TWM412574U - Driving circuit of light emitting diode - Google Patents

Driving circuit of light emitting diode Download PDF

Info

Publication number
TWM412574U
TWM412574U TW100206705U TW100206705U TWM412574U TW M412574 U TWM412574 U TW M412574U TW 100206705 U TW100206705 U TW 100206705U TW 100206705 U TW100206705 U TW 100206705U TW M412574 U TWM412574 U TW M412574U
Authority
TW
Taiwan
Prior art keywords
emitting diode
signal
coupled
light
driving circuit
Prior art date
Application number
TW100206705U
Other languages
Chinese (zh)
Inventor
Yung-Chen Lu
Original Assignee
Excelliance Mos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Excelliance Mos Corp filed Critical Excelliance Mos Corp
Priority to TW100206705U priority Critical patent/TWM412574U/en
Publication of TWM412574U publication Critical patent/TWM412574U/en

Links

Abstract

A driving circuit of a light emitting diode (LED) including an AC power, a rectifier, a power converter, a waveform sampler, and a control circuit is provided. The AC power provides an AC signal. The rectifier is coupled to the AC power and outputs a driving signal. The power converter is coupled to the rectifier. The power converter includes an LED and outputs a first signal positive correlated with a current passing through the LED. The waveform sampler is coupled between the AC power and the rectifier, and outputs a second signal directly proportional to the AC signal. The control circuit is coupled between the waveform sampler and the power converter, and outputs a control signal according to a comparison between the first signal and the second signal to the power converter.

Description

M412574 100-5-16 五、新型說明: 【新型所屬之技術領域】 本創作是有關於一種驅動電路,且特別是有關於一種 用於發光二極體(light emitting diode, LED)的驅動電路。 【先前技術】 發光二極體(light emitting diode, LED)體積小、省 電又耐用,再加上製程技術的曰益成熟,故近來以發光二 極體做為光源的產品越來越普遍。由於在發光二極體的操 作範圍内,偏壓的些微改變就會造成操作電流的大幅改 變’故發光二極體必須以定電流驅動,否則一旦電流超過 額定值,將會導致發光二極體燒毀。 圖1為習知發光二極體之驅動電路的示意圖。請參照 圖1 ’驅動電路100包括交流(alternating current,AC)電 壓源1〇卜橋式整流器102以及降壓轉換器(buck converter) U〇。交流電壓源101利用橋式整流器1〇2驅動發光二極體 103 ’其中發光二極體103 '電感104以及二極體1〇5輕接 成一個迴圈。時脈產生器106提供時脈信號至SR正反器 (SR fliP-flop) 108之設定端s,以於每次時脈脈衝時觸發 SR正反器108之設定端s,從而使得開關Qm導通。當開 關Qm導通時’流經發光二極體ι〇3及電感1〇4的電流逐 漸增加。此時’二極體1〇5被反向偏壓而不導通。因此流 過電阻Rsen之電流Isw等同於通過發光二極體ι〇3之電 ¥發光一極體1 〇3的電流增加到使電阻Rsen上的跨壓 5 M412574 100-5-16 ,過Vref時(例如為〇·5ν),比較器1〇7將觸發sr正反 裔之重置端R並使開關Qm截止。當開關截止時,發 光一極體103的電流在由發光二極體1〇3、電减1〇4、及二 極體105形成的迴圈中循環,並且該電流會隨發光二極^ 103之能源逸散而逐漸降低’直到下一次時脈脈衝產生。 因此,發光二極體⑼的電流係呈現—個週期性的鑛齒波 形,且大致上為一穩定的值。 另一方面,為了確保發光二極體103的電流是連續 的,通常會在橋式整流器102和降壓轉換器110之間耦接 大電容Cm,其例如為47微法拉(//F) 電容Cin用以維 持輸入之直流(direct current,DC)電壓Vein,以使直流 電壓Vein保持大於發光二極體1〇3之導通電壓vf的狀 態。然而’過大的電容Cin會導致範圍較窄的導通相位角 (conducting phase angle)及很差的輸入功率因數(power factor) 〇 若要提昇習知發光二極體驅動電路的功率因數,一種 解決方法是使用功率因數校正(power factor correction, PFC)前級電路。如圖2所示,圖2的發光二極體之驅動 電路100’便包括功率因數校正升壓(b〇ost PFC)控制電路 12〇,以提昇功率因數。但如圖2所示,雖然圖2的驅動電 路有較高的功率因數,但是這個驅動電路卻比圖1的驅動 電路複雜許多且更佔空間。然而,在很多小型之發光二極 體的照明裝置中,並沒有足夠空間來容納圖2中多出來的 電路元件。 M412574 100-5-16 【新型内容】 本創作提供一種發光二極體的驅動電路,其具有良好 的力率因數(power factor)。 本創作提出一種發光二極體的驅動電路,其包括一交 "’匕书溽、一整流器、一電力轉換器、—波形取樣器以及一 ' 電路。交流電源具有一第一端與—第二端,並透過第 • 一端與第二端提供一交流信號。整流器具有一第三端、一 鲁帛,與—第五端。第三端與第四端分別減第-端與第 令而且整流斋透過第五端輸出一驅動信號。電力轉換器 ^有一第六端,且第六端耦接第五端。電力轉換器包括一 ^光一極體,並透過一第七端輸出一正相關於通過發光二 極體之電流的第-信號。波形取樣器具有一第八端與一第 ^端。第八端耦接於交流電源與整流器之間,且波形取樣 态透過第九端輸出一正比於交流信號之第二信號 。控制電 路具有一第十端。控制電路耦接於波形取樣器的第九端與 • 電力轉換器的第七端之間,並透過第十端輸出-控制信^M412574 100-5-16 V. New description: [New technical field] This creation is related to a driving circuit, and in particular to a driving circuit for a light emitting diode (LED). [Prior Art] Light-emitting diodes (LEDs) are small in size, power-saving and durable, and with the mature technology of process technology, products with light-emitting diodes as light sources have become more and more popular. Since the slight change of the bias voltage causes a large change in the operating current within the operating range of the light-emitting diode, the light-emitting diode must be driven at a constant current, otherwise the current will exceed the rated value, which will result in a light-emitting diode. The body burned. FIG. 1 is a schematic diagram of a conventional driving circuit of a light emitting diode. Referring to Fig. 1, the driving circuit 100 includes an alternating current (AC) voltage source 1 and a buck converter 102 and a buck converter. The AC voltage source 101 drives the LEDs 103' by the bridge rectifiers 1', wherein the LEDs 104' and the diodes 1'5 are lightly connected in a loop. The clock generator 106 provides a clock signal to the set terminal s of the SR flip-flop 108 to trigger the set terminal s of the SR flip-flop 108 each time the pulse pulse is made, thereby turning on the switch Qm. . When the switch Qm is turned on, the current flowing through the light-emitting diode ι〇3 and the inductor 1〇4 gradually increases. At this time, the diode 1〇5 is reverse biased and is not turned on. Therefore, the current Isw flowing through the resistor Rsen is equivalent to the electric current of the light-emitting diode 1 〇3 passing through the light-emitting diode ι3 to the voltage across the resistor Rsen 5 M412574 100-5-16, when Vref is passed (For example, 〇·5ν), the comparator 1〇7 will trigger the reset terminal R of the sr positive and negative and the switch Qm is turned off. When the switch is turned off, the current of the light-emitting body 103 is circulated in a loop formed by the light-emitting diode 1〇3, the electrical minus 1〇4, and the diode 105, and the current will follow the light-emitting diode 103 The energy is dissipated and gradually decreases 'until the next clock pulse is generated. Therefore, the current of the light-emitting diode (9) exhibits a periodic ore tooth waveform and is substantially a stable value. On the other hand, in order to ensure that the current of the light-emitting diode 103 is continuous, a large capacitance Cm is commonly coupled between the bridge rectifier 102 and the buck converter 110, which is, for example, a 47 microfarad (//F) capacitor. The Cin is used to maintain the input direct current (DC) voltage Vein such that the DC voltage Vein is kept larger than the on-voltage vf of the light-emitting diodes 1〇3. However, an excessively large capacitor Cin results in a narrower conducting phase angle and a poor input power factor. To improve the power factor of a conventional LED driver circuit, a solution It is a power factor correction (PFC) pre-stage circuit. As shown in Fig. 2, the driving circuit 100' of the LED of Fig. 2 includes a power factor correction boost (b〇ost PFC) control circuit 12' to boost the power factor. However, as shown in Fig. 2, although the driving circuit of Fig. 2 has a higher power factor, this driving circuit is much more complicated and more space-consuming than the driving circuit of Fig. 1. However, in many small lighting diode lighting devices, there is not enough space to accommodate the extra circuit components of Figure 2. M412574 100-5-16 [New content] This creation provides a driving circuit for a light-emitting diode with a good power factor. The present invention proposes a driving circuit for a light-emitting diode, which comprises an intersection, a rectifier, a power converter, a waveform sampler, and a 'circuit. The AC power source has a first end and a second end, and provides an AC signal through the first end and the second end. The rectifier has a third end, a reed, and a fifth end. The third end and the fourth end respectively reduce the first end and the third end, and the rectification fast outputs a driving signal through the fifth end. The power converter has a sixth end, and the sixth end is coupled to the fifth end. The power converter includes a photodiode and outputs a first signal positively related to a current through the light emitting diode through a seventh terminal. The waveform sampler has an eighth end and an eighth end. The eighth end is coupled between the AC power source and the rectifier, and the waveform sampling state outputs a second signal proportional to the AC signal through the ninth terminal. The control circuit has a tenth end. The control circuit is coupled between the ninth end of the waveform sampler and the seventh end of the power converter, and is output through the tenth end-control signal

• 至電力轉換器。 U - 在本創作之—實施例中,上述之波形取樣ϋ包括-第 -電阻以及-第二電阻。第—電阻的_端_交流電源, 且其另-端耗接波形取樣器之第九端。第二電阻的一 接第-電阻與波形取樣器之第九端,且其另一端麵接 地端。 在本創作之-實施例中,發光二極體的驅動電路 括-第三電阻以及-第四電阻。第三電阻的一端爐交旋 7 M412574 100-5-16 %源之第一端’且其另一端輕接第一電阻。第 端輪接第三電阻,且其另-端祕交流電源^電^一 在本創作之一實施例中,發光二極體的驅動=端。勹 括一電容。電容耦接於整流器之第五端與—接地^路更包 在本創作之一實施例中’上述之電力轉換器^二 開關以及一電流感測器。開關耦接發光二極體。, 器耦接於開關與一接地端,電流感測器透過m "IL感測 —片咕 处巧弟七端輸出第 k號為一電屋 在本創作之一實施例中,上述之該第一 在本創作之一實施例中,上述之電流感測器包括一第 五電阻。第五電阻與發光二極體串聯耦接。 在本創作之一實施例中’上述之電力轉換器為一降塵 轉換器(buck converter )。 在本創作之一實施例中,上述之電力轉換器為一返馳 式轉換器(fly back converter )。 在本創作之一實施例中’上述之電力轉換器為一順向 式轉換器(forward converter )。• To the power converter. U - In the present embodiment, the waveform sample 上述 includes a -th resistor and a second resistor. The _ terminal of the first resistor is an AC power source, and the other end of the resistor is connected to the ninth terminal of the waveform sampler. The second resistor is connected to the ninth end of the waveform resistor and the other end of the waveform is connected to the ground terminal. In the present invention, the driving circuit of the light emitting diode includes a third resistor and a fourth resistor. One end of the third resistor is interleaved 7 M412574 100-5-16% of the first end of the source and the other end is lightly connected to the first resistor. The first end is connected to the third resistor, and the other end is connected to the AC power source. In one embodiment of the present invention, the driving of the LED is = terminal. Include a capacitor. The capacitor is coupled to the fifth end of the rectifier and the grounding circuit. In one embodiment of the present invention, the power converter and the current sensor are described above. The switch is coupled to the light emitting diode. The device is coupled to the switch and a ground terminal, and the current sensor is transmitted through the m "IL sensing - the chip is at the seven-terminal output of the Q-th is an electric house. In an embodiment of the present invention, the above-mentioned First, in an embodiment of the present invention, the current sensor includes a fifth resistor. The fifth resistor is coupled in series with the light emitting diode. In one embodiment of the present invention, the power converter described above is a buck converter. In one embodiment of the present invention, the power converter described above is a fly back converter. In one embodiment of the present invention, the power converter described above is a forward converter.

在本創作之一實施例中,上述之控制電路包括一時脈 產生器、一SR正反器以及一比較器。一 SR正反器耦接時 脈產生器與電力轉換器之間eSR正反器具有一設定端以及 —重置端,並透過設定端接收一時脈信號。比較器具有一 正端、—負端以及一輸出端。正端耦接電力轉換器之第七 端’負端耦接波形取樣器之第九端,且輸出端耦接至SR M412574 100-5-16 正反器之重置端。 在本創作之一實施例中,上述之整流器為一橋式整流 器(bridge rectifier)。 基於上述,本創作所之實施例藉由將波形取樣器直接 耦接交流電源以擷取第二信號,故所擷取的第二信號會很 接近交流信號而不被後端負載元件所影響,進而可提供較 1¾的功率因數。 為讓本創作之上述特徵和優點能更明顯易懂,下文特 舉實施例’並配合所附圖式作詳細說明如下。 【實施方式】 第一實施例 圖3為本創作第一實施例之發光二極體之驅動電路的 示意圖。請參照圖3,發光二極體的驅動電路3〇〇包括交 流電源(ACpower) 310、整流器(rectifier) 320、電力轉 換器(power converter) 330、波形取樣器340以及控制電 路350。交流電源310具有第一端E1與第二端E2,並透 過第一端E1與第二端E2提供交流信號Vac以驅動發光二 極體,其中本貫施例之交流信號Vac例如為交流電壓。 如圖3所示,本實施例之整流器32〇例如為橋式整流 器(bridge rectifier)。詳細來說,整流器32〇具有第三端 E3、第四端E4與第五端E5,其中第三端E3與第四端E4 分別耦接交流電源310之第—端E1與第二端E2。另外, 整流器320透過第五端E5輸出驅動信號Idr,且驅動信號 9 M412574 100-5-16In one embodiment of the present invention, the control circuit includes a clock generator, an SR flip-flop, and a comparator. An SR flip-flop coupled to the eSR flip-flop between the clock generator and the power converter has a set terminal and a reset terminal, and receives a clock signal through the set terminal. The comparator has a positive terminal, a negative terminal, and an output terminal. The seventh end of the positive terminal coupled to the power converter is coupled to the ninth end of the waveform sampler, and the output is coupled to the reset end of the SR M412574 100-5-16 flip-flop. In one embodiment of the present invention, the rectifier described above is a bridge rectifier. Based on the above, the embodiment of the present invention captures the second signal by directly coupling the waveform sampler to the AC power source, so that the captured second signal is very close to the AC signal and is not affected by the back end load component. In turn, a power factor of more than 13⁄4 can be provided. To make the above-described features and advantages of the present invention more comprehensible, the following detailed description is made in conjunction with the accompanying drawings. [Embodiment] FIG. 3 is a schematic view showing a driving circuit of a light-emitting diode according to a first embodiment of the present invention. Referring to FIG. 3, the driving circuit 3 of the light emitting diode includes an AC power source 310, a rectifier 320, a power converter 330, a waveform sampler 340, and a control circuit 350. The AC power source 310 has a first end E1 and a second end E2, and provides an AC signal Vac through the first end E1 and the second end E2 to drive the LED. The AC signal Vac of the present embodiment is, for example, an AC voltage. As shown in Fig. 3, the rectifier 32 of the present embodiment is, for example, a bridge rectifier. In detail, the rectifier 32 has a third end E3, a fourth end E4 and a fifth end E5, wherein the third end E3 and the fourth end E4 are respectively coupled to the first end E1 and the second end E2 of the AC power source 310. In addition, the rectifier 320 outputs a driving signal Idr through the fifth end E5, and the driving signal 9 M412574 100-5-16

Wr例如為驅動電流。除此之外,最大的特色是直接取交流 信號Vac作訊號控制,且驅動電路300之電容C1的數值 可以报小(約0.1微法拉(VF)),其中電容C1在此作為 高頻濾波電容使用。然而,若是取整流器320的直流電源 作訊號控制’則驅動電路300之電容C1的數值變需約1 微法拉’以穩定直流電源訊號和避免負載效應所造成訊號 失真’進而避免功率因數(p0wer fact〇r)之降低。 請繼續參照圖3,電力轉換器330具有第六端E6,且 第六端E6耦接整流器320之第五端E5。另外,電力轉換 器330包括發光二極體332 (僅示意地繪示三個),且電 力轉換器330透過第七端E7輸出信號VI,其中信號VI 正相關於通過發光二極體332之電流II ^亦即,通過發光 —極體332之電流II越高,則信號vi越大,而本實施例 之信號VI例如為電壓信號。另外,在本實施例中,電力 轉換器330例如為降壓轉換器(buck converter )。詳細來 说,除了發光二極體332以外,電力轉換器33〇還包括二 極體D卜電感L1、開關Q1以及電流感測器334。電流感 測器334耦接於開關Q1與接地端,且電流感測器334透 過第七端E7輸出信號V卜除此之外’電流感測器334包 括電阻Res ’且電阻RCS與發光二極體332串聯耦接。其 中L號vi其大小值相當於電阻Rcs上的跨壓。換句話說, 電阻Res適於將通過發光二極體332之電流n轉換成電廢 信號(即信號VI) ’並在電阻Rcs之端點(對應第七端 E7)提供電壓信號VI » 100-5-16 另一方面,波形取樣器340具有第八端E8與第九端 E9,第八端E8耦接於交流電源31〇與整流器32〇之間, 且波形取樣340透過第九端E9輸出一正比於交流信號 yac之信號V2。其中信號V2例如電壓信號,且為交流信 諕Vac的分壓。如圖3所示,波形取樣器34〇包括電阻幻 .與R2。詳細來說,電阻R1的一端輕接交流電源31〇,且 电阻R1的另一端耦接波形取樣器340之第九端E9。電阻 • R2的一端柄接電阻幻與波形取樣器之第九端E9,且電阻 R2的另-端輕接接地端。另一方面,發光二極體的驅動電 路300更包括電阻R3、R4。其中電阻R3的一端搞接交流 電源310之第-端^,且電阻幻的另一端柄接電阻幻。 ^阻R4的-端搞接於電阻R3,且電阻R4的另一端減 父流電源310之第二端E2。由上述可知,電阻R1〜R4係 =成-分壓電路’因此信號V2會正比於交流電源31〇之 ]出的父流彳s號Vac。值得一提的是,由於波形取樣器34〇 鲁 直接和交流電源310耦接,而非透過整流器32〇再與交流 電源310 _接’故所分壓出來的信?虎%較不會受到後端 元件(例如整流器320或電容C1或其他電子元件)影塑, 從而信號W的波形可啸接近交騎號Vae的波形/ ,請繼續參照圖3,本實施例之控制電路350耦接於波 形取樣、器340的第九端E9與電力轉換器33〇的第七端E7 之間’並透過第十端E10輸出控制信號灿至電力轉換器 330。控制電路350用以根據信號V1和V2的比較結果來 使開關Q1導通或截止,以開啟或關閉降電力轉換器別。 11 M412574 100-5-16 詳細來說,控制電路350透過第十端E10輸出控制信號Sctl 至電力轉換器330,以開啟或關閉電力轉換器330。如圖3 所示’控制電路350包括時脈產生器352、SR正反器354 以及比較器356。SR正反器354耦接於時脈產生器352與 電力轉換器330之間。SR正反器354具有設定端S、重置 端R以及輸出端Q。時脈產生器352耦接到SR正反器354 之設定端S,以使SR正反器354透過設定端S接收時脈 信號Sdk。SR正反器354之輸出端Q耦接到開關φ,並 透過輸出端Q輸出控制信號s c t丨以開啟或關閉電力轉換器 330。比較器356包括正端Ep、負端EN及輸出端〇ρι。 正端EP耦接電力轉換器33〇之第七端E7,用以接收信號 VI。負端EN耦接波形取樣器34〇之第九端E9,用以接收 信號V2。輸出端0P1耦接至SR正反器之重置端尺。當信 號VI之電壓準位高於信號V2之電壓準位時,比較器 之輸出端OP1會觸發SR正反器354之重置端R。 詳細來說,時脈產生器352輸出時脈信號Sclk至SR 正反态354之設定端s。在每一個時脈產生時,設定端s ,被觸發,進而致能SR正反器354之輸出,使開關Q1 通。當開關qi導通時,發光二極體332的電流η等同 經開關Q1及電流感測I! 334之電流,即電流Ies。此 時’二極體D1被反偏而不導通。流經發光二極體332及 ^感L1的電流II會隨第六端E6之電壓Vsw的增加而逐 ,直到信號V1高於電壓信號%,接著比較器说 之輸出端0P1觸發SR正反器354之重置端R,SR正反器 12 M412574 100-5-16 之輸出端Q輸出控制信號Sctl使開關Q1戴止。當開關Q1 截止時,電流Ics降成為零。此時發光二極體332的電流 II在由發光二極體332、電感L1及二極體D1所形成的迴 圈中流動,並且因為發光二極體332之功率逸散而逐漸降 低,直到下一次來自於時脈產生器352之時脈脈衝出現。 圖4A為圖3之發光二極體的驅動電路3〇〇在交流電 源310為正電壓Vac+時的電流路徑示意圖。如圖4A所示, 當父>’il電源310係提供正電壓Vac+時,部分的電流iacl 所經過的路徑P1依序為第一端m、電阻R3、波形取樣器 340、接地端、二極體D2以及第二端E2。其中當電流Iacl 流經波形取樣器340的電阻R2時,會於比較器356的負 端EN產生對應正電壓vac+的信號V2,並提供信號V2給 比較器356以進行比較,進而開啟或關閉電力轉換器33〇。 應注意的是,由於本實施例的波形取樣器34〇是與交流電 源310直接耦接’而不是透過整流器32〇或電容ci再與 交流電源310間接耦接,亦即整流器320與電容C1並非 輕接於波形取樣器340與交流電源310之間,因此電流iaci 的大小較不會受到例如是電容Cl或整流器320等其他負 载影響,從而使得波形取樣器340所輸出的信號V2會更 接近正電壓Vac+。而由於所要擷取的信號V2更接近源頭 (亦即正電壓Vac+),電流Ics所切換出來的電流波形會 更接近正電壓Vac+的電壓波形,進而使得驅動電流I(jr的 波形和電流Iacl的波形更接近正電壓Vac+波形,而得到更 而的功率因數。另一方面,相較於圖1習知的電路而言, 13 M412574 100-5-16 由於圖1的比較器107是接收到一個固定的參考電壓 Vref’故圖i之電流Isw無法追隨正電壓乂扣+的波形而得 到好的功率因數。而在本實施例中,由於波形取樣器34〇 直接耦接於源頭,使得比較器356所接收的信號V2能隨 著正電壓Vae+改變’故電流Ies切換出來的電流波形會更 接=正電壓Vac+波形,從而使得電流Iac的波形更接近正 電壓Vac+的波形,進而得到良好的功率因數。 圖4B為圖3之發光二極體的驅動電路3〇〇在交流電 源310為負電壓Vac-時的電流路徑示意圖。如圖4B所示, 當交流電源310係提供負電壓Vac-時’部分的電流Iac2 所經過的路徑P2依序為第二端E2、電阻R4、波形取樣器 340、接地端、二極體D3以及第一端m。其中當電流 /’il經波形取樣器340的電阻R2時,會於比較器356的負 端EV產生對應負電壓Vac_的信號V2,並提供信號v2給 比較器356以進行比較,進而開啟或關閉電力轉換器Mo。 類似地,由於波形取樣器340直接和交流電源31〇耦接, 使和·其所要操取的信號V2很接近源頭(亦即負電壓vac ),使得提供的信號V2能隨著負電壓vac-改變,讓電 & Ics切換出來的電流波形,更接近負電塵vac••波形,最 終使得Iac2電流形更接近負電壓Vac-波形,而得到良好 的功率因數。相較於圖1習知的電路而言,由於圖1的比 較器107是接收到一個為固定的參考電塵Vref,故圖^之 電流Isw無法追隨負電壓Vac_波形而得到好的功率因數。 而在本實施例中,由於波形取樣器340直接耦接於源頭, 14 M412574 100-5-16 使得提供的信號V2能隨著負電壓vac_改變,以讓電流ICS 切換出來的電流波形更接近負電壓Vac—的電壓波形’最終 使得電流Iac2的波形更接近負電壓Vac-的波形,而得到 良好的功率因數。圖5為圖3之發光二極體的驅動電路300 的交流信號Vac與信號V2的波形圖。由圖5可知,在本 實施例中,由於波形取樣器340所擷取的信號V2與交流 電源310所提供交流信號Vac很接近,故發光二極體之驅 動電路300確實能提供良好的功率因數。值得一提的是, 在本實施例令,不管交流信號Vac為正電壓Vac+或負電壓 Vac— ’波形取樣器340所擷取出的信號V2皆為直流電壓 且例如為正。換句話說,在本實施例中,在截取信號V2 之前,無需再另外配置一用以整流交流信號Vac的整流器 便能獲得直流信號V2以供比較器356使用,故能節省電 路的配置空間。 第二實施例 圖6為本創作第二實施例之發光二極體之驅動電路的 示意圖。驅動電路400與圖3之發光二極體之驅動電路3〇〇 類似’惟二者主要差異之處在於:本實施例之電力轉換器 430為返馳式轉換器(flybackconverter)。如圖6所示, 電力轉換器430包括變壓器432,其中開關Q1與電流感測 器334位於變壓器432的一次側(primary side),且發光 二極體332、電容C2與二極體D4位於變壓器432的二次 側(secondary side)。詳細來說’二極體D4 _接電容匸2 15 M412574 100-5-16 與發光二極體332,且電容C2與發光二極體332彼此並聯 耦接。變壓器432的一次側會提供一固定功率(Vsw*Itr), 並將此固定功率(Vsw*Itr)轉換到二次侧以形成與一次侧之 功率相同的功率(V〗ed*I2),進而提供電流12給發光二極體 332以使發光二極體322發光,其中Vied為三個發光二極 體332的跨壓。另外,當開關Q1開啟時,由於二極體D4 被反偏而不導通,當開關Q1截止時,二極體D4被順偏而 導通。由於相關的運作原理可參照第一實施例,故在此便 不加贅述。 第三實施例 一圖7為本創作第三實施例之發光二極體之驅動電路的 示意圖。驅動電路500與圖6之發光二極體之驅動電路400 類似,惟二者主要差異之處在於:本實施例之電力轉換器 530為順向式轉換器(forward converter)。如圖7所示, 電力轉換器530包括變壓器532,其中開關Qi與電流感測 器334位於變壓器532的一次側,且發光二極體332、二 極體D5〜D6位於變壓器532的二次側。如圖7所示,二極 體D5輕接二極體D6與電感L3 ’電感L3與發光二極體 332耦接,且二極體D6、電感L3與發光二極體332形成 一迴圈。變壓器532的一次侧會提供一固定功率 (Vsw*Itr) ’並將此固定功率(Vsw*Itr)轉換到二次侧以形成 與一次侧之功率相同的功率(Vled*I3),進而提供電流13給 發光二極體332以使發光二極體322發光,其中Vled為三 M412574 100-5-16 個發光二極體332的跨壓。另外,當開關qi開啟時,由 於二極體D5被順偏而導通’當開關qi截止時,二極體 D5被反偏而不導通。由於相關的運作原理可參照第一實施 例,故在此不加贅述。 综上所述’本創作之實施例藉由將波形取樣器直接耦 接於交流電源以擷取分壓信號,故分壓信號會很接近交流 信號而不被後端負載元件所影響。如此一來,便能使輸入 電流(如電流Iacl或Iac2)更接近輸入的交流訊號,故能 提供較高的功率因數。另外,由於電路設計不複雜且電容 的尺寸也大為減小,故能減少電路架構的體積。 雖然本創作已以實施例揭露如上,然其並非用以限定 本創作’任何所屬技術領域中具有通常知識者,在不脫離 本創作之精神和範圍内,當可作些許之更動與潤飾,故本 創作之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1為習知發光二極體之驅動電路的示意圖。 圖2為習知發光二極體之驅動電路的示意圖。 一立圖3為本創作第一實施例之發光二極體之驅動電路的 不意圖。 圖4A為圖3之發光二極體的驅動電路在交流雷 正電壓時的電流路徑示意圖。 為 圖4B為圖3之發光二極體的驅動電路在交流電 負電壓時的電流路徑示意圖。 17 M412574 100-5-16 圖5為圖3之發光二極體的驅動電路的交流信號與信 號的波形圖。 圖6為本創作第二實施例之發光二極體之驅動電路的 示意圖。 之驅動電路的 圖7為本創作第三實施例之發光二極體 示意圖。 【主要元件符號說明】 發光二極體的驅動電路 100、100’、300、400、500 : 110 :降壓轉換器 ιοί :交流電壓源 102 :橋式整流器 104、 L1 :電感 105、 D1 〜D6 :二極體 103、332 :發光二極體 108、354 : SR 正反器 120 . PFC升壓控制電路 310 :交流電源 320 :整流器 330、430、530 :電力轉換器 334 :電流感測器 340 :波形取樣器 350 :控制電路 352 :時脈產生器 M412574 100-5-16Wr is, for example, a drive current. In addition, the biggest feature is that the AC signal Vac is directly taken as the signal control, and the value of the capacitor C1 of the driving circuit 300 can be reported as small (about 0.1 microfarad (VF)), wherein the capacitor C1 is used as the high frequency filter capacitor. use. However, if the DC power supply of the rectifier 320 is used for signal control, the value of the capacitor C1 of the driving circuit 300 needs to be about 1 microfarad to stabilize the DC power signal and avoid signal distortion caused by the load effect, thereby avoiding the power factor (p0wer fact). 〇r) reduction. Referring to FIG. 3, the power converter 330 has a sixth end E6, and the sixth end E6 is coupled to the fifth end E5 of the rectifier 320. In addition, the power converter 330 includes a light emitting diode 332 (only three are schematically shown), and the power converter 330 outputs a signal VI through the seventh end E7, wherein the signal VI is positively related to the current passing through the light emitting diode 332. II ^ That is, the higher the current II through the light-emitting body 332, the larger the signal vi, and the signal VI of the present embodiment is, for example, a voltage signal. Further, in the present embodiment, the power converter 330 is, for example, a buck converter. In detail, in addition to the light-emitting diode 332, the power converter 33A further includes a diode D, an inductor L1, a switch Q1, and a current sensor 334. The current sensor 334 is coupled to the switch Q1 and the ground, and the current sensor 334 outputs the signal V through the seventh end E7. The current sensor 334 includes the resistor Res and the resistor RCS and the LED The bodies 332 are coupled in series. The size of the L number vi is equivalent to the voltage across the resistor Rcs. In other words, the resistor Res is adapted to convert the current n through the light-emitting diode 332 into an electrical waste signal (ie, signal VI)' and provide a voltage signal VI » 100 at the end of the resistor Rcs (corresponding to the seventh end E7). 5-16, the waveform sampler 340 has an eighth end E8 and a ninth end E9. The eighth end E8 is coupled between the AC power source 31〇 and the rectifier 32〇, and the waveform sample 340 is output through the ninth end E9. A signal V2 proportional to the AC signal yac. The signal V2 is, for example, a voltage signal, and is a divided voltage of the AC signal Vac. As shown in FIG. 3, the waveform sampler 34A includes a resistor illusion and R2. In detail, one end of the resistor R1 is lightly connected to the AC power source 31〇, and the other end of the resistor R1 is coupled to the ninth end E9 of the waveform sampler 340. Resistor • One end of the R2 handle is connected to the ninth terminal E9 of the waveform sampler, and the other end of the resistor R2 is connected to the ground. On the other hand, the driving circuit 300 of the light emitting diode further includes resistors R3 and R4. One end of the resistor R3 is connected to the first end of the AC power source 310, and the other end of the resistor is connected to the resistor. The end of the resistor R4 is connected to the resistor R3, and the other end of the resistor R4 is subtracted from the second terminal E2 of the parent power source 310. As can be seen from the above, the resistors R1 to R4 are =-divider-voltage circuits. Therefore, the signal V2 is proportional to the parent current 彳s number Vac of the AC power source 31. It is worth mentioning that since the waveform sampler 34 is directly coupled to the AC power source 310, rather than through the rectifier 32, and then connected to the AC power source 310, the letter of the compressor is less likely to be affected. The end element (such as the rectifier 320 or the capacitor C1 or other electronic components) is shaped, so that the waveform of the signal W can be close to the waveform of the riding Vae. Please continue to refer to FIG. 3. The control circuit 350 of the embodiment is coupled to the waveform. The ninth end E9 of the sampler 340 and the seventh end E7 of the power converter 33' are outputted to the power converter 330 through the tenth end E10. The control circuit 350 is configured to turn the switch Q1 on or off according to the comparison result of the signals V1 and V2 to turn the power down converter on or off. 11 M412574 100-5-16 In detail, the control circuit 350 outputs the control signal Sct1 to the power converter 330 through the tenth terminal E10 to turn the power converter 330 on or off. As shown in FIG. 3, the control circuit 350 includes a clock generator 352, an SR flip-flop 354, and a comparator 356. The SR flip-flop 354 is coupled between the clock generator 352 and the power converter 330. The SR flip-flop 354 has a set terminal S, a reset terminal R, and an output terminal Q. The clock generator 352 is coupled to the set terminal S of the SR flip-flop 354 to cause the SR flip-flop 354 to receive the clock signal Sdk through the set terminal S. The output terminal Q of the SR flip-flop 354 is coupled to the switch φ, and outputs a control signal s c t丨 through the output terminal Q to turn the power converter 330 on or off. The comparator 356 includes a positive terminal Ep, a negative terminal EN, and an output terminal 〇ρι. The positive terminal EP is coupled to the seventh end E7 of the power converter 33A for receiving the signal VI. The negative terminal EN is coupled to the ninth terminal E9 of the waveform sampler 34A for receiving the signal V2. The output terminal 0P1 is coupled to the reset end scale of the SR flip-flop. When the voltage level of the signal VI is higher than the voltage level of the signal V2, the output terminal OP1 of the comparator triggers the reset terminal R of the SR flip-flop 354. In detail, the clock generator 352 outputs the set terminal s of the clock signal Sclk to the SR forward and reverse 354. At each clock generation, the set terminal s is triggered to enable the output of the SR flip-flop 354 to cause the switch Q1 to pass. When the switch qi is turned on, the current η of the light-emitting diode 332 is equivalent to the current through the switch Q1 and the current sense I! 334, that is, the current Ies. At this time, the diode D1 is reverse biased and not turned on. The current II flowing through the light-emitting diode 332 and the sense L1 increases with the increase of the voltage Vsw of the sixth terminal E6 until the signal V1 is higher than the voltage signal %, and then the output terminal 0P1 of the comparator triggers the SR flip-flop The reset terminal R of 354, the output terminal Q of the SR flip-flop 12 M412574 100-5-16 outputs a control signal Sctl to cause the switch Q1 to be worn. When switch Q1 is turned off, current Ics drops to zero. At this time, the current II of the light-emitting diode 332 flows in the loop formed by the light-emitting diode 332, the inductor L1, and the diode D1, and gradually decreases due to the power dissipation of the light-emitting diode 332 until the next A clock pulse from the clock generator 352 appears once. 4A is a schematic diagram showing a current path of the driving circuit 3 of the LED of FIG. 3 when the AC power source 310 is at a positive voltage Vac+. As shown in FIG. 4A, when the parent >'il power source 310 provides a positive voltage Vac+, the path P1 through which part of the current iacl passes is the first terminal m, the resistor R3, the waveform sampler 340, the ground terminal, and the second. The pole body D2 and the second end E2. When the current Iacl flows through the resistor R2 of the waveform sampler 340, a signal V2 corresponding to the positive voltage vac+ is generated at the negative terminal EN of the comparator 356, and a signal V2 is supplied to the comparator 356 for comparison, thereby turning the power on or off. Converter 33〇. It should be noted that since the waveform sampler 34A of the present embodiment is directly coupled to the AC power source 310, instead of being indirectly coupled to the AC power source 310 through the rectifier 32 or the capacitor ci, that is, the rectifier 320 and the capacitor C1 are not Lightly connected between the waveform sampler 340 and the AC power source 310, the current iaci is less affected by other loads such as the capacitor C1 or the rectifier 320, so that the signal V2 output by the waveform sampler 340 is closer to positive. Voltage Vac+. Since the signal V2 to be captured is closer to the source (ie, the positive voltage Vac+), the current waveform switched by the current Ics is closer to the voltage waveform of the positive voltage Vac+, thereby causing the driving current I (jr waveform and current Iacl). The waveform is closer to the positive voltage Vac+ waveform, resulting in a more power factor. On the other hand, compared to the conventional circuit of Figure 1, 13 M412574 100-5-16 since the comparator 107 of Figure 1 receives a The fixed reference voltage Vref' is such that the current Isw of the graph i cannot follow the waveform of the positive voltage snap + to obtain a good power factor. In the embodiment, since the waveform sampler 34 is directly coupled to the source, the comparator is made. The signal V2 received by 356 can change with the positive voltage Vae+, so the current waveform switched by the current Ies will be connected to the positive voltage Vac+ waveform, so that the waveform of the current Iac is closer to the waveform of the positive voltage Vac+, thereby obtaining good power. Figure 4B is a schematic diagram of the current path of the driving circuit 3 of the light-emitting diode of Figure 3 when the AC power source 310 is at a negative voltage Vac-. As shown in Figure 4B, when the AC power source 310 is provided with a negative power. The path P2 through which the portion of the current Iac2 passes is sequentially the second terminal E2, the resistor R4, the waveform sampler 340, the ground terminal, the diode D3, and the first terminal m. When the current/'il is waveform When the resistor R2 of the sampler 340 is generated, a signal V2 corresponding to the negative voltage Vac_ is generated at the negative terminal EV of the comparator 356, and a signal v2 is supplied to the comparator 356 for comparison, thereby turning the power converter Mo on or off. Since the waveform sampler 340 is directly coupled to the AC power source 31, the signal V2 to be operated is close to the source (ie, the negative voltage vac), so that the supplied signal V2 can be changed with the negative voltage vac-, Let the current waveform switched by the electric & Ics be closer to the negative electric vac•• waveform, and finally make the Iac2 current shape closer to the negative voltage Vac-waveform, and get a good power factor. Compared with the conventional circuit of Fig. 1 In other words, since the comparator 107 of FIG. 1 receives a fixed reference dust Vref, the current Isw of the graph cannot follow the negative voltage Vac_ waveform to obtain a good power factor. Sampler 340 is directly coupled At the source, 14 M412574 100-5-16 allows the supplied signal V2 to change with the negative voltage vac_, so that the current waveform switched by the current ICS is closer to the voltage waveform of the negative voltage Vac—finally making the waveform of the current Iac2 more The waveform of the negative voltage Vac- is obtained, and a good power factor is obtained. Fig. 5 is a waveform diagram of the alternating current signal Vac and the signal V2 of the driving circuit 300 of the light emitting diode of Fig. 3. As can be seen from Fig. 5, in this embodiment, Since the signal V2 captured by the waveform sampler 340 is close to the AC signal Vac provided by the AC power source 310, the driving circuit 300 of the LED can provide a good power factor. It should be noted that, in this embodiment, regardless of whether the AC signal Vac is a positive voltage Vac+ or a negative voltage Vac-', the waveform V2 extracted by the waveform sampler 340 is a DC voltage and is, for example, positive. In other words, in the present embodiment, before the signal V2 is intercepted, the rectifier signal for rectifying the AC signal Vac can be additionally configured to obtain the DC signal V2 for use by the comparator 356, thereby saving the configuration space of the circuit. SECOND EMBODIMENT Fig. 6 is a schematic view showing a driving circuit of a light-emitting diode according to a second embodiment of the present invention. The driving circuit 400 is similar to the driving circuit 3A of the light-emitting diode of Fig. 3. The main difference is that the power converter 430 of the present embodiment is a flyback converter. As shown in FIG. 6, the power converter 430 includes a transformer 432, wherein the switch Q1 and the current sensor 334 are located on the primary side of the transformer 432, and the light emitting diode 332, the capacitor C2 and the diode D4 are located in the transformer. The secondary side of 432. In detail, the 'diode D4 _ is connected to the capacitor 匸 2 15 M412574 100-5-16 and the light-emitting diode 332, and the capacitor C2 and the light-emitting diode 332 are coupled in parallel with each other. The primary side of the transformer 432 provides a fixed power (Vsw*Itr), and converts the fixed power (Vsw*Itr) to the secondary side to form the same power as the primary side (V ed*I2), and further A current 12 is supplied to the light emitting diode 332 to cause the light emitting diode 322 to emit light, wherein Vied is a voltage across the three light emitting diodes 332. In addition, when the switch Q1 is turned on, since the diode D4 is reverse biased and not turned on, when the switch Q1 is turned off, the diode D4 is turned on and turned on. Since the related operation principle can be referred to the first embodiment, it will not be described here. Third Embodiment Fig. 7 is a schematic view showing a driving circuit of a light-emitting diode according to a third embodiment of the present invention. The driving circuit 500 is similar to the driving circuit 400 of the light emitting diode of FIG. 6, but the main difference is that the power converter 530 of the present embodiment is a forward converter. As shown in FIG. 7, the power converter 530 includes a transformer 532, wherein the switch Qi and the current sensor 334 are located on the primary side of the transformer 532, and the light emitting diode 332 and the diodes D5 D D6 are located on the secondary side of the transformer 532. . As shown in FIG. 7, the diode D5 is connected to the diode D6 and the inductor L3' is connected to the LED 332, and the diode D6 and the inductor L3 form a loop with the LED 332. The primary side of the transformer 532 provides a fixed power (Vsw*Itr)' and converts this fixed power (Vsw*Itr) to the secondary side to form the same power as the primary side (Vled*I3), thereby providing current. 13 is applied to the light-emitting diode 332 to cause the light-emitting diode 322 to emit light, wherein Vled is a cross-pressure of three M412574 100-5-16 light-emitting diodes 332. In addition, when the switch qi is turned on, the diode D5 is turned on by the forward bias. When the switch qi is turned off, the diode D5 is reverse biased and not turned on. Since the related operation principle can be referred to the first embodiment, it will not be described here. In summary, the embodiment of the present invention captures the divided signal by directly coupling the waveform sampler to the AC power source, so that the divided voltage signal is very close to the AC signal and is not affected by the back end load component. In this way, the input current (such as current Iacl or Iac2) can be made closer to the input AC signal, thus providing a higher power factor. In addition, since the circuit design is not complicated and the size of the capacitor is greatly reduced, the size of the circuit architecture can be reduced. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention to anyone having ordinary knowledge in the art, and may make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of this creation is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional driving circuit of a light-emitting diode. 2 is a schematic diagram of a conventional driving circuit of a light emitting diode. Fig. 3 is a schematic view showing the driving circuit of the light-emitting diode of the first embodiment. 4A is a schematic view showing a current path of a driving circuit of the light-emitting diode of FIG. 3 at an alternating current lightning voltage. 4B is a schematic diagram showing the current path of the driving circuit of the light-emitting diode of FIG. 3 at an alternating current negative voltage. 17 M412574 100-5-16 Figure 5 is a waveform diagram of the AC signal and signal of the driving circuit of the LED of Figure 3. Fig. 6 is a schematic view showing the driving circuit of the light-emitting diode of the second embodiment. Fig. 7 is a schematic view of a light-emitting diode according to a third embodiment of the present invention. [Description of main component symbols] Driving circuit 100, 100', 300, 400, 500 of light emitting diode: 110: buck converter ιοί: AC voltage source 102: bridge rectifier 104, L1: inductance 105, D1 ~ D6 Diodes 103, 332: Light-emitting diodes 108, 354: SR flip-flop 120. PFC boost control circuit 310: AC power source 320: Rectifiers 330, 430, 530: Power converter 334: Current sensor 340 : Waveform Sampler 350: Control Circuit 352: Clock Generator M412574 100-5-16

356 :比較器 432、532 :變壓器 Vref :參考電壓 Vsw、Vled :電壓 Vf:導通電壓 Vein :直流電壓 Vac :交流信號 Vac+ :正電壓 Vac—:負電歷 V卜V2 :信號356: Comparator 432, 532: Transformer Vref: Reference voltage Vsw, Vled: Voltage Vf: On-voltage Vein: DC voltage Vac: AC signal Vac+: Positive voltage Vac-: Negative battery V Bu V2: Signal

Isw、II、Ics、Iacl、Iac2、Itr :電流Isw, II, Ics, Iacl, Iac2, Itr: Current

Idr :驅動信號Idr: drive signal

Sctl :控制信號Sctl: control signal

Sclk :時脈信號 OP卜Q :輸出端 R :重置端Sclk: Clock signal OP Bu Q: Output R: Reset

S :設定端S : setting end

Cin、a〜C2 :電容Cin, a~C2: capacitor

Qm、Q1 :開關 R1 〜R4、Res、Rsen :電阻 P1〜P2 :路徑 EP :正端 EN :負端 E1 ··第一端 19 M412574 100-5-16 E2 :第二端 E3 :第三端 E4 :第四端 E5 :第五端 E6 :第六端 E7 :第七端 E8 :第八端 E9 :第九端 E10 :第十端 20Qm, Q1: switches R1 to R4, Res, Rsen: resistors P1 to P2: path EP: positive terminal EN: negative terminal E1 · first terminal 19 M412574 100-5-16 E2: second terminal E3: third terminal E4: fourth end E5: fifth end E6: sixth end E7: seventh end E8: eighth end E9: ninth end E10: tenth end 20

Claims (1)

M412574 100-5-16 六、申請專利範圍: L 一種發光二極體的驅動電路,包括: 一父流電源,具有一第一端與一第二端,並透過該第 ^與s玄第二端提供一交流信號;M412574 100-5-16 VI. Patent Application Range: L A driving circuit of a light-emitting diode, comprising: a parent current power source having a first end and a second end, and passing through the second and second sides Providing an alternating current signal; 々一整训·态,具有一第三端、一第四端與一第五端,該 第二端與该第四端分別耦接該第一端與該第二端,且該整 流器透過該第五端輸出一驅動信號;a first end, a fourth end, and a fifth end, the second end and the fourth end are respectively coupled to the first end and the second end, and the rectifier transmits the first end Five-terminal output a driving signal; -電力轉換器,具有—第六端,且該第六端搞接該第 五端,i亥電力轉換器包括一發光二極體,並透過一第七端 輸出一正相關於通過該發光二極體之電流的第一信號; -波形取樣器’具有-第人端與—第九端,該第八端 轉接於該交流電源與該整流ϋ之間,且該波形取樣器透過 5亥第九端輸出一正比於該交流信號之第二信號;以及 ^ 一控制電路,具有一第十端,該控制電路耦接於該波 $取樣器的該第九端與該電力轉換器的該第七端之間,並 透過该第十端輸出一控制信號至該電力轉換器。 2.如申請專利範圍第1項所述之發光二極體的驅動 電路’其中該波形取樣器包括: -第-電阻’其-端祕該交流電源,且其另一端輕 接該波形取樣器之該第九端;以及 :第二電阻’其-端_該第1阻與該波形取樣器 之該第九端,且其另一端耦接一接地端 3如中請專利翻第2項所述之發光二極體的驅動 21 M412574 100-5-16 一第三電阻,其一端耦接該交流電源之該第一端,且 其另一端耦接該第一電阻;以及 一第四電阻,其一端耦接該第三電阻,且其另一端耦 接該交流電源之該第二端。 4. 如申請專利範圍第1項所述之發光二極體的驅動 電路,更包括一電容,耦接於該整流器之該第五端與一接 地端之間。 5. 如申請專利範圍第1項所述之發光二極體的驅動 電路,其中該電力轉換器更包括: 一開關,耦接該發光二極體;以及 一電流感測器,耦接於該開關與一接地端,該電流感 測器透過該第七端輸出該第一信號。 6. 如申請專利範圍第5項所述之發光二極體的驅動 電路,其中該第一信號為一電壓信號。 7. 如申請專利範圍第6項所述之發光二極體的驅動 電路,其中該電流感測器包括一第五電阻,該第五電阻與 該發光二極體串聯耦接。 8. 如申請專利範圍第5項所述之發光二極體的驅動 電路,其中該電力轉換器為一降壓轉換器。 9. 如申請專利範圍第5項所述之發光二極體的驅動 電路,其中該電力轉換器為一返驰式轉換器。 10. 如申請專利範圍第5項所述之發光二極體的驅動 電路,其中該電力轉換器為一順向式轉換器。 11. 如申請專利範圍第1項所述之發光二極體的驅動 22 M412574 100-5-16 電路,其中該控制電路包括: 一時脈產生器; 一 SR正反器,耦接該時脈產生器與該電力轉換器之 間,該SR正反器具有一設定端以及一重置端,並透過該 設定端接收一時脈信號;以及 一比較器,具有一正端、一負端以及一輸出端,其中 該正端耦接該電力轉換器之該第七端,該負端耦接該波形 取樣器之該第九端,且該輸出端耦接至該SR正反器之該 重置端。 12.如申請專利範圍第1項所述之發光二極體的驅動 電路,其中該整流器為一橋式整流器。 23a power converter having a sixth end, and the sixth end is connected to the fifth end, the i-Hail power converter includes a light-emitting diode, and outputs a positive correlation through the light-emitting diode through a seventh end a first signal of the current of the polar body; - the waveform sampler has - a first end and a ninth end, the eighth end is switched between the alternating current power supply and the rectifying port, and the waveform sampler passes through the 5 The ninth terminal outputs a second signal proportional to the AC signal; and a control circuit having a tenth end, the control circuit being coupled to the ninth end of the wave sampler and the power converter A control signal is outputted to the power converter through the tenth end. 2. The driving circuit of the light-emitting diode according to claim 1, wherein the waveform sampler comprises: - a first-resistor, the other end of which is connected to the waveform sampler The ninth terminal; and: the second resistor 'the end of the first resistor and the ninth end of the waveform sampler, and the other end of which is coupled to a ground terminal 3 The driving of the light-emitting diode 21 M412574 100-5-16 is a third resistor, one end of which is coupled to the first end of the AC power source, and the other end of which is coupled to the first resistor; and a fourth resistor, The other end is coupled to the second end of the AC power source. 4. The driving circuit of the light emitting diode according to claim 1, further comprising a capacitor coupled between the fifth end and the ground end of the rectifier. 5. The driving circuit of the light-emitting diode of claim 1, wherein the power converter further comprises: a switch coupled to the light-emitting diode; and a current sensor coupled to the light-emitting diode The switch and a ground end, the current sensor outputs the first signal through the seventh end. 6. The driving circuit of the light emitting diode according to claim 5, wherein the first signal is a voltage signal. 7. The driving circuit of the light emitting diode according to claim 6, wherein the current sensor comprises a fifth resistor, and the fifth resistor is coupled in series with the light emitting diode. 8. The driving circuit of the light emitting diode according to claim 5, wherein the power converter is a buck converter. 9. The driving circuit of the light emitting diode according to claim 5, wherein the power converter is a flyback converter. 10. The driving circuit of the light emitting diode according to claim 5, wherein the power converter is a forward converter. 11. The circuit of claim 22, wherein the control circuit comprises: a clock generator; an SR flip-flop coupled to the clock generation. Between the device and the power converter, the SR flip-flop has a set terminal and a reset terminal, and receives a clock signal through the set terminal; and a comparator having a positive terminal, a negative terminal and an output terminal The positive end is coupled to the seventh end of the power converter, the negative end is coupled to the ninth end of the waveform sampler, and the output end is coupled to the reset end of the SR flip-flop. 12. The driving circuit of a light-emitting diode according to claim 1, wherein the rectifier is a bridge rectifier. twenty three
TW100206705U 2011-04-15 2011-04-15 Driving circuit of light emitting diode TWM412574U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100206705U TWM412574U (en) 2011-04-15 2011-04-15 Driving circuit of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100206705U TWM412574U (en) 2011-04-15 2011-04-15 Driving circuit of light emitting diode

Publications (1)

Publication Number Publication Date
TWM412574U true TWM412574U (en) 2011-09-21

Family

ID=46419810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100206705U TWM412574U (en) 2011-04-15 2011-04-15 Driving circuit of light emitting diode

Country Status (1)

Country Link
TW (1) TWM412574U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481303B (en) * 2012-09-13 2015-04-11 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
TWI491315B (en) * 2013-10-25 2015-07-01
TWI507082B (en) * 2012-02-20 2015-11-01 O2Micro Int Ltd Controller and method for powering light emitting diode light source and portable lighting device
TWI511435B (en) * 2012-12-11 2015-12-01 Silergy Semiconductor Technology Hangzhou Ltd AC - DC power converter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI507082B (en) * 2012-02-20 2015-11-01 O2Micro Int Ltd Controller and method for powering light emitting diode light source and portable lighting device
TWI481303B (en) * 2012-09-13 2015-04-11 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
TWI511435B (en) * 2012-12-11 2015-12-01 Silergy Semiconductor Technology Hangzhou Ltd AC - DC power converter
TWI491315B (en) * 2013-10-25 2015-07-01

Similar Documents

Publication Publication Date Title
US8872444B2 (en) Lighting device for solid-state light source and illumination apparatus including same
TWI424788B (en) Driving apparatus for light emitting diodes
TWI516010B (en) AC / DC converter
Yu et al. The topologies of white LED lamps' power drivers
Ali et al. A single stage SEPIC PFC converter for LED street lighting applications
TWI511435B (en) AC - DC power converter
TW201315105A (en) Bias voltage generation using a load in series with a switch
Baek et al. Single-stage buck-derived LED driver with improved efficiency and power factor using current path control switches
CN105186852B (en) Self-excitation resonance type power factor correction circuit and light source drive device
TW201338618A (en) One LED drive and its control approach
TW201308842A (en) Buck converter and its control circuit and control method
Fang et al. Zero ripple single stage AC-DC LED driver with unity power factor
JP2012084489A (en) Led lighting device and led illuminating device
TWM414048U (en) Flyback type tunable LED driving circuit
JP2011155747A (en) Power source device, and lighting fixture
TWM412574U (en) Driving circuit of light emitting diode
Milashevski et al. Assessment of buck converter powered by current or voltage sources for LEDs luminary
WO2016066400A1 (en) An led driver circuit, and led arrangement and a driving method
CN102469668B (en) LED power supply circuit capable of being matched with electronic transformer
JP2011155748A (en) Power source device, and lighting fixture
Wang et al. A novel flicker-free AC-DC LED driver without electrolytic capacitor
TWI449458B (en) Led driving system
TW201526500A (en) Buck type DC to DC converter and operating method thereof
TWI492662B (en) A device for driving a light - emitting diode
TW201330685A (en) LED driving device with feedback control for reducing power consumption

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model