TWI363225B - Lens structure and light emitting unit - Google Patents

Lens structure and light emitting unit Download PDF

Info

Publication number
TWI363225B
TWI363225B TW97105822A TW97105822A TWI363225B TW I363225 B TWI363225 B TW I363225B TW 97105822 A TW97105822 A TW 97105822A TW 97105822 A TW97105822 A TW 97105822A TW I363225 B TWI363225 B TW I363225B
Authority
TW
Taiwan
Prior art keywords
light
lens structure
micro
emitting
diffusion
Prior art date
Application number
TW97105822A
Other languages
Chinese (zh)
Other versions
TW200937081A (en
Inventor
Chien Yu Shen
Chang Po Chao
Jeng Sheng Huang
Shau Yu Tsai
Chihlin Wang
Original Assignee
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Au Optronics Corp filed Critical Au Optronics Corp
Priority to TW97105822A priority Critical patent/TWI363225B/en
Publication of TW200937081A publication Critical patent/TW200937081A/en
Application granted granted Critical
Publication of TWI363225B publication Critical patent/TWI363225B/en

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)

Description

1363225 九、發明說明: 【發明所屬之技術領域】 ' 本發明是有關於一種透鏡結構,且特別是有關於一種用於 光擴散的透鏡結構。 【先前技術】 近年來,平面顯示器(f|at panel display )因具有厚度薄、 重量輕等優點’已逐漸成為顯示器產品之主流。常見的平面顯 示益有液晶顯示器(liquid crystal display,LCD )、有機電激發 •光顯示器(organic electro-luminescence display, OLED )及電 漿顯示器(plasma display panel, PDP )等,其中又以液晶顯示 器的市場普及率較高。 液晶顯示器主要是由液晶顯示面板(LCD panel)及背光 模組(backlightmodule)所組成,其中背光模組是用以提供液 晶顯示面板所需之光源。傳統的背光模組是用冷陰極螢光燈管 (cold cathode fluorescent lamp, CCFL)作為發光源。近來,發 光二極體(light emitting diode, LED)亦被用來作為背光模組 的發光源。 ® 圖1是習知一種直下式背光模組的剖面示意圖。請參照圖 1 ’習知背光模組100包括一擴散板110以及多個發光單元 120。每一發光單元12〇包括一發光二極體光源模組122與一 透鏡結構200 ’其中透鏡結構200是配置於發光二極體光源模 組122上。發光二極體光源模組122是由紅光發光二極體、藍 光發光二極體以及綠光發光二極體所組成。發光二極體光源模 組122是用以提供白光122a至擴散板11〇,透鏡結構2〇〇是 用以擴散白光122a ’而擴散板110則用以將白光122a轉換成 一面光源。 5 1363225 圖2是圖1中發光單元的示意圖。請參照圖1與圖2,透 鏡結構200包括一透鏡本體210以及一反射材料層220。透鏡 -本體210具有一入光面212、一出光面214與一反射面216。 入光面212與出光面214相對,且入光面212與出光面214分 別為一平面’而反射面216呈圓錐狀並連接於入光面212與出 光面214之間。反射材料層220是塗佈於反射面216上。 承上述,發光二極體光源模組122所提供的一部分白光 122a會被反射材料層220反射至擴散板110,而另一部分的白 • 光122a會經由入光面212入射透鏡本體210,並由出光面214 離開透鏡本體210。此外’根據司乃耳定律(Snell,s iaw), 由於透鏡本體210的折射率高於空氣的折射率,所以白光122a 從出光面214離開透鏡本體21〇時會產生折射而發散,如此可 達到光擴散的效果。 “由於發光二極體光源模組122所提供的白光122a中,離 光軸122b愈近的白光122a之能量愈高,所以進入透鏡本體 21^白光122a之能量高於被反射材料層22〇反射的白光n2a φ 之此里。因此,雖然習知技術藉由折射來使由出光面214離開 透鏡本體210的白光122a發散,但擴散板11〇的部分區域(即 位於發光單元12G正上方的區域),仍會產生明顯的光斑(light spot)。 【發明内容】 本發明提供一種透鏡結構,以提升光擴散效果。 本發明提供一種發光單元,以提升光擴散效果。 為達上述優點,本發明提出一種透鏡結構,其包括透鏡本 此透鏡本體具有人光面、出絲與反射面。人光面與出 目對反射面呈圓錐狀並連接於入光面與出光面之間。入 6 1363225 光面的©積小於出光面的面積,且出光面為凹曲面。 在本發明之-實施例中,上述之入光面為平面。 在本發明之一實施例中,上述之入光面為凹曲面。 發明之—實關中,上述之出光_料半徑是介於 78.44¾米至252 5毫米之間。 之—實施财,上述之透鏡結構更包括至少一微 擴政粒子層’配置於出光面、人光面及反射面至少其中之一。 2發明之—實關中’上述之微擴散粒子層具有多個微 =拉子,且微擴散粒子的粒徑是介於i微来㈤麵 至30微米之間。 在本發明之一實施例中 層’配置於反射面。 上述之透鏡結構更包括反射材料 i迪在本發明之—實施例巾,上述之透鏡本體是配置於發光二 1光源模組上,且入光面是朝向發光二極體光源模組。1363225 IX. Description of the Invention: [Technical Field to Which the Invention Is Ascribed] The present invention relates to a lens structure, and more particularly to a lens structure for light diffusion. [Prior Art] In recent years, flat panel displays (f|at panel display) have become the mainstream of display products due to their advantages of thin thickness and light weight. The common flat display has a liquid crystal display (LCD), an organic electro-luminescence display (OLED), and a plasma display panel (PDP), among which a liquid crystal display The market penetration rate is high. The liquid crystal display is mainly composed of a liquid crystal display panel (LCD panel) and a backlight module, wherein the backlight module is used to provide a light source for the liquid crystal display panel. The conventional backlight module uses a cold cathode fluorescent lamp (CCFL) as a light source. Recently, light emitting diodes (LEDs) have also been used as light sources for backlight modules. ® Figure 1 is a schematic cross-sectional view of a conventional direct type backlight module. Referring to FIG. 1 ', the conventional backlight module 100 includes a diffusion plate 110 and a plurality of light emitting units 120. Each of the light-emitting units 12A includes a light-emitting diode light source module 122 and a lens structure 200'. The lens structure 200 is disposed on the light-emitting diode light source module 122. The light emitting diode light source module 122 is composed of a red light emitting diode, a blue light emitting diode and a green light emitting diode. The light emitting diode mode group 122 is for providing white light 122a to the diffusing plate 11A, the lens structure 2 is for diffusing the white light 122a', and the diffusing plate 110 is for converting the white light 122a into a light source. 5 1363225 FIG. 2 is a schematic view of the light unit of FIG. 1. Referring to Figures 1 and 2, the lens structure 200 includes a lens body 210 and a reflective material layer 220. The lens body 120 has a light incident surface 212, a light exit surface 214 and a reflective surface 216. The light incident surface 212 is opposite to the light exit surface 214, and the light incident surface 212 and the light exit surface 214 are respectively a plane ′, and the reflective surface 216 has a conical shape and is connected between the light incident surface 212 and the light exit surface 214. The reflective material layer 220 is applied to the reflective surface 216. In the above, a part of the white light 122a provided by the LED light source module 122 is reflected by the reflective material layer 220 to the diffusion plate 110, and another part of the white light 122a is incident on the lens body 210 via the light incident surface 212, and The light exit surface 214 leaves the lens body 210. In addition, according to Snell's law (Snell, s iaw), since the refractive index of the lens body 210 is higher than the refractive index of the air, the white light 122a is refracted and diverged when it exits the lens body 21 from the light-emitting surface 214, so that it can be achieved. The effect of light diffusion. "In the white light 122a provided by the light-emitting diode light source module 122, the energy of the white light 122a closer to the optical axis 122b is higher, so the energy entering the lens body 21^ white light 122a is higher than that of the reflective material layer 22 The white light n2a φ is in. Therefore, although the prior art diverges the white light 122a exiting the lens body 210 by the light-emitting surface 214 by refraction, a partial region of the diffusion plate 11〇 (ie, an area directly above the light-emitting unit 12G) The present invention provides a lens structure for improving the light diffusion effect. The present invention provides a light-emitting unit for enhancing light diffusion effect. To achieve the above advantages, the present invention A lens structure is proposed, which comprises a lens. The lens body has a human light surface, a wire and a reflection surface. The human light surface and the eye surface are conical and connected between the light incident surface and the light exit surface. 6 1363225 The product of the light surface is smaller than the area of the light exit surface, and the light exit surface is a concave curved surface. In the embodiment of the invention, the light incident surface is a plane. In an embodiment of the invention The above-mentioned light-incident surface is a concave curved surface. In the invention, the above-mentioned light-emitting material radius is between 78.443⁄4 meters and 252 5 millimeters. The implementation of the lens structure further includes at least one micro-expansion. The particle layer 'is disposed on at least one of the light-emitting surface, the human light surface, and the reflective surface. 2Inventive----the above-mentioned micro-diffusion particle layer has a plurality of micro-pulls, and the particle size of the micro-diffusion particles is In one embodiment of the invention, the layer 'is disposed on the reflective surface. The lens structure described above further includes a reflective material. In the present invention, the lens body is configured. The light-emitting two-light source module is disposed on the light-emitting diode 1 light source module.

為達上述優點,本發明另提出一種透鏡結構,其包括透鏡 本體以及至少—微擴餘子層。透鏡本體具有人光面、出光面 與反射面。入光面與出光面相對,反射面呈圓錐狀並連接於入 光面與出光面之間,入光面的面積小於出光面的面積,且出光 面為平面。微擴散粒子層是配置於出光面。 在本發明之一實施例中,上述之入光面為平面。 在本發明之一實施例中,上述之入光面為凹曲面。 在本發明之一實施例中,上述之微擴散粒子層具有多個微 擴政粒子’且微擴散粒子的粒徑是介於1微米至30微米之間。 在本發明之一實施例中,上述之透鏡結構包括多個微擴散 粒子層,且微擴散粒子層更配置於入光面及/或反射面。 在本發明之一實施例中,上述之透鏡結構更包括反射材料 1363225 層,配置於反射面。 ,本發明之一實施例中,上述之透鏡本體是配置於發光二 極體光源模組上,且入光面是朝向發光二極體光源模組。 為達上述優點,本發明提出一種發光單元,其包括發光二 極體光源模組以及上述兩種透鏡結構其中之一。透鏡結構是配 置於發光二極體光源模組上。 由於透鏡本體之出光面為凹曲面及/或透鏡本體的出光面 上配置有微擴散粒子層,所以本發明之透鏡結構能提升光擴散 •效果、。因此,本發明之發光單元具有良好的光擴散效果。 ^為讓本發明之上述和其他目的、特徵和優點能更明顯易 懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖3是本發明一實施例之發光單元的示意圖。請參照圖 3 本實施例之發光單元3〇〇包括發光二極體光源模組31〇以 及透鏡結構400,其中透鏡結構4〇〇是配置於發光二極體光源 模組310上。透鏡結構4〇〇包括一透鏡本體4丨〇,且此透鏡本 • 體410具有一入光面412、一出光面414與一反射面416。入 光面412與出光面414相對,反射面416呈圓錐狀並連接於入 光面412與出光面414之間。入光面412的面積小於出光面 414的面積’且出光面4M為凹曲面。 上述之透鏡結構400中,入光面412為平面,且入光面 412疋朝向發光二極體光源模組31〇。出光面μ#的曲率半徑 :如是介於78.44毫米至252.5毫米之間。此外,發光二極體 蛛源模組310例如包括紅光發光二極體、藍光發光二極體以及 =光發光二極體。發光二極體光源模組31()用以提供光線 2,其中一。P分的光線312會傳遞至反射面416,而另一部 8 1363225 分的光線312會經由入光面412入射透鏡本體410,並由出光 面414離開透鏡本體410。另外,反射面416可藉由全反射的 •原理反射光線312。在本實施例中,亦可於反射面416塗佈一 反射材料層420,以反射光線312。 的光班。 由於發光二極體光源模組310所提供的光線312中,離光 軸311愈近的光線312之能量愈高,所以進入透鏡本體41〇的 光線312之能量高於被反射面416或反射材料層420反射的光 線312之能量。然而,在本實施例中,由於出光面414是凹曲 φ 面,所以光線312從出光面414出射時的發散角度會大於習知 技術之白光122a從出光面214 (平面)出射時的發散角度。 因此,本實施例之透鏡結構400能提升光擴散效果,以使發光 單元300所提供之光線312之光能量分佈更均勻。將此發光單 元300應用於背光模組時’能避免擴散板的部分區域出現明顯 些微擴散粒子432的粒徑是介於i微米(micr 微米之間。微擴散粒子432具有低色散的特性, 圖4是本發明另一實施例之發光單元的示意圖。請參照圖 4,本實施例之發光單元3〇〇a與圖3之發光單元3〇〇的差別處 在於透鏡結構。具H❿言,在本魏狀發光單元施的透 鏡結構40〇a中’透鏡本體41〇a的出光面4Ma是一平面。此 外,透鏡結構_a更包括配置於出光面414a的一微擴散粒子 層。此微擴散粒子層43〇具有多個微擴散粒子也且之To achieve the above advantages, the present invention further provides a lens structure comprising a lens body and at least a micro-diffusion sub-layer. The lens body has a human light surface, a light emitting surface, and a reflecting surface. The light incident surface is opposite to the light emitting surface, and the reflecting surface has a conical shape and is connected between the light incident surface and the light emitting surface. The area of the light incident surface is smaller than the area of the light emitting surface, and the light emitting surface is a flat surface. The micro-diffusion particle layer is disposed on the light-emitting surface. In an embodiment of the invention, the light incident surface is a flat surface. In an embodiment of the invention, the light incident surface is a concave curved surface. In one embodiment of the invention, the micro-diffusion particle layer has a plurality of micro-diffusing particles ' and the particle size of the micro-diffusion particles is between 1 micrometer and 30 micrometers. In an embodiment of the invention, the lens structure includes a plurality of micro-diffusion particle layers, and the micro-diffusion particle layer is disposed on the light-incident surface and/or the reflection surface. In an embodiment of the invention, the lens structure further comprises a layer of reflective material 1363225 disposed on the reflective surface. In one embodiment of the present invention, the lens body is disposed on the light emitting diode light source module, and the light incident surface is directed toward the light emitting diode light source module. In order to achieve the above advantages, the present invention provides a light emitting unit comprising a light emitting diode light source module and one of the above two lens structures. The lens structure is disposed on the light emitting diode light source module. Since the light-emitting surface of the lens body has a concave curved surface and/or a micro-diffusion particle layer is disposed on the light-emitting surface of the lens body, the lens structure of the present invention can enhance the light diffusion effect. Therefore, the light-emitting unit of the present invention has a good light diffusing effect. The above and other objects, features, and advantages of the present invention will become more apparent and understood. Embodiments Fig. 3 is a schematic diagram of a light emitting unit according to an embodiment of the present invention. Referring to FIG. 3, the light-emitting unit 3A of the present embodiment includes a light-emitting diode light source module 31A and a lens structure 400, wherein the lens structure 4A is disposed on the light-emitting diode light source module 310. The lens structure 4A includes a lens body 4A, and the lens body 410 has a light incident surface 412, a light exit surface 414 and a reflective surface 416. The light incident surface 412 is opposite to the light exit surface 414, and the reflective surface 416 has a conical shape and is connected between the light incident surface 412 and the light exit surface 414. The area of the light incident surface 412 is smaller than the area of the light exit surface 414 and the light exit surface 4M is a concave curved surface. In the lens structure 400 described above, the light incident surface 412 is a flat surface, and the light incident surface 412 is directed toward the light emitting diode light source module 31A. The radius of curvature of the exit surface μ#: between 78.44 mm and 252.5 mm. In addition, the light-emitting diode source module 310 includes, for example, a red light emitting diode, a blue light emitting diode, and a light emitting diode. The light emitting diode light source module 31() is used to provide light 2, one of which. The light 312 of the P portion is transmitted to the reflecting surface 416, and the light 312 of the other portion 8 1363225 is incident on the lens body 410 via the light incident surface 412, and exits the lens body 410 by the light exit surface 414. Additionally, reflective surface 416 can reflect light 312 by the principle of total reflection. In this embodiment, a reflective material layer 420 may also be applied to the reflective surface 416 to reflect the light ray 312. Light class. The light of the light 312 provided by the light-emitting diode light source module 310 is closer to the optical axis 311, so that the energy of the light 312 entering the lens body 41 is higher than that of the reflective surface 416 or the reflective material. The energy of the light 312 reflected by layer 420. However, in the present embodiment, since the light-emitting surface 414 is a concave curved surface, the divergence angle when the light ray 312 is emitted from the light-emitting surface 414 is greater than the divergence angle when the white light 122a of the prior art is emitted from the light-emitting surface 214 (plane). . Therefore, the lens structure 400 of the present embodiment can enhance the light diffusion effect to make the light energy distribution of the light 312 provided by the light emitting unit 300 more uniform. When the light-emitting unit 300 is applied to the backlight module, the particle size of the micro-diffusion particles 432 can be prevented from occurring in a portion of the diffusion plate. The particle size of the micro-diffusion particles 432 is between μm and micro-diffusion particles 432 has low dispersion characteristics. 4 is a schematic diagram of a light emitting unit according to another embodiment of the present invention. Referring to FIG. 4, the difference between the light emitting unit 3A of the present embodiment and the light emitting unit 3A of FIG. 3 lies in the lens structure. The light-emitting surface 4Ma of the lens body 41A is a plane in the lens structure 40A of the present-shaped light-emitting unit. In addition, the lens structure_a further includes a micro-diffusion particle layer disposed on the light-emitting surface 414a. The particle layer 43 has a plurality of micro-diffusion particles, and

9 1363225 擴散。因此,本實施例之透鏡結構400a能提升光擴散效果, 以使發光單元300a所提供之光線312之光能量分佈更均勻。 此外,在本實施例中,由於發光二極體光源模組310包括紅光 發光二極體、藍光發光二極體以及綠光發光二極體,所以光線 312在微擴散粒子432之間產生多次的折射與反射後能使光線 312的混光更為均勻。如此’能避免因透鏡本體41〇a的材質 所造成的色散現象。9 1363225 Diffusion. Therefore, the lens structure 400a of the present embodiment can enhance the light diffusion effect so that the light energy distribution of the light 312 provided by the light emitting unit 300a is more uniform. In addition, in the embodiment, since the light emitting diode light source module 310 includes a red light emitting diode, a blue light emitting diode, and a green light emitting diode, the light ray 312 is generated between the micro diffusing particles 432. The secondary refraction and reflection can make the light mixing of the light 312 more uniform. Thus, the dispersion phenomenon due to the material of the lens body 41〇a can be avoided.

值得一提的是,為了進一步提升光擴散效果,微擴散粒子 層430可塗佈於圖3之透鏡本體410的出光面414上(如圖5 所示)。此外,微擴散粒子層430也可塗佈於透鏡本體41〇、 410a之反射面416上(如圖6A與圖6B所示)。若透鏡本體 410、410a之反射面416上。若反射面416上塗佈有反射材料 層420 (如圖3與圖4所示),則微擴散粒子層43〇可塗佈於 反射材料層420上。另外,微擴散粒子層43〇也可配置於透鏡 本體410、410a之入光面412,且位於透鏡本體41〇、41〇a内 (如圖7A與圖7B所示)。 承上述’為了進一步提升光擴散效果,透鏡結構400、400a (如圖3與圖4所示)之透鏡本體41〇、41〇&的入光面412也 可為=曲面(如圖8A與圖8B所示),以使光線擴散。 綜上所述,本發明至少具有下列優點: 1·在-實關中,由於透鏡本體之出絲為凹曲面,所以 能使光線從出光面出射時的發散⑽更大,以提升光擴散效 果所以本發明之發光單元及其透鏡結構具有良好的光擴散 能使光線在微擴散二層透中=體多?二 1363225 200、400、400a :透鏡結構 210、410、410a :透鏡本體 212、412 :入光面 214、414、414a :出光面 216、416 :反射面 220、420 :反射材料層 312 :光線 430 :微擴散粒子層 432 :微擴散粒子It is worth mentioning that in order to further enhance the light diffusion effect, the micro-diffusion particle layer 430 can be coated on the light-emitting surface 414 of the lens body 410 of FIG. 3 (as shown in FIG. 5). Further, the micro-diffusion particle layer 430 may also be coated on the reflection surface 416 of the lens bodies 41A, 410a (as shown in FIGS. 6A and 6B). If the lens bodies 410, 410a are on the reflective surface 416. If the reflective surface 416 is coated with a reflective material layer 420 (as shown in Figures 3 and 4), the micro-diffused particle layer 43 can be applied to the reflective material layer 420. Further, the micro-diffusion particle layer 43A may be disposed on the light incident surface 412 of the lens bodies 410, 410a and located in the lens bodies 41A, 41A (as shown in Figs. 7A and 7B). In order to further enhance the light diffusion effect, the light incident surface 412 of the lens bodies 41 〇, 41 〇 & of the lens structures 400, 400a (shown in FIGS. 3 and 4) may also be a curved surface (as shown in FIG. 8A). Figure 8B) to diffuse light. In summary, the present invention has at least the following advantages: 1. In the real-off, since the filament of the lens body is a concave curved surface, the divergence (10) when the light is emitted from the light-emitting surface is larger to enhance the light diffusion effect. The light-emitting unit of the present invention and the lens structure thereof have good light diffusion so that the light is diffused in the micro-diffusion layer. The body is more than two. 1363225 200, 400, 400a: lens structure 210, 410, 410a: lens body 212, 412: Light-incident surface 214, 414, 414a: light-emitting surface 216, 416: reflective surface 220, 420: reflective material layer 312: light ray 430: micro-diffusion particle layer 432: micro-diffusion particle

1212

Claims (1)

十、申請專利範圍: L—種透鏡結構,包括: 光面邀具有一入光面、一出光面與-反射面,該入 光’該入光面的面積小於該出光面的面積,且該乂 尤面及該出絲均為凹曲面。 的曲2率範圍第1項所述之透鏡結構,其中該出光面 牛牛虹疋介於78.44毫米至252.5毫米之間。 鮮It申請專利範圍第1項所述之透鏡結構,更包括至少-中^一;立子層’配置於該出光面、該入光面及該反射面至少其 思tt請專利範圍第3項所述之透鏡結構,其中該微擴散 \ s八有多個微擴散粒子,且該些微擴散粒子的粒徑是介於 1微米至30微米之間。 5.如申請專利範圍第丨項所述之透鏡 材料層,崎料反射面。 反射 6·一種透鏡結構,包括: 、, 透鏡本體,具有一入光面、一出光面與一反射面,該入 光面與該出光面相對,該反射面呈圓錐狀並連接於該入光面與 該出光面之間,該入光面的面積小於該出光面的面積,且該入 光面及該出光面均為凹曲面;以及 至乂、微擴散粒子層,配置於該出光面。 7.如申請專利範圍第6項所述之透鏡結構’其中該微擴散 粒子層具有多個微擴散粒子,且該些微擴散粒子的粒徑是介於 1微米至30微米之間。 8.如申請專利範圍第6項所述之透鏡結構,包括多個該微 13 1363225 ___ • ·;. . "'* 101年1月19日修正替換頁 \ 1- . 擴散粒子層,且該些微擴散粒子層更配置於該入光面及/或該 反射面。 ’ 9.如申請專利範圍第6項所述之透鏡結構,更包括一反射. 材料層,配置於該反射面。 10. —種發光單元,包括: * 一發光二極體光源模組;以及 ' 一申請專利範圍第1項所述之透鏡結構,配置於該發光二 極體光源模組上。 11. 一種發光單元,包括: 一發光二極體光源模組;以及 一申請專利範圍第6項所述之透鏡結構,配置於該發光二極體 光源模組上。 1363225 … ' ‘ 101年1月19日修正替換頁 , _-_ 七、 指定代表圖: (一) 本案指定代表圖為:第(3)圖。 (二) 本代表圖之元件符號簡單說明:. 122a :白光 300:發光單元 ' 310 :發光二極體光源模組 • 311:光軸 312 :光線 400 :透鏡結構 410 :透鏡本體 412 :入光面 414 :出光面 416 :反射面 420 :反射材料層 八、 本案若有化學式時,請揭示最能顯示發明特徵的化學式: 益X. Patent application scope: L-type lens structure, comprising: a smooth surface having a light-incident surface, a light-emitting surface and a reflection surface, the light-input surface of the light-incident surface being smaller than the area of the light-emitting surface, and Both the yuyou and the silk are concave curved surfaces. The lens structure of the first aspect, wherein the illuminating surface of the oxen rainbow trout is between 78.44 mm and 252.5 mm. The lens structure described in the first aspect of the invention is further characterized in that the lens structure further includes at least one of the first; the standing sub-layer is disposed on the light-emitting surface, the light-incident surface and the reflective surface, at least the third item of the patent scope The lens structure, wherein the micro-diffusion has a plurality of micro-diffusion particles, and the micro-diffusion particles have a particle diameter of between 1 micrometer and 30 micrometers. 5. The layer of lens material as described in the scope of the patent application, the battering reflective surface. Reflection 6· A lens structure, comprising: a lens body having a light incident surface, a light exit surface and a reflection surface, the light incident surface being opposite to the light exit surface, the reflective surface being conical and connected to the light incident Between the surface and the light-emitting surface, the area of the light-incident surface is smaller than the area of the light-emitting surface, and the light-incident surface and the light-emitting surface are both concave curved surfaces; and the 乂 and micro-diffusion particle layers are disposed on the light-emitting surface. 7. The lens structure of claim 6, wherein the micro-diffusion particle layer has a plurality of micro-diffusion particles, and the micro-diffusion particles have a particle size of between 1 micrometer and 30 micrometers. 8. The lens structure of claim 6, comprising a plurality of micro 13 1336325 ___ • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The micro-diffusion particle layers are disposed on the light-incident surface and/or the reflection surface. 9. The lens structure of claim 6, further comprising a reflective material layer disposed on the reflective surface. A light-emitting unit comprising: a light-emitting diode light source module; and a lens structure according to the first aspect of the invention, which is disposed on the light-emitting diode light source module. 11. A lighting unit comprising: a light emitting diode light source module; and a lens structure according to claim 6 of the invention, disposed on the light emitting diode light source module. 1363225 ... ' ‘January 19, 101 revised replacement page, _-_ VII, designated representative map: (1) The designated representative figure of this case is: (3). (2) A brief description of the symbol of the representative figure: 122a: white light 300: light-emitting unit '310: light-emitting diode light source module • 311: optical axis 312: light 400: lens structure 410: lens body 412: light-in Face 414: Light-emitting surface 416: Reflecting surface 420: Reflective material layer 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW97105822A 2008-02-19 2008-02-19 Lens structure and light emitting unit TWI363225B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105822A TWI363225B (en) 2008-02-19 2008-02-19 Lens structure and light emitting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105822A TWI363225B (en) 2008-02-19 2008-02-19 Lens structure and light emitting unit

Publications (2)

Publication Number Publication Date
TW200937081A TW200937081A (en) 2009-09-01
TWI363225B true TWI363225B (en) 2012-05-01

Family

ID=44866967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105822A TWI363225B (en) 2008-02-19 2008-02-19 Lens structure and light emitting unit

Country Status (1)

Country Link
TW (1) TWI363225B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740258B (en) * 2019-11-01 2021-09-21 晨豐光電股份有限公司 Direct-lit light source module

Also Published As

Publication number Publication date
TW200937081A (en) 2009-09-01

Similar Documents

Publication Publication Date Title
TWI246606B (en) Backlight module, dish lens for backlight module and light emitting diode
JP4489843B2 (en) LIGHTING LENS AND LIGHT EMITTING DEVICE, SURFACE LIGHT SOURCE, AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
JP4546579B1 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
WO2013035788A1 (en) Illumination device and illumination stand
JP5342939B2 (en) Lighting lens, light emitting device, surface light source, and liquid crystal display device
TW201216529A (en) LED lens and light source device using the same
TW201303362A (en) Light control lens and light source device using the same
TW200909931A (en) Backlight module and liquid crystal display using the same
JP2011014831A (en) Light emitting device, surface light source, and liquid crystal display device
TWI404893B (en) An illuminating device without a light guide board
TW201120486A (en) Brightness enhancement film and backlight module
TWI255356B (en) Light guide plate and plane light source using the same
CN101235953A (en) Lens structure and light emitting unit
TW201215965A (en) Edge lighting back light module
TW201030395A (en) Planar light source device and light guide for use therein
JP2010186142A (en) Lens for illumination, light emitter, surface light source, and liquid crystal display device
TWI378268B (en) Optical film and backlight system using the same
TW200841044A (en) High brightness diffusion plate
TWI363225B (en) Lens structure and light emitting unit
TW200811532A (en) Optical plate and backlight module using the same
CN101609866A (en) The module backlight of light-emitting diode and employing light-emitting diode
TWI358004B (en) Backlight module
KR20110101465A (en) Light guide plate and backlight unit having the same
TWI414835B (en) Light guide plate and backlight module
JP2011003459A (en) Illumination lens, light emitting device, surface light source, and liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees