或光學平面。二次反射光B 1 2而後經由至少由兩個 透鏡(丨22a、122d)所組成的光束擴散器將入射光束之發散 角擴大。上述之透鏡可是菲涅耳鏡或全相光學元件。 光束擴散器之後的擴散光束在空間上是不連續的,所 M435621 … 以為此,加入光學漫射面1 26形成均勻的,明亮 • 明。 (第二直射型液晶顯示器背光板實施型態) 一直射型液晶顯示器背光板使用四個反射 錐形體分光器的實施案例,請參閱剖面圖2c。 射面201將入射光分解成四束光後續四反射面 述反射光反射到相同的方向,形成相應的多束 •光。上述之分光器可為鍍有反射膜的反射面、全 光學平面。二次反射光而後經由四個d (2〇〇a,2〇〇b_" 200d)所組成的光束擴散器將入 發散角擴大。上述之光束擴散器亦可是透鏡菲 全相光學元件。 (第二直射型液晶顯示器背光板實施型態) 直射型液晶顯示器背光結構亦可為反射圓 閱圖2d。圓錐體反射面3〇〇將入射光轉換成圓 後續圓錐形反射面3〇1將上述反射光反射到 向,形成相應的圓錐形光。二次反射光而後經由 3〇2所組成的光束擴散器將入射光束之發散角掮 之光束擴散器亦可是環型透鏡,或相應的環型菲 全相光學元件。光束擴散器之後的擴散光束在空 續的,所以為此,加入光學漫射面形成均勻的’ 的連續照 面組成的 錐形體反 1 10將上 一次反射 反射面或 b面透鏡 射光束之 涅耳鏡或 錐面請參 錐形光, 相同的方 環型透鏡 〖大。上述 〉里耳鏡或 間是不連 明亮的連 7 M435621 續照明。 (第四直射型液晶顯示器背光板實施型態) 上述照明光源陣列、分光器、和光束擴散器都是分離 元件。匕們的光學功能可以組合成更簡單,更堅固’可靠 的單一元件。其實施案例請參閱圖3 a,多個單一元件直 射型液晶顯示器背光結構所组成的直射型液晶顯示器背 光板可是為圓錐面矩陣。其中直射型液晶顯示器背光結構 的分光器和光束擴散器組合成單一背景光光學組合體其 貫施案例請參閱圖3b。它是一透明光學板。它的周圍可 以是鍍有反射膜的反射面、具有光學聚光或發散作用的光 學曲面、全反射面以及光學平面。LEd光束是為入射光 B0 ’藉由背景光光學組合體4〇〇的其至少由兩個反射面 組成的組合錐形反射面(〗3 1 a,1 3 1 d)的分光器將入射光 B 0分成至少兩束反射光b n,和正對上述反射面的後續 組合反射面(丨32a,132d)組成將上述反射光反射到相同的 方向’形成相應的多束二次反射光B12。二次反射光B12 經由背景光光學組合體400的射出面(133a, 133d)射出。 其射出面可為環型透鏡,光學平面、相應的環型菲涅耳鏡 或全相光學元件。光束在空間是不連續的,所以為此,加 入光學漫射面形成均勻的,明亮的連續照明。 (第五直射型液晶顯示器背光板實施型態) M435621 • 一直射型液晶顯示器背光板使用四個反射面組成的 錐形體背景光光學組合體的實施案例,請參閱剖面圖 3c。四個反射面組成的四面錐形反射面(211a,211b...2lid) 將入射光分解成四束光,四面後續組合反射面 (130a,130b…130d)將上述反射光反射到相同的方向,形 成相應的多束二次反射光。二次反射光而後經由射出面的 光學透鏡(210a,210b…210d)將入射光束之發散角擴大。 • 其射出面可為環型透鏡、光學平面、相應的環逛菲涅耳鏡 或全相光學元件。 (第六直射型液晶顯示器背光板實施型態) 背景光光學組合體亦可為反射圓錐面請參閱圖3d。 圓錐體組合反射面2 4 7將入射光分轉換成錐形光,圓錐體 後續反射面245將上述反射光反射到相同的万向,形成相 應的錐形光。二次反射光而後經由環型射出面246射出。 ® 背景光光學組合體之後的擴散光束在空間是不連續的,所 以為此,加入光學漫射面形成均勻的,明亮的連續照明。 (第七直射型液晶顯示器背光板實施型態) 上述反射面和後續組合反射面,它們的反射面亦可具 有光學聚光或發散作用的光學曲面。其光學曲面可為鍍有 反射膜的反射面或全反射面。具有多個光學曲面的直射型 液晶顯示器背光結構所組成的直射型液晶顯米器背光板 9 M435621 其實施案例請參閱圖4a其中多個光學曲面的直射型液 晶顯示器背光結構其實施案例請參閱圖4 b,多個嵌入式 背景光光學組合體(400a,400b.._40〇n)所組成的直射型液 晶顯示器背光板剖面。LED光束是為入射光B0,藉由分 光器其至少由兩個反射面組成的錐形反射曲面 (141 a,141 d)將入射光分解成至少兩束反射光B11,後續反 射曲面(142a,142d)是為反射面其具有光學聚光或發散作 用的光學曲面。其光學曲面可為鍍有反射膜的反射面或全 反射面。 藉由上述光學曲面將反射光反射到相同的方向並加 以擴散其光束,形成相應的多束擴散二次反射光Β33。擴 散後的光束在空間是不連續的,所以為此,加入光學漫射 面形成均勻的,明亮的連續照明。 (第八直射型液晶顯示器背光板實施型態) 請參閱圖4c的四個反射面組成的分光器實施案例。 其分光器為四個反射面組成的四面錐形反射曲面(丨43a..· 1 43d)將入射光分解成四束光,四面後續反射曲面(144a… 144d)是為反射面其具有光學聚光或發散作用的光學曲 面。其光學曲面可為鍍有反射膜的反射面、全反射面或光 學平面°藉由上述光學曲面將反射光反射到相同的方向並 加以擴散其光束’形成相應的多束擴散二次反射光。擴散 M435621 後的光束在工間疋不連續的,所以為此加入光學漫射面 - 形成均勻的’明亮的連續照明。 (第九直射型液晶顯示器背光板實施型態) 一直射型液晶顯示器背光板之分光器亦可為反射圓 錐曲面145吻參閱圖4心反射圓錐曲面將入射光分 轉換成錐形光’後續圓錐反射曲面丨46將上述反射光反射 到相同的方向,形成相應的圓錐形擴散光。擴散光束在空 癱間是不連續的, 所以為此,加入光學漫射面形成均勻的,明亮的連續 照明。 上述之照明光源陣列亦可嵌入背景光光學組合體 中夕個直射型液晶顯示器背光結構所組成的直射型液晶 顯不器背光板其實施案例請參閱圖5或圖6。多個背景光 光學組合體設有嵌入孔E丨置於背景光光學組合體中照 •明光源陣列E可嵌入嵌入孔E i内。 上述分光器t心亦可有—中心孔Η丨〇,它可以讓部分 光通過,形成另一束直射光Βη,其實施案例請參閱圖7。 中心孔Η 1 0亦可為一聚光或發散作用的中心光學曲面, 它可以讓部分光通過,形成另一聚光或發散的光束。中心 孔Η 1 0亦可是透鏡、菲涅耳鏡、全相光學元件、以及曲 面透鏡。直射型液晶顯示器背光結構排列組合為不同的反 M435621 射’全反射和圓錐面矩陣的組合應用。 我們展示了不同的可能產生液晶屏的照明光的分光 器、光束擴散器和光學漫射面以及它們的組合。但無法將 所有熟悉該項技術者能達成的修改案例完全介紹。但所有 這些變化沒有逾越我們專利要求範圍。 【圖式簡單說明】 圖1為現存直下式背光板照明機構圖;M435621 • V. New description: [New technical field] This creation relates to liquid crystal displays, especially to backlight devices used in liquid a displays. [Prior Art] With the trend of computerized home appliances, liquid crystal displays (LCDs) with thin size, high resolution, and low radiation are required to meet the requirements of light weight, thin size, low radiation, etc. Its manufacturing cost has dropped, and it has become the mainstream of the display market in recent years. However, the liquid crystal itself does not emit light, so the LCD must supply light energy such as a backlight by an external light source. The greedy panel is a key component of the liquid crystal display, and the light source with sufficient brightness and uniformity causes the liquid crystal panel to display an image. The backlight board can be roughly classified into a "sidelight type" and a "straight down type" depending on the position of the light source. The direct type design is to set the light source of the light emitting diode (LED) under the liquid crystal panel to make use of the direction of travel of the light beam. The beam is projected onto the diffuser plate below the panel to provide a uniform beam of the liquid crystal panel. Please refer to Figure 10. The existing direct-lit backlight panel illumination mechanism has the following disadvantages: 1. Due to the structural design requirements, the thinning space is small, and the light source is mixed. The average degree of light deteriorates. 2. Use a large number of light-emitting diodes (LEDs). 3 M435621 • The existing backlight panel illumination mechanism is as shown in Figure 1. The program is more annoying and the production cost is high. 4. The light-emitting diode light source (LED) is not fully utilized and is wasted. Based on the shortcomings of the conventional backlight panel, the creator of the present invention proposed a structure in which the optical element is used to generate a dispersed beam, which is reflected by the beam diffuser to the optically diffusing surface, so that the light source can be fully utilized and a uniform planar light source is generated. [New content] One of the purposes of this creation is to provide a backlight structure that can reduce the number of LEDs while reducing the uniformity of light and color, thereby saving energy and saving benefits. A further object of the present invention is to provide a backlight structure that is designed to reduce illumination losses and achieve high light efficiency. Another object of the present invention is to provide a backlight structure that provides for the placement of optical components to achieve a highly simplified thin junction. Another object of the present invention is to provide a backlight structure, a combination of different optical components, and achieve high mechanism stability. The backlight device of the present invention comprises at least a light source array, which is composed of an LED light source and corresponding The optical component fabric is manufactured, and the light source backlight plate is effectively increased by the light source. The ring is illuminated by the light backlight. The light is used to emit light. The light is emitted from the light splitter and split into at least two. A beam diffuser consisting of at least one beam diffusing element reflects or refracts the beam to light! The surface, which is the surface of a miniature optical structure, converts the incident light into a diffuse light in all directions, and the uniform LCD screen illuminates the light. [Embodiment] In order to enable a further understanding and understanding of the features and functions of the shape-constructing device for the purpose of the present invention, the embodiment is described in conjunction with the drawings, and the detailed description is as follows: Please refer to the embodiment of the present invention shown in FIG. 2a. The enlarged schematic diagram is a "direct type liquid crystal display backlight panel" which is composed of a plurality of direct plastic liquid liquids and apparently no backlight structure. For the backlight structure of each direct-type liquid crystal display, please refer to FIG. 2b, which includes: An array of illumination sources E consisting of at least one illumination source 'a beam splitter' that reflects at least two cones of reflective surfaces • ® ( 1 2 1 a, 1 2 1 d) 'transmits the light source The astigmatism is decomposed into at least two beams of light, a beam diffuser consisting of two lenses (122a, 122d) that expands the divergence angle of the two beams of light resolved; and an optical diffusing surface 126 is a micro-optical The surface of the structure converts the beam diffused by the beam diffuser into a uniform liquid crystal screen that diffuses in all directions. The beam of the illumination source splits the beam into at least two beams via the optical splitter. The decomposed pre-beam expands the divergence angle 5 M435621 of the decomposed beam via the beam diffuser, and then forms a uniform liquid crystal illumination through the optical diffusing surface. Light. The optical elements described above can also be combined into a simpler, stronger, and reliable single backlight optical assembly. The details of the backlight structure of the present direct type liquid crystal display are described in more detail below. Hereinafter, various embodiments of a direct-lit type liquid crystal display backlight panel will be described with reference to the drawings. (First direct type liquid crystal display backlight implementation type) The embodiment of the always-on liquid crystal display backlight panel is shown in Fig. 2a. The direct-type liquid crystal display backlight panel is a reflective matrix composed of a plurality of direct-lit type liquid crystal display backlight structures. See Figure 2b for an example of its direct-type liquid crystal display backlight structure. An array of illumination sources E consisting of at least one source. The illumination source array E can conveniently use a light emitting diode (L E D) illumination array or a cold cathode fluorescent lamp (c c F L ) light source. The LED beam is incident light B〇, and the incident light is decomposed into at least two reflected lights B1 1 ' by a cone reflecting surface (1 2丨a, p丨d) composed of at least two reflecting surfaces by a beam splitter. The reflecting surface (丨丨u, 丨nd) reflects the reflected light B 1 1 in the same direction to form a corresponding multi-beam secondary reflected light Β 12» The above-mentioned beam splitter can be a reverse coated with a reflective film: Total reflection surface or optical plane. The secondary reflected light B 1 2 is then enlarged by a beam diffuser composed of at least two lenses (丨 22a, 122d). The lens described above may be a Fresnel or a full phase optical element. The diffused beam after the beam diffuser is spatially discontinuous, for which M435621 ... for this purpose, the optical diffusing surface 126 is added to form a uniform, bright, bright. (Second type of liquid crystal display backlight implementation) The embodiment of the four-beam reflective cone splitter for the always-on liquid crystal display backlight is shown in section 2c. The plane 201 splits the incident light into four beams, and the four reflected surfaces reflect the reflected light in the same direction to form a corresponding multi-beam. The above spectroscope may be a reflective surface coated with a reflective film, and an all-optical plane. The divergence angle is enlarged by the beam diffuser composed of four d (2〇〇a, 2〇〇b_" 200d). The beam diffuser described above may also be a lens phenanthrene optical element. (Second type of liquid crystal display backlight implementation) The direct-lit type liquid crystal display backlight structure can also be a reflection circle (Fig. 2d). The cone reflecting surface 3 turns the incident light into a circle. The subsequent conical reflecting surface 3〇1 reflects the reflected light in the direction to form a corresponding conical light. The beam diffuser that reflects the light twice and then diverges the angle of the incident beam via a beam diffuser consisting of 3〇2 can also be a ring lens, or a corresponding ring-type phenanthrene optical element. The diffused beam after the beam diffuser is vacant, so for this purpose, the optical diffusing surface is added to form a uniform 'continuous illuminating cone consisting of a cone 1 10 which will be the last reflective or b-lens beam. For mirror or cone, please refer to the cone light. The same square ring lens is large. The above 〉 otoscope or room is not connected to the bright 7 M435621 continuous illumination. (Fourth Direct Type Liquid Crystal Display Backlight Embodiment) The above illumination source array, beam splitter, and beam diffuser are all separate elements. Our optical functions can be combined into a simpler, more robust 'reliable single element. For the implementation example, please refer to FIG. 3 a. The direct-type liquid crystal display backlight composed of a plurality of single-element direct-type liquid crystal display backlight structures may be a conical surface matrix. The splitter and beam diffuser of the direct-lit type liquid crystal display backlight structure are combined into a single background optical optical assembly. See Figure 3b for a case study. It is a transparent optical plate. It may be surrounded by a reflective surface coated with a reflective film, an optical curved surface having optical focusing or diverging, a total reflecting surface, and an optical plane. The LEd beam is a beam splitter for the incident light B0' by a combined cone-shaped reflecting surface ("3 1 a, 1 3 1 d" composed of at least two reflecting surfaces of the background optical optical assembly 4". B 0 is divided into at least two reflected lights bn, and a subsequent combined reflecting surface (丨 32a, 132d) facing the reflecting surface is formed to reflect the reflected light in the same direction to form a corresponding multi-beam secondary reflected light B12. The secondary reflected light B12 is emitted through the exit surfaces (133a, 133d) of the background optical optical assembly 400. The exit surface can be a toroidal lens, an optical plane, a corresponding ring-shaped Fresnel or a full-phase optical component. The beam is discontinuous in space, so for this purpose, an optical diffusing surface is added to form a uniform, bright continuous illumination. (Fifth type of liquid crystal display backlight panel implementation) M435621 • For the implementation of the cone-shaped background optical assembly using a four-reflection surface for the all-in-one type LCD backlight, see section 3c. The four-sided conical reflecting surface (211a, 211b...2lid) composed of four reflecting surfaces decomposes the incident light into four beams, and the four subsequent reflecting surfaces (130a, 130b...130d) reflect the reflected light in the same direction. Forming a corresponding multi-beam secondary reflected light. The diffracted angle of the incident light beam is expanded by the secondary reflection light and then passing through the optical lenses (210a, 210b ... 210d) of the exit surface. • The exit surface can be a toroidal lens, an optical plane, a corresponding ring-shaped Fresnel mirror or a full-phase optical component. (Sixth Direct Type Liquid Crystal Display Backlight Plate Implementation Type) The background optical assembly may also be a reflective conical surface, see Fig. 3d. The cone combined reflecting surface 247 converts the incident light into conical light, and the cone subsequent reflecting surface 245 reflects the reflected light to the same universal direction to form a corresponding tapered light. The second reflected light is then emitted through the annular exit surface 246. The diffused beam behind the background optical assembly is discontinuous in space, so for this purpose, an optical diffusing surface is added to form a uniform, bright continuous illumination. (Seventh direct type liquid crystal display backlight plate implementation type) The above-mentioned reflecting surface and subsequent combined reflecting surface, their reflecting surfaces may also have optical curved surfaces for optical focusing or diverging. The optical curved surface may be a reflective surface or a total reflection surface coated with a reflective film. Direct-type liquid crystal display backlight panel composed of a direct-type liquid crystal display backlight structure with multiple optical curved surfaces 9 M435621 For the implementation example, please refer to FIG. 4a, a direct-lit type liquid crystal display backlight structure with multiple optical curved surfaces, and an implementation example thereof. 4 b, a cross-section of a direct-type liquid crystal display backlight panel composed of a plurality of embedded background optical optical assemblies (400a, 400b.._40〇n). The LED beam is the incident light B0, and the incident light is decomposed into at least two reflected lights B11 by a conical reflecting curved surface (141 a, 141 d) composed of at least two reflecting surfaces of the spectroscope, and the subsequent reflecting curved surface (142a, 142d) is an optical curved surface having an optical concentrating or diverging effect for the reflecting surface. The optical curved surface may be a reflective surface or a totally reflective surface coated with a reflective film. The reflected light is reflected in the same direction by the above optical curved surface and the light beam is diffused to form a corresponding multi-beam diffusion secondary reflection pupil 33. The diffused beam is discontinuous in space, so for this purpose, an optical diffusing surface is added to form a uniform, bright continuous illumination. (Eighth direct type liquid crystal display backlight implementation type) Please refer to the splitter implementation case of the four reflecting surfaces of Fig. 4c. The spectroscope is a four-sided conical reflecting surface composed of four reflecting surfaces (丨43a..·1 43d), which splits the incident light into four beams, and the four-sided subsequent reflecting curved surfaces (144a...144d) are optical reflecting groups for the reflecting surface. Optical or divergent optical surface. The optical curved surface may be a reflective surface coated with a reflective film, a total reflective surface or an optical plane. The reflected light is reflected in the same direction by the optical curved surface and the light beam is diffused to form a corresponding multi-beam diffused secondary reflected light. After the diffusion of M435621, the beam is discontinuous at the workpiece, so the optical diffusing surface is added for this purpose - a uniform 'bright continuous illumination is formed. (The ninth direct-type liquid crystal display backlight panel implementation type) The spectroscopic backlight of the always-on liquid crystal display backlight panel can also be a reflective conical surface 145 kiss. See Figure 4 for the heart-reflecting conical surface to convert the incident light into a conical light. The reflective curved surface 46 reflects the reflected light in the same direction to form corresponding conical diffused light. The diffused beam is discontinuous between the turns, so for this purpose, an optical diffusing surface is added to form a uniform, bright continuous illumination. The above-mentioned illumination light source array can also be embedded in the backlight of the background optical assembly, and the direct-type liquid crystal display backlight structure composed of the backlight structure of the direct-lit liquid crystal display is referred to FIG. 5 or FIG. A plurality of backlights The optical assembly is provided with an embedded hole E丨 placed in the background optical assembly. • The light source array E can be embedded in the embedded hole E i . The above-mentioned beam splitter t-core may also have a central aperture Η丨〇 which allows part of the light to pass through to form another direct beam Βη. See Figure 7 for an implementation example. The central aperture 10 can also be a central optical surface that converges or diverges, allowing part of the light to pass through to form another concentrated or divergent beam. The central aperture 10 can also be a lens, a Fresnel mirror, a full phase optical component, and a curved lens. The direct-type liquid crystal display backlight structure arrangement is combined with different anti-M435621 'reflective' and total-cone matrices. We show different beamsplitters, beam diffusers, and optical diffusing surfaces that can produce illumination for the LCD screen, and combinations thereof. However, it is not possible to fully introduce all the modified cases that can be reached by those familiar with the technology. But all these changes do not exceed the scope of our patent claims. [Simple description of the diagram] Figure 1 is a diagram of the existing direct-lit backlight panel illumination mechanism;
圖2a為反射面直射型液晶顯示器背光板矩陣圖; 圖2b為直射型液晶顯示器背光結構圖; 圖2c為立體直射型液晶顯示器背光結構圖; 圖2d為圓錐型直射型液晶顯示器背光結構圖; 圖3a為圓錐面直射型液晶顯示器背光板矩陣圖; 圖3b為背景光光學組合體圖; 圖3c為立體背景光光學組合體實施圖;2a is a matrix diagram of a backlight of a direct-reflecting liquid crystal display; FIG. 2b is a backlight structure diagram of a direct-type liquid crystal display; FIG. 2c is a backlight structure diagram of a stereo direct-type liquid crystal display; FIG. 2d is a backlight structure diagram of a cone-type direct-type liquid crystal display; 3a is a matrix diagram of a backlight of a conical direct-type liquid crystal display; FIG. 3b is a background optical optical assembly; FIG. 3c is a perspective view of a stereo optical assembly;
圖3d為圓錐型背景光光學組合體實施圖; 圖4a為曲面直射型液晶顯示器背光板矩陣圖; 圖4b為曲面直射型液晶顯示器背光結構圖; 圖 圖 圖 陣圖; 4c為立體曲面直 4d為圓錐型曲面 5為俱嵌入孔圓 射型液晶顯示器 直射型液晶顯示 錐面直射型液晶 背光圖; 益背光結構圖; 顯示器背光板矩 12 M435621 圖 6為倶嵌入孔曲面直射型液晶顯示器背光板矩陣 圖;以及 圖7為直射型液晶顯示器背光結構中心孔圖。 【主要元件符號說明】 LL1 底反射板 LL2 燈管固定框架 LL3 冷陰極燈管Figure 3d is a diagram of a conical background optical optical assembly; Figure 4a is a matrix diagram of a curved direct-type liquid crystal display backlight; Figure 4b is a backlight direct-type liquid crystal display backlight structure; Figure map; 4c is a solid curved straight 4d For the conical surface 5, the embedded hole circular liquid crystal display direct-type liquid crystal display cone direct-type liquid crystal backlight; the backlight structure diagram; the display backlight moment 12 M435621 Figure 6 is the 倶 embedded hole curved direct-type liquid crystal display backlight The matrix diagram; and FIG. 7 is a central hole diagram of the backlight structure of the direct-type liquid crystal display. [Main component symbol description] LL1 bottom reflector LL2 lamp fixing frame LL3 cold cathode lamp
LL4 擴散板 LL5 擴散片 LL6 集光片 E 照明光源陣列 B0 入射光 B 1 1 反射光 B 1 2 二次反射光LL4 diffuser LL5 diffuser LL6 collector E illumination source array B0 incident light B 1 1 reflected light B 1 2 secondary reflected light
12 la, 12 Id 錐形體的反射面 1 1 1 a,1 lid 後續的反射面 122a,122d 透鏡 126 光學漫射面 201 錐形體反射面 110 後續的四反射面 200a,200b··· 200d 曲面透鏡 13 M435621 300 圓錐體反射面 301 後續的圓錐形反射面 302 環型透鏡 400 背景光光學組合體 1 3 la,l 3 Id 組合錐形反射面 132al32d 後續組合反射面 133a,133d 射出面12 la, 12 Id cone reflecting surface 1 1 1 a, 1 lid subsequent reflecting surface 122a, 122d lens 126 optical diffusing surface 201 cone reflecting surface 110 subsequent four reflecting surface 200a, 200b··· 200d curved lens 13 M435621 300 Conical reflecting surface 301 Subsequent conical reflecting surface 302 Annular lens 400 Background optical combination 1 3 la, l 3 Id Combined conical reflecting surface 132al32d Subsequent combined reflecting surface 133a, 133d Ejecting surface
130a,130b··· 130d 四面後續組合反射面 211a,211b··· 211d 四面錐形反射面 2 1 Oa,2 1 Ob··· 21 0d 光學透鏡 245 圓錐體後續反射面 247 圓錐體組合反射面 246 環型射出面 1 4 1 a,1 4 1 d 錐形反射曲面130a, 130b··· 130d four-sided subsequent combined reflecting surface 211a, 211b··· 211d tetrahedral reflecting surface 2 1 Oa, 2 1 Ob··· 21 0d optical lens 245 cone follow-up reflecting surface 247 cone combined reflecting surface 246 ring-shaped exit surface 1 4 1 a,1 4 1 d tapered reflective surface
142a,]42d 後續反射曲面 143a…143d 四面錐形反射曲面 144a··· 1 44d 四面後續反射曲面 B33 擴散二次反射光 14 5 反射圓錐曲面 146 後續圓錐反射曲面 E1 嵌入孔 14142a,]42d Subsequent reflection surface 143a...143d Teeth conical reflection surface 144a··· 1 44d Four-sided follow-up surface B33 Diffused secondary reflection 14 5 Reflective conical surface 146 Subsequent conical reflection surface E1 Insert hole 14