TWI426647B - Method for manufaturing a battery - Google Patents
Method for manufaturing a battery Download PDFInfo
- Publication number
- TWI426647B TWI426647B TW99143533A TW99143533A TWI426647B TW I426647 B TWI426647 B TW I426647B TW 99143533 A TW99143533 A TW 99143533A TW 99143533 A TW99143533 A TW 99143533A TW I426647 B TWI426647 B TW I426647B
- Authority
- TW
- Taiwan
- Prior art keywords
- battery according
- producing
- chlorophyll
- battery
- conductive polymer
- Prior art date
Links
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Description
本申請請求於2008年12月24日遞交的美國專利申請第12/344,211號以及於2008年5月16日遞交的臺灣專利申請第97118207號的在先權益。以上兩件專利文獻的全部內容在此作為參考引用引入本申請。 The present application claims the prior benefit of U.S. Patent Application Serial No. 12/344,211, filed on December 24, 2008, and Taiwan Patent Application No. 97118207, filed on May 16, 2008. The entire contents of the above two patent documents are hereby incorporated by reference.
本發明涉及一種電池及其製造方法,特別涉及一種使用葉綠素來產生電能之電池及其製造方法。 The present invention relates to a battery and a method of manufacturing the same, and more particularly to a battery using chlorophyll to generate electrical energy and a method of manufacturing the same.
近年來,陸續出現了行動電話、手提式攝影機、筆記型電腦、數位相機、PDA、CD player等輕便型電子機器,並謀求其小型及輕量化,而伴隨此,作為可攜帶之輕便電源-電池也同樣受到關注。電池種類包括乾電池、鎳氫電池、鋰電池與燃料電池等。下面將簡單介紹常見電池。 In recent years, portable electronic devices such as mobile phones, portable cameras, notebook computers, digital cameras, PDAs, CD players, etc. have emerged, and they are demanding small size and light weight, and as a portable lightweight power source - battery It is also receiving attention. Battery types include dry batteries, nickel-metal hydride batteries, lithium batteries and fuel cells. A brief description of common batteries is given below.
日常使用的乾電池大多是鋅錳電池,也叫碳鋅電池。碳鋅電池的外殼一般由鋅構成,其既可以作為電池的容器,又可以作為電池的負極。碳鋅電池是從液體Leclanché電池發展而來。傳統或一般型碳鋅電池以氯化銨為電解質;超級或高能碳鋅電池則通常是使用氯化鋅為電解質的碳鋅電池,是一般廉價電池的改良版。碳鋅電池的正極主要是由粉末狀的二氧化錳和碳構成。電解液是把氯化鋅和氯化銨溶於水中所形成的糊狀溶液。碳鋅電池是最便宜的原電池,因此成為很多廠商 的首選,因為這些廠商所銷售的設備中常常需要配送電池。鋅碳電池可以用於遙控器、閃光燈、玩具或電晶體收音機等功率不大的設備。 Most of the dry batteries used daily are zinc-manganese batteries, also called carbon-zinc batteries. The outer casing of a carbon zinc battery is generally made of zinc, which can serve as both a battery container and a negative electrode of the battery. Carbon zinc batteries are developed from liquid Leclanché batteries. Conventional or general-purpose carbon-zinc batteries use ammonium chloride as an electrolyte; super- or high-energy carbon-zinc batteries are usually carbon-zinc batteries using zinc chloride as an electrolyte, which is an improved version of a generally inexpensive battery. The positive electrode of a carbon zinc battery is mainly composed of powdered manganese dioxide and carbon. The electrolyte is a paste solution formed by dissolving zinc chloride and ammonium chloride in water. Carbon zinc battery is the cheapest primary battery, so it has become a lot of manufacturers. The first choice, because the equipment sold by these manufacturers often need to distribute batteries. Zinc-carbon batteries can be used in low-power devices such as remote controls, flashlights, toys or transistor radios.
然而,當碳鋅電池使用一段時間以後,由於金屬鋅被氧化成為鋅離子,鋅外殼會逐漸變薄。因此,氯化鋅溶液常常可以從電池中洩漏出來。洩漏出來的氯化鋅往往會使電池表面變粘。一些老的電池沒有洩漏保護。鋅碳電池的使用壽命比較短,保存期一般為一年半。另外,就算電池沒有使用,電池內的氯化銨有弱酸性,可以與鋅反應,鋅外殼也會慢慢的變薄。 However, when the carbon-zinc battery is used for a period of time, since the metal zinc is oxidized to zinc ions, the zinc casing is gradually thinned. Therefore, zinc chloride solution can often leak out of the battery. The leaked zinc chloride tends to make the surface of the battery sticky. Some old batteries have no leakage protection. The service life of zinc-carbon batteries is relatively short, and the shelf life is generally one and a half years. In addition, even if the battery is not used, the ammonium chloride in the battery is weakly acidic, and it can react with zinc, and the zinc casing will gradually become thinner.
現在3C產業常提到的鋰電池其實是鋰鈷電池,廣義的可充放鋰電池是指由一個石墨負極、一個採用鈷、錳或磷酸鐵的正極、以及一種用於傳送鋰離子的電解液所構成。而一次鋰離子電池則可以鋰金屬或者嵌鋰材料作為負極。鋰電池產業發展20多年來一直集中在3C產業為主,鮮少應用在市場經濟規模更大的儲能和動力電池(瞬間需要較大電流)市場,這市場涵蓋純電動車、油電混合車、中大型UPS、太陽能、大型儲能電池、電動手工具、電動摩托車、電動自行車、航太設備與飛機用電池等領域。其主要原因是過去鋰電池採用的鋰鈷正極材料(LiCoO2,就是現在最常見的鋰電池),無法應用在需要大電流、高電壓、高扭力以及具有耐受穿刺、衝撞和高溫、低溫等條件等特殊環境,更重要的是,因無法滿足人們對安全的絕對要求而飽受詬病。 The lithium battery often mentioned in the 3C industry is actually a lithium-cobalt battery. The generalized charge and discharge lithium battery refers to a graphite anode, a cathode using cobalt, manganese or iron phosphate, and an electrolyte for transporting lithium ions. Composition. A lithium-ion battery can be used as a negative electrode in lithium metal or lithium intercalation. The development of the lithium battery industry has been concentrated in the 3C industry for more than 20 years, and it is rarely used in the market for larger energy storage and power batteries (in the case of large currents). This market covers pure electric vehicles and hybrid vehicles. , medium and large UPS, solar energy, large energy storage batteries, electric hand tools, electric motorcycles, electric bicycles, aerospace equipment and aircraft batteries. The main reason is that the lithium-cobalt cathode material (LiCoO 2 , which is the most common lithium battery) used in lithium batteries in the past cannot be used in applications requiring high current, high voltage, high torque, and withstand puncture, collision, high temperature, low temperature, etc. Special circumstances such as conditions, and more importantly, have been criticized for failing to meet people's absolute requirements for safety.
同時,鋰鈷電池也無法達到快速充電與完全避免二次污染等目的, 而且,一定要設計保護電路以防止過度充電或過度放電,否則就會造成爆炸等危險,甚至出現如Sony電池爆炸導致全球品牌NB業者投下鉅資回收的情況。 At the same time, lithium-cobalt batteries can not achieve the purpose of fast charging and completely avoid secondary pollution. Moreover, it is necessary to design a protection circuit to prevent overcharging or over-discharging, otherwise it will cause an explosion and other dangers, and even if the explosion of the Sony battery causes the global brand NB industry to invest huge amounts of money.
另外,鈷的價格愈來愈高昂,全球鈷元素最大生產國剛果,戰亂紛擾多,導致鈷元素價格不斷升高。鋰鈷電池的粉體因鈷元素價格不斷上漲,現在已從原先的每公斤40美元漲價到60~70美元。磷酸鋰鐵粉體依品質好壞,每公斤售價在30~60美元。 In addition, the price of cobalt is getting higher and higher, and the Congo, the world's largest producer of cobalt, is in trouble. The price of cobalt is rising. The powder of lithium-cobalt batteries has risen from the original price of 40 US dollars to 60-70 US dollars due to the rising price of cobalt. Lithium iron phosphate powder is priced at 30 to 60 US dollars per kilogram depending on the quality.
鎳氫電池的設計源於鎳鎘電池。1982年美國OVONIC公司請求儲氫合金用於電極製造之專利,使得此一材料受到重視,繼之為1985年荷蘭飛利浦公司突破了儲氫合金在充放電過程中容量衰減的問題終使鎳氫電池脫穎而出。目前在日本有8家以上鎳氫電池製造廠,德國,美國,香港,台灣亦有鎳氫電池生產,市場反應良好。而且鎳氫電池所造成之污染,會比含有鎘之鎳鎘電池小很多,因此,目前鎳鎘電池已逐漸被鎳氫電池取代。 NiMH batteries are designed from nickel-cadmium batteries. In 1982, OVONIC Corporation of the United States requested the patent of hydrogen storage alloy for electrode manufacturing, which made this material pay attention to. In 1985, Philips of the Netherlands broke through the problem of capacity decay of hydrogen storage alloy during charge and discharge, and finally made nickel-hydrogen battery. stand out. At present, there are more than 8 nickel-hydrogen battery manufacturers in Japan, and nickel-hydrogen batteries are also produced in Germany, the United States, Hong Kong and Taiwan. The market has responded well. Moreover, the pollution caused by nickel-hydrogen batteries is much smaller than that of nickel-cadmium batteries containing cadmium. Therefore, nickel-cadmium batteries have been gradually replaced by nickel-hydrogen batteries.
燃料電池(Fuel cell)是一種使用燃料進行化學反應產生電力的裝置,最早於1839年由英國的Grove所發明。最常見是以氫氧為燃料的質子交換膜燃料電池,由於燃料價格平宜,加上對人體無化學危險、對環境無害,發電後產生純水和熱,1960年代應用在美國軍方,後於1965年應用於美國雙子星座計劃雙子星座5號飛船。現在也有一些筆記型電腦開始研究使用燃料電池。但由於產生的電量太小,且無法瞬 間提供大量電能,只能用於平穩供電上。燃料電池是一個電池本體與燃料箱組合而成的動力機制。燃料的選擇性非常高,包括純氫氣、甲醇、乙醇、天然氣,甚至於現在運用最廣泛的汽油,都可以做為燃料電池的燃料。 A fuel cell is a device that uses a fuel to chemically generate electricity. It was first invented in 1839 by Grove, England. The most common proton exchange membrane fuel cell fueled by hydrogen and oxygen is purely fuel-free and environmentally friendly, and produces pure water and heat after power generation. It was applied to the US military in the 1960s. In 1965, it was applied to the Gemini 5 spacecraft of the American Gemini Project. There are also some notebook computers that are starting to study the use of fuel cells. But because the generated electricity is too small, and can not be instantaneous A large amount of electrical energy is provided between them and can only be used for smooth power supply. A fuel cell is a dynamic mechanism in which a battery body and a fuel tank are combined. Fuel selectivity is very high, including pure hydrogen, methanol, ethanol, natural gas, and even the most widely used gasoline, can be used as fuel for fuel cells.
不論是新型強調環保的碳鋅電池、鹼性電池及二次電池,在製程上還是會使用少量的汞或其他重金屬如鈷等,而且在原料及制程上使用具污染性的物質,對環境以及人體都具有較大危害。 Regardless of the new environmentally-friendly carbon-zinc battery, alkaline battery and secondary battery, a small amount of mercury or other heavy metals such as cobalt will be used in the process, and the use of polluting substances in raw materials and processes will be environmentally friendly. The human body has a greater hazard.
目前應用廣泛的鋰電池屬不穩定的電化學裝置,若製作過程、封裝不當、運作於低負載,都可能會引起爆炸。因此需要多重複雜的保護機制,比如包括保護電路、排氣孔、隔離膜等,其中保護電路用於防止過充、過放、超載、過熱;排氣孔用於避免電池內部壓強過大;隔離膜具有較高的抗穿刺強度,以防止內部短路,且在電池內部溫度過高時還能融化,阻止鋰離子通過,阻滯電池反應,升高內阻(至2kΩ)。 Currently widely used lithium batteries are unstable electrochemical devices, which may cause an explosion if the manufacturing process, improper packaging, and operation at low loads. Therefore, multiple complicated protection mechanisms are needed, such as protection circuits, vent holes, isolation films, etc., wherein the protection circuit is used to prevent overcharging, overdischarging, overloading, and overheating; the venting holes are used to prevent excessive internal pressure of the battery; It has high puncture resistance to prevent internal short circuit and can melt when the internal temperature of the battery is too high, preventing lithium ions from passing through, blocking the battery reaction, and raising the internal resistance (to 2kΩ).
鋰電池的正極(如:Li1-xCoO2)、負極(LixC)主要原料鋰礦越來越少,使其價格快速上漲。 The positive electrode of lithium battery (such as Li 1-x CoO 2 ) and the negative electrode (Li x C) have less and less lithium ore, which makes the price rise rapidly.
鋰電池在溫度稍高之室外或環境之下效能與壽命皆開始快速降減。 Lithium batteries begin to rapidly decrease in performance and life in outdoor environments or environments with slightly higher temperatures.
鎳鎘電池或鎳氫電池因具有記憶效應,很容易因充放電不良,而造成可用容量降低。 Nickel-cadmium batteries or nickel-hydrogen batteries have a memory effect and are easily degraded due to poor charge and discharge.
本發明的目的是提供一種電池的製作方法。 It is an object of the present invention to provide a method of fabricating a battery.
為解決上述問題,本發明實施例提供了一種電池的製作方法,其包括步驟S1:利用碳精棒捲繞正極結構;步驟S2:捲繞隔離結構;步驟S3:捲繞負極結構;以及步驟S4:將捲繞了所述正極結構、隔離結構以及負極結構的所述碳精棒套入紙管中;其中所述正、負極結構中的至少之一包括葉綠素。 In order to solve the above problems, an embodiment of the present invention provides a method for fabricating a battery, comprising the steps S1: winding a positive electrode structure with a carbon rod; step S2: winding the isolation structure; step S3: winding the negative electrode structure; and step S4 : inserting the carbon rod wound with the positive electrode structure, the isolation structure, and the negative electrode structure into a paper tube; wherein at least one of the positive and negative electrode structures includes chlorophyll.
根據本發明的一優選實施例,所述負極結構包括導電材料層以及負極材料層,其中負極材料層形成在導電材料層上。 According to a preferred embodiment of the present invention, the negative electrode structure includes a conductive material layer and a negative electrode material layer, wherein the negative electrode material layer is formed on the conductive material layer.
根據本發明的一優選實施例,所述導電材料層由導電材料而製成。 According to a preferred embodiment of the invention, the layer of electrically conductive material is made of a conductive material.
根據本發明的一優選實施例,所述導電材料為金屬。 According to a preferred embodiment of the invention, the electrically conductive material is a metal.
根據本發明的一優選實施例,所述金屬選自鋁和/或金。 According to a preferred embodiment of the invention, the metal is selected from the group consisting of aluminum and/or gold.
根據本發明的一優選實施例,所述導電材料為金屬化合物。 According to a preferred embodiment of the invention, the electrically conductive material is a metal compound.
根據本發明的一優選實施例,所述金屬化合物選自一氧化錳、氧化鋅和氧化鎂中的一種或多種。 According to a preferred embodiment of the invention, the metal compound is selected from one or more of the group consisting of manganese monoxide, zinc oxide and magnesium oxide.
根據本發明的一優選實施例,所述導電材料為導電高分子材料。 According to a preferred embodiment of the invention, the electrically conductive material is a conductive polymer material.
根據本發明的一優選實施例,所述導電高分子材料選自雜環或芳香族雜環化合物。 According to a preferred embodiment of the invention, the electrically conductive polymeric material is selected from the group consisting of heterocyclic or aromatic heterocyclic compounds.
根據本發明的一優選實施例,所述導電高分子材料選自以下化合物中的一種或多種:聚乙炔、聚芳香烴乙烯、聚噻吩、聚苯胺、聚咇 咯、聚吡咯和上述化合物的衍生物。 According to a preferred embodiment of the present invention, the conductive polymer material is selected from one or more of the following compounds: polyacetylene, polyaryl vinyl, polythiophene, polyaniline, polyfluorene Ol, polypyrrole and derivatives of the above compounds.
根據本發明的一優選實施例,所述導電材料層的面積為5cmX5cm。 According to a preferred embodiment of the invention, the electrically conductive material layer has an area of 5 cm x 5 cm.
根據本發明的一優選實施例,所述負極材料層藉由在所述導電材料層上塗佈葉綠素與高聚體溶液再進行烘烤而形成。 According to a preferred embodiment of the present invention, the negative electrode material layer is formed by coating a chlorophyll and a polymer solution on the conductive material layer and baking.
根據本發明的一優選實施例,所述葉綠素為葉綠素a、葉綠素b、葉綠素c1和、葉綠素c2、葉綠素d、及葉綠素e中的一種或多種。 According to a preferred embodiment of the invention, the chlorophyll is one or more of chlorophyll a, chlorophyll b, chlorophyll c1 and chlorophyll c2, chlorophyll d, and chlorophyll e.
根據本發明的一優選實施例,所述葉綠素為粉末狀或液狀。 According to a preferred embodiment of the invention, the chlorophyll is in the form of a powder or a liquid.
根據本發明的一優選實施例,所述葉綠素不包括葉綠素氧化酶。 According to a preferred embodiment of the invention, the chlorophyll does not comprise a chlorophyll oxidase.
根據本發明的一優選實施例,所述高聚體溶液包括:金屬離子與各類酸根離子的化合物、高聚體及溶劑,其濃度含量皆在0.1-10莫耳/升間。 According to a preferred embodiment of the present invention, the polymer solution comprises: a compound of a metal ion and various acid ions, a polymer and a solvent, and the concentration thereof is between 0.1 and 10 m/l.
根據本發明的一優選實施例,所述高聚體溶液還包括維生素。 According to a preferred embodiment of the invention, the polymer solution further comprises a vitamin.
根據本發明的一優選實施例,所述維生素為維生素D。 According to a preferred embodiment of the invention, the vitamin is vitamin D.
根據本發明的一優選實施例,所述高聚體為葡萄糖的高聚體。 According to a preferred embodiment of the invention, the high polymer is a polymer of glucose.
根據本發明的一優選實施例,所述葡萄糖的高聚體為馬鈴薯澱粉、菱角澱粉、玉米澱粉、地瓜粉、蓮藕澱粉、芥末粉和葛根粉中的一種或多種。 According to a preferred embodiment of the invention, the high polymer of glucose is one or more of potato starch, water chestnut starch, corn starch, sweet potato powder, lotus root starch, mustard powder and kudzu root powder.
根據本發明的一優選實施例,所述金屬離子與各類酸根離子的化合物為碳酸鈣。 According to a preferred embodiment of the invention, the compound of the metal ion and the various acid ions is calcium carbonate.
根據本發明的一優選實施例,所述金屬離子與各類酸根離子的化合物為天然植物化學成分,所述天然植物化學成分包括木脂素類、低聚糖、多糖、黃酮類、環烯醚萜類、脂肪酸、東莨菪內酯、兒茶素、β穀固醇、虎刺素和生物鹼類。 According to a preferred embodiment of the present invention, the metal ion and various acid ion compounds are natural phytochemical components including lignans, oligosaccharides, polysaccharides, flavonoids, and cyclic ethers. Terpenoids, fatty acids, sorghum lactone, catechins, beta-sitosterol, sucrose and alkaloids.
根據本發明的一優選實施例,所述溶劑為帶極性、pH值大於3之溶劑。優選地,所述溶劑選自水、海水、茶、咖啡、果汁、酒中的一種或多種。 According to a preferred embodiment of the invention, the solvent is a solvent having a polarity and a pH greater than 3. Preferably, the solvent is one or more selected from the group consisting of water, sea water, tea, coffee, fruit juice, and wine.
根據本發明的一優選實施例,所述高聚體溶液的PH值為5.5-8。 According to a preferred embodiment of the invention, the high polymer solution has a pH of 5.5-8.
根據本發明的一優選實施例,所述高聚體溶液的導電度為50-250ms/cm。 According to a preferred embodiment of the invention, the high polymer solution has a conductivity of 50-250 ms/cm.
根據本發明的一優選實施例,所述隔離結構包括第一隔離膜以及第二隔離膜,且所述第二隔離膜設置於所述第一隔離膜之上。 According to a preferred embodiment of the present invention, the isolation structure includes a first isolation film and a second isolation film, and the second isolation film is disposed over the first isolation film.
根據本發明的一優選實施例,所述第一隔離膜以及第二隔離膜分別採用高纖維材質製成。 According to a preferred embodiment of the present invention, the first isolation film and the second isolation film are respectively made of a high fiber material.
根據本發明的一優選實施例,所述高纖維材質為紙類。 According to a preferred embodiment of the invention, the high fiber material is paper.
根據本發明的一優選實施例,所述紙類包括玻璃紙、棉紙、宣紙及絹紙。 According to a preferred embodiment of the invention, the paper comprises cellophane, tissue, rice paper and crepe paper.
根據本發明的一優選實施例,所述高纖維材質的孔隙大小介於0.01μm~1cm之間。 According to a preferred embodiment of the invention, the high fiber material has a pore size between 0.01 μm and 1 cm.
根據本發明的一優選實施例,所述第一隔離膜與第二隔離膜的面 積分別為5cmX5cm。 According to a preferred embodiment of the present invention, the surface of the first isolation film and the second isolation film The product is 5 cm x 5 cm.
根據本發明的一優選實施例,所述第一隔離膜吸附有有機或無機鹽類水溶液。 According to a preferred embodiment of the invention, the first separator is adsorbed with an aqueous solution of an organic or inorganic salt.
根據本發明的一優選實施例,所述有機或無機鹽類水溶液的導電度為10ms/cm-500ms/cm。 According to a preferred embodiment of the invention, the organic or inorganic salt aqueous solution has a conductivity of from 10 ms/cm to 500 ms/cm.
根據本發明的一優選實施例,所述第二隔離膜吸附有有機或無機鹽類與葉綠素的水溶液。 According to a preferred embodiment of the invention, the second separator is adsorbed with an aqueous solution of an organic or inorganic salt and chlorophyll.
根據本發明的一優選實施例,所述有機或無機鹽類為非含鋰的有機鹽類。 According to a preferred embodiment of the invention, the organic or inorganic salt is a non-lithium containing organic salt.
根據本發明的一優選實施例,所述有機或無機鹽類選自包含碘化鈉、氯化鈉和氫氧化鈉中的一種或多種。 According to a preferred embodiment of the invention, the organic or inorganic salt is selected from one or more of the group consisting of sodium iodide, sodium chloride and sodium hydroxide.
根據本發明的一優選實施例,所述有機或無機鹽類選自包含碘化鈉、氯化鈉和氫氧化鈉中的一種或多種。 According to a preferred embodiment of the invention, the organic or inorganic salt is selected from one or more of the group consisting of sodium iodide, sodium chloride and sodium hydroxide.
根據本發明的一優選實施例,所述正極結構包括導電高分子膜以及奈米導電高分子粉末層,且所述奈米導電高分子粉末層設置在導電高分子膜上。 According to a preferred embodiment of the present invention, the positive electrode structure includes a conductive polymer film and a nano-conductive polymer powder layer, and the nano-conductive polymer powder layer is disposed on the conductive polymer film.
根據本發明的一優選實施例,所述導電高分子的材料選自雜環或芳香族雜環化合物。 According to a preferred embodiment of the present invention, the material of the conductive polymer is selected from a heterocyclic ring or an aromatic heterocyclic compound.
根據本發明的一優選實施例,所述導電高分子材料選自以下化合物中的一種或多種:聚乙炔、聚芳香烴乙烯、聚噻吩、聚苯胺、聚咇 咯、聚吡咯和上述化合物的衍生物。 According to a preferred embodiment of the present invention, the conductive polymer material is selected from one or more of the following compounds: polyacetylene, polyaryl vinyl, polythiophene, polyaniline, polyfluorene Ol, polypyrrole and derivatives of the above compounds.
根據本發明的一優選實施例,所述導電高分子膜具有孔隙。 According to a preferred embodiment of the present invention, the conductive polymer film has pores.
根據本發明的一優選實施例,所述孔隙的大小為3A~1000A。 According to a preferred embodiment of the invention, the pores have a size of from 3A to 1000A.
根據本發明的一優選實施例,所述導電高分子膜的面積為5cmX10cm。 According to a preferred embodiment of the present invention, the conductive polymer film has an area of 5 cm X 10 cm.
根據本發明的一優選實施例,所述奈米導電高分子粉末層包含葉綠素粉末。 According to a preferred embodiment of the present invention, the nano-conductive polymer powder layer comprises chlorophyll powder.
根據本發明的一優選實施例,所述奈米導電高分子粉末層進一步包含奈米導電高分子粉末。 According to a preferred embodiment of the present invention, the nano-conductive polymer powder layer further comprises a nano-conductive polymer powder.
根據本發明的一優選實施例,所述奈米導電高分子粉末與葉綠素粉末的重量和為0.1克。 According to a preferred embodiment of the present invention, the weight ratio of the nano conductive polymer powder to the chlorophyll powder is 0.1 gram.
根據本發明的一優選實施例,所述紙管作為所述電池的外殼。 According to a preferred embodiment of the invention, the paper tube acts as a housing for the battery.
本發明實施例的電池製作方法所製造出的電池可利用其正、負極結構中的葉綠素即可進行儲氫從而達到供電的目的。亦即,在電池之氧化還原反應中,當葉綠素因其中之鎂離子脫離而形成脫鎂葉綠素(pheophytin)之際,出缺鎂的部份即能結合兩個氫離子,故能儲氫。且由於本發明實施例的電池製作方法所製造出的電池採用天然的環保物質代替傳統電池中的污染成分,用完即使丟棄也不會對環境造成污染,環保程度遠勝於傳統電池。 The battery manufactured by the battery manufacturing method of the embodiment of the invention can use the chlorophyll in the positive and negative structures to perform hydrogen storage to achieve the purpose of power supply. That is, in the redox reaction of the battery, when the chlorophyll is detached from the magnesium ion to form pheophytin, the magnesium-depleted portion can combine two hydrogen ions, so that hydrogen can be stored. Moreover, since the battery manufactured by the battery manufacturing method of the embodiment of the present invention replaces the pollution component in the conventional battery with a natural environmentally-friendly material, even if it is discarded, it does not pollute the environment, and the environmental protection degree is far better than that of the conventional battery.
下面結合附圖和實施例對本發明實施例進行詳細說明。 The embodiments of the present invention are described in detail below with reference to the accompanying drawings and embodiments.
圖1繪示為本發明一實施例所揭示的電池的結構示意圖。如圖1所示,本發明實施例提供了一種電池100,其包括碳精棒110、正極結構120、隔離結構130、負極結構140以及外殼150。其中正極結構、隔離結構130、負極結構140以及外殼150依次地環繞碳精棒110。 FIG. 1 is a schematic structural view of a battery according to an embodiment of the invention. As shown in FIG. 1 , an embodiment of the present invention provides a battery 100 including a carbon rod 110 , a positive electrode structure 120 , an isolation structure 130 , a negative electrode structure 140 , and a casing 150 . The positive electrode structure, the isolation structure 130, the negative electrode structure 140, and the outer casing 150 sequentially surround the carbon rod 110.
圖2繪示為圖1所示的負極結構的結構示意圖。如圖2所示,負極結構140包括導電材料層141以及負極材料層142,其中負極材料層142可形成在導電材料層141之上。 2 is a schematic view showing the structure of the negative electrode structure shown in FIG. 1. As shown in FIG. 2, the negative electrode structure 140 includes a conductive material layer 141 and a negative electrode material layer 142, wherein the negative electrode material layer 142 may be formed over the conductive material layer 141.
具體地,導電材料層141由導電材料而製成。導電材料可以是金屬、金屬化合物或導電高分子材料。金屬可以選自鋁和/或金。金屬化合物可以選自一氧化錳、氧化鋅和氧化鎂中的一種或多種。導電高分子材料選自雜環或芳香族雜環化合物。根據本發明的一優選實施例,導電高分子材料選自以下化合物中的一種或多種:聚乙炔、聚芳香烴乙烯、聚噻吩、聚苯胺、聚咇咯、聚吡咯和上述化合物的衍生物。此外,導電材料層的面積可設定為5cmX5cm。 Specifically, the conductive material layer 141 is made of a conductive material. The conductive material may be a metal, a metal compound or a conductive polymer material. The metal may be selected from aluminum and/or gold. The metal compound may be selected from one or more of manganese monoxide, zinc oxide, and magnesium oxide. The conductive polymer material is selected from a heterocyclic ring or an aromatic heterocyclic compound. According to a preferred embodiment of the invention, the electrically conductive polymeric material is selected from one or more of the group consisting of polyacetylene, polyaromatic ethylene, polythiophene, polyaniline, polypyrrole, polypyrrole and derivatives of the above compounds. Further, the area of the conductive material layer can be set to 5 cm x 5 cm.
負極材料層142主要以葉綠素作為負極材料,其中負極材料層142的製備是將葉綠素與高聚體溶液依照1:1的比例進行調和,然後以磁石攪拌機以60轉/分的速率攪拌大約1個小時,再利用塗佈機塗佈在導電材料層141上,其中塗佈的厚度大約為0.5mm。最後,將上述結構放置入100攝氏度的烤箱中烘烤大約6分鐘從而在導電材料層141上形成負 極材料層。 The negative electrode material layer 142 mainly uses chlorophyll as a negative electrode material, wherein the negative electrode material layer 142 is prepared by blending the chlorophyll and the high polymer solution in a ratio of 1:1, and then stirring about 1 at a rate of 60 rpm by a magnet mixer. After an hour, it was coated on the conductive material layer 141 by a coater, wherein the thickness of the coating was about 0.5 mm. Finally, the above structure was placed in an oven at 100 degrees Celsius for baking for about 6 minutes to form a negative layer on the conductive material layer 141. Polar material layer.
葉綠素可以為葉綠素a、葉綠素b、葉綠素c1和、葉綠素c2、葉綠素d、及葉綠素e中的一種或多種。葉綠素可以為粉末狀或液狀。所採用的葉綠素已去除葉綠素氧化酶。 The chlorophyll may be one or more of chlorophyll a, chlorophyll b, chlorophyll c1, chlorophyll c2, chlorophyll d, and chlorophyll e. The chlorophyll can be in the form of a powder or a liquid. The chlorophyll used has removed chlorophyll oxidase.
高聚體溶液具有黏合作用,能因此附著並調制導電材料層之物理及化學特性,使得負極材料層142更黏附於導電材料層141。此外,高聚體溶液的導電度為50-250ms/cm。高聚體溶液可以包括硼、鎂、鋁、鈣、錳及鋅元素之一種或數種。高聚體溶液還用於調制導電材料層141的功函數,俾使正負電極間之電位差能達致所欲之伏特數,如1.5V。 The high polymer solution has a bond that can thereby attach and modulate the physical and chemical properties of the layer of conductive material such that the negative electrode material layer 142 more adheres to the conductive material layer 141. Further, the polymer solution has a conductivity of 50 to 250 ms/cm. The high polymer solution may include one or more of boron, magnesium, aluminum, calcium, manganese, and zinc. The high polymer solution is also used to modulate the work function of the conductive material layer 141 so that the potential difference between the positive and negative electrodes can reach a desired volt, such as 1.5V.
高聚體溶液可以由金屬離子與各類酸根離子的化合物、高聚體及溶劑按比例調配而成。金屬離子可以為鎂、鋁、鈣、錳及鋅等金屬離子。酸根離子可以為硫酸根離子、硝酸根離子、碳酸根離子等。高聚體可以為葡萄糖的高聚體。葡萄糖的高聚體可以為植物澱粉,例如為馬鈴薯澱粉、菱角澱粉、玉米澱粉、地瓜粉、蓮藕澱粉、芥末粉和葛根粉中的一種或多種。金屬離子與各類酸根離子的化合物可以為碳酸鈣。金屬離子與各類酸根離子的化合物可以為天然植物化學成分。天然植物化學成分包括木脂素類、低聚糖、多糖、黃酮類、環烯醚萜類、脂肪酸、東莨菪內酯、兒茶素、β穀固醇、虎刺素和生物鹼類。溶劑可以為有機溶劑,亦可以為無機溶劑。溶劑可以為帶極性、PH值大於3之溶劑,例如:水、海水、茶、咖啡、果汁或者酒等等。高聚體溶液 的PH值優選為5.5-8。高聚體溶液還可以包括維生素,例如維生素D。 The high polymer solution can be prepared by proportioning metal ions with various acid ion compounds, polymers and solvents. The metal ion may be a metal ion such as magnesium, aluminum, calcium, manganese or zinc. The acid ion may be a sulfate ion, a nitrate ion, a carbonate ion or the like. The high polymer can be a polymer of glucose. The high polymer of glucose may be plant starch, for example, one or more of potato starch, water chestnut starch, corn starch, sweet potato powder, lotus root starch, mustard powder, and kudzu root powder. The compound of metal ions and various acid ions may be calcium carbonate. Metal ions and various acid ion compounds can be natural phytochemicals. Natural phytochemicals include lignans, oligosaccharides, polysaccharides, flavonoids, iridoids, fatty acids, sorghum lactone, catechins, beta-sitosterol, sucrose and alkaloids. The solvent may be an organic solvent or an inorganic solvent. The solvent may be a solvent having a polarity of more than 3, such as water, sea water, tea, coffee, juice or wine. High polymer solution The pH is preferably 5.5-8. The high polymer solution may also include a vitamin such as vitamin D.
負極結構140可製成膜片狀,從而提高葉綠素的使用量,增大接觸面積以提高電池的反應面積等。此外,本領域技術人員可理解的是,本發明還可以藉由任何已知技術提高葉綠素的使用量,增大接觸面積以提高電池的反應面積等。 The negative electrode structure 140 can be formed into a sheet shape, thereby increasing the amount of chlorophyll used, increasing the contact area to increase the reaction area of the battery, and the like. Furthermore, it will be understood by those skilled in the art that the present invention can also increase the amount of chlorophyll used, increase the contact area to increase the reaction area of the battery, and the like by any known technique.
圖3繪示為圖1所示的隔離結構的結構示意圖。如圖3所示,隔離結構130包括第一隔離膜131以及第二隔離膜132,其中第二隔離膜132設置在第一隔離膜131之上。第一隔離膜131與第二隔離膜132均分別採用高纖維材質而製成,其中高纖維材質可以為紙類,紙類包括玻璃紙、棉紙、宣紙及絹紙等,且高纖維材質孔隙大小優選為0.01μm~1cm。優選地,第一隔離膜131與第二隔離膜132的面積亦分別為5cmX5cm。 FIG. 3 is a schematic structural view of the isolation structure shown in FIG. 1. As shown in FIG. 3, the isolation structure 130 includes a first isolation film 131 and a second isolation film 132, wherein the second isolation film 132 is disposed over the first isolation film 131. The first isolation film 131 and the second isolation film 132 are respectively made of high fiber material, wherein the high fiber material can be paper, the paper type includes cellophane, cotton paper, rice paper and crepe paper, and the high fiber material pore size It is preferably 0.01 μm to 1 cm. Preferably, the areas of the first isolation film 131 and the second isolation film 132 are also 5 cm×5 cm, respectively.
此外,第一隔離膜131吸附有有機或無機鹽類水溶液,其中有機或無機鹽類水溶液的導電度為10ms/cm-500ms/cm。而第二隔離膜132吸附有有機或無機鹽類與葉綠素的水溶液。有機或無機鹽類為非含鋰的有機或無機鹽類。有機或無機鹽類選自包含以下離子化合物中的一種或多種:碘化鈉、氯化鈉和氫氧化鈉。 Further, the first separator 131 is adsorbed with an aqueous solution of an organic or inorganic salt, wherein the organic or inorganic salt aqueous solution has a conductivity of 10 ms/cm to 500 ms/cm. The second separator 132 is adsorbed with an aqueous solution of an organic or inorganic salt and chlorophyll. The organic or inorganic salts are organic or inorganic salts which are not lithium-containing. The organic or inorganic salt is selected from one or more of the following ionic compounds: sodium iodide, sodium chloride, and sodium hydroxide.
圖4繪示為圖1所示的正極結構120的結構示意圖。如圖4所示,正極結構120包括導電高分子膜121以及奈米導電高分子粉末層122,其中奈米導電高分子粉末層122設置在導電高分子膜121上。導電高分子的材料選自雜環或芳香族雜環化合物。優選地,導電高分子的材料 選自以下化合物中的一種或多種:聚乙炔、聚芳香烴乙烯、聚噻吩、聚苯胺、聚咇咯、聚吡咯和上述化合物的衍生物。此外,導電高分子膜的面積為5cmX10cm,且具有3A~1000A的孔隙。 FIG. 4 is a schematic structural view of the positive electrode structure 120 illustrated in FIG. 1 . As shown in FIG. 4, the positive electrode structure 120 includes a conductive polymer film 121 and a nano-conductive polymer powder layer 122, wherein the nano-conductive polymer powder layer 122 is disposed on the conductive polymer film 121. The material of the conductive polymer is selected from a heterocyclic ring or an aromatic heterocyclic compound. Preferably, the material of the conductive polymer One or more selected from the group consisting of polyacetylene, polyarylethylene, polythiophene, polyaniline, polypyrrole, polypyrrole, and derivatives of the above compounds. Further, the conductive polymer film has an area of 5 cm X 10 cm and has pores of 3 A to 1000 A.
奈米導電高分子粉末層122包括葉綠素粉末,此外,奈米導電高分子粉末層122可進一步包括奈米導電高分子粉末,其可藉由在導電高分子膜121上塗佈奈米導電高分子粉末以及葉綠素粉末而形成,且奈米導電高分子粉末與葉綠素粉末的重量和約0.1克。 The nano-conductive polymer powder layer 122 includes a chlorophyll powder. Further, the nano-conductive polymer powder layer 122 may further include a nano-conductive polymer powder which can be coated with a nano-conductive polymer on the conductive polymer film 121. The powder and the chlorophyll powder are formed, and the weight of the nano conductive polymer powder and the chlorophyll powder is about 0.1 g.
外殼150可為一紙管,用以包覆上述碳精棒110、正極結構120、隔離結構130以及負極結構140。 The outer casing 150 can be a paper tube for covering the carbon rod 110, the positive electrode structure 120, the isolation structure 130, and the negative electrode structure 140.
在本實施例中,負極結構140與正極結構120中均包含有葉綠素,因此,電池100工作時,負極結構140中的葉綠素及正極結構層120中的葉綠素會因接收光線或遇到溶液而產生電子或空穴,從而在電池100的正極結構120與負極結構140之間形成電位差以提供持續的電流。也就是說,本發明的電池100以負極結構140以及正極結構120中的葉綠素來作為能量來源來提供電能。優選地,負極結構140中的葉綠素與正極結構120中的葉綠素具有不同之功函數(work functions)。 In the present embodiment, both the negative electrode structure 140 and the positive electrode structure 120 contain chlorophyll. Therefore, when the battery 100 is in operation, the chlorophyll in the negative electrode structure 140 and the chlorophyll in the positive electrode structure layer 120 may be generated by receiving light or encountering a solution. Electrons or holes form a potential difference between the positive structure 120 of the battery 100 and the negative structure 140 to provide a continuous current. That is, the battery 100 of the present invention provides electrical energy using the negative electrode structure 140 and chlorophyll in the positive electrode structure 120 as an energy source. Preferably, the chlorophyll in the negative electrode structure 140 has different work functions from the chlorophyll in the positive electrode structure 120.
雖然在本實施例中,負極結構140與正極結構120中均包含有葉綠素,但是,本領域技術人員可以理解的是,本發明所揭示的電池,亦可儘在負極結構140中設置葉綠素,或者僅在正極結構120中設置葉綠素,以利用葉綠素作為能量來源而使電池提供電能。 Although in the present embodiment, both the negative electrode structure 140 and the positive electrode structure 120 contain chlorophyll, it will be understood by those skilled in the art that the battery disclosed in the present invention may also be provided with chlorophyll in the negative electrode structure 140, or Chlorophyll is only provided in the positive electrode structure 120 to utilize the chlorophyll as a source of energy to provide electrical energy to the battery.
圖5繪示為本發明一實施例所揭示之電池的製作方法的流程圖。如圖5所示,上述電池的製作方法包括以下步驟:步驟S1:利用碳精棒捲繞正極結構;步驟S2:捲繞隔離結構;步驟S3:捲繞負極結構;以及步驟S4:將捲繞了正極結構、隔離結構以及負極結構的碳精棒套入紙管中從而完成電池的製作。 FIG. 5 is a flow chart showing a method of fabricating a battery according to an embodiment of the invention. As shown in FIG. 5, the manufacturing method of the above battery includes the following steps: step S1: winding a positive electrode structure with a carbon rod; step S2: winding the isolation structure; step S3: winding the negative electrode structure; and step S4: winding The positive electrode structure, the isolation structure, and the carbon rod of the negative electrode structure are placed in the paper tube to complete the fabrication of the battery.
本發明實施例的電池製作方法所製造出的電池可利用其正、負極結構中的葉綠素即可進行儲氫從而達到供電的目的。優選地,所述正、負極結構皆包含葉綠素,但具有不同之功函數。亦即,在電池之氧化還原反應中,當葉綠素因其中之鎂離子脫離而形成脫鎂葉綠素(pheophytin)之際,出缺鎂的部份即能結合兩個氫離子,故能儲氫。且由於本發明實施例的電池製作方法所製造出的電池採用天然的環保物質代替傳統電池中的污染成分,用完即使丟棄也不會對環境造成污染,環保程度遠勝於傳統電池。 The battery manufactured by the battery manufacturing method of the embodiment of the invention can use the chlorophyll in the positive and negative structures to perform hydrogen storage to achieve the purpose of power supply. Preferably, the positive and negative structures all comprise chlorophyll, but have different work functions. That is, in the redox reaction of the battery, when the chlorophyll is detached from the magnesium ion to form pheophytin, the magnesium-depleted portion can combine two hydrogen ions, so that hydrogen can be stored. Moreover, since the battery manufactured by the battery manufacturing method of the embodiment of the present invention replaces the pollution component in the conventional battery with a natural environmentally-friendly material, even if it is discarded, it does not pollute the environment, and the environmental protection degree is far better than that of the conventional battery.
需要指出的是,在本發明實施例中提到的“第一”、“第二”等用語僅是根據需要採用的文字符號,在實務中並不限於此,並且該文字符號可以互換使用。 It should be noted that the terms “first”, “second” and the like mentioned in the embodiments of the present invention are only text symbols that are used according to requirements, and are not limited thereto in practice, and the text symbols can be used interchangeably.
上文所揭露之主題可被認為是說明性的而不是限制性的,且預期所附申請專利範圍涵蓋屬於本發明之真實精神和範疇內之所有修改、改進和其他實施例。因此,在法律允許的最大範圍,可 藉由對所附申請專利範圍和其均等物之最廣泛許可之理解來確定本發明之範疇且並不受到前述實施方式的詳細描述的局限或限制。 The above-disclosed subject matter is to be considered as illustrative and not restrictive. Therefore, to the maximum extent permitted by law, The scope of the present invention is defined by the scope of the appended claims and the claims
100‧‧‧電池 100‧‧‧Battery
110‧‧‧碳精棒 110‧‧‧carbon rod
120‧‧‧正極結構 120‧‧‧ positive structure
121‧‧‧導電高分子膜 121‧‧‧ Conductive polymer film
122‧‧‧奈米導電高分子粉末層 122‧‧‧Nano conductive polymer powder layer
130‧‧‧隔離結構 130‧‧‧Isolation structure
131‧‧‧第一隔離膜 131‧‧‧First barrier film
132‧‧‧第二隔離膜 132‧‧‧Second isolation film
133‧‧‧電解質材料 133‧‧‧Electrolyte materials
140‧‧‧負極結構 140‧‧‧Negative structure
141‧‧‧導電材料層 141‧‧‧layer of conductive material
142‧‧‧負極材料層 142‧‧‧Negative material layer
150‧‧‧外殼 150‧‧‧Shell
S1、S2、S3、S4‧‧‧步驟 S1, S2, S3, S4‧‧‧ steps
包括附圖以提供對於本發明的進一步理解,且附圖併入本說明書中並且構成本說明書的一部份。附圖說明本發明之示範性實施例。在諸圖中:圖1是本發明一實施例所揭示的電池的結構示意圖。 The drawings are included to provide a further understanding of the invention, and are incorporated in this specification and constitute a part of this specification. BRIEF DESCRIPTION OF THE DRAWINGS Exemplary embodiments of the invention. In the drawings: FIG. 1 is a schematic structural view of a battery according to an embodiment of the present invention.
圖2繪示為圖1所示的負極結構的結構示意圖。 2 is a schematic view showing the structure of the negative electrode structure shown in FIG. 1.
圖3繪示為圖1所示的隔離結構的結構示意圖。 FIG. 3 is a schematic structural view of the isolation structure shown in FIG. 1.
圖4繪示為圖1所示的正極結構的結構示意圖。 FIG. 4 is a schematic view showing the structure of the positive electrode structure shown in FIG. 1.
圖5繪示為本發明一實施例所揭示之電池的製作方法的流程圖。 FIG. 5 is a flow chart showing a method of fabricating a battery according to an embodiment of the invention.
S1、S2、S3、S4‧‧‧步驟 S1, S2, S3, S4‧‧‧ steps
Claims (46)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99143533A TWI426647B (en) | 2010-12-13 | 2010-12-13 | Method for manufaturing a battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99143533A TWI426647B (en) | 2010-12-13 | 2010-12-13 | Method for manufaturing a battery |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201225395A TW201225395A (en) | 2012-06-16 |
TWI426647B true TWI426647B (en) | 2014-02-11 |
Family
ID=46726161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99143533A TWI426647B (en) | 2010-12-13 | 2010-12-13 | Method for manufaturing a battery |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI426647B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI773327B (en) * | 2021-05-18 | 2022-08-01 | 正六任企業有限公司 | Emulsification chlorophyll battery |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522453A (en) * | 2001-06-29 | 2004-08-18 | ������������ʽ���� | Organic electrolyte capacitor |
CN1588684A (en) * | 2004-09-29 | 2005-03-02 | 北京理工大学 | Additive for reducing nickel-hydrogen cell internal pressure |
CN201204229Y (en) * | 2008-06-19 | 2009-03-04 | 荆州市蓝宇航标器材有限公司 | Combined zinc-air dry cell |
TW201042802A (en) * | 2009-01-12 | 2010-12-01 | A123 Systems Inc | Laminated battery cell and methods for creating the same |
-
2010
- 2010-12-13 TW TW99143533A patent/TWI426647B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1522453A (en) * | 2001-06-29 | 2004-08-18 | ������������ʽ���� | Organic electrolyte capacitor |
CN1588684A (en) * | 2004-09-29 | 2005-03-02 | 北京理工大学 | Additive for reducing nickel-hydrogen cell internal pressure |
CN201204229Y (en) * | 2008-06-19 | 2009-03-04 | 荆州市蓝宇航标器材有限公司 | Combined zinc-air dry cell |
TW201042802A (en) * | 2009-01-12 | 2010-12-01 | A123 Systems Inc | Laminated battery cell and methods for creating the same |
Also Published As
Publication number | Publication date |
---|---|
TW201225395A (en) | 2012-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102544641B (en) | Battery with a battery cell | |
JP4433021B2 (en) | Non-aqueous electrolyte battery | |
CN102569946B (en) | Method for manufacturing battery | |
JP2012212621A (en) | Binder for electrochemical cell, and paste and electrode comprising the binder | |
TWI426647B (en) | Method for manufaturing a battery | |
TWI449249B (en) | Battery | |
CN202150529U (en) | Battery with a battery cell | |
JP7483910B2 (en) | Electrode assembly, secondary battery, battery module, battery pack, and power consuming device | |
CN202004120U (en) | Organic negative electrode and battery having the same | |
CN102544639B (en) | Battery with a battery cell | |
CN102544643B (en) | Method for manufacturing battery | |
TWI426645B (en) | Method for manufaturing a battery | |
TWI443894B (en) | Flat plate battery | |
CN102569942A (en) | Conductive reinforcing material, negative electrode material layer, negative electrode and battery | |
CN202205867U (en) | Battery with a battery cell | |
JP2005032688A (en) | Non-aqueous electrolyte secondary battery | |
JP2010186667A (en) | Coin cell | |
TWI437750B (en) | Method for manufaturing a flat plate battery | |
JP5798374B2 (en) | Flat battery and manufacturing method thereof | |
CN102569944B (en) | Flat battery | |
CN102569945B (en) | Method for manufacturing flat battery | |
CN202004119U (en) | Flat battery | |
CN102569943B (en) | Organic negative electrode and battery having the same | |
CN102544430B (en) | Method for manufacturing organic negative electrode | |
JP7386265B2 (en) | Nonaqueous electrolyte secondary battery, current collector, and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |