μοο年响31日碰雜頁I 五、新型說明: ' 【新型所屬之技術領域】 [0001] 本創作是有關於一種聚光透鏡模組、其照明裝置、其投 景夕裝置及其顯示裝置,特別是由二個光學聚光透鏡組成 之聚光透鏡模組,可應用於照明裝置、投影裝置或顯示· 裝置上。 【先前技術】 [0002] 發光二極體(light emitting diode, LED)具有體積 小、壽命長、散熱佳等優點,現在已廣範應用於各種領 域,例如投影機及顯示裝置等等。准’發光二極體(LED) 發出的光束為點光源、亮度不均勻、具有較大的發散角 度及發出光束為發散的特性,因此,若做為照明、投影 機或其他裝置之光源時,且使用習知技術之光學透鏡, 將造成無法補捉最大量的光束,造成投射的光強度不足 及投射面之光度分佈不均勻之問題。為克服上述缺點, 如何有效聚集發光二極體(LED)所發出的光束已有進行多 項研究。 [0003] 第1圖為習知以發光二極體為光源的投影裝置51結構示意 圖β參閱第1圖,投影裝置51包含發光二極體511、聚光 透鏡512、偏極光轉換器(ps-converter)513、分光器 (beam splitter) 514、光閥(light valve)515 等。 發光二極體511發射的光束進入偏極光轉換器513,而後 依序進入分光器514及光閥515。為了獲得高亮度的投影 影像,過去皆於發光二極體511與偏極光轉換器513間, 設置一個聚光透鏡512,用以聚集發光二極體511發射的 表單編號A0101 第3頁/共35頁Μοο年响响31日杂页 I V. New description: ' 【New technology field】 [0001] This creation is about a concentrating lens module, its lighting device, its projection device and its display device In particular, a concentrating lens module composed of two optical concentrating lenses can be applied to a lighting device, a projection device or a display device. [Prior Art] [0002] Light emitting diodes (LEDs) have the advantages of small size, long life, and good heat dissipation, and are now widely used in various fields such as projectors and display devices. The beam emitted by the quasi-light-emitting diode (LED) is a point source, has uneven brightness, has a large divergence angle, and emits light as a divergence. Therefore, when used as a light source for illumination, projectors, or other devices, Moreover, the use of optical lenses of the prior art will result in the inability to capture the maximum amount of light beam, resulting in insufficient projected light intensity and uneven luminosity distribution on the projection surface. In order to overcome the above shortcomings, how to effectively collect the light beam emitted by the light-emitting diode (LED) has been studied. 1 is a schematic diagram of a conventional projection device 51 using a light-emitting diode as a light source. Referring to FIG. 1, the projection device 51 includes a light-emitting diode 511, a collecting lens 512, and a polarization converter (ps-). Converter 513, beam splitter 514, light valve 515, and the like. The light beam emitted from the light-emitting diode 511 enters the polarization converter 513, and then enters the beam splitter 514 and the light valve 515 in sequence. In order to obtain a high-brightness projection image, in the past, between the light-emitting diode 511 and the polarization converter 513, a collecting lens 512 is provided for collecting the form number A0101 emitted by the light-emitting diode 511. page
光束,減少光束損失。 [_帛2圖為第1圖的習知投影裝置51之偏極光轉換器513接收 發光二極體511發射的光束,於偏極光轉換器513各位置 的光照度圖,其中橫座標表示以偏極光轉換器513中心為 基準點,沿其X及γ軸方向的距離(單位:mm) ’縱座標為各 位置的光照度大小(單位:Lux)。第2圖中,於X、γ軸各 位置上測得偏極光轉換器513的光照度大小,大部分皆於 300, 000 Lux以下,僅部分位置為300, 〇〇〇 Lux以上; 且X、Y軸各位置上的光分佈並不均勻。 [0005]此習知的投影裝置51雖有設置聚光透鏡512,但此聚光透 鏡512僅能聚集較接近光軸處的光束,聚光透鏡512邊緣 的光束仍會偏折而無法被聚集。再者,此聚光透鏡512為 了聚光,其右側面的光學面曲率需报大,造成在模造過 程中不易製作此聚光透鏡512。 [〇〇〇6]第3圖為另—種習知的裝置,係以發光二極體521為光源 的投影裝置52另一結構示意圊。參閱第3圖,投影裝置52 於聚光透鏡522與偏極光轉換器523間,增設一片均光透 鏡526 ;此均光透鏡526為具有小曲率、非等厚的透鏡, 具有使光束準直的功能,而使進入偏極光轉換器523的光 束更均勻。故可改善第1圖之投影裝置51光束不均勻的問 題’其效果可參見第4圖。 [0007]於第3圖中的習知技術上,以發光二極體521為光源的習 知的投影裝置52 ’雖增加了均光透鏡526,改善了進入偏 極光轉換器523光束的均勻性’但此均光透鏡526無聚光 功能’造成聚光透鏡522周圍的光束無法被均光透鏡526Beam, reducing beam loss. [ 帛 图 图 图 图 图 图 偏 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 513 The center of the converter 513 is a reference point, and the distance along the X and γ axis directions (unit: mm) 'the ordinate is the illuminance of each position (unit: Lux). In Fig. 2, the illuminance of the polarization converter 513 is measured at each position of the X and γ axes, most of which are below 300,000 Lux, and only part of the position is 300, 〇〇〇Lux or more; and X, Y The light distribution at each position of the shaft is not uniform. [0005] Although the conventional projection device 51 is provided with a collecting lens 512, the collecting lens 512 can only collect the light beam closer to the optical axis, and the beam at the edge of the collecting lens 512 is still deflected and cannot be gathered. . Furthermore, the condensing lens 512 is condensed, and the curvature of the optical surface on the right side thereof is required to be large, which makes it difficult to fabricate the condensing lens 512 during the molding process. [Fig. 6] Fig. 3 is another conventional device, and another configuration of the projection device 52 using the light-emitting diode 521 as a light source is shown. Referring to FIG. 3, the projection device 52 is disposed between the collecting lens 522 and the polarization converter 523, and a uniform lens 526 is added. The light lens 526 is a lens having a small curvature and a non-equal thickness, and has a beam collimated. The function is to make the light beam entering the polarization converter 523 more uniform. Therefore, the problem of uneven beam of the projection device 51 of Fig. 1 can be improved. The effect can be seen in Fig. 4. In the conventional technique of FIG. 3, the conventional projection device 52' having the light-emitting diode 521 as a light source has a homogenizing lens 526, which improves the uniformity of the beam entering the polarization converter 523. 'But this uniform lens 526 has no concentrating function', causing the light beam around the condensing lens 522 to be unable to be absorbed by the halogen lens 526
表單編號_丨 % 4 I/* 35 I M410222 - 100年05月31日修正替换頁 聚集,故投影裝置52的亮度仍無法提升。 [0008] 除了投影裝置外,各種以發散光源為光源的電子裝置, 例如照明裝置或顯示裝置等,也皆有上述同樣的問題。 故為了解決這些問題,本創作即提供一種既可提升亮度 ,且亦有均光功能的聚光透鏡模組,改進上述習知的問 題,以應用於照明裝置、投影裝置及顯示裝置。 【新型内容】 [0009] 有鑑於上述習知技藝之問題,本創作的目的之一在解決 ' 習知發散光源發射的光束無法充份被利用,造成投影裝 置、照明裝置或顯示裝置亮度無法提升的問題。 因此,本創作提出一種聚光透鏡模組、其照明裝置、其 投影裝置及其顯示裝置,可用於發散光源,以聚集及均 勻發散光源所發射的光束,該發散光源例如以發光二極 體為發光光源,但不以此為限;聚光透鏡模組包含有第 一聚光透鏡及第二聚光透鏡,其中,第一聚光透鏡可為 一雙凸型透鏡或不同形狀的透鏡,第一聚光透鏡設置於 - 光束入射側,具有第一光學面R1與第二光學面R2,為正 . 屈光度,藉由第一光學面R1與第二光學面R2以聚集該發 散光源發射之光束;第二聚光透鏡為一新月型透鏡,具 有一凸表面之第三光學面R3及一凹表面之第四光學面R4 ,該凸表面(第三光學面R3)與該凹表面(第四光學面R4) 的曲率半徑相同,且該凸表面朝向該第一聚光透鏡,該 第二聚光透鏡接收來自該第一聚光透鏡之該光束,並將 該光束聚集且均勻投射於該凹表面(第四光學面R4)外。 其中,第三光學面R3與第四光學面R4的曲率半徑為相同 表單編號A0101 第5頁/共35頁 M410222 按正絲頁 100年05月31日 ,係為具有相同且在製造容差範圍内的曲率半徑,以產 生由空氣間隙進人第二透鏡或第二透鏡穿出线的折射 角度在相同曲率半徑的光學上效果;其厚度進一步滿足 下列關係式: [0010] At ^3% ⑴ [0011] 其中,△!:為第二聚光透鏡的任一點厚度t之差異百分比 ,t為第二聚光透鏡凸表面(第三光學面R3)任一點上之法 線延線上與第二聚光透鏡凹表面(第四光學面R4)之間的 厚度(參見第5圖)》 [0012] 其中,第一光學面R1、第二光學面R2、第三光學面R3及 第四光學面R4係由球面光學面及非球面光學面組合,對 於各光學面為非球面之光學面時,其非球面係以方程式 (Aspherical Surface Formula)式(2)所構成: [0013] ck7 (2) [0014] 其中,c是鏡片曲率,h為鏡片高度,K為圓錐係數(Con- ic Constant)、A4、A6、A8、A1〇、A12、A“、A16分 別四、六、八、十、十二、十四、十六階的非球面係數 (Nth Order Aspherical Coefficient)。但非球 面方程式並不以(2)式為限,其它非球面方程式也可以適 用於本創作。 [0015] 第二聚光透鏡可滿足下式條件之一或其組合: 表單編號A0101 第6頁/共35頁 M410222 * . 100年05月31日按正替换頁 2. 5^R^9 (3) 2^R/t (4) 0. 15^N /R^O. 6 α (5) 0. 55SR/DS1. 1 (6) [0016] 其中,R為該第二聚光透鏡之第三光學面R3與第四光學面 R4的曲率半徑(單位為公釐)、t為第三光學面R3上一點與 第二聚光透鏡焦點(focus)連線上的第三光學面R3與與 第四光學面R4之間的厚度(單位為公釐)、N,為該第二聚Form No. _丨 % 4 I/* 35 I M410222 - On May 31, 100, the replacement page was corrected, so the brightness of the projection device 52 could not be improved. [0008] In addition to the projection device, various electronic devices using a divergent light source as a light source, such as a lighting device or a display device, have the same problems as described above. Therefore, in order to solve these problems, the present invention provides a concentrating lens module which can improve the brightness and also has a light absorbing function, and improves the above-mentioned conventional problems for use in a lighting device, a projection device, and a display device. [New content] [0009] In view of the above-mentioned problems of the prior art, one of the purposes of the present invention is to solve the problem that the light beam emitted by the conventional divergent light source cannot be fully utilized, and the brightness of the projection device, the illumination device or the display device cannot be improved. The problem. Therefore, the present invention proposes a concentrating lens module, an illuminating device thereof, a projection device thereof and a display device thereof, which can be used for diverging a light source to collect and uniformly diverge a light beam emitted by a light source, for example, a light emitting diode The illuminating light source module includes a first concentrating lens and a second concentrating lens, wherein the first concentrating lens can be a lenticular lens or a lens of different shapes, A concentrating lens is disposed on the light incident side, having a first optical surface R1 and a second optical surface R2, which is a positive diopter, and the first optical surface R1 and the second optical surface R2 are used to gather the light beam emitted by the divergent light source. The second concentrating lens is a crescent lens having a third optical surface R3 of a convex surface and a fourth optical surface R4 of a concave surface, the convex surface (third optical surface R3) and the concave surface The four optical faces R4) have the same radius of curvature, and the convex surface faces the first collecting lens, the second collecting lens receives the light beam from the first collecting lens, and gathers the beam and uniformly projects the beam Concave surface Optical surface R4) outside. Wherein, the third optical surface R3 and the fourth optical surface R4 have the same radius of curvature. Form No. A0101 Page 5 / Total 35 pages M410222 According to the silk thread page, May 31, 100, the same and in the manufacturing tolerance range The radius of curvature inside to produce an optical effect of the angle of refraction of the second lens or the second lens through-line entering the second lens or the second lens through the air gap; the thickness further satisfies the following relationship: [0010] At ^3% (1) [0011] wherein, Δ!: is the percentage difference of the thickness t of any point of the second concentrating lens, and t is the normal line and the second line at any point of the convex surface (third optical surface R3) of the second concentrating lens Thickness between the concave surface of the collecting lens (fourth optical surface R4) (see FIG. 5) [0012] wherein the first optical surface R1, the second optical surface R2, the third optical surface R3, and the fourth optical surface R4 is a combination of a spherical optical surface and an aspherical optical surface. When the optical surface is an aspherical optical surface, the aspheric surface is composed of the equation (Aspherical Surface Formula) (2): [0013] ck7 (2) Where c is the curvature of the lens, h is the height of the lens, and K is a circle Cone coefficient (Con- ic Constant), A4, A6, A8, A1〇, A12, A", A16, respectively, four, six, eight, ten, twelve, fourteen, sixteenth order aspherical coefficient (Nth Order Aspherical Coefficient. However, the aspheric equation is not limited to the formula (2), and other aspheric equations can also be applied to the present invention. [0015] The second concentrating lens can satisfy one of the following conditions or a combination thereof: Form No. A0101 Page 6 of 35 M410222 * . On May 31, 100, press the replacement page 2. 5^R^9 (3) 2^R/t (4) 0. 15^N /R^O. 6 α (5) 0. 55SR/DS1. 1 (6) wherein R is the radius of curvature (in mm) of the third optical surface R3 and the fourth optical surface R4 of the second concentrating lens, t is The thickness (in mm) between the third optical surface R3 and the fourth optical surface R4 on the line connecting the third optical surface R3 and the second optical surface R3, N is the second Gather
Q 光透鏡之折射率、D為該第二聚光透鏡之該凹表面在發射 側的有效開口直徑(單位為公釐)。 [0017] 本創作另一目的在於提供一種照明裝置,係包含一發散 光源與前述之聚光透鏡模組,可解決習知均光透鏡僅能 準直光束,使光束均勻,無法再次聚光的問題;其中, 該發散光源可發射出一光束,投射至該聚光透鏡模組; 該聚光透鏡模組用以將該發散光源發出的光束聚集後產 生一照明光束,其特徵如前所述。 [0018] 本創作再一目的係提供一種投影裝置,包含一前述的照 明裝置、一分光器、一光閥及一投影鏡頭,其中,該照 明裝置用以產生一照明光束,投射於該分光器;該分光 器,用以接收該照明光束,將該照明光束進行分光;該 光閥,用以接收來自該分光器之該照明光束,並產生一 影像光束照射至該投影鏡頭;該投影鏡頭,用以接收該 影像光束並產生一投影影像。 [0019] 本創作明又一目的係提供一種顯示裝置,包含一背光模 組,該背光模組包含:一前述的照明裝置與一光擴散裝 表單编號A0101 第7頁/共35頁 M410222 _ 100年05月31日梭正替接頁 置;其中,該照明裝置用以產生一照明光束,投射於該 光擴散裝置,構成顯示裝置之一背光模組。 [0020] 承上所述,依本創作之聚光透鏡模組、其照明裝置、其 投影裝置及其顯示裝置,應用於照明裝置、投影裝置及 顯示裝置,具有下述優點: 4 [0021] ( 1 )本創作之聚光透鏡模組可將入射發散光束予以有效的 聚集並均勻投射至發射侧,使發射侧之光束可以均勻化 並提高光強度,可改善習知技術之光束聚集效率不高之 缺點。 [0022] 更進一步,本創作之第一聚光透鏡若選用玻璃材質以模 造玻璃之製造方法製造,則可提高第一光學面R1與第二 - 光學面R2之曲率半徑,以增加第一聚光透鏡的聚光能力 〇 [0023] (2)本創作應用之照明裝置係利用前述之聚光透鏡模組, 將發散光源發出的光束予以聚集、均句,以提高光強度 ,而可供投影裝置及顯示裝置使用,改善習知技術的照 . 明裝置的光強度分佈不均或光強度不高的缺點。 [0024] (3)本創作應用之投影裝置係利用前述之照明裝置,可將 發散光源發出的光束予以聚集、均勻,以提高光強度, 使投影裝置產生投影影像,可改善習知技術的投影裝置 的光強度不高的缺點。 [0025] 本創作應用之顯示裝置係利用前述之照明裝置,可將發 散光源發出的光束予以聚集、均勻,以提高光強度,使 顯示裝置之背光模組的亮度大幅提高,可改善習知技術 表單編號A0101 第8頁/共35頁 M410222 100年05月31日核正替换頁 的背光模組的光強度不高的缺點。 【實施方式】 [0026] 請參閱第5圖,其係為本創作之聚光透鏡模組11之示意圖 。聚光透鏡模組11係用於聚集及均勻發散光源20(如LED 、鹵素燈、CCFL但不為其所限)發射出之光束。圖中,聚 光透鏡模組11由第一聚光透鏡111及第二聚光透鏡112所 組成,第一聚光透鏡111與第二聚光透鏡112設置於光軸Z 上。 [0027] 第一聚光透鏡111,具有正屈光度且設置於光束入射側, 其具有至少一凸面,例如其可為一雙凸型透鏡或一平凸 型透鏡。第一聚光透鏡111具有第一光學面R1與第二光學 面R2,藉由第一光學面R1與第二光學面R2以聚集發散光 源20發射之光束。 [0028] 第二聚光透鏡112為一新月型透鏡,具有凸表面之第三光 學面R3及凹表面之第四光學面R4,且該凸表面朝向第一 聚光透鏡111。在製造容許公差範圍下,該凸表面(第三 光學面R3)與該凹表面(第四光學面R4)間之厚度t滿足△ 1:$3%(式(1)),較佳地是/^ = 0。其中,士為第三光學面 R3任一點的法線沿線上與第四光學面R4之間的厚度,單 位為公釐;Δΐ為第二聚光透鏡112的任一點厚度t之差異 百分比。 [0029] 第二聚光透鏡112接收來自該第一聚光透鏡111所聚集的 光束,並將該光束再次聚集及均勻,投射於該凹表面(第 四光學面R4)外。 表單編號A0101 第9頁/共35頁 M410222 100年05月31日按正替換頁 [0030] 第二聚光透鏡11 2的凸表面(第三光學面R3)與該凹表面( 第四光學面R4),為使製作方便,減少模具的製作,可採 用相同的曲率半徑,可滿足下式條件: [0031] 2. 5(mm)^R^9(mm) (3) [0032] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐mm),在製造容差範圍下, 第三光學面R3與第四光學面R4的曲率半徑為相近似。 第二聚光透鏡112的厚度係由第三光學面R3與第四光學面 R4所界定,由於第三光學面R3與第四光學面R4的曲率半 徑相同,其厚度為均一,可滿足下式條件: [0033] 2^R/t^9 (4) [0034] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐mm)、t為第三光學面R3任 一點的法線沿線上與第四光學面R4之間的厚度(單位為公 釐mm) 〇 第二聚光透鏡11 2的材料選擇可採用光學塑膠材料或光學 玻璃材料,但為有較佳的光學效果,可滿足下式條件: [0035] 0. 15^N /R^O. 6 (5) d [0036] 其中,R為該第二聚光透鏡之第三光學面R3與第四光學面 R4的曲率半徑(單位為公釐mn〇、L為第二聚光透鏡11 2The refractive index of the Q-light lens, D, is the effective opening diameter (in mm) of the concave surface of the second concentrating lens on the emission side. [0017] Another object of the present invention is to provide an illumination device comprising a divergent light source and the aforementioned concentrating lens module, which can solve the problem that the conventional homogenous lens can only collimate the light beam, make the light beam uniform, and cannot condense again. a problem, wherein the divergent light source emits a light beam and is projected to the concentrating lens module; the concentrating lens module is configured to gather the light beams emitted by the divergent light source to generate an illumination beam, the feature of which is . [0018] A further object of the present invention is to provide a projection device comprising the foregoing illumination device, a beam splitter, a light valve and a projection lens, wherein the illumination device is configured to generate an illumination beam and project on the beam splitter. The beam splitter is configured to receive the illumination beam and split the illumination beam; the light valve is configured to receive the illumination beam from the beam splitter and generate an image beam to be irradiated to the projection lens; the projection lens, The image beam is received and a projection image is generated. [0019] Another object of the present invention is to provide a display device, comprising a backlight module, comprising: the foregoing illumination device and a light diffusion package form number A0101, page 7 / total 35 pages M410222 _ On May 31, 100, the shuttle is being replaced by a page; wherein the illumination device is used to generate an illumination beam, which is projected onto the light diffusion device to form a backlight module of the display device. [0020] As described above, the concentrating lens module, the illuminating device, the projection device thereof and the display device thereof are applied to the illuminating device, the projection device and the display device, and have the following advantages: [0021] (1) The concentrating lens module of the present invention can effectively collect and uniformly project the incident divergent beam to the emitting side, so that the beam on the emitting side can be homogenized and the light intensity can be improved, and the beam gathering efficiency of the prior art can be improved. High disadvantages. [0022] Further, if the first concentrating lens of the present invention is made of a glass material by the manufacturing method of the molded glass, the radius of curvature of the first optical surface R1 and the second optical surface R2 can be increased to increase the first concentrating lens. The concentrating ability of the optical lens 00 [0023] (2) The lighting device of the present application uses the concentrating lens module described above to gather the light beams emitted by the divergent light source to improve the light intensity for projection. The use of the device and the display device improves the disadvantages of the prior art that the light intensity distribution of the device is not uniform or the light intensity is not high. [0024] (3) The projection device of the present application uses the illumination device described above to gather and evenly distribute the light beam emitted by the divergent light source to increase the light intensity, and to cause the projection device to generate a projected image, which can improve the projection of the prior art. The shortcomings of the device's low light intensity. [0025] The display device of the present application uses the foregoing illumination device to collect and evenly distribute the light beam emitted by the divergent light source to improve the light intensity, thereby greatly improving the brightness of the backlight module of the display device, and improving the conventional technology. Form No. A0101 Page 8 of 35 M410222 On May 31, 100, the backlight module of the replacement page was short of light intensity. [Embodiment] [0026] Please refer to FIG. 5, which is a schematic diagram of the concentrating lens module 11 of the present invention. The concentrating lens module 11 is used to concentrate and uniformly diverge the light beam emitted by the light source 20 (such as LED, halogen lamp, CCFL but not limited thereto). In the figure, the condensing lens module 11 is composed of a first condensing lens 111 and a second condensing lens 112, and the first condensing lens 111 and the second condensing lens 112 are disposed on the optical axis Z. The first condensing lens 111 has a positive refracting power and is disposed on the incident side of the light beam, and has at least one convex surface, for example, it may be a lenticular lens or a plano-convex lens. The first collecting lens 111 has a first optical surface R1 and a second optical surface R2, and the first optical surface R1 and the second optical surface R2 are used to concentrate the light beam emitted from the divergent light source 20. The second condensing lens 112 is a crescent lens having a third optical surface R3 of a convex surface and a fourth optical surface R4 of the concave surface, and the convex surface faces the first condensing lens 111. The thickness t between the convex surface (third optical surface R3) and the concave surface (fourth optical surface R4) satisfies Δ 1: $3% (formula (1)), preferably / in the manufacturing tolerance range ^ = 0. Wherein, the thickness of the line between the normal line of the third optical surface R3 and the fourth optical surface R4 is in the unit of PCT; and Δΐ is the percentage difference of the thickness t of any point of the second condensing lens 112. The second condensing lens 112 receives the light beam collected from the first condensing lens 111, and condenses and uniformizes the light beam, projecting outside the concave surface (fourth optical surface R4). Form No. A0101 Page 9 of 35 M410222 May 31, 100, according to the replacement page [0030] The convex surface (third optical surface R3) of the second condensing lens 11 2 and the concave surface (fourth optical surface) R4), in order to facilitate the production and reduce the production of the mold, the same radius of curvature can be used to satisfy the following conditions: [0031] 2. 5 (mm) ^ R ^ 9 (mm) (3) [0032] R is the radius of curvature (in mm) of the third optical surface R3 and the fourth optical surface R4 of the second condensing lens 112, and the third optical surface R3 and the fourth optical surface R4 are within the manufacturing tolerance range. The radius of curvature is similar. The thickness of the second concentrating lens 112 is defined by the third optical surface R3 and the fourth optical surface R4. Since the third optical surface R3 and the fourth optical surface R4 have the same radius of curvature, the thickness is uniform and can satisfy the following formula. Condition: [0033] 2^R/t^9 (4) wherein R is the radius of curvature of the third optical surface R3 and the fourth optical surface R4 of the second collecting lens 112 (unit: mm) , t is the thickness (in mm) between the normal line of any point of the third optical surface R3 and the fourth optical surface R4. The material of the second collecting lens 11 2 may be selected from optical plastic materials or optics. Glass material, but for better optical effect, can satisfy the following condition: [0035] 0. 15^N / R^O. 6 (5) d [0036] wherein R is the second concentrating lens Radius of curvature of the third optical surface R3 and the fourth optical surface R4 (unit is mn 〇 L, L is second condensing lens 11 2
Q 之折射率。 [0037] 第二聚光透鏡112的開口大小,係決定投射的光束總量, 過大的開口雖可將進入第二聚光透鏡112的光束儘量予以 投射出去,但將造成投射目標的投射面上的光強度不均 表單編號A0101 第10頁/共35頁 M410222 • , 100年05月31日核正替换頁 勻的現象;反之,過小的開口將降低光束的有效利用率 ;較佳的情形,第二聚光透鏡112的開口直徑(單位為公 釐)D,可滿足下式條件: [0038] 0.55SR/DS1.1 (6) [0039] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐mm) 、D為第二聚光透鏡 11 2之凹表面在發射側的有效開口直徑(單位為公釐mm )。 為使本創作更加明確詳實,茲列舉較佳實施例並配合下 列圖示,將本創作之聚光透鏡模組11、運用此聚光透鏡 模組11構成的照明裝置2、運用此照明裝置2構成的投影 裝置3及其顯示裝置4、5的結構及其技術特徵詳述如後: [0040] 本創作以下所揭示之實施例,乃是針對本創作之聚光透 鏡模組、運用此聚光透鏡模組構成的照明裝置、運用此 照明裝置構成的投影裝置及其顯示裝置的結構而作說明 ,因此本創作以下所揭示之實施例雖是應用於一發光二 極體發散光源,但不以發光二極體為發光源之發散光源 為限,因此一般在此領域中熟悉此項技藝之人士瞭解, 本創作所揭示聚光透鏡模組、應用之照明裝置、應用之 投影裝置及應用之顯示裝置所構成的元件並不限制於以 下所揭示之實施例結構,也就是該聚光透鏡模組、應用 之照明裝置、應用之投影裝置及應用之顯示裝置之各構 成元件是可以進行許多改變、修改、甚至等效變更的。 [0041] 〈第一實施例〉 請繼續參閱圖5,本實施例之聚光透鏡模組11係聚集及均 勻發散光源20所發出的光束,發散光源20係以發光二極 表單編號A0101 第11頁/共35頁 M410222 100年05月31日核正替換'頁 體受激發後發出光束,其發出光通量(Luminous power)為以100流明(Lumen)的光束為例。 [0042] 聚光透鏡模組11由第一聚光透鏡111及第二聚光透鏡11 2 所組成,第一聚光透鏡111與第二聚光透鏡112設置於光 軸Z上;第一聚光透鏡111為一雙凸型透鏡,設置於光束 入射侧,具有第一光學面R1與第二光學面R2接收發散光 源20發出的光束予以聚集,投射至第二聚光透鏡112。 [0043] 第二聚光透鏡112設置於第一聚光透鏡111之投射側,具 有面向入射側為凸表面之第三光學面R3及凹表面之第四 光學面R4。第二聚光透鏡11 2係使用Ν, = 1. 53的玻璃材料 製成,其第三光學面R3與第四光學面R4為非球面,係使 用式(2)之非球面所構成,該凸表面(第三光學面R3)與該 凹表面(第四光學面R4)間的厚度相同(即Δί = 0)或厚度 滿足Δ1ι$3%(式(1)) »其中,t為第三光學面R3任一點 的法線沿線上與第四光學面R4之間的厚度,單位為公釐 ,At為第二聚光透鏡112的任一點厚度t之差異百分比。 [0044] 第二聚光透鏡112接收來自該第一聚光透鏡111所聚集的 光束,並將該光束再次聚集及均勻投射於該凹表面(第四 光學面R4)外之發射側。 [0045] 第二聚光透鏡112光學特性與非球面係數如表一及表二, 並滿足式(3)〜式(6)之條件,如表三。 [0046] 表一、第二聚光透鏡112光學特性 表單编號A0101 第12頁/共35頁 M410222 [0047] [0048] [0049] 100年05月31日梭正替换頁 D 8 R 8 t 1.2 Nd 1.53 焦距f 321 表二、第二聚光透鏡112光學面之非球面係數 [0050] [0051] 光學 面 K a4 As Ag A]〇 R3* -0.16 -0.01 -2.00E-04 1.30E-05 4.5E-06 R4* -0.16 -0.01 -2.00E-04 1.30E-05 4.5E-06 * : R3與R4為非球面 表三、滿足條件 R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為600, OOOLux的光 束,其分佈如第10圖。於圖中,X與γ係聚光透鏡模組11 表單編號A0101 第13頁/共35頁 [0052] M410222 100年05月31日核正替換頁 投射出的光束,投射於距離第二聚光透鏡112之第四光學 面R4中心軸上19.7公釐上目標物上的水平軸與垂直軸量 測位置。由第10圖可知,藉由本實施例之聚光透鏡模組 11可將發散光源20所發出的光束有效聚集,並投射出均 勻光強度的照明光束,可用於照明裝置、投影裝置與顯 示裝置等,而提昇本創作之應用性。 [0053] 〈第二實施例〉 本實施例之聚光透鏡模組11係聚集發散光源20所發出的 光束,使用的發散光源20與第一實施例相同,第一聚光 透鏡111及第二聚光透鏡112的配置也相同於第一實施例 ,在此不再贅述。 其中,第二聚光透鏡112係使用N^l.8的玻璃材料或塑膠 d 材料製成,第三光學面R3與第四光學面R4為球面。第二 聚光透鏡112光學特性如表四,並滿足式(3)~式(6)之條 件,如表五。 [0054] 表四、第二聚光透鏡112光學特性 D 6 R 3.5 t 1.5 Nd 1.8 焦距f 93 [0055].表五 '滿足條件 表單編號A0101 第14頁/共35頁 100年05月31日修正替换頁 R 3.50 R/t 2.33 Nd/R 0.51 R/D 0.58 M410222 [0056] [0057] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集及均勻,形成中心光照度約為 530,000Lux的光束,其分佈如第11圖。由第11圖可知, 藉由本實施例之聚光透鏡模組11可將發散光源20所發出 的光束有效聚集,並投射出中心部份均勻光強度、外圓 光強度較高的照明光束,可用於照明裝置、投影裝置與 顯示裝置等,係可利用外圓光強度較高的照明光束補償 照明裝置、投影裝置與顯示裝置邊緣較弱的缺點,而提 昇本創作之應用性。' [0058] 〈第三實施例〉 本實施例之聚光透鏡模組11係聚集發散光源20所發出的 光束,使用的發散光源2 0與第一實施例相同,第一聚光 透鏡111及第二聚光透鏡112的配置也相同於第一實施例 ,在此不再贅述。 其中,第二聚光透鏡112係使用Ν,1.49的PMMA塑膠材料 α 製成,第三光學面R3與第四光學面R4為非球面,係使用 式(2)之非球面所構成,第三光學面R3與第四光學面R4間 沿光軸的厚度相同(即△ t = 0)或厚度滿足△ t S 3%(式 (1))。第二聚光透鏡112光學特性與非球面係數如表六及 表單编號A0101 第15頁/共35頁 M410222 100年05月31日核正替換頁 [0059] 表七,並滿足式(3)~式(6)之條件,如表八。 表六、第二聚光透鏡112光學特性 [0060] [0061] D 8 R 8 t 1.2 Nd 1.49 焦距ί 、 139 表七、 第二聚光透鏡112光學面之非球面係數 光學 面 Κ Α4 Ae As Αιο R3* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 R4* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 [0062] [0063] * : R3與R4為非球面 表八、滿足條件 R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 [0064] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 表單編號A0101 第16頁/共35頁 M410222 • t 100年05月31日修正替換頁 的光束予以聚集,形成中心光照度約為580, OOOLux的光 束,其分佈如第12圖,由第12圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出光強度分佈為橢圓的照明光束,可用於照明 裝置、投影裝置與顯示裝置等,係可利用橢圓光強度分 佈的照明光束補償照明裝置、投影裝置與顯示裝置單邊 較弱的缺點,而提昇本創作之應用性。 [0065]〈第四實施例〉 本實施例之聚光透鏡模組11係聚集及均勻發散光源20所 發出的光束,使用的發散光源20與第一實施例相同,第 一聚光透鏡111及第二聚光透鏡112的配置也相同於第一 實施例,在此不再贅述。其中,第二聚光透鏡112係使用 N,2.0的玻璃材料或塑膠材料製成,第三光學面R3與第 α 四光學面R4為球面。第二聚光透鏡112光學特性如表九, 並滿足式(3)〜式(6)之條件,如表十。 表九、第二聚光透鏡112光學特性 [⑻ 66] D 7 R 5 t 2 Nd 2.0 焦距f 104 [0067] 表十、滿足條件 表單編號Α0101 第17頁/共35頁 M410222 [0068] 100年05月31日核正替換賓 R 5.00 R/t 2.50 Nd/R 0.40 R/D 0.71 [0069] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為520, OOOLux的光 束,其分佈如第13圖。由第13圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出中心部份均勻光強度、外圓光強度較高的照 明光束,可用於照明裝置、投影裝置與顯示裝置等,係 可利用外圓光強度較高的照明光束補償照明裝置、投影 裝置與顯示裝置邊緣較弱的缺點,而提昇本創作之應用 性。 [0070] 〈第五實施例〉 本實施例之聚光透鏡模組11係聚集及均勻發散光源20所 發出的光束,使用的發散光源20與第一實施例相同,第 一聚光透鏡111及第二聚光透鏡112的配置也相同於第一 實施例,在此不再贅述。 其中,第二聚光透鏡112係使用N,l.2的玻璃材料或塑膠 α 材料製成,第三光學面R3與第四光學面R4為球面。第二 聚光透鏡112光學特性如表十一,並滿足式(3)〜式(6)之 條件,如表十二。 表單編號Α0101 第18頁/共35頁 M410222 * t [0071] [0072] [0073] 100年05月31日核正替换頁 表十一、第二聚光透鏡112光學特性 D 7 R 5 t 0. 6 Nd 1. 2 焦距f 124 表十二、滿足條件 R 5.00 R/t 8.33 Nd/R 0.24 R/D 0.71 [0074] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為320, OOOLux的光 束,其分佈如第14圖。由第14圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出單邊光強度較高的照明光束,可用於照明裝 置、投影裝置與顯示裝置等,係可利用單邊光強度較高 的照明光束補償照明裝置、投影裝置與顯示裝置部份區 表單編號A0101 第19頁/共35頁 M410222 __ 100年05月31日修正替换頁 域較弱的缺點,而提昇本創作之應用性。 [0075] 〈第六實施例〉 請參考第6圖,當本創作之聚光透鏡模組i 1可應用於照明 ’本實施例提供一種照明裝置2,係包含發散光源2〇與第 一實施例至第五實施例之任一種聚光透鏡模組n。發散 光源20係設置於聚光透鏡模組丨丨之入射側,可發射出光 束投射至聚光透鏡模組U;聚光透鏡模組n用以將該發 散光源2 0發出的光束聚集及均勻後產生一照明光束;對 於使用不同的聚光透鏡模組i丨,其照明光束的光強度分 佈可有不同’可依據照明裝置2使用的目的而選擇搭配, 更可擴大應用的方便。 [0076] 〈第七實施例〉 請參考第7圖’本創作之照明裝置2可應用於投影裝置3, 本實施例投影裝置3包含有第六實施例之照明裝置2、一 分光器31 ' —光閥32及一投影鏡頭33。照明裝置2可產生 一照明光束,投射於該分光器31,用以接收照明光束, 將該照明光束進行分光》 · [00T7] 對於微型投影裝置的應用,該分光器31可為偏極化分光 · 稜鏡(Polarization Beam Splitter ; PBS),在入射 的照明光束中同時具有P極化光及S極化光,偏極化分光 棱鏡(PBS)可同時將照明光束中白光中之S極化光反射, 並讓照明光束中之P極化光穿透;而穿透之P極化光經過 間隔設置的半波長板後’會被調變為5極化光’因此’穿 透過上述偏極化分光稜鏡(PBS)之照明光束,為一僅具有 單一極性(S極化光)之偏振照明光束’可投射至光閥32 ° 第20頁/共35頁 表單编號A0101 100年05月31日修正替換頁 圆當光閥32接收來自該分光器31之分光後的照明光束,依 據光閥32的控制’在不同時序通過不同光譜(或極化光) 的光束,以產生一影像光束,該影像光束照射至投影鏡 頭33。 [0079] 投影鏡頭33為一組光學透鏡組,利用多片的光學透鏡, 將影像光束產生一投影影像,投影在目標物(未於圖上顯 示)上。 [0080] 〈第八實施例〉 請參考第8圖,係為本創作之顯示裝置實施例的示意圖, 顯示裝置包含有一背光模組4,在本實施例為邊光式之背 光模組4 ’背光模組4包含有第六實施例之照明裝置2與光 擴散裝置41。照明裝置2可產生一照明光束,投射於該光 擴散裝置41 ’該光擴散裝置41接收該照明光束,並使該 照明光束產生均勻擴散’構成顯示裝置之背光模組4。 [0081] 光擴散裝置41包含有導光板411 (1 ight guide plate) 、反射片 412(reflection sheet)、擴散片 413(diffuse sheet)及稜鏡片 414(prism sheet); 當照明裝置2發出的照明光束投射於導光板4U,照明光 束在導光板411内折射前進,當折射的照明光束角度小於 導光板411的臨界角度時,照明光束會被折射回到導光板 411 ’當折射的照明光束角度大於導光板411的臨界角度 時,照明光束會向下穿出導光板411由反射片412反射回 到導光板411内’或向上穿出導光板411進入擴散片413 〇 [0082] 擴散片413可將照明光束予以均勻分散,再投射至稜鏡片 表單编號A0101 第21頁/共35頁 M410222 100年05月31日核正替换‘頁 414 ’由複鏡片414將照明光束再次分散以達均勻背光的 目的。 ^Κ)83] φ於背光核組4通常相對很大,需要由許多的照明裝置2 配合光擴散裝置41 ’使背光模組4有均句的光強度分佈; 在習知技術上需要經過許多光束折射的調整,以避免背 光模組4邊緣或部份地區的光強度不均勻的現象。本創作 之顯示裝置之背光模組4,可使用不同的聚光透鏡模組 11(如第一實施例至第五實施例)之不同光強度分佈,構 成不同的照明裝置2,利用不同功能的照明裝置2配置, 可達到背光模組4均勻光強度的功效。 [0084] 〈第九實施例〉 請參考第9圖,係為本創作之顯示裝置另一個實施例的示 意圖’顯示裝置包含有一背光模組5,在本實施例為直下 式之背光模組4,背光模組4包含有第六實施例之照明裝 置2與直下式光擴散裝置42。照明裝置2可產生一照明光 束’投射於該直下式光擴散裝置42,構成顯示裝置之背 光模組5。 · [0085] 光擴散裝置42包含有擴散片423(diffuse sheet)及稜 鏡片424(prism sheet);照明裝置2發出的照明光束直 接投射於擴散片423,擴散片423可將照明光束予以均勻 分散,再投射至稜鏡片424 ’由稜鏡片424將照明光束再 次分散以達均勻背光的目的。 [0086] 由於背光模組5通常需要很多個照明裝置2放置於擴散片 423下端,發出照明光束對擴散片423照射;本創作之照 明裝置2,可選用不同光學係數所構成的第一聚光透鏡 .表單编號A0101 第22頁/共35頁_ 100年05月31日 111及第二聚光透鏡112,其可以產生不同的照明光束之 光強度分佈之照明裝置2,如第一實施例至第五實施例, 分別佈設於背光模組5的不同位置,例如,於使用第二、 第四實施例之聚光透鏡模組11佈設於背光模組5接近於邊 緣地區,以補償接近於邊緣地區較弱的情形;或使用第 三實施例之聚光透鏡模組11佈設於背光模組5邊緣地區, 以補償邊緣地區較弱的情形;或使用第五實施例之聚光 透鏡模組11佈設於背光模組5需要加強照明的地區,以增 強特定地區的照明;由此,可達背光模組5更為均勻照明 的效果* [0087] 以上所述僅絲舰,而非為㈣地者,何未脫離本 創作之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明】 [0088] 第1圖係為習知技藝之聚光透鏡及其構成的發光二極體晶 片才又影模組的示意圖; 第2圖係為習知技藝之聚光透鏡的光強度分佈圖; 第3圖係為另—種習知技藝之聚光透鏡及其構成的發光二 極體晶片投影模組的示意圖; 第4圖係為另—種習知技藝之聚光透鏡的光強度分佈圖; 第5圖係為本創作之聚光透鏡模組之示意圖; 第6圖係為本創作之照明裝置第五實施例之示意圖; 第7圖係為本創作之投影裝置第六實施例之示意圖; 第8圖係為本創作之顯示裝置第七實施例之示意圖; 第9圖係為本創作之顯示裝置第A實施例之示意圖; 表單编號A0101 第23頁/共35頁 100年05月31日梭正替換頁 第10圖係為第一實施例之聚光透鏡模組光照度與位置之 關係圖; 第11圊係為第二實施例之聚光透鏡模組光照度與位置之 關係圖; 第12圖係為第三實施例之聚光透鏡模組光照度與位置之 關係圖; 第13圖係為第四實施例之聚光透鏡模組光照度與位置之 關係圖;以及 第14圖係為第五實施例之聚光透鏡模組光照度與位置之 關係圖。 【主要元件符號說明】 [0089] 11 :聚光透鏡模組(concentrating lens module); 111 :第一聚光透鏡(first concentrating lens); 112 :第二聚光透鏡(second concentrating lens); 2 :照明裝置(iliuminating device); 20 :發散光源(divergent light source); 3 :投影裝置(projecting apparatus); 31 :分光器(beam splitter); 32 :光閥(light valve); 33 :投影鏡頭(projector lens); 4 :背光模組(back light module); 41 :光擴散裝置(light diffuse device); 42 :直下式光擴散裝置(direct light diffuse device) » 411 :導光板(light guide plate); 412 :反射片(reflection sheet); 表單煸號A0101 第24頁/共35頁 M410222 100年05月31日核正替換頁 413 :擴散片(diffuse sheet); 414 :棱鏡片(prism sheet); 423 :擴散(diffuse sheet); 424 :棱鏡片(prism sheet); 5 :背光模組(back light module); 51 :投影裝置(projector device); 511 :發光二極體(light emitting diode、LED); 512 :聚光鏡(concentrating lens); 513 :偏極光轉換器(PS-converter) 514 :分光器(beam splitter); 515 :光閥(light valve); 52 :投影裝置(projector device); 521 : LED(light emitting diode); 522 :聚光鏡片(concentrating lens); 523 :偏極光轉換器(PS-converter) 524 :分光器(beam splitter); 525 :光閥(light valve); 526 :均光透鏡(light uniform lens); R1 :第一光學面(first optical lens); R2 :第二光學面(first optical lens); R3 :第三光學面(first optical lens); R4:第四光學面(first optical lens); D :有效開 口直徑(diameter of opening); t :厚度(thickness); △ t :第二聚光透鏡的厚度之差異百分比;以及 Z :光轴(optical axis) ° 表單編號A0101 第25頁/共35頁The refractive index of Q. [0037] The size of the opening of the second collecting lens 112 determines the total amount of the projected light beam. The excessively large opening can project the light beam entering the second collecting lens 112 as much as possible, but will cause the projection surface of the projection target. The light intensity is uneven. Form number A0101 Page 10 / Total 35 pages M410222 • , May 31, 100, the nuclear replacement of the page even phenomenon; conversely, too small opening will reduce the effective utilization of the beam; better, The opening diameter (unit: mm) D of the second condensing lens 112 satisfies the following condition: [0038] 0.55SR/DS1.1 (6) wherein R is the second concentrating lens 112 The radius of curvature of the three optical surfaces R3 and the fourth optical surface R4 (in mm), and D is the effective opening diameter (unit: mm) of the concave surface of the second collecting lens 11 2 on the emitting side. In order to make the present invention clearer and more detailed, the illuminating lens module 11 of the present invention and the illuminating device 2 using the concentrating lens module 11 are used in conjunction with the following embodiments, and the lighting device 2 is used. The structure of the projection device 3 and its display devices 4, 5 and their technical features are as follows: [0040] The embodiments disclosed below are directed to the concentrating lens module of the present invention, and the use of the concentrating lens module The illumination device comprising the optical lens module, the projection device using the illumination device, and the structure of the display device are described. Therefore, the embodiments disclosed in the present application are applied to a light-emitting diode divergent light source, but not The light source of the light emitting diode is limited to the light source, so it is generally known to those skilled in the art that the present invention discloses a concentrating lens module, an application lighting device, a projection device and an application thereof. The components of the display device are not limited to the structure of the embodiment disclosed below, that is, the concentrating lens module, the lighting device of the application, the projection device of the application, and the application device The display device of each constituent element may be made that many changes, modifications, equivalents and even changed. [First Embodiment] Referring to FIG. 5, the concentrating lens module 11 of the present embodiment collects and uniformly diverges the light beam emitted by the light source 20, and the divergent light source 20 is illuminated by a diode form number A0101. Page/Total 35 pages M410222 On May 31, 100, the replacement of the 'page body is emitted and the beam is emitted. The Luminous power is taken as a luminous flux of 100 lumens. [0042] The concentrating lens module 11 is composed of a first concentrating lens 111 and a second condensing lens 11 2 , and the first concentrating lens 111 and the second condensing lens 112 are disposed on the optical axis Z; The optical lens 111 is a lenticular lens disposed on the light beam incident side, and the first optical surface R1 and the second optical surface R2 receive the light beam emitted from the divergent light source 20 and are collected and projected onto the second condensing lens 112. The second condensing lens 112 is disposed on the projection side of the first condensing lens 111, and has a third optical surface R3 that faces the convex surface on the incident side and a fourth optical surface R4 that is a concave surface. The second collecting lens 11 2 is made of a glass material of Ν, = 1.53, and the third optical surface R3 and the fourth optical surface R4 are aspherical, and are formed by using an aspherical surface of the formula (2). The thickness between the convex surface (third optical surface R3) and the concave surface (fourth optical surface R4) is the same (ie, Δί = 0) or the thickness satisfies Δ1ι$3% (formula (1)) » where t is the third optical The thickness between the normal line of any point of the surface R3 and the fourth optical surface R4, in units of mm, and At is the percentage difference of the thickness t of any point of the second collecting lens 112. The second condensing lens 112 receives the light beam collected from the first condensing lens 111, and again concentrates and uniformly projects the light beam on the emission side outside the concave surface (fourth optical surface R4). [0045] The optical characteristics and aspherical coefficients of the second condensing lens 112 are as shown in Table 1 and Table 2, and satisfy the conditions of the formulas (3) to (6), as shown in Table 3. Table 1、Second Condenser Lens 112 Optical Characteristics Form No. A0101 Page 12/Total 35 Pages M410222 [0048] [0049] On May 31, 100, the shuttle is replacing page D 8 R 8 t 1.2 Nd 1.53 focal length f 321 Table 2, aspherical coefficient of the optical surface of the second collecting lens 112 [0050] [0051] Optical surface K a4 As Ag A] 〇 R3* -0.16 -0.01 -2.00E-04 1.30E- 05 4.5E-06 R4* -0.16 -0.01 -2.00E-04 1.30E-05 4.5E-06 * : R3 and R4 are aspherical table 3. Satisfy condition R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 By the concentrating lens module 11 thus constructed, the light beams emitted from the divergent light source 20 can be collected to form a light beam having a central illuminance of about 600, OOOLux, and its distribution is as shown in FIG. In the figure, the X and γ-type concentrating lens module 11 Form No. A0101 Page 13 of 35 [0052] M410222 On May 31, 100, the beam projected by the replacement page is projected at a distance from the second spotlight. The horizontal axis and the vertical axis of the target are 19.7 mm on the central axis of the fourth optical surface R4 of the lens 112. It can be seen from FIG. 10 that the concentrating lens module 11 of the present embodiment can effectively collect the light beams emitted by the divergent light source 20 and project an illumination beam of uniform light intensity, which can be used for illumination devices, projection devices, display devices, and the like. And enhance the applicability of this creation. <Second Embodiment> The condensing lens module 11 of the present embodiment collects the light beam emitted from the divergent light source 20, and the divergent light source 20 used is the same as that of the first embodiment, the first condensing lens 111 and the second The configuration of the condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of a glass material or a plastic d material of N^1.8, and the third optical surface R3 and the fourth optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 4, and satisfy the conditions of the formulas (3) to (6), as shown in Table 5. Table 4, second concentrating lens 112 optical characteristics D 6 R 3.5 t 1.5 Nd 1.8 focal length f 93 [0055]. Table 5 'satisfying condition form number A0101 page 14 / total 35 pages 100 years old 31 May Correction Replacement Page R 3.50 R/t 2.33 Nd/R 0.51 R/D 0.58 M410222 [0057] With the concentrating lens module 11 thus constructed, the light beam emitted from the divergent light source 20 can be gathered and uniformed to form A beam with a central illuminance of approximately 530,000 Lux is distributed as shown in Figure 11. It can be seen from FIG. 11 that the concentrating lens module 11 of the present embodiment can effectively concentrate the light beams emitted by the divergent light source 20 and project an illumination beam with a uniform central light intensity and a high external light intensity, which can be used for Illumination devices, projection devices, display devices, etc., can utilize the illumination beam with high external light intensity to compensate for the disadvantages of the illumination device, the projection device and the edge of the display device being weak, thereby improving the applicability of the creation. <Third Embodiment> The concentrating lens module 11 of the present embodiment collects the light beam emitted from the divergent light source 20, and the divergent light source 20 used is the same as the first embodiment, the first condensing lens 111 and The configuration of the second condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of PM, 1.49 PMMA plastic material α, and the third optical surface R3 and the fourth optical surface R4 are aspherical, and are formed by using the aspherical surface of the formula (2), and the third The optical surface R3 and the fourth optical surface R4 have the same thickness along the optical axis (i.e., Δt = 0) or the thickness satisfies Δt S 3% (formula (1)). The optical characteristics and aspherical coefficients of the second condensing lens 112 are as shown in Table 6 and Form No. A0101, page 15 / total 35 pages, M410222, May 31, 100, nuclear replacement page [0059] Table VII, and satisfy the formula (3) The conditions of the formula (6) are as shown in Table 8. Table 6: Optical characteristics of the second collecting lens 112 [0060] D 8 R 8 t 1.2 Nd 1.49 Focal length ί, 139 Table 7. Aspherical coefficient optical surface of the optical surface of the second collecting lens 112 Α 4 Ae As Αιο R3* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 R4* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 [0062] [0063] * : R3 and R4 are not Spherical Table VIII, Satisfying Condition R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 [0064] With the concentrating lens module 11 thus constructed, the divergent light source 20 can be issued with the form number A0101, page 16 of 35 Page M410222 • t The light beam of the modified replacement page is gathered on May 31, 100, to form a light beam with a central illuminance of about 580, OOOLux, which is distributed as shown in Fig. 12. It can be seen from Fig. 12 that the collecting lens of this embodiment The module 11 can effectively concentrate the light beams emitted by the divergent light source 20, and project an illumination beam with an elliptical light intensity distribution, which can be used for an illumination device, a projection device, a display device, etc., and can compensate illumination by using an illumination beam of an elliptical light intensity distribution. The disadvantage that the device, the projection device and the display device are weak on one side, And enhance the applicability of this creation. [Fourth Embodiment] The concentrating lens module 11 of the present embodiment collects and uniformly diverge the light beam emitted from the light source 20, and the divergent light source 20 used is the same as that of the first embodiment, the first condensing lens 111 and The configuration of the second condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of a glass material or a plastic material of N, 2.0, and the third optical surface R3 and the α-th optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 9, and satisfy the conditions of the formulas (3) to (6), as shown in Table 10. Table 9: Optical characteristics of the second collecting lens 112 [(8) 66] D 7 R 5 t 2 Nd 2.0 Focal length f 104 [0067] Table 10, Satisfaction condition form number Α 0101 Page 17 / Total 35 pages M410222 [0068] 100 years On May 31, the replacement of the guest R 5.00 R/t 2.50 Nd/R 0.40 R/D 0.71 [0069] The concentrating lens module 11 thus constructed can concentrate the light beams emitted from the divergent light source 20 to form a center. The light beam with an illuminance of approximately 520, OOOLux is distributed as shown in Fig. 13. It can be seen from FIG. 13 that the condensing lens module 11 of the present embodiment can effectively concentrate the light beam emitted by the divergent light source 20 and project an illumination beam with a uniform central light intensity and a high external light intensity, which can be used for Illumination devices, projection devices, display devices, etc., can utilize the illumination beam with high external light intensity to compensate for the disadvantages of the illumination device, the projection device and the edge of the display device being weak, thereby improving the applicability of the creation. <Fifth Embodiment> The concentrating lens module 11 of the present embodiment collects and uniformly diverge the light beam emitted from the light source 20, and the divergent light source 20 used is the same as the first embodiment, the first condensing lens 111 and The configuration of the second condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of a glass material of N, 1.2 or a plastic α material, and the third optical surface R3 and the fourth optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 11 and satisfy the conditions of the formulas (3) to (6), as shown in Table 12. Form No. 1010101 Page 18 of 35 M410222 * t [0071] [0073] The replacement of the page on the 31st of May, 100, the second concentrating lens 112 optical characteristics D 7 R 5 t 0 6 Nd 1. 2 Focal length f 124 Table 12, Satisfaction condition R 5.00 R/t 8.33 Nd/R 0.24 R/D 0.71 [0074] The concentrating lens module 11 thus constructed can emit the divergent light source 20 The beams are concentrated to form a beam with a central illumination of approximately 320, OOOLux, which is distributed as shown in Fig. 14. It can be seen from FIG. 14 that the concentrating lens module 11 of the present embodiment can effectively concentrate the light beams emitted by the divergent light source 20 and project an illumination beam with a high unilateral light intensity, which can be used for the illumination device, the projection device, and the projection device. Display device, etc., can use illumination beam with high unilateral light intensity to compensate illumination device, projection device and display device partial area form No. A0101 Page 19 / Total 35 pages M410222 __ 100 years old May 31 revision replacement page field The weaker shortcomings enhance the applicability of this creation. <Sixth Embodiment> Referring to FIG. 6, when the concentrating lens module i 1 of the present invention is applicable to illumination, the present embodiment provides a lighting device 2 including a divergent light source 2 and a first implementation. Any one of the concentrating lens modules n of the fifth embodiment. The diverging light source 20 is disposed on the incident side of the concentrating lens module ,, and the emitted light beam is projected onto the concentrating lens module U; the condensing lens module n is used for collecting and uniformizing the light beam emitted by the divergent light source 20 After that, an illumination beam is generated; for different condenser lens modules, the illumination beam can have different light intensity distributions, which can be selected according to the purpose of the illumination device 2, and the application convenience can be expanded. <Seventh Embodiment> Please refer to FIG. 7 'The illumination device 2 of the present invention can be applied to the projection device 3, and the projection device 3 of the present embodiment includes the illumination device 2 of the sixth embodiment, and a spectroscope 31' a light valve 32 and a projection lens 33. The illumination device 2 can generate an illumination beam projected onto the beam splitter 31 for receiving the illumination beam to split the illumination beam. [00T7] For the application of the micro-projection device, the beam splitter 31 can be polarized beam splitting. · Polarization Beam Splitter (PBS), which has both P-polarized and S-polarized light in the incident illumination beam. The polarized beam splitting prism (PBS) can simultaneously illuminate the S-polarized light in the white light of the illumination beam. Reflecting and allowing the P-polarized light in the illumination beam to penetrate; and the penetrating P-polarized light passes through the spaced half-wavelength plate and is then modulated into 5 polarized light, thus 'passing through the above-mentioned polarization The illumination beam of the PBS is a polarized illumination beam with only a single polarity (S-polarized light) that can be projected onto the light valve 32 ° Page 20 / Total 35 Form No. A0101 100 May 31 Day Correction Replacement Page Circle When the light valve 32 receives the split illumination beam from the beam splitter 31, the light beam of different spectra (or polarized light) is passed at different timings according to the control of the light valve 32 to generate an image beam. The image beam is illuminated to the projection mirror 33. [0079] The projection lens 33 is a group of optical lens groups that use a plurality of optical lenses to generate a projected image of the image beam and project it onto a target (not shown). [Embodiment 8] Please refer to FIG. 8 , which is a schematic diagram of an embodiment of a display device according to the present invention. The display device includes a backlight module 4, which in this embodiment is an edge-lit backlight module 4 ' The backlight module 4 includes the illumination device 2 and the light diffusion device 41 of the sixth embodiment. The illumination device 2 can generate an illumination beam that is projected onto the light diffusing device 41'. The light diffusing device 41 receives the illumination beam and causes the illumination beam to uniformly diffuse to form the backlight module 4 of the display device. [0081] The light diffusing device 41 includes a light guide plate 411, a reflection sheet 412, a diffuser sheet 413, and a prism sheet 414; when the illumination device 2 emits illumination The light beam is projected on the light guide plate 4U, and the illumination beam is refracted in the light guide plate 411. When the angle of the refracted illumination beam is smaller than the critical angle of the light guide plate 411, the illumination beam is refracted back to the light guide plate 411' when the angle of the refracted illumination beam is greater than When the critical angle of the light guide plate 411 is reached, the illumination beam will pass down through the light guide plate 411 and be reflected back into the light guide plate 411 by the reflection sheet 412 or go up through the light guide plate 411 to enter the diffusion sheet 413. [0082] The diffusion sheet 413 can be The illumination beam is evenly dispersed and then projected onto the cymbal form number A0101. Page 21 of 35 M410222 100 May 31, the replacement of the 'page 414' is repeated by the complex lens 414 to achieve uniform backlighting. purpose. ^Κ) 83] φ is generally relatively large in the backlight core group 4, and it is required that a plurality of illumination devices 2 cooperate with the light diffusing device 41' to make the backlight module 4 have a uniform light intensity distribution; The adjustment of the beam refraction avoids the uneven light intensity at the edge or part of the backlight module 4. The backlight module 4 of the display device of the present invention can use different light intensity distributions of different concentrating lens modules 11 (such as the first embodiment to the fifth embodiment) to form different illuminating devices 2, using different functions. The illumination device 2 is configured to achieve the uniform light intensity of the backlight module 4. [Ninth Embodiment] Please refer to FIG. 9, which is a schematic diagram of another embodiment of the display device of the present invention. The display device includes a backlight module 5, which is a direct-type backlight module 4 in this embodiment. The backlight module 4 includes the illumination device 2 of the sixth embodiment and the direct type light diffusion device 42. The illuminating device 2 can generate an illuminating beam 'projected on the direct-type light diffusing device 42 to constitute the backlight module 5 of the display device. [0085] The light diffusing device 42 includes a diffuser sheet 423 and a prism sheet 424. The illumination beam emitted by the illumination device 2 is directly projected on the diffusion sheet 423, and the diffusion sheet 423 uniformly disperses the illumination beam. Then, it is projected onto the cymbal 424' by the cymbal 424 to disperse the illumination beam again for the purpose of uniform backlighting. [0086] Since the backlight module 5 usually requires a plurality of illumination devices 2 to be placed at the lower end of the diffusion sheet 423, an illumination beam is emitted to illuminate the diffusion sheet 423. The illumination device 2 of the present invention can select a first concentrating light composed of different optical coefficients. Lens. Form No. A0101, page 22/35 pages _ 100 May 31, 111 and second concentrating lens 112, which can produce illumination device 2 of different illumination beam light intensity distribution, as in the first embodiment To the fifth embodiment, the backlight module 5 is disposed at different positions of the backlight module 5, for example, the concentrating lens module 11 of the second and fourth embodiments is disposed on the edge of the backlight module 5 to compensate for the proximity. The case where the edge region is weak; or the concentrating lens module 11 of the third embodiment is disposed in the edge region of the backlight module 5 to compensate for the weaker edge region; or the concentrating lens module of the fifth embodiment is used. 11 is disposed in the area where the backlight module 5 needs to be reinforced to enhance the illumination of a specific area; thereby, the effect of the backlight module 5 is more uniformly illuminated* [0087] The above is only a silk ship, not (4) Lander, Ho Departing from the spirit and scope of the present writing, the modifications or changes for the equivalents thereof, are to be included in the scope of the appended patent in. BRIEF DESCRIPTION OF THE DRAWINGS [0088] FIG. 1 is a schematic view of a conventional concentrating lens and a light-emitting diode chip module thereof; FIG. 2 is a conventional collecting lens of the art. The light intensity distribution map; Fig. 3 is a schematic view of another conventional light collecting lens and a light emitting diode wafer projection module; Fig. 4 is another light collecting technique of the prior art The light intensity distribution diagram of the lens; Fig. 5 is a schematic view of the concentrating lens module of the present invention; Fig. 6 is a schematic view of the fifth embodiment of the lighting device of the present invention; FIG. 8 is a schematic view showing a seventh embodiment of the display device of the present invention; FIG. 9 is a schematic view showing the A embodiment of the display device of the present invention; Form No. A0101, page 23/total 35 pages, 100 years, May 31, the shuttle replacement page, Fig. 10 is the relationship between the illuminance and the position of the concentrating lens module of the first embodiment; the eleventh is the illuminance of the concentrating lens module of the second embodiment. Diagram of position; Fig. 12 is the concentrating light of the third embodiment The relationship between the illuminance and the position of the mirror module; the 13th is the relationship between the illuminance and the position of the concentrating lens module of the fourth embodiment; and the illuminance of the concentrating lens module of the fifth embodiment is the illuminance and the illuminance of the concentrating lens module of the fifth embodiment The relationship diagram of the location. [Main component symbol description] [0089] 11 : concentrating lens module; 111: first concentrating lens; 112: second concentrating lens; 2 : Illuminating device; 20: divergent light source; 3: projecting apparatus; 31: beam splitter; 32: light valve; 33: projection lens Lens); 4: backlight module; 41: light diffuse device; 42: direct light diffuse device » 411: light guide plate; 412 : reflection sheet; form nickname A0101 page 24 / total 35 pages M410222 100th May 31st, nuclear replacement page 413: diffuser sheet (diffuse sheet); 414: prism sheet (prism sheet); 423: Diffuse sheet; 424: prism sheet; 5: backlight module; 51: projector device; 511: light emitting diode (LED); 512 : concentrating lens; 513: PS-converter 514: beam splitter; 515: light valve; 52: projector device; 521: LED (light emitting diode); 522: condensing mirror Concentrating lens; 523: PS-converter 524: beam splitter; 525: light valve; 526: light uniform lens; R1: first First optical lens; R2: first optical lens; R3: first optical lens; R4: first optical lens; D: effective opening diameter ( Diameter of opening); t: thickness; Δt: percentage difference in thickness of the second concentrating lens; and Z: optical axis ° Form No. A0101 Page 25 of 35