TWM418379U - Heat dissipation formula Solid-state Package Inductor - Google Patents

Heat dissipation formula Solid-state Package Inductor Download PDF

Info

Publication number
TWM418379U
TWM418379U TW100212266U TW100212266U TWM418379U TW M418379 U TWM418379 U TW M418379U TW 100212266 U TW100212266 U TW 100212266U TW 100212266 U TW100212266 U TW 100212266U TW M418379 U TWM418379 U TW M418379U
Authority
TW
Taiwan
Prior art keywords
heat
solid
dissipating
state package
package inductor
Prior art date
Application number
TW100212266U
Other languages
Chinese (zh)
Inventor
Peng-Cheng Luo
Original Assignee
Magic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Technology Co Ltd filed Critical Magic Technology Co Ltd
Priority to TW100212266U priority Critical patent/TWM418379U/en
Publication of TWM418379U publication Critical patent/TWM418379U/en

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

M418379 » · p " 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種電感器,詳而言之,係涉及一種具 有散熱功能的固態封裝電感器。 【先前技術】 線圈電子元件通常設計用來抵禦電流的變化,例如, 當電流穿過電感器時會產生磁場,而磁場變化可誘發電壓 改變並抑制電流的變化,此抑制電流變化的能力即稱為電 鲁感。 習知技術提供一種一體化粉末合金電感器,係依序於 模具中放入磁性粉末、線圈和磁性粉末,接著施予高壓(例 如藉由沖頭進行沖壓)以將磁性粉末壓製為芯體,即成型電 感器,惟,此種技術無法應用於任何形狀的模具,且必需 使用能提供高壓的設備和能承受該高壓的模具,否則模具 内的成品很可能於進行高壓成型步驟時破裂。此外,習知 Φ 技術另提供一種電感器,包括芯體、線圈及包覆體,若使 用前述高壓壓製成型的技術來成型包覆體,勢必會使芯體 破碎。 因此,現在電感器的製作方法大多利用一模具容置芯 體和線圈,再注入摻有磁性粉末的膠體於該模具中,經過 高溫加熱後即成型包覆體。然而,雖然採用膠體來包覆芯 體和線圈可避免前述高壓壓製成型之芯體破碎的問題,但 膠體在注入模具時有可能會產生氣泡,過程中難以達到真 空狀態,另外,由於磁性粉末比重較膠體大,因而於膠體 3 M418379 中會發生沉降現象,這些問題或現象皆會影響到電感器的 特性。 另外,上述無論是粉末合金電感器或具有採用膠體成 型包覆體的電感器,運作時皆會產生熱量,導致溫度上升, 尤其是在電子元件微小化或積體化的現今,電感器的工作 電流及功率要求大幅度增加,以至於散熱問題更為嚴重, 相對影響電感效能及電磁穩定性。 【新型内容】 鑒於上述習知技術之缺點,本創作之目的在於提出一 種散熱式固態封裝電感器,得以達到散熱、良好電感效能 及電磁穩定性之功效。 為達到前述目的以及其他目的,本創作提出一種散熱 式固態封裝電感器,包含:芯體;線圈,係將該芯體套設 於其中;包覆體,係為由粉狀磁性材料和粉狀黏著劑以一 預設比例所混合成的固態混合物而製作形成,用以包覆該 線圈及套設於其中的芯體並外露該線圈的兩末端以作為接 線部;以及外殼,係罩住該包覆體並外露該接線部,以提 供散熱。 因此,本創作之電感器藉由固態混合物對環繞有線圈 的芯體進行封裝,由於黏著劑和磁性材料皆為固態,因而 封裝時不會有以往利用含有磁性粉末的磁性膠之粉末於膠 體中沈降的問題。此外,粉狀磁性材料可藉由粉狀黏著劑 而黏結在一起,因而無須習知高壓壓製成型技術,避免了 芯體破裂的可能。再者,透過將包覆有芯體和線圈的包覆 M418379 • « 9 體容裝於一散熱用外殼,以提供固態封裝電感器的散熱功 故。 “、、 • 此外,所述之芯體可為柱狀體、工字型體或I字型體。 所述之粉狀磁性材料為軟磁性物質。所述之粉狀黏著劑 固態樹脂。 Μ 再者,所述之外殼可為金屬製成,例如鋁,或者外殼 的至少一表面可呈波浪狀。鋁製或表面呈波浪狀的外殼能 鲁增加固態封裝電感器的散熱效果。 相較於習知技術,本創作之散熱式固態封裝電感器, 可解決習知技術中利用粉末壓製技術所導致之芯體碎裂的 問題,並避免利用磁性膠體填充模具所導致之產生氣泡和 磁性不均的現象,更可防止電感器運作時產生熱量導致溫 度上升的缺點。 【實施方式】 以下藉由特定的具體實施形態說明本創作之技術内 •谷,熟習此技術之人士可由本說明書所揭示之内容輕易地 了解本創作之其他優點與功效,亦可藉由其他不同的具體 實施形態加以施行或應用。 請參閱第1圖,本創作之散熱式固態封裝電感器包括 外殼1、包覆體2、線圈和芯體(此圖未顯示線圈和芯體, 將於第2Β及2C圖說明之)。 如第1圖所示,外殼1罩住包覆體2並外露接線部30, 外殼1提供電感器散熱用。一般而言,外殼1的材質為金 屬’例如铭。此外’外殼1具有頂面丨丨和四個侧壁12、 5 M418379 13、14、15,頂面11和四個側壁12、13、14、15組成包 含容置區域(此圖未顯示)的殼狀體,該容置區域用以容置 包覆體2。 再者,外殼1的至少一表面可呈波浪狀,如第丨圖所 示者為四個側壁12、13、14、15皆呈波浪狀之實施形態, 且該波/良乃由父錯而連續的凸條16和凹槽I?所形成,凸 條16和凹槽π可協助外殼1熱量的消散。另外,如第2八 圖所示,外殼1具有一頂面11 ’和四個侧壁12,、13,、 14’ 、15’ ,其中僅有兩個侧壁12’和14,的表面呈波浪 狀,且該波浪乃由交錯而連續的凸條16,和凹槽17,所形 成。需說明的是,外殼1、1’係提供電感器的散熱用,其 波浪狀的表面乃提供散熱的辅助效果,並非散熱的必要條 件。 接著’如第2B及2C圖所示,包覆體2, 、2”為由粉 狀磁性材料20’ 、20”和粉狀黏著劑21,、21”以一預設 比例所混合成的固態混合物而製作形成,用以包覆環繞有 線圈3、3的芯體4、4’ 。此外,粉狀磁性材料20,、 20可為軟磁性物質,例如:鐵(Fe)、鐵矽鋁(Mpp(FeNiM〇) /hi-flux(FeNi50))、鐵石夕銘(sendust : FeSiAl)、亞鐵鹽 (Ferrite)、幾基鐵(carb〇nyi iron)等,粉狀黏著劑 21’ 、 21”可為固態樹脂。再者,固態混合物中可摻有粉狀絕緣 材料,例如二氧化矽,以增加包覆體2, 、2”的固性。另 外’粉狀磁性材料20,、20”和粉狀黏著劑21,、21”的 預β又比例可為90%和1〇%、85%和15%、或80%和20%, Υ5Ί9 例如90%之鐵粉以及1〇%之粉狀樹脂。 其次,包覆體2’ 、2”所包覆之線圈3、3,係由一 導線環繞芯體4、4,而形成線圈本體,且外露該導線的兩 端部以作為接線部、30”。此外,芯體4、4,的材料 可為鐵氧體(如猛-鋅鐵氧體或鎳—鋅鐵氧體)或鐵磁性物質 (如鈷或鐵)。 ' 如第2B圖所示,其為本創作之散熱式固態封裝電感 ,的,覆體之-實施形態’芯體4為柱狀體。-導線螺旋 裒、%〜體4而形成線圈本體,導線的兩末端外露於包覆體 2’形成接線部30’ 。 形成第2B圖所示之包覆體2,的程序為,首先將粉狀 磁性材料20,和粉狀黏著劑21,以一混合比例均句混合 成固態混合物,接著於一方形模具中依序放入該固態混合 物及環設有線圈3的芯體4,較佳地使得環設有線圈3的 怒體4周圍的固態混合物能均勻分佈。再將容裝有該固態 混合物及環設有線圈3的芯體4之模具放人烤爐以進行約 〇度2小時的同溫程序,於高溫程序中可施予一輕微壓 力於該模具上,以維持固態混合物形成包覆體2,後的方 形形狀。 另如第2C圖所示’其為本創作之散熱式固態封裝電 感器的包覆體之另-實施形態,芯體4,包括中柱部42及 形成於中柱部42兩端之第-和第二端部4卜43,1令, 第一和第二端部41和43之垂直中柱部似伸方向的截面 積大於中柱部42的截面積,例如可為英文字母!字型體。 M418379 或者如第2C圖所示,第二端部43垂直中柱部42延伸方向 的截面積大於第一端部41垂直中柱部42延伸方向的截面 積,亦即類似中文字工字型體。 第2C圖所示之包覆體2”的程序為,首先將粉狀磁性 材料20”和粉狀黏著劑21”以一混合比例均勻混合成固 態混合物,接著於一方形模具中依序放入環設有線圈3’ 的芯體4’及固態混合物,理想上需使固態混合物填充於 中柱部42和第一端部41與方形模具之間的空隙。再將容 裝有該固態混合物及環設有線圈3’的芯體4’之模具放 入烤爐以進行約100度、2小時的高溫程序,於高溫程序 中可施予一輕微壓力於該模具上,以維持固態混合物形成 包覆體2”後的方形形狀。 由於粉狀黏著劑21’ 、21”遇熱會熔融以相互黏結, 因而可將粉狀磁性材料20’ 、20”從散佈的狀態黏結成聚 集的狀態,並緊密包覆環設有線圈3、3’的芯體4、4’ 。 因此,無須傳統的高壓壓制製程即可形成包覆體2’ 、 2”,更可避免以往利用摻有磁性粉末的膠體填充模具時所 造成之氣泡產生及粉末沈降現象。 綜上所述,本創作之散熱式固態封裝電感器,係利用 金屬製或表面呈波浪狀的外殼罩在包覆體的外圍,而該包 覆體内含有芯體和線圈,從而可消散電感器於運作時所產 生的熱量,避免電感器的溫度上升。此外,包覆芯體係為 由粉狀磁性材料和粉狀黏著劑所混合之固態混合物而製作 形成,加熱該混合物使之成為包覆體後,由於粉狀黏著劑 M418379 遇熱會熔融以相互黏結,因而無需高壓製程即可使得粉狀 磁性材料藉由粉狀黏著劑而彼此黏結,此可節省粉末壓製 製程所需的設備及成本及避免因高壓而損壞芯體,亦可使 得所製成的包覆體沒有利用液態黏著劑之氣泡產生及磁性 不均等問題。 因此,本創作之散熱式固態封裝電感器無須高成本的 設備’沒有怒體碎裂的問題’且所製成的電感器電磁性能 穩定’並具有散熱的功效。 ® 上述各實施形態僅例示性說明本創作之原理及功效, 而非用於限制本創作。任何熟習此項技術之人士均可在不 違背本創作之精神及範疇下,對上述實施形態進行修飾與 改變。因此,本創作之權利保護範圍,應如後述之申請專 利範圍所列。 【圖式簡單說明】 第1圖係繪示本創作之散熱式固態封裝電感器之結構 φ 分解圖; 第2A係繪示本創作之散熱式固態封裝電感器之外殼 的一實施形態的結構圖; 第2B圖係繪示本創作之散熱式固態封裝電感器之包 覆體的一實施形態的透視圖;及 第2C圖係繪示本創作之散熱式固態封裝電感器之包 覆體的另一實施形態的透視圖。 【主要元件符號說明】 M418379 11、 11’ 頂面 12、 13、14、15、12,、13, 、14, 、15,側壁 16、16, 凸條 17、17, 凹槽 2 、 2, 、 2, ’包覆體 20,、20” 粉狀磁性材料 21’ 、2Γ 3 ' 3, 粉狀黏著劑 線圈 30、30’ 、 4、4, 30” 接線部 芯體 41 第一端部 42 中柱部 43 第二端部M418379 » · p " V. New Description: [New Technology Area] This creation is about an inductor, in detail, a solid-state package inductor with heat dissipation. [Prior Art] Coil electronic components are usually designed to withstand changes in current, for example, when a current passes through an inductor, a magnetic field is generated, and a change in the magnetic field induces a voltage change and suppresses a change in current, and the ability to suppress the change in current is called For the sense of electricity. The prior art provides an integrated powder alloy inductor in which a magnetic powder, a coil and a magnetic powder are placed in a mold, and then a high pressure (for example, punching by a punch) is applied to press the magnetic powder into a core. That is, the inductor is molded. However, this technique cannot be applied to a mold of any shape, and it is necessary to use a device capable of providing high pressure and a mold capable of withstanding the high pressure, or the finished product in the mold is likely to be broken during the high pressure molding step. In addition, the conventional Φ technology further provides an inductor including a core body, a coil, and a covering body. If the above-described high pressure press forming technique is used to form the covering body, the core body is bound to be broken. Therefore, in the current manufacturing method of the inductor, the core and the coil are mostly accommodated by a mold, and the colloid doped with the magnetic powder is injected into the mold, and the coated body is formed after being heated at a high temperature. However, although the use of a colloid to coat the core and the coil avoids the problem of the core crushing of the high pressure press molding described above, the colloid may generate bubbles when injected into the mold, and it is difficult to achieve a vacuum state in the process, and, in addition, due to the specific gravity of the magnetic powder It is larger than the colloid, so sedimentation will occur in the colloid 3 M418379. These problems or phenomena will affect the characteristics of the inductor. In addition, the above-mentioned powder alloy inductors or inductors having a colloid-molded cladding body generate heat during operation, resulting in an increase in temperature, especially in the case of miniaturization or integration of electronic components, the operation of inductors. The current and power requirements are greatly increased, so that the heat dissipation problem is more serious, which affects the inductance performance and electromagnetic stability. [New content] In view of the above shortcomings of the prior art, the purpose of this creation is to propose a heat-dissipating solid-state package inductor that achieves heat dissipation, good inductance performance, and electromagnetic stability. In order to achieve the foregoing and other objects, the present invention proposes a heat-dissipating solid-state package inductor comprising: a core body; a coil in which the core body is sleeved; and an envelope body composed of a powdery magnetic material and a powder The adhesive is formed by mixing a solid mixture of a predetermined ratio to cover the coil and the core sleeved therein and exposing both ends of the coil as a wiring portion; and the outer casing is covered by the adhesive The body is covered and exposed to provide heat dissipation. Therefore, the inductor of the present invention encapsulates the core surrounded by the coil by a solid mixture. Since the adhesive and the magnetic material are both solid, the package does not have the powder of the magnetic powder containing the magnetic powder in the colloid. The problem of settlement. In addition, the powdery magnetic material can be bonded together by a powdery adhesive, so that high-pressure press molding technology is not required, and the possibility of core breakage is avoided. Furthermore, the M418379 • « 9 body covered with a core and a coil is housed in a heat dissipation housing to provide heat dissipation for the solid package inductor. Further, the core may be a columnar body, an I-shaped body or an I-shaped body. The powdery magnetic material is a soft magnetic substance. The powdery adhesive solid resin. Furthermore, the outer casing may be made of metal, such as aluminum, or at least one surface of the outer casing may be wavy. The aluminum or wavy outer casing can increase the heat dissipation effect of the solid package inductor. The conventional technology, the heat-dissipating solid-state package inductor of the present invention can solve the problem of core fragmentation caused by powder pressing technology in the prior art, and avoids bubble generation and magnetic unevenness caused by filling the mold with magnetic colloid. The phenomenon of preventing the temperature from rising due to the generation of heat during the operation of the inductor can be prevented. [Embodiment] The following describes the technology of the present invention by a specific embodiment, and those skilled in the art can disclose the present disclosure. The content is easy to understand the other advantages and effects of this creation, and can be implemented or applied by other different implementations. Please refer to Figure 1, this creation The heat-dissipating solid-state package inductor includes the outer casing 1, the cladding body 2, the coil and the core body (the coil and the core body are not shown in this figure, which will be described in Figures 2 and 2C). As shown in Fig. 1, the outer casing 1 cover The cover body 2 is exposed and the wiring portion 30 is exposed, and the outer casing 1 provides heat dissipation for the inductor. In general, the outer casing 1 is made of metal 'for example. In addition, the outer casing 1 has a top surface 丨丨 and four side walls 12, 5 M418379 13, 14, 15 and the top surface 11 and the four side walls 12, 13, 14, 15 constitute a shell-like body containing an accommodating area (not shown) for accommodating the covering body 2. Furthermore, at least one surface of the outer casing 1 may be wavy, as shown in the figure, where the four side walls 12, 13, 14, 15 are wavy, and the wave/bright is continuous by the father. The rib 16 and the groove I are formed, and the rib 16 and the groove π can assist in dissipating the heat of the outer casing 1. In addition, as shown in Fig. 2, the outer casing 1 has a top surface 11' and four side walls. 12, 13, 13, 14', 15', wherein only two side walls 12' and 14 have a wavy surface, and the waves are staggered and continuous convex 16, and the groove 17, formed. It should be noted that the outer casing 1, 1' provides heat dissipation for the inductor, and the wavy surface provides an auxiliary effect of heat dissipation, which is not a necessary condition for heat dissipation. 2B and 2C, the covering bodies 2, 2" are formed by a solid mixture of powdery magnetic materials 20', 20" and powdery adhesives 21, 21" in a predetermined ratio. For covering the cores 4, 4' surrounding the coils 3, 3. Further, the powdery magnetic materials 20, 20 may be soft magnetic substances such as iron (Fe), iron bismuth aluminum (Mpp (FeNiM〇) / hi-flux (FeNi50)), and iron stone (sendust: FeSiAl), Ferrite, carb〇nyi iron, etc., the powdery adhesives 21', 21" may be solid resins. Further, the solid mixture may be doped with a powdery insulating material such as cerium oxide. To increase the solidity of the cladding 2, 2". Further, the pre-β ratio of the 'powdered magnetic material 20, 20' and the powdery adhesive 21, 21' may be 90% and 1%, 85% and 15%, or 80% and 20%, for example, Ί5Ί9 90% iron powder and 1% powdery resin. Next, the coils 3, 3 covered by the covering bodies 2', 2" are surrounded by the cores 4, 4 by a wire to form a coil body, and both ends of the wire are exposed as a wiring portion, 30" . Further, the cores 4, 4 may be made of ferrite (e.g., Zn-Zn ferrite or nickel-zinc ferrite) or a ferromagnetic substance (e.g., cobalt or iron). As shown in Fig. 2B, which is the heat-dissipating solid-state package inductor of the present invention, the cover-body embodiment is a columnar body. - The wire spiral 裒, %~ body 4 forms a coil body, and both ends of the wire are exposed to the covering body 2' to form a wiring portion 30'. The procedure for forming the covering body 2 shown in FIG. 2B is to firstly mix the powdery magnetic material 20 and the powdery adhesive 21 into a solid mixture in a mixing ratio, and then sequentially in a square mold. The solid mixture and the core 4 provided with the coil 3 are preferably placed such that the solid mixture around the anger 4 of the ring 3 is evenly distributed. The mold containing the solid mixture and the core 4 provided with the coil 3 is placed in an oven to perform a homogenization process of about 2 hours, and a slight pressure can be applied to the mold in the high temperature program. To maintain the solid mixture to form the cladding 2, the rear square shape. In addition, as shown in FIG. 2C, the core body 4 includes a center pillar portion 42 and a first portion formed at the both ends of the center pillar portion 42 as shown in the second embodiment of the present invention. And the second end portion 4, 43,1, the cross-sectional area of the vertical center pillar portion of the first and second end portions 41 and 43 is larger than the cross-sectional area of the center pillar portion 42, and may be, for example, an English letter! Font body. M418379 or as shown in FIG. 2C, the cross-sectional area of the second end portion 43 in the direction in which the central column portion 42 extends is larger than the cross-sectional area in the direction in which the first end portion 41 extends in the vertical column portion 42, that is, similar to the Chinese character I-shaped body. . The procedure of the covering body 2" shown in Fig. 2C is that the powdery magnetic material 20" and the powdery adhesive 21" are first uniformly mixed into a solid mixture at a mixing ratio, and then sequentially placed in a square mold. The ring is provided with a core 4' of the coil 3' and a solid mixture, ideally having a solid mixture filled in the gap between the center pillar portion 42 and the first end portion 41 and the square mold. The solid mixture and The mold with the core 4' of the coil 3' is placed in the oven for a high temperature program of about 100 degrees and 2 hours, and a slight pressure can be applied to the mold in the high temperature program to maintain the solid mixture to form a package. The square shape behind the cover 2". Since the powdery adhesives 21' and 21" are melted by heat to adhere to each other, the powdery magnetic materials 20' and 20" can be bonded from the dispersed state to the gathered state, and the tightly wrapped ring is provided with the coil 3. 3' core 4, 4'. Therefore, the coating body 2', 2" can be formed without the conventional high-pressure pressing process, and the bubble generation and powder sedimentation phenomenon caused by the conventional filling of the mold with the magnetic powder-filled gel can be avoided. The created heat-dissipating solid-state package inductor is covered on the periphery of the cladding body by a metal or wavy outer surface, and the cladding body contains a core body and a coil, thereby dissipating the inductor generated during operation. The heat is prevented from rising in temperature of the inductor. Further, the coated core system is formed by a solid mixture of a powdery magnetic material and a powdery adhesive, and after heating the mixture to form a coating, due to powdery Adhesive M418379 melts to bond to each other when heated, so that the powdery magnetic material can be bonded to each other by a powder adhesive without a high pressure process, which saves the equipment and cost required for the powder pressing process and avoids damage due to high pressure. The core body can also make the coated body without the problem of bubble generation and magnetic unevenness of the liquid adhesive. Thermal solid-state packaged inductors do not require high-cost equipment 'no problem of wrecking' and the resulting inductors are electromagnetically stable' and have the effect of dissipating heat. The above embodiments are merely illustrative of the principles of this creation. And the effect, and not for the purpose of limiting this creation. Anyone who is familiar with the technology can modify and change the above embodiments without departing from the spirit and scope of this creation. Therefore, the scope of protection of this creation should be The following is a list of patent applications. [Simplified Schematic] FIG. 1 is a schematic view showing the structure of the heat-dissipating solid-state package inductor of the present invention; FIG. 2A is a schematic diagram of the heat-dissipating solid-state package inductor of the present invention. FIG. 2B is a perspective view showing an embodiment of the covering body of the heat-dissipating solid-state package inductor of the present invention; and FIG. 2C is a schematic diagram showing the heat-dissipating solid state of the present invention. A perspective view of another embodiment of a package body encapsulating an inductor. [Main component symbol description] M418379 11, 11' top surface 12, 13, 14, 15, 12, 13, 14, 15, 15, side walls 16, 16, ribs 17, 17, grooves 2, 2, 2, 'wrapped body 20, 20' powdery magnetic material 21', 2Γ 3 ' 3, powder adhesive Coil 30, 30', 4, 4, 30" terminal core 41 first end 42 central post 43 second end

Claims (1)

第10〇212266芎專利申請案 100年10月20 “修正替換頁 六、申請專利範圍: - l 一種散熱式固態封裝電感器,包含: 芯體; 線圈’係將該芯體套設於其中; 包覆體’係為由粉狀磁性材料和粉狀黏著劑以一預 設比例所混合成的固態混合物而製作形成,用以包覆該 線圈及套設於其中的芯體並外露該線圈的兩末端以作 為接線部,以及 外设’係罩住該包覆體並外露該接線部以提供散 熱。 2,如申請專利範圍第1項所述之散熱式固態封裝電感器, 其中,該芯體為柱狀體、工字型體或I字型體。 3·如申請專利範圍第丨項所述之散熱式固態封裝電感器, 其中,該固態混合物係摻有粉狀絕緣材料。 4. 如申請專利範圍第1項所述之散熱式固態封裝電感器, 其中,該粉狀磁性材料為軟磁性物質。 5. 如申請專利範圍第1項所述之散熱式固態封裝電感器, 其中,該粉狀黏著劑為固態樹脂。 6·如申請專利範圍第丨項所述之散熱式固態封裝電感器’ 其中,該外殼的材質為金屬。 7·如申請專利範圍f 6項所述之散熱式固態封裝電感器, 其中,該金屬為鋁。 8·如申請專韻圍·第1項所述之散減固態封裝電感器, 其中,該外殼的至少一表面呈波浪狀。 M418379 第100212266號專利申ft奉 100年10月20曰修正替換頁 9. 如申請專利範圍第8項所述之散熱式固態封裝電感器, 其中,該外殼具有四個側壁,該四個側壁的至少一者的 表面呈波浪狀。 10. 如申請專利範圍第8或9項所述之散熱式固態封裝電感 器,其中,該波浪狀係由形成於該表面上之交錯而連續 的凸條和凹槽所形成。 1210th〇212266芎 Patent Application October 20th, 2010 “Revised Replacement Page 6, Patent Application Range: - l A heat-dissipating solid-state package inductor comprising: a core; The coating body is formed by a solid mixture of a powdery magnetic material and a powdery adhesive mixed at a predetermined ratio for coating the coil and the core sleeved therein and exposing the coil. The heat-dissipating solid-state package inductor according to claim 1, wherein the core is used as a wiring portion, and the peripheral portion is configured to cover the covering body and expose the wiring portion to provide heat dissipation. The body is a columnar body, an I-shaped body or an I-shaped body. The heat-dissipating solid-state package inductor according to the above-mentioned claim, wherein the solid mixture is doped with a powdery insulating material. The heat-dissipating solid-state package inductor according to claim 1, wherein the powdery magnetic material is a soft magnetic material, wherein the heat-dissipating solid-state package inductor according to claim 1, wherein The The adhesive is a solid resin. 6. The heat-dissipating solid-state package inductor according to the scope of the invention of claim 2, wherein the outer casing is made of metal. 7. The heat-dissipating solid state as described in claim 6 The packaged inductor, wherein the metal is aluminum. 8· The application of the special-purpose package inductor according to the above-mentioned item, wherein at least one surface of the outer casing is wavy. M418379 Patent No. 100212266 The heat-dissipating solid-state package inductor according to claim 8, wherein the outer casing has four side walls, and at least one of the four side walls has a surface 10. The heat-dissipating solid-state package inductor of claim 8 or claim 9, wherein the undulation is formed by staggered and continuous ribs and grooves formed on the surface.
TW100212266U 2011-07-05 2011-07-05 Heat dissipation formula Solid-state Package Inductor TWM418379U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100212266U TWM418379U (en) 2011-07-05 2011-07-05 Heat dissipation formula Solid-state Package Inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100212266U TWM418379U (en) 2011-07-05 2011-07-05 Heat dissipation formula Solid-state Package Inductor

Publications (1)

Publication Number Publication Date
TWM418379U true TWM418379U (en) 2011-12-11

Family

ID=46450557

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100212266U TWM418379U (en) 2011-07-05 2011-07-05 Heat dissipation formula Solid-state Package Inductor

Country Status (1)

Country Link
TW (1) TWM418379U (en)

Similar Documents

Publication Publication Date Title
TWI440056B (en) Non-high voltage solid-state packaging method of coil electronic component and coil electronic component made by the method
CN102714091B (en) Reactor
EP2584574B1 (en) Reactor
WO2011013394A1 (en) Reactor
TWI477023B (en) An electronic component package and method for making the same
JP2001185421A (en) Magnetic device and manufacuring method thereof
JP2012114444A (en) Method of producing inductor with high inductance
JP2005354001A (en) Magnetic core and coil component using it
US11756985B2 (en) Substrate-compatible inductors with magnetic layers
CN102810392B (en) Thin closed magnetic circuit inductor and manufacturing method thereof
JP2011142193A (en) Reactor
JP2013222741A (en) Reactor
TWM418379U (en) Heat dissipation formula Solid-state Package Inductor
JP2011199098A (en) Winding method of molded coil integrated with winding
JP2010218688A (en) Heat dissipating insulating material, manufacturing method thereof, and large current inductor
JP6452312B2 (en) Coil parts
JP2005260073A (en) Inductance element and its manufacturing method
JP7163565B2 (en) coil parts
JP2006004958A (en) Magnetic core and coil component using the same
JP2019073748A (en) Method for producing magnetic material, method for producing dust core, method for manufacturing coil component, dust core, and coil component
TWI511171B (en) Composite core and its preparation method
JP7296047B2 (en) Reactor
CN102810393B (en) Non-high voltage solid packaging method of coil electronic assembly and coil electronic component
JP6087708B2 (en) Winding element manufacturing method
TWI440055B (en) Thin magnetic field inductor and its preparation method

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees