TWM418395U - Battery - Google Patents

Battery Download PDF

Info

Publication number
TWM418395U
TWM418395U TW99224136U TW99224136U TWM418395U TW M418395 U TWM418395 U TW M418395U TW 99224136 U TW99224136 U TW 99224136U TW 99224136 U TW99224136 U TW 99224136U TW M418395 U TWM418395 U TW M418395U
Authority
TW
Taiwan
Prior art keywords
battery
negative electrode
electrode structure
chlorophyll
battery according
Prior art date
Application number
TW99224136U
Other languages
Chinese (zh)
Inventor
Chung-Pin Liao
Original Assignee
Innot Bioenergy Holding Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innot Bioenergy Holding Co filed Critical Innot Bioenergy Holding Co
Priority to TW99224136U priority Critical patent/TWM418395U/en
Publication of TWM418395U publication Critical patent/TWM418395U/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

M418395 100年4月14日替換頁 五、新型說明: 【新型所屬之技術領域】 本申請請求於2008年12月24日遞交的美國專利申請第 12/344,2U號以及於2_年5月16日遞交的臺灣專利申請第 97118207號的在先權益。以上兩件專利文獻的全部内容在此 作為參考引用引入本申請。 本創作涉及-種電池及其製造方法,特別涉及一種使用葉 綠素來產生電能之電池及其製造方法。 【先前技術】 近年來’陸續出現了行動電話、手提式攝影機、筆記型電 腦、數位相機、PDA、CD player等輕便型電子機器,並謀求 其小型及輕量化,而伴隨此,作為可攜帶之輕便電源·電池也 同樣文到關注。電池種類包括乾電池、錄氫電池、鐘電池與燃 料電池等。下面將簡單介紹常見電池。 曰吊使用的乾電池大多是鋅鐘電池,也叫碳鋅電池。碳鋅 電池的外殼一般由鋅構成,其既可以作為電池的容器,又可以 作為電池的負極。碳辞電池是從液體Leclanche電池發展而 來。傳統或一般型碳鋅電池以氯化銨為電解質;超級或高能碳 鋅電池則通常是使用氣化鋅為電解質的碳鋅電池,是一般廉價 電池的改H销電池的正極主要是峰絲的二氧化猛和 3 M418395 100年4月14日替換頁 碳構成。電解液是把氯化辞和氯化錄溶於水中所形成的糊狀溶 液。碳鋅電池是最便宜的原電池,因此成為很多廠商的首選, 因為這些廠商所銷售的設備中常常需要配送電池。鋅碳電池可 以用於遙控器、閃光燈、玩具或電晶體收音機等功率不大的設 備。 然而,當碳鋅電池使用一段時間以後,由於金屬辞被氧化 # 成為鋅離子’鋅外殼會逐漸㈣。因此,氯化鋅溶液常常可以 從電池中洩漏出來。洩漏出來的氯化鋅往往會使電池表面變 粘。一些老的電池沒有洩漏保護。鋅碳電池的使用壽命比較 短’保存期-般為一年半。另外,就算電池沒有使用,電池内 的氣化錄有弱酸性,可以與鋅反應,鋅外殼也會慢慢的變薄。 現在3c產f常提到雜電池其實是錄電池,廣義的可 充放鐘電池是指由一個石墨負極、一個採祕、猛或猶鐵的 • 正極、W及-翻於傳験離子的電驗所構成ϋ鐘離 子電池則可以鐘金屬或者紐材料作為負極。鐘電池產業發展 夕年來直集中在3C產業為主,鮮少應用在市場經濟規模 更大的航和動力電池(瞬間需要較大電流)市場,這市場涵 蓋純電動車、油電混合車、中大型ws、太陽能、大型儲能 電池電動手工具、電動摩托車、電動自行車、航太設備與飛 機用電池等領域。其主要原因是過去鐘電池採用的錄正極材 4 100年4月14日替換頁 料(LiCo〇2 ’就是現在最常見的鋰電池),無&應用在需 電流、高電壓、高扭力以及具有耐受穿刺、衝撞和高溫、低溫 等條件等特殊環境,更重要的是,因無法滿足人們對安全的絕 對要求而飽受詬病。 同時’魏钻電池也無法達到快速充電與完全避免二次污染 等目的,而且,一定要設計保護電路以防止過度充電或過度放 電’否則就會造成爆炸等危險,甚至出現如S〇ny電池爆炸導 致全球品牌NB業者投下矩資回收的情況。 另外,鈷的價格愈來愈高昂,全球鈷元素最大生產國剛 果,戰亂紛擾多,導致銘元素價格不斷升高。鐘始電池的粉體 因鈷元素價格不斷上漲,現在已從原先的每公斤4〇美元漲價 到60〜70美元。磷酸鐘鐵粉體依品質好壞,每公斤售價在3〇〜6〇 美元。 鎳氫電池的設計源於鎳鎘電池。1982年美國〇v〇NIC公 司請求儲氫合金用於電極製造之專利,使得此一材料受到重 視’繼之為1985年荷蘭飛利浦公司突破了儲氫合金在充放電 過程中容量衰減的問題終使鎳氫電池脫穎而出。目前在日本有 8家以上鎳氫電池製造廠,德國,美國,香港,台灣亦有鎳氫 電池生產,市場反應良好。而且鎳氫電池所造成之污染,會比 含有鎘之鎳鎘電池小报多,因此,目前鎳鎘電池已逐漸被鎮氫 M418395 100年4月14日替換頁 電池取代。 燃料電池(Fuelcell)是一種使用燃料進行化學反應產生 電力的裝置’最早於1839年由英國的Grove所創作。最常見 疋以氫氧為燃料的質子交換膜燃料電池,由於燃料價格平宜, 加上對人體無化學危險、對環境無害,發電後產生純水和熱, i96〇年代應用在美國軍方,後於190S年細於美國雙子星座M418395 April 14, 2010 Replacement Page 5, New Description: [New Technology Field] This application claims US Patent Application No. 12/344, 2U filed on December 24, 2008 and May 2nd Prior interest in Taiwan Patent Application No. 97118207 filed on the 16th. The entire contents of the above two patents are incorporated herein by reference. The present invention relates to a battery and a method of manufacturing the same, and more particularly to a battery using chlorophyll to generate electric energy and a method of manufacturing the same. [Prior Art] In recent years, portable electronic devices such as mobile phones, portable cameras, notebook computers, digital cameras, PDAs, and CD players have emerged, and they are being small and lightweight, and as such, they are portable. Light power and battery are also concerned. The battery types include dry batteries, hydrogen recording batteries, clock batteries, and fuel cells. A brief description of common batteries is given below. Most of the dry batteries used in slings are zinc clock batteries, also called carbon zinc batteries. The outer casing of a carbon zinc battery is generally made of zinc, which can serve as both a battery container and a battery negative electrode. Carbon batteries are developed from liquid Leclanche batteries. Conventional or general-purpose carbon-zinc batteries use ammonium chloride as an electrolyte; super- or high-energy carbon-zinc batteries are usually carbon-zinc batteries using vaporized zinc as an electrolyte, which is a general-purpose low-cost battery. Dioxide fierce and 3 M418395 April 14, 100 replacement page carbon composition. The electrolyte is a paste solution formed by dissolving chloride and chloride in water. Carbon-zinc batteries are the cheapest primary batteries, so they are the first choice for many manufacturers, because the batteries sold by these manufacturers often need to be distributed. Zinc-carbon batteries can be used in low-power devices such as remote controls, flashlights, toys, or transistor radios. However, when the carbon-zinc battery is used for a period of time, the metal shell is oxidized # becomes a zinc ion' zinc shell will gradually (four). Therefore, zinc chloride solution can often leak out of the battery. The leaked zinc chloride tends to make the surface of the battery sticky. Some old batteries have no leakage protection. The service life of zinc-carbon batteries is relatively short. The shelf life is generally one and a half years. In addition, even if the battery is not used, the gasification in the battery is weakly acidic, and it can react with zinc, and the zinc casing will gradually become thinner. Now 3c production f often mentions that the battery is actually a battery. The generalized rechargeable battery is a graphite negative electrode, a mining secret, a fierce or a helium iron, a positive electrode, and a turn-on battery. The test chamber constitutes a cesium ion battery, which can be used as a negative electrode. In the past few years, the development of the clock battery industry has focused on the 3C industry. It is rarely used in the market with larger market economy and more power batteries (instant demand for large current). This market covers pure electric vehicles, hybrid vehicles, and medium-sized vehicles. Large-scale ws, solar energy, large-scale energy storage battery electric hand tools, electric motorcycles, electric bicycles, aerospace equipment and aircraft batteries. The main reason is that the recording materials used in the past clock batteries replaced the material on April 14, 100 (LiCo〇2 ' is the most common lithium battery now), and the applications are current, high voltage, high torque and It has a special environment that is resistant to punctures, collisions, high temperatures, low temperatures, etc., and more importantly, it has been criticized for failing to meet people's absolute safety requirements. At the same time, 'Wei drill battery can not achieve the purpose of fast charging and completely avoid secondary pollution. Moreover, it is necessary to design a protection circuit to prevent overcharging or over-discharging. Otherwise, it will cause an explosion and other dangers, and even a battery explosion such as S〇ny This has led to the situation of global brand NB operators investing in the recovery of the moment. In addition, the price of cobalt is getting higher and higher, and the world's largest cobalt-producing country, the fruit of the chaos, has caused more and more wars. The powder of Zhongshi Battery has risen from the original price of 4 US dollars per kilogram to 60 to 70 US dollars due to the rising price of cobalt. Phosphoric acid powder is based on good quality and is priced at 3〇~6〇 per kg. NiMH batteries are designed from nickel-cadmium batteries. In 1982, the United States 〇v〇NIC Company requested the patent of hydrogen storage alloy for electrode manufacturing, which made this material pay attention to it. In succession, in 1985, Philips of the Netherlands broke through the problem of capacity decay of hydrogen storage alloy during charge and discharge. Nickel-metal hydride batteries stand out. At present, there are more than 8 nickel-hydrogen battery manufacturers in Japan, and nickel-hydrogen batteries are also produced in Germany, the United States, Hong Kong and Taiwan. The market has responded well. Moreover, the pollution caused by nickel-hydrogen batteries will be more than that of nickel-cadmium batteries containing cadmium. Therefore, nickel-cadmium batteries have been replaced by hydrogen-removed M418395 replacement pages on April 14, 100. Fuelcell is a device that uses fuel to chemically generate electricity. Originally created in 1839 by Grove, England. The most common proton exchange membrane fuel cell fueled by hydrogen and oxygen, because of the cheap fuel, coupled with no chemical danger to the human body, harmless to the environment, and pure water and heat after power generation, was applied to the US military in the i96 era. After the 190S, the US Gemini constellation

-十劃雙子星;t 5號射^現在也有—些筆記型電關始研究使 雌料電池。但由於產㈣f量太小,且紐咖提供大量電 能,只能用於平穩供電上。燃料電池是一個電池本體無料箱 組合而成_力機制。燃料的選擇性非常高,包括純氣氣、甲 醇、乙醇、雜氣’甚至於現在運用最廣泛軌油,都可以做 為燃料電池的燃料。- Ten-stroke Gemini; t 5 shot ^ now also has some notes-type electric switch to start researching the female battery. However, since the amount of production (four) f is too small, and New Zealand provides a large amount of electricity, it can only be used for smooth power supply. The fuel cell is a combination of a battery body and a bin. Fuel selectivity is very high, including pure gas, methanol, ethanol, and impurities. Even the most widely used rail oil can be used as fuel for fuel cells.

不論是新型強調環保的碳鋅電池、驗性電池及二次電池, 在製程上奴會使财、量躲或其他重金私知而且在原料 ^程上制具污紐的㈣,_如及人物具有較大危 a m '、〜、祕屬不穩定的電化學裝置, t封裝不當:運作於低負載,都可能會⑽棒因此需要 重複雜的保護機制,比如包括保護電路 其中保護電路用於防止過充、過放 乳、隔離膜等’ 職超栽、過熱,•排氣孔用於 6 100年4月14日替換頁 避免電池㈣壓強過大;隔離膜具有較高舰^強度,以防— 止内。P紐路’且在電池内部溫度過高時還能融化,阻止雜子 通過,阻滯電池反應,升高内阻(至2kn)。 鐘電池的正極(如:1^(:0〇2)、負極(LixC)主要原料 鋰礦越來越少,使其價格快迷上漲。 鐘電池在溫度稱尚之室外或環境之下效能與壽命皆開始 快速降減。 錦锅電池或鎳氫電池g具有記憶效應,很容易因充放電不 良’而造成可用容量降低。 【新型内容】 本創作的目的是提供一種電池。 為解決上述問題,本創作實施例提供了一種電池,其包括 集流體、JL極結構、隔離結構、貞極結構以及外殼,所述正極 結構、隔離結構、負極結構以及外殼依次環繞地設置於集流體 的週圍,其中所述正、負極結構中的至少之一包括葉綠素。優 選地’正極結構中的葉綠素與負極結構中的葉綠素具有不同之 功函數。 根據本創作的一優選實施例,所述負極結構包括導電材料 層以及負極材料層,其中負極材料層形成在導電材料層上。 根據本創作的一優選實施例,所述負極材料層包括葉綠素 100年4月14日替換頁 以及高聚體溶液。 根據本創作的一優選實施例’所述負極結構為膜片狀。 根據本創作的一優選實施例,所述負極結構的長度為 60mm,而其寬度為50mm。 根據本創作的一優選實施例’所述集流體為一圓柱體。 根據本創作的一優選實施例’所述集流體的直徑為4mm, 而其長度為47.2mm。 根據本創作的一優選實施例,所述隔離結構包括第_隔離 膜、第二隔離膜以及夾設於所述第一隔離膜與所述第二隔離膜 之間的電解質材料。 根據本創作的一優選實施例’所述第一隔離膜以及第二隔 離膜分別為膜片狀。 根據本創作的一優選實施例,所述第一隔離膜以及第二隔 離膜的長度為55mm ’寬度為50mm,而其厚度為〇 2mm。 根據本創作的一優選實施例,所述外殼為一個外徑為 14.5mm ’内徑為12.5mm,長度為48.4mm的紙管。 本創作實施例的電池可利用其正、負極結構中的葉綠素即 可進行儲氫從而達到供電的目的。亦即,在電池之氧化還原反 應中’當葉綠素因其中之鎂離子脫離而形成脫鎂葉綠素 (pheophytin)之際,出缺鎂的部份即能結合兩個氫離子,故 M418395 100年4月14日替換頁 能儲氫。且由於本創作的電池採用天然的環保^質代替傳統電 池中的污染成分,用完即使丟棄也不會對_:造成污染,環保 程度遠勝於傳統電池。 【實施方式】 下面結合附圖和實施例對本創作實施例進行詳細說明。 圖1繪示為本創作一實施例所揭示的電池的結構示意 圖。如圖1所示,本創作實施例提供了一種電池100,其包括 集流體110、正極結構120、隔離結構13〇、負極結構14〇以 及外殼150。其中正極結構120、隔離結構13〇、負極結構14〇 以及外设150依次環繞地設置於集流體HQ週圍。 圖2繪示為本創作一實施例所揭示之負極結構的結構示 意圖。如圖2所示,本創作實施例所揭示的負極結構14〇包括 導電材料層141以及負極材料層142,其中負極材料層142可 形成在導電材料層141之上。 其中,導電材料層141由導電材料而製成。導電材料可以 是金屬、金屬化合物或導電高分子材料。金屬可以選自鋁和/ 或金。金屬化合物可以選自一氧化猛、氧化鋅和氧化鎮中的一 種或多種。導電商分子材料選自雜環或芳香族雜環化合物。根 據本創作的一優選實施例’導電高分子材料選自以下化合物中 的一種或多種:聚乙炔、聚芳香烴乙烯、聚噻吩、聚苯胺、聚 9 M418395 100年4月14日替換頁 °必咯、聚吼咯和上述化合物的衍生物。 ------ 負極材料層142包括葉綠素以及高聚體溶液,且負極材料 層142可藉由塗佈等方式形成在導電材料層141上。葉綠素可 以為葉綠素a、葉綠素b、葉綠素ci和、葉綠素c2、葉綠素d、 及葉綠素e中的一種或多種。葉綠素可以為粉末狀或液狀。所 採用的葉綠素已去除葉綠素氧化酶。 # 高聚體溶液具有黏合作用,能因此附著並調制導電材料層 之物理及化學特性’使得貞極材料層M2更黏附於導電材料層 141。此外,高聚體溶液的導電度為5〇_25〇ms/cm。高聚體溶 液可以包括爛、鎂、銘、妈、猛及鋅元素之一種或數種。高聚 體溶液還用於調制導電材料層141的功函數,俾使正負電極間 之電位差能達致所欲之伏特數,如1.5V。 向聚體溶液可以由金屬離子與各類酸根離子的化合物、高 • ㈣及溶劑按比例調配而成。高聚體可以為葡萄糖的高聚體。 葡萄糖的高聚體可以為植物殿粉,例如為馬铃薯殿粉、菱角殿 粉、玉米澱粉、地瓜粉、蓮藕澱粉、芥末粉和葛根粉中的一種 或多種。金輕子與各類酸根離子親合物可以為碳酸心金 屬離子與各酿獅子的化合物可以為天紐物姆成分。天 然植物化學成分包括木脂素類、低聚糖、多糖、黃酮類、輯 醚_、脂肪酸、東羡菪内醋、兒茶素、P縠固醇、虎刺素和 100年4月14曰替換頁 7驗類。溶劑可以為帶極性、PH值大於— 命咖啡、果/十或者酒等等^高聚體溶液的PH值 優選為5.5_8。高聚體溶液還可以包括維生素,例如維生素D。 ,負極結構14G可製成膜>{狀’從而提高葉綠素的使用量, 增大接觸面積以提高電池的反應面積等。此外,本領域技術人 員了理解的疋’本創作還可以藉由任何已知技術提高葉綠素的 使用量’增大接觸面積以提高電池的反應©積等。優選地,在 本實知例中,負極結構⑽的長度為6〇mm,而寬度為^皿。 請繼續參閱圖1,以下將繼續介紹本創作所揭示之電池 100的其餘結構。集流體11〇為一圓柱體’優選地,集流體u〇 的直徑為4mm ’而其長度為47.2mm。 正極結構120由粉末狀的正極材料而構成。優選地,正極 結構120中的粉末狀的正極材料包含葉綠素粉末。此外,粉末 狀的正極材料可進一步包括碳布、碳末或者奈米導電高分子粉 末。碳布或者碳末包括白碳或稱蠟石(Chaoite)、碳黑、碳煙 (Carbon black)、玻璃碳或者玻碳(Giassy carbon)、奈米碳管 (Carbon nanotube)、活性碳(Activated carbon)、鑽石、金剛石 (Diamond)、非晶質碳(Amorphous carbon)、石墨稀(Graphene)、 昌勒稀(Fulerene)、石墨(Graphite)、碳快(Carbyne)、雙原子碳 (Diatomic carbon)、C3(Tricarbon)、原子碳(Atomic carbon)、石 M418395 100年4月14日替換頁 墨化性碳素、齡解顿,焦炭類及無獅^體。導— 電高分子的材料選自雜環或芳香族雜環化合物。優選地,導電 高分子的材料選自以下化合物中的一種或多種:聚乙块、聚芳 香乙稀、聚嗟吩、聚笨胺、聚对、聚轉和上述化合物的 衍生物。 祕結構130包括第一隔離膜13卜第二隔離膜132以及 • 夾設於兩隔離臈之間的電解質材料133。第-隔離膜131以及 第二隔離膜132分別採用高纖維材質而製成,其中高纖維材質 可以為紙類,紙類包括玻璃紙、棉紙、宣紙及絹紙等,且高纖 維材質孔隙大小優選為α〇1μιη〜lcm。此夕卜,在本實施例中, 第-隔離膜131以及第二隔離膜132分別為膜片狀,且其長度 為55mm ’寬度為50mm,厚度為〇.2mm的薄膜。電解質材料 133可為有機鹽類水溶液或者有機鹽類與葉綠素的水溶液。其 1 t ’有機鹽類水溶液的導電度為1()ms/em_5⑻⑽/⑽。有機鹽 類為非含鐘的有機鹽類。有機鹽類選自包含以下離子化合物中 的一種或多種:碘化鈉、氣化鈉和氫氧化鈉。 外殼150是-個外徑為14 5mm,内徑為12 5随,長度為 48.4酿的紙管,其包覆上述集流體11〇、正極結構12〇、隔離 結構130以及負極結構。 在本實施例中,負極結構140與正極結構12〇中均包含有 12 M418395 ^ 100年4月14日替換頁Whether it is a new type of carbon-zinc battery, an inspective battery and a secondary battery that emphasizes environmental protection, slaves in the process will make money, amount of hiding or other heavy gold knowing and make a dirty new one on the raw materials. Electrochemical devices with large hazard am, ~, and secret instability, improper packaging: operating at low loads, may be (10) rods and therefore require complex and complex protection mechanisms, such as protection circuits, where protection circuits are used to prevent Overcharge, over-emulsion, isolation membrane, etc. 'Super-planting, overheating, • Vent hole for April 14, 100 replacement page to avoid battery (four) pressure is too large; the diaphragm has a higher ship strength, to prevent - Stop inside. P Newway's can also melt when the internal temperature of the battery is too high, preventing the passage of impurities, retarding the battery reaction, and raising the internal resistance (to 2kn). The positive electrode of the clock battery (such as: 1^(:0〇2), negative electrode (LixC) has less and less main raw material lithium ore, which makes its price rise rapidly. The performance and life of the clock battery in the temperature outside the environment or environment Both of them start to reduce rapidly. The golden pot battery or the nickel-metal hydride battery g has a memory effect, which is easy to reduce the available capacity due to poor charging and discharging. [New content] The purpose of this creation is to provide a battery. To solve the above problem, The authoring embodiment provides a battery including a current collector, a JL pole structure, an isolation structure, a drain structure, and a casing, the positive electrode structure, the isolation structure, the negative electrode structure, and the outer casing are sequentially disposed around the current collector, wherein At least one of the positive and negative electrode structures includes chlorophyll. Preferably, the chlorophyll in the positive electrode structure and the chlorophyll in the negative electrode structure have different work functions. According to a preferred embodiment of the present invention, the negative electrode structure comprises a layer of conductive material. And a negative material layer, wherein the negative material layer is formed on the conductive material layer. According to a preferred embodiment of the present creation, the negative The material layer comprises a replacement page of chlorophyll on April 14, 100, and a polymer solution. According to a preferred embodiment of the present invention, the negative electrode structure is in the form of a membrane. According to a preferred embodiment of the present invention, the negative electrode structure The length is 60 mm and the width is 50 mm. According to a preferred embodiment of the present invention, the current collector is a cylinder. According to a preferred embodiment of the present invention, the current collector has a diameter of 4 mm and a length of 47.2 mm. According to a preferred embodiment of the present invention, the isolation structure includes a first isolation film, a second isolation film, and an electrolyte material interposed between the first isolation film and the second isolation film. In a preferred embodiment of the present invention, the first isolation film and the second isolation film are respectively in the form of a film. According to a preferred embodiment of the present invention, the first isolation film and the second isolation film have a length of 55 mm. The width is 50 mm and the thickness is 〇2 mm. According to a preferred embodiment of the present invention, the outer casing is a paper tube having an outer diameter of 14.5 mm and an inner diameter of 12.5 mm and a length of 48.4 mm. The battery can use the chlorophyll in its positive and negative structures to store hydrogen to achieve the purpose of power supply. That is, in the redox reaction of the battery, 'the chlorophyll is formed by the removal of magnesium ions from the chlorophyll. At the same time, the magnesium deficiency part can combine two hydrogen ions, so M418395 can replace hydrogen on April 14th, 100. Because the battery of this creation uses natural environmental protection instead of the pollution component in traditional batteries, Even if it is discarded, it will not cause pollution, and the degree of environmental protection is much better than that of the conventional battery. [Embodiment] The present invention will be described in detail below with reference to the accompanying drawings and embodiments. Fig. 1 shows an embodiment of the present invention. Schematic diagram of the disclosed battery. As shown in FIG. 1, the present embodiment provides a battery 100 including a current collector 110, a positive electrode structure 120, an isolation structure 13A, a negative electrode structure 14A, and a casing 150. The positive electrode structure 120, the isolation structure 13A, the negative electrode structure 14A, and the peripheral device 150 are circumferentially disposed around the current collector HQ. 2 is a schematic view showing the structure of a negative electrode structure disclosed in an embodiment of the present invention. As shown in FIG. 2, the negative electrode structure 14A disclosed in the present embodiment includes a conductive material layer 141 and a negative electrode material layer 142, wherein the negative electrode material layer 142 may be formed on the conductive material layer 141. Among them, the conductive material layer 141 is made of a conductive material. The conductive material may be a metal, a metal compound or a conductive polymer material. The metal may be selected from aluminum and/or gold. The metal compound may be selected from one or more of oxidized, zinc oxide and oxidized towns. The conductor molecular material is selected from heterocyclic or aromatic heterocyclic compounds. According to a preferred embodiment of the present invention, the conductive polymer material is selected from one or more of the following compounds: polyacetylene, polyaromatic ethylene, polythiophene, polyaniline, poly 9 M418395, April 14, 2010 replacement page Ol, polypyrrole and derivatives of the above compounds. The negative electrode material layer 142 includes a chlorophyll and a high polymer solution, and the negative electrode material layer 142 may be formed on the conductive material layer 141 by coating or the like. The chlorophyll may be one or more of chlorophyll a, chlorophyll b, chlorophyll ci, chlorophyll c2, chlorophyll d, and chlorophyll e. The chlorophyll can be in the form of a powder or a liquid. The chlorophyll used has removed chlorophyll oxidase. The high polymer solution has a bonding property, so that the physical and chemical properties of the conductive material layer can be attached and modulated, so that the gate material layer M2 is more adhered to the conductive material layer 141. Further, the conductivity of the polymer solution was 5 〇 25 μms/cm. The high polymer solution may include one or more of rotten, magnesium, ingredient, matry, and zinc elements. The high polymer solution is also used to modulate the work function of the conductive material layer 141 so that the potential difference between the positive and negative electrodes can reach a desired volt, such as 1.5V. The polymer solution can be prepared by compounding metal ions with various acid ion compounds, high (4) and solvent. The high polymer can be a polymer of glucose. The high polymer of glucose may be a plant house powder, for example, one or more of potato powder, water chestnut powder, corn starch, sweet potato powder, lotus root starch, mustard powder and kudzu root powder. The combination of the Golden Lepton and various acid ion ions can be a carbonated metal ion and a compound of each lion can be a tiannuum component. Natural phytochemicals include lignans, oligosaccharides, polysaccharides, flavonoids, ethers, fatty acids, sorghum, catechins, P-sterols, tiger thorns and April 14th, 100 Replace page 7 to verify the class. The solvent may have a polarity, a pH greater than -, a coffee, a fruit/ten or a wine, etc. The pH of the high polymer solution is preferably 5.5_8. The high polymer solution may also include a vitamin such as vitamin D. The negative electrode structure 14G can be formed into a film >{likeness] to increase the amount of chlorophyll used, increase the contact area to increase the reaction area of the battery, and the like. Further, it is understood by those skilled in the art that the present invention can also increase the amount of chlorophyll used by any known technique to increase the contact area to increase the reaction of the battery. Preferably, in the present embodiment, the negative electrode structure (10) has a length of 6 mm and a width of 2. With continued reference to Figure 1, the remainder of the structure of the battery 100 disclosed in this creation will be continued below. The current collector 11 is a cylinder. Preferably, the current collector u has a diameter of 4 mm' and a length of 47.2 mm. The positive electrode structure 120 is composed of a powdery positive electrode material. Preferably, the powdery positive electrode material in the positive electrode structure 120 contains chlorophyll powder. Further, the powdery positive electrode material may further include carbon cloth, carbon powder or nano conductive polymer powder. Carbon cloth or carbon powder includes white carbon or waxite (Chaoite), carbon black, carbon black, glass carbon or Giassy carbon, carbon nanotube, activated carbon. ), diamond, diamond, amorphous carbon, Graphene, Fulerene, Graphite, Carbyne, Diatomic carbon, C3 (Tricarbon), Atomic carbon, and stone M418395 On April 14, 100, the page was replaced by inkized carbon, aged, coke, and lion-free. The material of the conductive polymer is selected from a heterocyclic ring or an aromatic heterocyclic compound. Preferably, the material of the electrically conductive polymer is selected from one or more of the group consisting of a polystyrene block, a polytetramethylene ring, a polybenzazole, a polyphenylamine, a polypair, a polycondensation, and a derivative of the above compound. The secret structure 130 includes a first isolation film 13 and a second isolation film 132 and an electrolyte material 133 interposed between the two spacers. The first isolation film 131 and the second isolation film 132 are respectively made of high-fiber material, wherein the high-fiber material can be paper, the paper includes cellophane, cotton paper, rice paper and crepe paper, and the high fiber material preferably has a pore size. It is α〇1μιη~lcm. Further, in the present embodiment, the first-islet film 131 and the second separator 132 are respectively in the form of a film, and have a length of 55 mm' of a film having a width of 50 mm and a thickness of 0.2 mm. The electrolyte material 133 may be an aqueous solution of an organic salt or an aqueous solution of an organic salt and chlorophyll. The conductivity of the 1 t 'organic salt aqueous solution is 1 () ms / em 5 (8) (10) / (10). Organic salts are organic salts that do not contain bells. The organic salt is selected from one or more of the following ionic compounds: sodium iodide, sodium carbonate, and sodium hydroxide. The outer casing 150 is a paper tube having an outer diameter of 14 5 mm, an inner diameter of 12 5 and a length of 48.4, which is coated with the above-mentioned current collector 11 〇, the positive electrode structure 12 〇, the isolation structure 130, and the negative electrode structure. In this embodiment, the negative electrode structure 140 and the positive electrode structure 12 are both included in the 12 M418395 ^ April 14 replacement page

葉綠素,因此,電池1〇〇工作時,負極結構14〇中的葉綠素及 正極結構120巾的葉綠素會因接收光線或制溶液而產生電 子或空穴,從而在電池100的正極結構W與負極結構14〇 之間形成電位差以提供持續的電流。也就是說,摘作的電池 100以負極結構140以及正極結構12〇中的葉綠素來作為能量 來源來提供電能。優選地’負極結構H0中的葉綠素與正極結 構120中的葉綠素具有不同之功函數(w〇rk。 雖然在本實施例中,負極結構14〇與正極結構12〇中均包 含有葉綠素’但是’本賴技術人貞可以轉岐,本創作所 揭不的電池,亦可僅在負極結構14〇中設置葉綠素,或者僅在 正極結構120中設置葉綠素,以利用葉綠素作為能量來源而使 電池提供電能。 圖3繪示為本創作一實施例所揭示之電池的製作方法的 流程圖。如圖3所示,上述電池的製作方法包括以下步驟: 步驟S1 :製作高聚體溶液; 步驟S2 :製作負極結構; 步驟S3 :製作隔離結構; 步驟S4 :將負極結構以及隔離結構組裝進外殼中;以及 步驟S5 :將集流體插入外殼中並填充正極材料至上述結 構中以形成正極結構從而完成整個電池的製作。 13 M418395 100年4月14日替換頁 ®4繪示為圖3所示之步驟si的具體流^ 示,步驟S1之製作高聚體溶液包括以下步驟: 步驟Sll U 40攝氏度的溶劑中緩慢添加高聚體粉 末; 步驟S12 : _磁石_機轉速500〜700KPM授拌上述 溶液; 步驟阳:使用導電度計檢測上述溶液的導電度是否達到 50-25〇mS/cm;當上述檢測結果為否時,則返回執行步驟叫, 而當上述檢測結果為是時,則執行步驟Sl4 ;以及 步驟S14 :完成。 在本實施例中,所述溶劑躲極性、PH值大於3之溶劑。 優選地,所述溶劑選自水、海水、茶、咖啡、果汁、酒中的一 種或多種。 圖5繪示為圖3所示之步驟S2的具體流程圖。如圖$所 示,步驟S2之製作負極結構包括以下步驟: 步驟S21 :以濾網過濾葉綠素粉末; 步驟S22 :倒入高聚體溶液; 步驟S23:利用磁石攪拌機以轉速500〜700RPM進行攪拌; 步驟S24 :判斷是否達到均勻流體;當上述判斷結果為否 時’則返回執行步驟S22,當上述判斷結果為是_,則執行步 14 100年4月14日替換頁 驟 S25 ; 步驟S25 :將上述流體塗佈至導電材料層上; 步驟S26 :將上述結構放置於1〇〇攝氏度的烤箱中,供烤 至水份蒸發從而完成負極結構之製作。 圖6繪示為圖3所示之步驟S3的具體流程圖。如圖6所 示,步驟S3之製作隔離結構包括以下步驟: 步驟S31 :裁減好隔離膜; 步驟S32 :將裁減好的隔離膜浸泡在高聚體溶液中; 步驟S33:取出隔離膜並將其放置於100攝氏度的烤箱 中,烘烤至水份蒸發以製作兩個隔離膜; 步驟S34 :取出一個隔離膜,均勻噴麗電解質材料;以及 步驟S35:覆蓋上另―個隔離膜從而完成_結構之製作。 圖7繪示為圖3所示之步驟S4的具體流程圖。如圖7所 示,步驟S4之將負極結構以及隔離結構組裝進外殼中包括以 下步驟: 步驟S41 :將負極結構貼合至外殼中; 步驟S42 :使用第—巾空棒將難結構緊密捲起,其中第 一中空棒的内直徑為4.5mm,外直徑為6 36mm,長度為 47.2mm ; 步驟S43 :將捲起隔離結構之第一中空棒以順時針方向旋 M418395 100年4月14日替換頁 入具有負極結構的外殼中; 一·------- 步驟S44 :以逆時針方向將第一中空棒取出以將隔離結構 保留在具有負極結構的外殼中; ,^^驟以5 ·檢視隔離結構是否貼附於外殼中的負極結構; 當上述檢視結果為糾,職行轉⑽;當上述檢視結果為 是時’則執行步驟S47 ; 步驟S46 :抽出隔離結構並判斷隔離結構是否損壞;當上 述判斷結果為辦,舰魄行步驟S42 ; #上述判斷結果為 是時,則執行步驟S46a ; 步驟S46a :更換隔離結構並返回執行步驟S42 ;以及 步驟47 :完成組裝。 圖晴示為圖3所示之步驟S5的具體_圖。如圖8所 不’步驟S5之將集流體插入外殼中並填充正極材料至上述結 構中以形成正極結構包括以下步称: '驟S51於具有負極結構以及隔離結構之外殼中緩慢填 充正極材料; 步驟S52 ··將集流體插入外殼的中心; 步驟S%·使用第一中空棒與虎鉗填壓並繼續填入正極材 料; 步觸S54 .檢視正極材料是否達到所需的重量,·當上述檢 16 M418395 100年4月14日替換頁 視、。果為否時,則返回執行步驟S53,當上述▲視結果為$— 時,則執行步驟S55 ;以及 步帮S55 .以第二中空棒修飾正極結構,其中第二中空棒 的内直徑為4.5mm,外直料994mm,長度為472咖從而 完成正極結構的製作。 . 本創作所揭示㈣池可_其正'負極結射的葉綠素即 # 可進行儲氫從而達到供電的目的。優選地,所述正、負極結構 皆包含葉綠素,但具有不同之功函數。亦即,在電池之氧化還 原反應中,當葉綠㈣其中之_子脫離而形成脫鎮葉綠素 jpheophytm)之際’出缺鎮的部份即能結合兩個氯離子,故 能儲氫。此外由於本創作的電池採用天然的環保物質代替傳統 電池中的污染成分,用完即使吾棄也不會對環境造成污染,環 保程度遠勝於傳統電池。 I 需要指出的是,在本創作實施例中提到的“第一,,、‘‘第 二”等用語僅是根據需要採㈣文字符號,在實務巾並不限於 此,並且該文字符號可以互換使用。 上文所揭露之主題可被認爲是說明性的而不是限制性 的,且預期所附申請專利範圍涵蓋屬於本創作之真實精神和範 缚内之所有做、改進和其他實施例。,在轉允許的最 大範圍,可藉由對所附申請專利範圍和其均等物之最廣泛許可 17 M418395 100年4月14日替換頁 且並不受到前述實施方式的詳 【圖式簡單說明】 包括附圖以提供對於本創作的進 入本說明書t並且構成本說明書的—部份=== 作之不範性實施例。在諸圖中·· .說月本創Chlorophyll, therefore, when the battery is operated, the chlorophyll in the negative electrode structure 14 and the chlorophyll in the positive electrode structure 120 may generate electrons or holes by receiving light or preparing a solution, thereby forming the positive electrode structure W and the negative electrode structure of the battery 100. A potential difference is formed between 14 turns to provide a continuous current. That is, the extracted battery 100 uses the negative electrode structure 140 and the chlorophyll in the positive electrode structure 12 as an energy source to supply electric energy. Preferably, the chlorophyll in the negative electrode structure H0 has a different work function from the chlorophyll in the positive electrode structure 120 (w〇rk. Although in the present embodiment, both the negative electrode structure 14〇 and the positive electrode structure 12〇 contain chlorophyll' but ' Ben Lai can be transferred to a battery that can not be removed from the creation of the battery. It is also possible to set chlorophyll only in the negative electrode structure 14 or to provide chlorophyll only in the positive electrode structure 120 to use the chlorophyll as an energy source to supply electricity to the battery. 3 is a flow chart showing a method for fabricating a battery according to an embodiment of the present invention. As shown in FIG. 3, the method for manufacturing the battery includes the following steps: Step S1: preparing a polymer solution; Step S2: a negative electrode structure; step S3: fabricating an isolation structure; step S4: assembling the negative electrode structure and the isolation structure into the outer casing; and step S5: inserting a current collector into the outer casing and filling the positive electrode material into the above structure to form a positive electrode structure to complete the entire battery 13 M418395 April 14th, 2010 Replacement page®4 is shown as the specific flow of step si shown in Figure 3, the production of step S1 The polymer solution comprises the following steps: Step S11 U slowly adding a polymer powder in a solvent of 40 degrees Celsius; Step S12: _Magnetron_machine speed 500~700KPM to mix the above solution; Step Yang: Using a conductivity meter to detect the conductivity of the solution Whether the degree reaches 50-25 〇 mS/cm; when the above detection result is no, the execution step is returned, and when the above detection result is YES, step S14 is performed; and step S14: completion. In this embodiment The solvent is a solvent having a polarity of less than 3. Preferably, the solvent is selected from one or more of water, sea water, tea, coffee, fruit juice, and wine. FIG. 5 is a step shown in FIG. A specific flow chart of S2. As shown in FIG. $, the negative electrode structure of step S2 includes the following steps: Step S21: filtering the chlorophyll powder with a sieve; Step S22: pouring the polymer solution; Step S23: using a magnet mixer at a rotation speed 500~700RPM for stirring; Step S24: judging whether a uniform fluid is reached; when the above judgment result is no, then returning to step S22, when the above judgment result is YES, step 14 is executed. Step 14: Replace step S25; Step S25: Apply the above fluid to the conductive material layer; Step S26: Place the above structure in an oven at 1 ° C for baking until the water is evaporated to complete the fabrication of the negative electrode structure. 6 is a specific flowchart of the step S3 shown in FIG. 3. As shown in FIG. 6, the manufacturing isolation structure of step S3 includes the following steps: Step S31: cutting the isolation film; Step S32: cutting the isolation film Soaking in the polymer solution; Step S33: taking out the separator and placing it in an oven at 100 degrees Celsius, baking until the water is evaporated to make two separators; Step S34: taking out a separator and uniformly spraying the electrolyte Material; and step S35: covering another isolation film to complete the fabrication of the structure. FIG. 7 is a specific flowchart of step S4 shown in FIG. 3. As shown in FIG. 7, the step of assembling the negative electrode structure and the isolation structure into the outer casing in step S4 includes the following steps: Step S41: attaching the negative electrode structure to the outer casing; step S42: using the first towel to loosen the difficult structure tightly Wherein the first hollow rod has an inner diameter of 4.5 mm, an outer diameter of 6 36 mm, and a length of 47.2 mm; and step S43: the first hollow rod that is rolled up in the isolation structure is rotated in a clockwise direction M418395 is replaced on April 14, 100 Inserting into the outer casing having the negative electrode structure; one-------- step S44: taking out the first hollow rod in a counterclockwise direction to retain the isolation structure in the outer casing having the negative electrode structure; · Inspecting whether the isolation structure is attached to the negative electrode structure in the outer casing; when the above-mentioned inspection result is correct, the job line is turned (10); when the above-mentioned inspection result is yes, then step S47 is performed; step S46: extracting the isolation structure and judging whether the isolation structure is Corruption; when the above judgment result is YES, the ship is step S42; #If the above judgment result is YES, step S46a is performed; step S46a: replacing the isolation structure and returning to step S42; and step 47: completing the assembly. The figure is shown as a specific_picture of step S5 shown in FIG. Inserting the current collector into the outer casing and filling the positive electrode material into the above structure to form the positive electrode structure as shown in FIG. 8 does not include the following step: 'Step S51 slowly filling the positive electrode material in the outer casing having the negative electrode structure and the isolation structure; Step S52 · Insert the current collector into the center of the outer casing; Step S%· Fill the pressure with the first hollow rod and the vise and continue to fill the positive electrode material; Step S54. Check whether the positive electrode material reaches the required weight, Check 16 M418395 on April 14, 100 to replace the page view. If the answer is no, the process returns to step S53. When the result of the above-mentioned ▲ is $-, step S55 is performed; and the step S55 is performed. The positive structure is modified by the second hollow rod, wherein the inner diameter of the second hollow rod is 4.5. Mm, the outer material is 994mm, and the length is 472 coffee to complete the fabrication of the positive electrode structure. This work reveals that (4) the pool can be _ its positive 'negative chlorophyll that can be used to store hydrogen to achieve the purpose of power supply. Preferably, the positive and negative structures all comprise chlorophyll, but have different work functions. That is, in the oxidation reduction reaction of the battery, when the leaf green (4) is separated from the chlorophyll jpheophytm, the part of the vacant town can combine two chloride ions, so that hydrogen can be stored. In addition, because the battery of this creation uses natural environmentally friendly substances to replace the polluting components in the traditional battery, even if it is discarded, it will not pollute the environment, and the degree of environmental protection is far better than that of the traditional battery. I need to point out that the terms “first,”, “second” and the like mentioned in the present embodiment are only used to select (four) text symbols according to needs, and the practice towel is not limited thereto, and the text symbol can be Used interchangeably. The above-disclosed subject matter is to be considered as illustrative and not restrictive. The maximum extent of the transfer is permitted by the most extensive license of the scope of the appended claims and its equivalents. 17 M418395 Replacement page on April 14, 100 and is not subject to the detailed description of the foregoing [Simplified illustration] The accompanying drawings are included to provide an exemplary embodiment of the present invention which is incorporated herein by reference. In the pictures...

圖1是本創作一實施例所揭示的電池的結構示意圖。 作一實施例所揭示的負極結構的結構示意圖。 圖π本創作一實施例所揭示之電池的製作方法的流程FIG. 1 is a schematic structural view of a battery disclosed in an embodiment of the present invention. A schematic structural view of a negative electrode structure disclosed in an embodiment. Figure π Flow of a method for fabricating a battery disclosed in an embodiment

之理解來確定本創作之範脅 描述的局限或限制。 圖情示為圖3所示之步驟幻的具體流程圖。 圖5繪示為® 3 _之轉S2的聽流程圖。 圖6繪示為圖3所示之步驟S3的具體流程i 圖7输示為圖3所示之步驟S4的具體軸^ 圖8綠示為圖3所示之步轉μ的具體流程圖。 【主要元件符號說明】 100 :電池 110 :集流體 UO :正極結構 130:隔離結構 13ι:第一隔離膜 132 :第二隔離膜 18 M418395 100年4月14日替換頁 133 :電解質材料 140 :負極結構 141 :導電材料層 142 :負極材料層 150 :外殼 S卜 S2、S3、S4、S5、Sll、S12、S13、S14、S2卜 S22、 S23、S24、S25、S26、S31、S32、S33、S34、S35、S4卜 S42、The understanding is to determine the limitations or limitations of the description of this creation. The figure is shown as a specific flow chart of the steps shown in FIG. Figure 5 shows the listening flow diagram of the ® 3 _ turn S2. 6 is a specific flow chart of the step S3 shown in FIG. 3. FIG. 7 is a specific flowchart of the step S4 shown in FIG. 3, and FIG. 8 is a green flow chart showing the step S shown in FIG. [Description of main component symbols] 100: Battery 110: Current collector UO: Positive electrode structure 130: Isolation structure 13ι: First isolation film 132: Second isolation film 18 M418395 Replacement page on April 14, 100 Page 137: Electrolyte material 140: Negative electrode Structure 141: conductive material layer 142: negative electrode material layer 150: outer casing S, S2, S3, S4, S5, S11, S12, S13, S14, S2, S22, S23, S24, S25, S26, S31, S32, S33, S34, S35, S4, S42,

S43、S44、S45、S46、S46a、S47、S51、S52、S53、S54、S55 : 步驟S43, S44, S45, S46, S46a, S47, S51, S52, S53, S54, S55: Steps

1919

Claims (1)

M418395 100年4月U日替換頁 六、申請專利範圍: ~~~ 〜 1. -種電池’其特徵在於’所述電池包括集流體、正極結 構、隔離結構、負極結構以及外殼’所述正極結構、隔離結構、 負極結構以及外殼依次環繞地設置於集流體的週圍,其中所述 正、負極結構中的至少之一包括葉綠素。 2. 根據申請專利範圍第1項所述之電池,其特徵在於,所 述負極結構包括導電材料層以及負極材料層,其中負極材料層 形成在導電材料層上。 3. 根據申請專利範圍第2項所述之電池,其特徵在於,所 述負極材料層包括葉綠素以及高聚體溶液。 4. 根據申請專利範圍第1項所述之電池’其特徵在於,所 述負極結構為膜片狀。 5根據申請專利範圍第1項所述之電池,其特徵在於,所 述負極結構的長度為60mm,而其寬度為50mm。 6. 根據申請專利範圍第1項所述之電池,其特徵在於,所 述集流體為一圓柱體。 7. 根據申請專利範圍第6項所述之電池,其特徵在於,所 述集流體的纽為4mm,而其長度為47.2mm。 8. 根據申請專利範圍第1項所述之電池,其特徵在於,所 述隔離結構包括第—隔賴、第二_麻及纽於所述第一 20 M418395 100年4月14日替換頁 隔離膜與所述第二隔離膜之間的電解質材料。I------ 9·根據申請專利範圍第8項所述之電池,其特徵在於,所 述第一隔離膜以及第二隔離膜分別為膜片狀。 10. 根據申請專利範圍第9項所述之電池,其特徵在於, 所述第一隔離膜以及第二隔離膜的長度為55mm,寬度為 50mm ’而其厚度為〇.2mm。M418395 April 2014 U-day replacement page VI, the scope of application patent: ~~~ ~ 1. - The battery is characterized in that the battery includes a current collector, a positive electrode structure, an isolation structure, a negative electrode structure and a casing The structure, the isolation structure, the negative electrode structure, and the outer casing are sequentially disposed around the current collector, wherein at least one of the positive and negative electrode structures includes chlorophyll. 2. The battery according to claim 1, wherein the negative electrode structure comprises a conductive material layer and a negative electrode material layer, wherein the negative electrode material layer is formed on the conductive material layer. 3. The battery according to claim 2, wherein the negative electrode material layer comprises a chlorophyll and a high polymer solution. 4. The battery according to claim 1, wherein the negative electrode structure is in the form of a diaphragm. The battery according to claim 1, wherein the negative electrode structure has a length of 60 mm and a width of 50 mm. 6. The battery according to claim 1, wherein the current collector is a cylinder. 7. The battery according to claim 6, wherein the current collector has a diameter of 4 mm and a length of 47.2 mm. 8. The battery according to claim 1, wherein the isolation structure comprises a first spacer, a second spacer, and a second replacement page of the first 20 M418395, April 14, 100. An electrolyte material between the membrane and the second separator. The battery according to claim 8, wherein the first separator and the second separator are respectively in the form of a diaphragm. 10. The battery according to claim 9, wherein the first and second separators have a length of 55 mm, a width of 50 mm', and a thickness of 0.2 mm. 11. 根據申請專利範圍第1項所述之電池,其特徵在於, 戶斤述外设為一個外徑為14.5mm,内徑為12.5mm ’長度為 48.4mm的紙管。11. The battery according to claim 1, wherein the peripheral is a paper tube having an outer diameter of 14.5 mm and an inner diameter of 12.5 mm and a length of 48.4 mm. 21twenty one
TW99224136U 2010-12-13 2010-12-13 Battery TWM418395U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99224136U TWM418395U (en) 2010-12-13 2010-12-13 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99224136U TWM418395U (en) 2010-12-13 2010-12-13 Battery

Publications (1)

Publication Number Publication Date
TWM418395U true TWM418395U (en) 2011-12-11

Family

ID=46450573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99224136U TWM418395U (en) 2010-12-13 2010-12-13 Battery

Country Status (1)

Country Link
TW (1) TWM418395U (en)

Similar Documents

Publication Publication Date Title
CN101740758B (en) Preparation method of vulcanized conducting polymer composite anode for lithium ion battery
CN104538194A (en) Preparation method of lithium ion capacitor (LIC) adopting pre-lithiation hard carbon negative electrode
JP2012089825A (en) Lithium ion capacitor
CN102544641B (en) Battery with a battery cell
TWI449249B (en) Battery
CN102544639B (en) Battery with a battery cell
CN102544643B (en) Method for manufacturing battery
CN202004120U (en) Organic negative electrode and battery having the same
CN202150529U (en) Battery with a battery cell
TWI426645B (en) Method for manufaturing a battery
CN102569946B (en) Method for manufacturing battery
TWI443894B (en) Flat plate battery
TWM418395U (en) Battery
TWI426647B (en) Method for manufaturing a battery
CN202205867U (en) Battery with a battery cell
CN102569942A (en) Conductive reinforcing material, negative electrode material layer, negative electrode and battery
JP5798374B2 (en) Flat battery and manufacturing method thereof
Ni et al. Functional Materials for Next-generation Rechargeable Batteries
TWM418394U (en) Battery
TWI437750B (en) Method for manufaturing a flat plate battery
JP7386265B2 (en) Nonaqueous electrolyte secondary battery, current collector, and manufacturing method thereof
CN102569945B (en) Method for manufacturing flat battery
CN102544430B (en) Method for manufacturing organic negative electrode
US8592073B2 (en) Flat-plate battery
CN202004119U (en) Flat battery

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees