TWM431443U - Solar module having thermal module - Google Patents

Solar module having thermal module Download PDF

Info

Publication number
TWM431443U
TWM431443U TW100212871U TW100212871U TWM431443U TW M431443 U TWM431443 U TW M431443U TW 100212871 U TW100212871 U TW 100212871U TW 100212871 U TW100212871 U TW 100212871U TW M431443 U TWM431443 U TW M431443U
Authority
TW
Taiwan
Prior art keywords
heat
module
photovoltaic module
solar
solar photovoltaic
Prior art date
Application number
TW100212871U
Other languages
Chinese (zh)
Inventor
Ching-Chieh Lin
Sin-Wei Ho
Mei-Hsiu Lin
Tzu-Hsin Huang
Chun-Hsien Chou
Yen-Chen Chen
Original Assignee
A2Peak Power Co Ltd
Forceon Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A2Peak Power Co Ltd, Forceon Tech Co Ltd filed Critical A2Peak Power Co Ltd
Priority to TW100212871U priority Critical patent/TWM431443U/en
Publication of TWM431443U publication Critical patent/TWM431443U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

A solar module having thermal module is disclosed. The thermal module is disposed on a solar cell module for effectively conducting the heat generated from the solar module to the environment. The thermal module includes a plurality of a first thermal bodies and two second thermal bodies. The numbers of the first thermal bodies may be arranged according to the size of the solar cell module.

Description

M431443 五、新型說明: 【新型所屬之技術領域】 4寺別是一種具散熱模組 本創作係關於一種太陽能光電模組 之太陽能光電模組。 【先前技術】 源所面臨的權賴^在糾目前石似 又以太陽能電_ _賴_==、=中 前相當重要的研究課題。 、為I’而成為g 太陽能電池主要是槪合 到其表面時,可以將太陽光之能量轉換為電;當太陽能照鲁 由於光電轉換效雜,所以晶片f ^貫際的運用上: 電力。太陽能製―依 與組裝,就成為太陽能電池模組,或稱為:刀吾卜聯結 板。若將好幾個太陽能板組合,再加上蓄^此電池板或太陽能 置等設施,就成為太陽能光電發電系統”,、控制器及保護裝 目月ίι市場上量產的單晶$ 騰下,也就是說,這樣的太陽電;二㈣電池平均效率約在 ‘ 15%可用電能,其餘的大部分都浪費成太㈣能轉換成 模組不斷地在太_照射 、。此外,太陽能 此也會影響到太陽能模組的轉财;肢的溫度會不斷地上升,因 白头的太H组為了解決太陽能電池將光能龍成電能時 所產生的熱能’往往藉由-片散熱絲傳導太陽能電池所產生的 熱能到外·。但是為了配合各式太嶋組尺寸,散熱模組的 二寸就會過大。大尺柏賴模_了*#加工外,製造廠商還 需因應各式太陽能模組尺寸製造出各式散熱模組的尺寸。如此一 來’製秘商在製作散熱模組時,則需要客製化,以因應不同的 客戶需求。因此’製造_並無法有效且迅速地生產散轉电。 另一方面’整片散熱模組與太陽光電模組結合,在戶外受環 境溫度變㈣’馳熱脹冷縮會導賴_的導電帶被拉扯斷 裂。因此無法承受溫差較大的環境以及產品驗證的熱循環測試。 【新型内容】 “繁触上的問題,本創作提供—種賤熱模組之太陽能光電 拉組’猎由將散熱機構模統,以解決模組製作上成本與不耐溫 差變化等問題。 根據本創作所揭露之太陽能光電,其包括有-太陽能模 複數個帛月文熱體及二框架。其中,太陽能模組包括有—面 板及電性連接於秘的至少—排域能電池。而這些第—散熱體 相互並排,並喊钱壓合之方式結合於太陽能模組之—側。且 每第散熱租包括-散熱板及一置於散熱板上之散熱管,散敎 管係設置於散敏之-側。另外,這些轉分職設這些散敎管 的兩端,每-框架具有—滑槽部及—壓合部,且延伸部自滑 延伸’並分職蓋_散熱管的兩端緣。 。 根據上述本創作所揭露之散熱模組及應用其的太陽能光電模 了導熱介面材料的使用,因此可降低模組的成本。而在 β模方面係直接以熱壓合方式將太陽能電池封裝在封裝 並直接將太陽此拉組與散熱體結合,因此可將製程簡化。 另外’散減組_賴數個第―散浦並排組合,用以搭 2式尺寸的太陽能光電模組。是轉造絲得以統—規格製作 —政熱η ’進而以-套製造流程即可完成製作第—散熱體,並 Γ省製造時間與成本。且㈣-韻體的尺寸縮小有利於加工, f此增加散鐘製作的成辨。同咖為第—散熱體間留有間 Γ在模組受溫度變化時有空間可伸縮,不會使模組_導電帶 靖裂’解決模組在溫差大環境使用的問題。 以上之關於本創作内容之說明及以下實施方式之說明係用以 不乾與解釋本創作之_,並且提供本_之專利申請範圍更進」 一步之解釋。 【實施方式】 作所』s 1A圖」與「苐1β圖」’「第1A圖」為根據本創 乍所揭路-貫施例之太陽能光電模組的結構示意圖,「第1B圖」 =根據本創作所揭露另-實施例之太陽能光電模組的結構示意 圖。 在本實施例中’謂能光電模包括—散熱模組及設置於 散熱核組上的-太陽能模組⑽。太陽能模_是由複數排太陽 能電池m域,這些太·電池I2Q細並聯或㈣方式設置 於面板11G上’為了簡化圖示,㈣並聯蝴所需之走線係省 M431443 略。 其中,這些太陽能電池120可以如「第1A圖」設置於多個面 板110,也可以如「第1Β圖」設置於一個面板11〇,並不以此為 限。 此處所用之太陽能電池120其包括Ν型半導體與ρ型半導 體。Ν型半導體與Ρ型半導體的材料例如是ιν族(如單晶矽(single crystalsilicon)、多晶石夕、非晶^7(amorph〇us silicon)、石夕化鍺(siGe))、 III-V族(如氮化鎵(GaN)、砷化鎵(GaAs)、磷化鎵(GaP)、磷化銦 (InP)、磷化鎵銦(MaP)等)或Π_νι族(如碲化鎘(CdTe)、銦銅硒 (CuInSe 2 )、銅銦鎵砸(QiInGaSe)等)。此外,太陽能電池120也可 選擇有機-染料敏化太陽能電池或有機高分子(Organic p〇lymer)半 導體太陽能電池等。 請參閱「第2A圖」與「第2B圖」,「第2A圖」為「第1A 圖」之散熱模組的立體示意圖,「第2B圖」為根據本創作所揭露 另一實施例之散熱模組的立體示意圖。本實施例之散熱模組2〇包 括複數個第—散熱體200、二第二散熱體300及二框架400。這些 第一散熱體200係相互並排,在本實施中第一散熱體200的數量 可以為3個,但並不以此為限,可以依搭配需散熱物體的尺寸作 增減,例如4個或6個。二第二散熱體3〇〇分別並排於這些相互 並排之第散熱體200的相對兩側,二框架分別框住這些第一散 熱體200及二第二散熱體300的相異兩端。 需注意的是,第二散熱體30〇的主要目的為加強散熱模組2〇 M431443 的結構強度及調整散熱模組2Q的尺寸。在實際情況中,散熱模組 _〇也可以疋如帛2B圖」所示的全部由這些第一散熱體測及 二框架400組成。 . 上述提到第一散熱體係相互並排,詳細的並排方式是將 這些第-散熱體的散熱片23〇間以一間隙接續排列,此並排 方式可以使第-散熱體組合出所需的散熱模組⑶尺寸。另 外,散熱片230間留有間隙也使其有熱脹冷縮的空間。 • 接下來繼續說明散熱模組2〇的細部結構,請繼續參閱「第3 圖」與「第4圖」’「第3圖」為根據本創作所揭露一實施例之散 熱模_分解示意圖’「第4圖」為根據本創作所揭露-實施例之 第—^:熱體的立體示_。在本實施例中,第—散爐之斷 ,約壬現E形’其包括-散熱板21〇、一設置於散熱板2ι〇上之 散熱管220及散熱板210之兩端分別向上延伸的一散熱片23〇。散 _ 熱板210上具有二散熱微結構211,散熱微結構211約呈波浪狀, 用以增加第一散熱體200的散熱面積。第-散熱體200主要係由 -—散熱材料所構成,在典型的材料選用上通常以金屬作為選擇, 例如導熱性佳之!呂金屬’當然其他非金屬材料但有較佳之導熱性 材料亦可選用。 請繼續參閱「第5圖,「第5圖」為根據本創作所揭露一實施 弟一政熱體的立體示思圖。在本貫施例中’第二散熱體3〇〇 斷面、’々王F形,其包括一散熱板310、一設置於散熱板31〇上之 散熱官320及散熱板310其中一端設有向上延伸的—散熱片33〇。 7 M431443 散熱板310上具有一散熱微結構311。第二散熱體3〇〇與第一散熱 體200除了形狀上的改變外,其餘特性皆與第一散熱體2〇〇相同, 故不再寶述。 值得注意的是’第一散熱體期與第二散熱體300皆為-體 成形之結構,且每-散熱管22〇、32〇的相異兩端緣皆具有一穿孔 222、322及相異兩端入口處具有一填入口 22卜321。 請參閱「第6圖」,「第6圖」為根據本創作所揭露一實施例 之框架的立體示意圖。二框架4⑻組裝於這些散熱管細、32〇的 相對兩端’框架400包括-滑槽部41〇及一自滑槽部41〇向外延 伸的延伸部420。滑槽部410之斷面約呈门字形,延伸部42〇上具 有多個依-定間距排列的透孔42卜其材料特性與第一散熱體· 相同,故不再贅述。 在本實施例中,框架400係藉由多個結合件6〇〇組合於這些 第一散熱體200與二第二散熱體3〇〇的相異兩端。每一個結合件 600牙過牙孔222、322及透孔42卜使延伸部420固定於散熱管 220、320上。本實施例之結合件6〇〇可以是鉚釘或螺絲等固定元 件。 為了增加這些散熱管220、320吸熱的效果,這些散熱管、 320更可自填充口 22卜321填充一相變化材料或高比熱材料。相 變化材料係選自由石蠟、無機鹽類、鹽類水化合物及其混合物、 羧酸及糖醇類族群者所組成之群組其中之一。相變材料係可產生 物體型態之轉變者,因此可利用相變化材料之固、液相轉化而吸 熱、釋放潛熱之雜’ 來控制鴻能光電之溫度狀態,俾可 藉由所仙t材料於太陽能光電相預定高溫時產生吸熱降温效 果以降低太陽月匕換組100之操作溫度^高比熱材料可為水或其 他固體或液體。 而在本貝化例中’封住這些散熱管22〇、32〇係藉由多個封口 件500,以防止所填充之材料流出。請同時參閱「第1圖」與「第 7圖」,「第7圖」為根據本創作所揭露-實施例之封口件500的立 體示意.圖。每—封口件包括—滑軸別及於滑軸训相對兩 端的一第一卡合部520及—第二卡合部別,第-卡合部別設置 於/月槽。卩410内’以及第二卡合部53〇設置於填充口 卜切内。 另外,除了使_ 口件封住散熱f 32Q外,也可以用多 個封口蓋610封住散熱管320。請參閱「第8圖」,「第8圖」為根 據本創作再-實施所揭露之框架的結構示賴。再—實施例之滑 槽部41〇包括二軌道如及連接二執道川的一底板扣,底板 12上。又有多個以一間距排列的開孔413。當框架*㈨利用上述方 法組裝於第一散熱體200及第二散熱體300時,各開孔413分別 對準各散熱管320的填充口 321。在填充材料後這些封口蓋61〇 分別穿設過這些開孔413,並分別塞住對應的這些散熱管32〇,以 防止材料自填充口 321流出。 在本實施例中,散熱模組20係以真空熱壓合之方式結合於太 陽能模組1〇〇之-側。第一散熱體白勺尺寸通常配合太陽能電 池12〇的尺寸而設計。另外,這些第一散熱體的數量取決於 M431443 這些太陽能電池120排數,舉例來說,一排太陽能電池12〇設置 於個第-散熱體200上。故在本實施例中,三排太陽能電池12〇 分別設置於三個第一散熱體200上。 另外第一政熱體300係設置於這些並排的第一散熱體 的_ ’句話說’當第一散熱體與第二散熱體300相互並 排蚪,第二散熱體300係配置於散熱模組2〇之兩外側。 為了避免太陽能電池120與金屬材質形成之絲模組20接觸 產生電性導通’進一步導致太陽能模組1〇〇失效,因此在此情況 之下可於散熱模組20與太陽能模組⑽之間設置—絕緣層13〇, .^阻絕散熱模組20與太陽能模組1〇〇之間產生電性連接。在另一 A知例中’也可將散熱模組20與太陽能模經100結合的那-面以 表面陽極處理成絕緣狀態,以阻絕散熱模組20與太陽能模組觸 之間產生電性連接。 此外-般可能會將絕緣層13〇包含於太陽能模組内,惟 ,僅為業界因為製程或者其他因素之關係對於太陽能模組所 S ㈤疋義本創作為了清楚說明將其分開定義,並非用以 限1創作太陽能模組刚之組成不包含絕緣層13〇。 陽此模、’且】〇〇的封裝結構與材料及水蒸氣滲透的性能 ^關本創作的特點’故在此並不贅述,但並_以_本創作。 $,根據上述糊相縣之絲池及剌其的域能光電模 ^略了麵介__㈣’ _可帽,_成本並提高 X而在謂賴財面,魅接以錢合方式將太陽能電M431443 V. New description: [New technology field] 4 Temple is a kind of heat dissipation module. This creation is about a solar photovoltaic module of solar photovoltaic module. [Prior Art] The power that the source is facing is a research topic that is quite important in the current state of solar power _ _ Lai _==, =. For I', it becomes g. When solar cells are mainly bonded to the surface, the energy of sunlight can be converted into electricity. When solar energy is used, the photoelectric conversion is complicated, so the wafer f ^ is used continuously: electricity. The solar system, depending on the assembly, becomes a solar cell module, or a knife-and-bundle plate. If several solar panels are combined, plus the storage of solar panels or solar energy facilities, it will become a solar photovoltaic system, and the controller and the protective packaging month will be mass-produced in the market. That is to say, such solar power; the average efficiency of the two (four) batteries is about '15% of the available electric energy, and most of the rest is wasted into too (four) can be converted into modules constantly in the _ irradiation, in addition, solar energy will also Affecting the conversion of solar modules; the temperature of the limbs will continue to rise, because the thermal energy generated by the white-headed H group in order to solve the solar cell's ability to generate light energy is often used by the heat-distributing solar cell. The heat generated is outside. However, in order to match the size of various types of Taihao group, the two-inch heat dissipation module will be too large. In addition to the processing, the manufacturer also needs to respond to the size of various solar modules. The size of the various types of heat-dissipating modules has been created. As a result, the secret manufacturer has to customize the heat-dissipating modules to meet different customer needs. Therefore, 'manufacturing_ cannot effectively and quickly produce On the other hand, the whole heat-dissipating module is combined with the solar photovoltaic module, and the outdoor temperature is changed by the ambient temperature (4). The conductive tape of the thermal expansion and contraction is pulled and broken. Therefore, it cannot withstand the environment with large temperature difference. And the thermal cycle test of product verification. [New content] "The problem of the touch, this creation provides a kind of solar photovoltaic group of the heat module" hunting by the heat dissipation mechanism to solve the cost of module production Not resistant to temperature changes and other issues. According to the solar photovoltaic disclosed in the present invention, it includes a plurality of solar modules and two frames. Among them, the solar module includes a panel and a battery that is electrically connected to the secret. These first heat sinks are side by side, and are combined with each other on the side of the solar module. And each of the heat dissipation rent includes a heat dissipation plate and a heat dissipation pipe disposed on the heat dissipation plate, and the heat dissipation pipe system is disposed on the side of the dispersion sensitive side. In addition, these transfer points are provided at both ends of the divergent tube, each frame has a - chute portion and a nip portion, and the extension portion extends from the sliding portion and separates the two end edges of the heat pipe. . According to the heat dissipation module disclosed in the above-mentioned creation and the solar photovoltaic module using the same, the use of the thermal interface material can reduce the cost of the module. In the case of the β mode, the solar cell is directly packaged in a package by thermocompression and directly combines the sun and the heat sink, thereby simplifying the process. In addition, the 'distribution group _ _ several _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ It is the transformation of the wire to the standard - the production of the specification - the political heat η ‘and then the manufacturing process can be completed to complete the production of the first heat sink, and save manufacturing time and cost. And (4) - the size of the rhyme is reduced to facilitate processing, f to increase the discriminating of the production of loose clock. The same coffee is used as the first between the heat sinks. When the module is subjected to temperature changes, there is room for expansion and expansion, and the module _ conductive tape is not cracked to solve the problem of the module being used in a large temperature environment. The above description of the contents of this creation and the description of the following embodiments are intended to be used to explain the scope of the present application and to provide a further explanation of the scope of the patent application. [Embodiment] The "s1A map" and "苐1β map" and "1A map" are schematic diagrams of the structure of the solar photovoltaic module according to the method of the present invention, "1B" = A schematic structural view of a solar photovoltaic module according to another embodiment of the present invention is disclosed. In this embodiment, the optical module includes a heat dissipation module and a solar module (10) disposed on the heat dissipation core group. The solar mode _ is composed of a plurality of rows of solar cells m-fields, which are arranged in a thin parallel or (four) manner on the panel 11G. To simplify the illustration, (4) the wiring required for the parallel butterfly is omitted. Here, the solar cells 120 may be provided on the plurality of panels 110 as shown in Fig. 1A, or may be provided on one panel 11A as in the "first drawing", and are not limited thereto. The solar cell 120 used herein includes a germanium-type semiconductor and a p-type semiconductor. The materials of the bismuth semiconductor and the bismuth semiconductor are, for example, a group of ιν (such as single crystal silicon, polycrystalline crystallization, amorph 〇us silicon, siGe), III- Group V (such as gallium nitride (GaN), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium gallium phosphide (MaP), etc.) or Π_νι (such as cadmium telluride ( CdTe), indium copper selenide (CuInSe 2 ), copper indium gallium antimony (QiInGaSe), and the like. Further, the solar cell 120 may also be an organic-dye-sensitized solar cell or an organic polymer semiconductor solar cell or the like. Please refer to "2A" and "2B", "2A" is a schematic view of the heat dissipation module of "1A", and "2B" is a heat dissipation according to another embodiment of the present disclosure. A schematic view of the module. The heat dissipation module 2 of the embodiment includes a plurality of first heat sinks 200, two second heat sinks 300, and two frames 400. The first heat dissipating bodies 200 are arranged side by side. In the present embodiment, the number of the first heat dissipating bodies 200 may be three, but not limited thereto, and may be increased or decreased according to the size of the object to be dissipated, for example, four or Six. The second heat dissipating bodies 3 are respectively arranged on the opposite sides of the mutually adjacent heat dissipating bodies 200, and the two frames respectively frame the opposite ends of the first heat dissipating body 200 and the second heat dissipating bodies 300. It should be noted that the main purpose of the second heat sink 30〇 is to strengthen the structural strength of the heat dissipation module 2〇 M431443 and adjust the size of the heat dissipation module 2Q. In the actual case, the heat dissipation module _〇 can also be composed of the first heat sink and the second frame 400 as shown in Fig. 2B. The above-mentioned first heat dissipation systems are arranged side by side, and the detailed side-by-side arrangement is to arrange the heat sinks 23 of the first heat sinks in a gap by a gap, and the side-by-side arrangement can make the first heat sinks combine the required heat dissipation modes. Group (3) size. In addition, the gap between the fins 230 also gives it a space for thermal expansion and contraction. • Continue to explain the detailed structure of the thermal module 2〇. Please refer to “3rd” and “4th” and “3rd” for the heat dissipation module_decomposition diagram according to an embodiment of the present disclosure. "Fig. 4" is a perspective view of the heat body according to the present invention disclosed in the present invention. In this embodiment, the breakage of the first-distribution furnace, about the E-shaped shape, includes a heat dissipation plate 21〇, a heat dissipation pipe 220 disposed on the heat dissipation plate 2ι, and two ends of the heat dissipation plate 210 respectively extending upward. A heat sink 23 〇. The heat dissipation plate 211 has two heat dissipation microstructures 211, and the heat dissipation microstructures 211 are approximately wavy to increase the heat dissipation area of the first heat dissipation body 200. The first heat dissipating body 200 is mainly composed of a heat dissipating material. In a typical material selection, metal is generally selected, for example, thermal conductivity is good! Lu metal 'of course other non-metallic materials, but a preferred thermal conductive material may also be selected. . Please continue to refer to "Figure 5," Figure 5 is a three-dimensional illustration of the implementation of a political body based on this creation. In the present embodiment, the second heat dissipating body has a second heat dissipating body and a F-shaped shape, and includes a heat dissipating plate 310, a heat dissipating member 320 disposed on the heat dissipating plate 31, and one end of the heat dissipating plate 310. The heat sink 33〇 extends upward. 7 M431443 The heat sink 310 has a heat dissipation microstructure 311 thereon. The second heat dissipating body 3 and the first heat dissipating body 200 have the same characteristics as the first heat dissipating body 2 except for the shape change, and therefore will not be described. It should be noted that the first heat dissipation body and the second heat dissipation body 300 are both formed by the body, and the opposite ends of each of the heat dissipation tubes 22 〇 and 32 具有 have a perforation 222, 322 and a difference. There is a filling port 22 321 at the entrance of both ends. Please refer to FIG. 6 and FIG. 6 is a perspective view of a frame according to an embodiment of the present disclosure. The two frames 4 (8) are assembled to the opposite ends of the heat-dissipating tubes 32 〇. The frame 400 includes a --slot portion 41 and an extension portion 420 extending outward from the groove portion 41. The cross section of the chute portion 410 is approximately gate-shaped, and the extending portion 42 has a plurality of through holes 42 arranged at a constant pitch, and the material properties thereof are the same as those of the first heat dissipating body, and therefore will not be described again. In this embodiment, the frame 400 is combined at the opposite ends of the first heat sink 200 and the second heat sink 3 by a plurality of bonding members 6〇〇. Each of the coupling members 600 has teeth 222, 322 and through holes 42 for fixing the extension portion 420 to the heat dissipation tubes 220, 320. The coupling member 6 of this embodiment may be a fixing member such as a rivet or a screw. In order to increase the heat absorption effect of the heat dissipation pipes 220 and 320, the heat dissipation pipes 320 may be filled with a phase change material or a high specific heat material from the filling port 22 321 . The phase change material is selected from the group consisting of paraffin waxes, inorganic salts, salt water compounds and mixtures thereof, and carboxylic acid and sugar alcohol groups. The phase change material can produce the transformation of the object type, so the solid state and the liquid phase transformation of the phase change material can be utilized to absorb the heat and release the latent heat to control the temperature state of the Hungeng photoelectric, and the material can be controlled by the fairy t material. The heat-absorbing and cooling effect is generated when the solar photovoltaic phase is at a predetermined high temperature to reduce the operating temperature of the solar moon 匕 group 100. The high specific heat material may be water or other solid or liquid. In the present embodiment, the heat-dissipating tubes 22, 32 are sealed by a plurality of sealing members 500 to prevent the filled material from flowing out. Please also refer to "FIG. 1" and "FIG. 7", and FIG. 7 is a schematic diagram of a sealing member 500 according to the present disclosure. Each of the sealing members includes a first sliding portion 520 and a second engaging portion opposite to the opposite ends of the sliding shaft, and the first engaging portion is disposed at the / month groove. The inside of the crucible 410 and the second engaging portion 53 are disposed in the filling port. Further, in addition to sealing the heat sink f 32Q, the heat sink 320 may be sealed by a plurality of sealing covers 610. Please refer to "Figure 8" and "Figure 8" for the structure of the framework disclosed in this creation. Further, the sliding groove portion 41 of the embodiment includes two rails, for example, and a bottom plate buckle connecting the two roads, and the bottom plate 12. There are also a plurality of openings 413 arranged at a pitch. When the frame *(9) is assembled to the first heat radiating body 200 and the second heat radiating body 300 by the above method, the respective openings 413 are respectively aligned with the filling ports 321 of the respective heat radiating tubes 320. After the filling material, the sealing caps 61 are respectively passed through the openings 413, and the corresponding heat-dissipating tubes 32 are respectively plugged to prevent the material from flowing out of the filling port 321 . In this embodiment, the heat dissipation module 20 is coupled to the side of the solar module 1 by vacuum thermocompression bonding. The size of the first heat sink is usually designed to match the size of the solar cell 12 inch. In addition, the number of these first heat sinks depends on the number of rows of these solar cells 120 of M431443. For example, a row of solar cells 12 is disposed on the first heat sink 200. Therefore, in this embodiment, three rows of solar cells 12 are disposed on the three first heat sinks 200, respectively. In addition, the first heat body 300 is disposed on the side-by-side first heat sinks. The first heat sink and the second heat sink 300 are arranged side by side, and the second heat sink 300 is disposed on the heat dissipation module 2 . The two outer sides of the cockroach. In order to prevent the solar cell 120 from being electrically contacted with the wire module 20 formed by the metal material to further cause the solar module 1 to fail, the device can be disposed between the heat dissipation module 20 and the solar module (10). — The insulating layer 13〇, . . is electrically connected between the heat dissipation module 20 and the solar module 1〇〇. In another example, the surface of the heat dissipation module 20 and the solar module 100 can be anodized to be insulated to prevent electrical connection between the heat dissipation module 20 and the solar module. . In addition, it is generally possible to include the insulating layer 13 in the solar module. However, it is only for the industry because of the process or other factors. For the solar module S (5) The composition of the solar module with a limit of 1 does not include the insulating layer 13〇. Yang's mold, 'and 〇〇''''''''''''''''''''' $, according to the above-mentioned paste of the county's silk pool and its domain energy photoelectric mode ^ slightly face __ (four) ' _ can cap, _ cost and improve X and in the face of the money, the charm of the way to the solar energy Electricity

Claims (1)

100年10月26日替換頁 、申請專利範圍: 一種太陽能光電模組,包括有: 一太陽能模組,該太陽能模組包括有至少一面板及至少一 排太陽能電池;及 '散熱模組,包括有: 複數個第一散熱體,該些第一散熱體相互並排,並以 真空熱壓合之方式結合於該太陽能模組之一側,每一該些 第一散熱體包括一散熱板及一置於該散熱板上之散熱 管;及 二框架’分別框設於該些散熱管的兩端。 如請求項1所述之太陽能光電模組,其中該些第一散熱體的並 排數等同該些太陽能電池的並排數或串聯數,該些太陽能電池 分別設置於該些第一散熱體上。 如請求項1所述之太陽能光電模組,其中該些第一散熱體間以 一間隙相互並排。October 26, 100 replacement page, patent application scope: A solar photovoltaic module, comprising: a solar module comprising at least one panel and at least one row of solar cells; and a 'thermal module, including And a plurality of first heat dissipating bodies, the first heat dissipating bodies are mutually juxtaposed, and are coupled to one side of the solar module by vacuum thermocompression, each of the first heat dissipating bodies including a heat dissipating plate and a The heat pipe disposed on the heat dissipation plate; and the two frames are respectively disposed at two ends of the heat dissipation pipes. The solar photovoltaic module of claim 1, wherein the number of the first heat sinks is equal to the number of side-by-side or series of the solar cells, and the solar cells are respectively disposed on the first heat sinks. The solar photovoltaic module of claim 1, wherein the first heat sinks are arranged side by side with each other with a gap. 如請求項i所述之太陽能光電·,更包括有一絕緣層,形成 於該散熱模姐與該太陽能模組之間。 如請求項m述之太雜光電顧,其中每—該第—散熱體於 該散熱板的兩端分別向上延伸一散熱片 如請求項5所狀太_光賴組,財触第一散熱體為一 體成型之結構。 . * . 如請求項丨觸之太·光_組,財·散滅更具有至 M4J1443 100年10月26曰替換頁 少一散熱微結構。 月求項1所述之太陽月光電模組’其中該些散熱管填充有一 相變化材料。 如-月求項1所述之太陽能光電模組,其中該框架具有一滑槽部 =一延伸部’該延伸部自該滑槽部延伸,並分別覆蓋該些^熱 管的兩端緣。 10.如請求項9所述之太陽能光電模組,更包括多個封口蓋,其中 該滑槽部包括二軌道及-連接該些執道的底板,該底板設有多 個以-間距__孔’該些封σ蓋分游設過該些開孔,並 分別塞住對應該些開孔的該些散熱管。 11·如請求項9所述之太陽能光電模組,更包括複數個封口件,該 些封口件連接該些散熱管及該滑槽部。 如請求項11所述之太陽能光電模組,其中每一該些封口件具 有一滑軸及位於該滑軸相對兩端的一第一_^合部及一第二卡 合部,該散熱管的相異兩端各具有一填充口,該些第一卡合部 分別設置於賴槽部内,以及第二卡合部分概置於該填 充口内。 13·如請求項9所述之太陽能光電模組,更包括多個結合件,該些 結合件分別結合該延伸部及該些散熱管。 14·如請求項9所述之太陽能光電模組,其中該散熱模組更包括二 第二散熱體,分別位於該些並排的第一散熱體的相對兩外側, 每一該些第二散熱體包括該散熱管及該散熱板。 15 M431443 100年10月26日替換頁 · 15. 如請求項14所述之太陽能光電模組,其^每一該第二散熱^ : 於該散熱板的其中一端向上延伸一散熱片。 16. 如請求項15所述之太陽能光電模組,其中該些第二散熱體為 一體成型之結構。 17. 如請求項14所述之太陽能光電模組,其中該些散熱板更具有 · 至少一散熱微結構。 · 18. 如請求項14所述之太陽能光電模組,其中該些散熱管填充有 一相變化材料。 19. 如請求項14所述之太陽能光電模組,更包括多個封口蓋,其 中該滑槽部包括二軌道及一底板’該底板設有多個以一間距排 列的開孔’該些封口蓋分別穿設過該些開孔,並分別塞住對應 該些開孔的該些散熱管。 , 20. 如請求項14所述之太陽能光電模組,更包括複數個封口件, 該些封口件連接該些散熱管及該滑槽部。 21. 如請求項20所述之太陽能光電模組,其中每一該些封口件具鲁 有滑轴及位於該滑轴相對兩端的一第—^合部及一第二卡 合部,每一該些散熱管的相異兩端各具有一填充口,該些第一 卡合部分別設置於該滑槽部内,以及該些第二卡合部分別設置 於該填充口内。 22. 如請求項14所述之太陽能光電模組,更包括多個結合件,該· 些結合件分別結合該延伸部及該些散熱管。 16The solar photovoltaic device as claimed in claim i further includes an insulating layer formed between the heat dissipation module and the solar module. For example, the request item m is described as a miscellaneous photocell, wherein each of the first heat dissipating bodies extends upwardly from the two ends of the heat dissipating plate to a heat sink, such as the request item 5, and the first heat sink body. It is a one-piece structure. . . . If the request item is too touched, the light _ group, the wealth and the annihilation have more to M4J1443 100 years October 26 曰 replacement page Less one heat dissipation microstructure. The solar moon photovoltaic module of claim 1 wherein the heat pipes are filled with a phase change material. The solar photovoltaic module of claim 1, wherein the frame has a chute portion = an extension portion. The extension portion extends from the chute portion and covers both end edges of the heat pipes. 10. The solar photovoltaic module of claim 9, further comprising a plurality of sealing covers, wherein the sliding groove portion comprises two tracks and a bottom plate connecting the orbits, the bottom plate is provided with a plurality of spacings __ The holes 'the sigma cover cover the openings, and respectively plug the heat pipes corresponding to the holes. The solar photovoltaic module of claim 9, further comprising a plurality of sealing members, the sealing members connecting the heat dissipation tubes and the sliding portion. The solar photovoltaic module of claim 11, wherein each of the sealing members has a sliding shaft and a first yoke portion and a second engaging portion at opposite ends of the sliding shaft, the heat absorbing tube Each of the opposite ends has a filling port, and the first engaging portions are respectively disposed in the groove portion, and the second engaging portion is disposed in the filling port. The solar photovoltaic module of claim 9, further comprising a plurality of bonding members, the bonding members respectively combining the extending portion and the heat dissipation tubes. The solar photovoltaic module of claim 9, wherein the heat dissipation module further comprises two second heat dissipation bodies respectively located on opposite outer sides of the side by side first heat dissipation bodies, each of the second heat dissipation bodies The heat pipe and the heat sink are included. 15 M431443 Replacement page of October 26, 2014. 15. The solar photovoltaic module of claim 14, wherein each of the second heat sinks extends a heat sink at one end of the heat sink. 16. The solar photovoltaic module of claim 15, wherein the second heat sinks are integrally formed. 17. The solar photovoltaic module of claim 14, wherein the heat sinks further comprise at least one heat dissipating microstructure. 18. The solar photovoltaic module of claim 14, wherein the heat pipes are filled with a phase change material. 19. The solar photovoltaic module of claim 14, further comprising a plurality of sealing covers, wherein the sliding groove portion comprises two tracks and a bottom plate. The bottom plate is provided with a plurality of openings arranged at a pitch. The cover respectively passes through the openings, and respectively plugs the heat pipes corresponding to the openings. The solar photovoltaic module of claim 14, further comprising a plurality of sealing members, the sealing members connecting the heat dissipation tubes and the sliding portion. 21. The solar photovoltaic module of claim 20, wherein each of the sealing members has a sliding shaft and a first engaging portion and a second engaging portion at opposite ends of the sliding shaft, each Each of the two ends of the heat-dissipating tube has a filling port, and the first engaging portions are respectively disposed in the sliding groove portion, and the second engaging portions are respectively disposed in the filling port. 22. The solar photovoltaic module of claim 14, further comprising a plurality of bonding members, the bonding members respectively combining the extension portion and the heat dissipation tubes. 16
TW100212871U 2011-07-13 2011-07-13 Solar module having thermal module TWM431443U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100212871U TWM431443U (en) 2011-07-13 2011-07-13 Solar module having thermal module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100212871U TWM431443U (en) 2011-07-13 2011-07-13 Solar module having thermal module

Publications (1)

Publication Number Publication Date
TWM431443U true TWM431443U (en) 2012-06-11

Family

ID=46723250

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100212871U TWM431443U (en) 2011-07-13 2011-07-13 Solar module having thermal module

Country Status (1)

Country Link
TW (1) TWM431443U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978479A (en) * 2016-07-28 2016-09-28 苏州聚力电机有限公司 Novel solar photovoltaic module having heat dissipation module
CN105978480A (en) * 2016-07-28 2016-09-28 苏州聚力电机有限公司 Solar photovoltaic module having heat dissipation module
CN106057940A (en) * 2016-07-28 2016-10-26 苏州聚力电机有限公司 Solar photovoltaic module with heat dissipation module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978479A (en) * 2016-07-28 2016-09-28 苏州聚力电机有限公司 Novel solar photovoltaic module having heat dissipation module
CN105978480A (en) * 2016-07-28 2016-09-28 苏州聚力电机有限公司 Solar photovoltaic module having heat dissipation module
CN106057940A (en) * 2016-07-28 2016-10-26 苏州聚力电机有限公司 Solar photovoltaic module with heat dissipation module

Similar Documents

Publication Publication Date Title
Zhang et al. Performance estimation of photovoltaic–thermoelectric hybrid systems
Zimmermann et al. A high-efficiency hybrid high-concentration photovoltaic system
US20080135086A1 (en) Photovoltaic cells, modules and methods of making same
TW201027774A (en) Optical tandem photovoltaic cell panels
Chen et al. Thermal analysis of a high concentration photovoltaic/thermal system
US20110259386A1 (en) Thermoelectric generating module
Li et al. Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management
US20130306125A1 (en) Seebeck Solar Cell
US4193081A (en) Means for effecting cooling within elements for a solar cell array
US10446733B2 (en) Hybrid solar cell
TW200849624A (en) Integrated package having solar cell and thermoelectric element and method of fabricating the same
CN109524496A (en) A kind of full-time solar battery based on energy storage thermo-electric generation
Guan et al. Fabrication and characterization of a high-power assembly with a 20-junction monolithically stacked laser power converter
TW201128787A (en) Solar module and manufacture method thereof
TWM431443U (en) Solar module having thermal module
Rumyantsev et al. Progress in developing HCPV modules of SMALFOC-design
WO2014132197A3 (en) Integrated photovoltaic and thermal module (pvt)
CN201726340U (en) Solar photoelectricity and thermoelectricity conversion system
CN101350580A (en) Solid-state thermo-electric generation plate and apparatus thereof
US20150114447A1 (en) Junction box and photovoltaic module including the same
CN102201474A (en) Solar photoelectric module and manufacturing method thereof
TWM355461U (en) Solar cell
Sharma et al. Performance enhancement of solar photovoltaic system using different cooling techniques
TW201248946A (en) Semiconductor optoelectronic converting system and the fabricating method thereof
CN105978480A (en) Solar photovoltaic module having heat dissipation module

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees