TW201229609A - Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same - Google Patents

Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same Download PDF

Info

Publication number
TW201229609A
TW201229609A TW100100097A TW100100097A TW201229609A TW 201229609 A TW201229609 A TW 201229609A TW 100100097 A TW100100097 A TW 100100097A TW 100100097 A TW100100097 A TW 100100097A TW 201229609 A TW201229609 A TW 201229609A
Authority
TW
Taiwan
Prior art keywords
lens
concentrating lens
light
concentrating
illumination
Prior art date
Application number
TW100100097A
Other languages
Chinese (zh)
Inventor
Yi-Min Chen
San-Woei Shyu
Original Assignee
E Pin Internat Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Internat Tech Co Ltd filed Critical E Pin Internat Tech Co Ltd
Priority to TW100100097A priority Critical patent/TW201229609A/en
Priority to CN2011100070829A priority patent/CN102563523A/en
Publication of TW201229609A publication Critical patent/TW201229609A/en

Links

Abstract

The present invention discloses a concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same. The concentrating lens module for condensing the emitted light by a LED comprises a bi-convex first concentrating lens and a meniscus second concentrating lens, wherein the concave optical surface of the second concentrating lens is facing to the emitting side, the curvatures of the concave and the convex optical surfaces are the same. The illuminating device comprises a divergent light source and the said concentrating lens module for emitting a uniformed illumination light beam. The projecting apparatus comprises the said illuminating device and a polarization beam splitter for the purposes of uniform illumination for a projector. Moreover the display apparatus having a back light module comprises the said illuminating device and a light diffuse device for the purposes of uniform illumination for an image display.

Description

201229609 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明關於一種聚光透鏡模組、其照明裝置、其投影裝 置及其顯示裝置,特別是由二個光學聚光透鏡組成之聚 光透鏡模組,可應用於照明裝置、投影裝置或顯示裝置 上。 【先前技術】 [0002] 發光二極體(1 i ght emi 11 i ng di ode, LED)具有體積 小、壽命長、散熱佳等優點,現在已廣範應用於各種領 域,例如投影機及顯示裝置等等。惟,發光二極體(LED) 發出的光束為點光源、亮度不均勻、具有較大的發散角 度及發出光束為發散的特性,因此,若做為照明、投影 機或其他裝置之光源時,且使用習知技術之光學透鏡, 將造成無法補捉最大量的光束,造成投射的光強度不足 及投射面之光度分佈不均勻之問題。為克服上述缺點, 如何有效聚集發光二極體(LED)所發出的光束已有進行多 項研究。 [0003] 第1圖為習知以發光二極體為光源的投影裝置51結構示意 圖。參閱第1圖,投影裝置51包含發光二極體511、聚光 透鏡512、偏極光轉換器(PS-converter)513、分光器 (beam splitter) 514、光閥(light valve)515 等。 發光二極體511發射的光束進入偏極光轉換器513,而後 依序進入分光器514及光閥515。為了獲得高亮度的投影 影像,過去皆於發光二極體511與偏極光轉換器513間, 設置一個聚光透鏡512,用以聚集發光二極體511發射的 100100097 表單編號A0101 第4頁/共36頁 1002000174-0 201229609 光束,減少光束損失。 [0004] Ο [0005] [0006] ϋ 第2圖為第1圖的習知投影裝置51之偏極光轉換器5ΐ3接收 發光二極體511發射的光束,於偏極光轉換器513各位置 的光照度圖,其中橫座標表示以偏極光轉換器513中心為 基準點,沿其X及γ轴方向的距離(單位,縱座標為各 位置的光照度大小(單位:Lux)。第2圖中,於χ、γ轴各 位置上測得偏極光轉換器513的光照度大小,大部分皆於 300, 000 Lux以下,僅部分位置為300, 〇〇〇 lux以上. 且X、Y軸各位置上的光分佈並不均勻。 此習知的投影裝置51雖有設置聚光透故512,但此聚光透 鏡512僅能聚集較接近光軸處的光束,聚光透鏡512邊緣 的光束仍會偏折而無法被聚集。再者,此聚光透鏡512為 了聚光’其右側面的光學面曲率需很大,造成在模造過 程中不易製作此聚光透鏡512。 第3圖為另一種習知的裝置|徐以發光二接遨521為光源 的投影裝置52另一結構示意圖。參閱第3圖,投影裝置52 於聚光透鏡522與偏極光轉換器523間,增設—片均光透 鏡526 ;此均光透鏡526為具有小曲率、非等厚的透鏡, 具有使光束準直的功能,而使進入偏極光轉換器egg的光 束更均勻。故可改善第1圖之投影襞置51光束不均勻的問 題’其效果可參見第4圖。 於第3圖中的習知技術上,以發光二極體521為先源的習 知的投影裝置52,雖增加了均光透鏡526,改善了進入偏 極光轉換器523光朿的均勻性,但此均光透鏡526無聚光 100100097 表單編號A0101 第5頁/共36頁 1002000174-0 [0007] 201229609 功能,造成聚光透鏡522周圍的光束無法被岣光透鏡526 聚集,故投影裝置52的亮度仍無法提升。 [0008] 7·: ch2 1 + +V)c2/,J)) ^'2 + .4μΛ14 + 除了投影裝置外,各種以發散光源為光源的電子裝置, 例如照明裝置或顯示裝置等,也皆有上述同:的^題。 故為了解決這些問題,本發明即提供一種既可提升亮度 ,且亦有均光功能的聚光透鏡模組,改進上述習知的問 題,以應用於照明裝置 '投影裝置及顯示裝置。 【發明内容】 [0009] 有鑑於上述習知技藝之問題,本發明的曰从 ^ ^ 7㈡的之一在解決 習知發散光源發射的光束無法充份被利用,造成投影裝 置、照明裝置或顯示裝置亮度無法提升的問題。7、 [0010]因此,本發明提出一種聚光透鏡模組,可用於發散光源 ’以聚集及均勻發散光賴錄的光束,«散光_ 如以發光二極體為發光光源,但不以此為限;聚光透鏡 模組包含有第一聚光透鏡及第二聚光透鏡,其中,第一 聚光透鏡可為一雙凸型透鏡或不同形狀的透鏡,第一聚 光透鏡設置於光束入射側’具有第—光學面^與第二光 學面R2,為正屈光度,藉由第一光學面设丨與第二光學面 R2以聚集該發散光《射之光H聚光透鏡為一新 月型透鏡,具有一凸表面之第三光學面“及一凹表面之 第四光學面R4 ’該凸表面(第三光學面R3)與該凹表面(第 四光學面R4)的曲率半徑相同,且該凸表面朝向該第一聚 光透鏡,該第二聚光透鏡接收來自該第一聚光透鏡之該 100100097 表單編號A0101 第6頁/共36頁 1002000174-0 201229609 光束並將3亥光束聚集且均勻投射於該凹表面(第四光學 面R4)外。其中,第三光學面R3與第四光學面以的尚率半 乜為相同,係為具有相同且在製造容差範圍内的曲率半 L,以產生由空氣間隙進入第二透鏡或第二透鏡穿出空 氣的折射角度在相同曲率半徑的光學上效果;其厚度進 一步滿足下列關係式: [0011][0012] Ο [0013]201229609 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a concentrating lens module, an illuminating device thereof, a projection device thereof and a display device thereof, in particular, a combination of two optical concentrating lenses The optical lens module can be applied to a lighting device, a projection device or a display device. [Prior Art] [0002] Light-emitting diodes (1 i ght emi 11 i ng di ode, LED) have the advantages of small size, long life, good heat dissipation, etc., and have been widely used in various fields, such as projectors and displays. Devices and so on. However, the light beam emitted by the light-emitting diode (LED) is a point light source, the brightness is uneven, the divergence angle is large, and the emitted light beam is divergent. Therefore, when used as a light source for illumination, a projector, or other devices, Moreover, the use of optical lenses of the prior art will result in the inability to capture the maximum amount of light beam, resulting in insufficient projected light intensity and uneven luminosity distribution on the projection surface. In order to overcome the above shortcomings, how to effectively collect the light beam emitted by the light-emitting diode (LED) has been studied. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a projection device 51 using a light-emitting diode as a light source. Referring to Fig. 1, the projection device 51 includes a light-emitting diode 511, a condensing lens 512, a PS-converter 513, a beam splitter 514, a light valve 515, and the like. The light beam emitted from the light-emitting diode 511 enters the polarization converter 513, and then enters the beam splitter 514 and the light valve 515 in sequence. In order to obtain a high-brightness projection image, in the past, between the light-emitting diode 511 and the polarization converter 513, a collecting lens 512 is provided for collecting the 100100097 emitted by the LED 511. Form No. A0101 Page 4 / Total Page 36, 1002000174-0 201229609 Beam, reducing beam loss. [0004] [0006] [Fig. 2] The polarized light converter 5ΐ3 of the conventional projection device 51 of Fig. 1 receives the light beam emitted from the light-emitting diode 511, and the illuminance at each position of the polarization converter 513 In the figure, the abscissa indicates the distance from the center of the polarization converter 513 as a reference point along the X and γ axis directions (unit, ordinate is the illuminance of each position (unit: Lux). In Fig. 2, Yu Yu The illuminance of the polarization converter 513 measured at each position of the γ-axis is mostly below 300,000 Lux, and only part of the position is 300, 〇〇〇lux or more. And the light distribution at each position of the X and Y axes Although the conventional projection device 51 is provided with a collecting light 512, the collecting lens 512 can only collect the light beam closer to the optical axis, and the beam at the edge of the collecting lens 512 is still deflected and cannot be obtained. Further, the concentrating lens 512 has a large curvature of the optical surface on the right side of the condensing lens 512, which makes it difficult to fabricate the condensing lens 512 during the molding process. Fig. 3 is another conventional device| Another structure of the projection device 52 with the light-emitting diode 521 as a light source Referring to FIG. 3, the projection device 52 is disposed between the collecting lens 522 and the polarization converter 523, and is provided with a uniform lens 526. The light lens 526 is a lens having a small curvature and a non-equal thickness. The function of collimation makes the beam entering the polarized light converter egg more uniform. Therefore, the problem of uneven beam of the projection device 51 of Fig. 1 can be improved. The effect can be seen in Fig. 4. The drawing in Fig. 3 Technically, the conventional projection device 52 with the light-emitting diode 521 as the source has increased the uniformity of the pupil entering the polarization converter 523 despite the addition of the homo-lens lens 526, but the uniform lens 526 has no Spotlight 100100097 Form No. A0101 Page 5 / Total 36 Page 1002000174-0 [0007] The function of 201229609 causes the light beam around the collecting lens 522 to be unable to be collected by the calender lens 526, so the brightness of the projection device 52 cannot be improved. ] 7·: ch2 1 + +V)c2/, J)) ^'2 + .4μΛ14 + In addition to the projection device, various electronic devices using a divergent light source as a light source, such as a lighting device or a display device, Same as: ^ question. Therefore, in order to solve these problems, the present invention provides a concentrating lens module which can improve brightness and also has a light absorbing function, and improves the above-mentioned conventional problems to be applied to a lighting device 'projection device and display device. SUMMARY OF THE INVENTION [0009] In view of the above-mentioned problems of the prior art, the light beam emitted by the present invention from solving one of the conventional divergent light sources cannot be fully utilized, resulting in a projection device, a lighting device or a display. The problem that the brightness of the device cannot be improved. 7. [0010] Therefore, the present invention provides a concentrating lens module that can be used to diverge a light source to concentrate and uniformly diverge light beams. «Astigmatism _ such as a light-emitting diode as a light source, but not The concentrating lens module includes a first concentrating lens and a second concentrating lens, wherein the first concentrating lens can be a lenticular lens or a lens of different shapes, and the first concentrating lens is disposed on the beam The incident side 'having a first optical surface ^ and a second optical surface R2 are positive refracting power, and the first optical surface is disposed on the second optical surface R2 to gather the divergent light "the light H concentrating lens is a new one a lunar lens having a third optical surface "having a convex surface" and a fourth optical surface R4 of a concave surface. The convex surface (third optical surface R3) has the same radius of curvature as the concave surface (fourth optical surface R4) And the convex surface faces the first collecting lens, and the second collecting lens receives the 100100097 form number A0101 from the first collecting lens, and the light beam and the 3H beam Gather and uniformly project onto the concave surface (fourth light The surface of the third optical surface R3 and the fourth optical surface are the same as the half radius of the fourth optical surface, and are the same half and the radius of curvature L within the manufacturing tolerance range to generate the second gap from the air gap. The refractive effect of the angle of refraction of the lens or the second lens through the air at the same radius of curvature; the thickness further satisfies the following relationship: [0011] [0013]

At ^3% (1) 其中,Δ1;為第二聚光透鏡的任一點厚度士之差異百分比 ;1;為第二聚光透鏡凸表面(第三光學面R3)任一點上之法 線延線上與第二聚光透鏡凹表面(第四光學面R4)之間的 厚度(參見第5圖)。 其中,第一光學面R1、第二光學面R2、第三光學面”及 第四光學面R4係由球面光學面及非球面先學面組合,對 於各光學面為非球面之光學面時,其非球面係以方程式 (Aspherical Surface Formula)式(2)所構成 〇 [0014] ch2 I +y(l _ (1 +>C)c2 A2)) ^ + A^hyi> ^ Anhn AuhlA ^ AX6hx^ (2) 其中,c是鏡片曲率,h為鏡片高度,K為圓錐係數(Con-ic Constant)、A4、A6、A8、A】。、A12、Au、A16分 別四、六、八、十、十二、十四、十六階的非球面係數 (Nth Order Aspherical Coefficient)。但非球 面方程式並不以(2)式為限’其它非球面方程式也可以適 用於本發明。 100100097 表單編號A0101 第7頁/共36頁 1002000174-0 201229609 [0015] 第二聚光透鏡可滿足下式條件之一或其组合: 2. 5^R^9 (3) 2^R/t^9 (4) 0. 15^N /R^O. 6 d (5) 0. 55^R/D^l. 1 (6) [0016] [0017] [0018] 其中,R為該第二聚光透鏡之第三光學面R3與第四光學面 R4的曲率半徑(單位為公釐)、t為第三光學面R3上一點與 第二聚光透鏡焦點(focus)連線上的第三光學面R3與與 第四光學面R4之間的厚度(單位為公釐)、L為該第二聚 α 光透鏡之折射率、D為該第二聚光透鏡之該凹表面在發射 側的有效開口直徑(單位為公釐)。 本發明另一目的在於提供一種照明裝置,係包含一發散 光源與前述之聚光透鏡模組,可解決習知均光透鏡僅能 準直光束,使光束均勻,無法再次聚光的問題;其中, 該發散光源可發射出一光束,投射至該聚光透鏡模組; 該聚光透鏡模組用以將該發散光源發出的光束聚集後產 生一照明光束,其特徵如前所述。 本發明再一目的係提供一種投影裝置,包含一前述的照 明裝置、一分光器、一光閥及一投影鏡頭,其中,該照 明裝置用以產生一照明光束,投射於該分光器;該分光 器,用以接收該照明光束,將該照明光束進行分光;該 光閥,用以接收來自該分光器之該照明光束,並產生一 影像光束照射至該投影鏡頭;該投影鏡頭,用以接收該 影像光束並產生一投影影像。 100100097 表單編號Α0101 第8頁/共36頁 1002000174-0 201229609 [0019] [0020] [0021] ❸ [0022] [0023]At ^3% (1) where Δ1 is the percentage difference of the thickness of any point of the second concentrating lens; 1; is the normal extension at any point of the convex surface of the second concentrating lens (third optical surface R3) The thickness between the line and the concave surface of the second collecting lens (fourth optical surface R4) (see Fig. 5). The first optical surface R1, the second optical surface R2, the third optical surface, and the fourth optical surface R4 are combined by a spherical optical surface and an aspherical surface, and when the optical surfaces are aspherical optical surfaces, The aspherical surface is composed of the equation (Aspherical Surface Formula) (2). [0014] ch2 I + y (l _ (1 + > C) c2 A2)) ^ + A^hyi > ^ Anhn AuhlA ^ AX6hx ^ (2) where c is the curvature of the lens, h is the height of the lens, K is the Con-ic Constant, A4, A6, A8, A], A12, Au, A16 respectively four, six, eight, ten Nth Order Aspherical Coefficient, but the aspheric equation is not limited to (2). Other aspheric equations may also be applied to the present invention. 100100097 Form No. A0101 Page 7 / 36 pages 1002000174-0 201229609 [0015] The second concentrating lens can satisfy one of the following conditions or a combination thereof: 2. 5^R^9 (3) 2^R/t^9 (4) 0. 15^N /R^O. 6 d (5) 0. 55^R/D^l. 1 (6) [0016] wherein R is the second concentrating lens The curvature of the three optical faces R3 and the fourth optical face R4 is half (unit is mm), t is the thickness between the third optical surface R3 and the fourth optical surface R4 on the line connecting the point on the third optical surface R3 and the focus of the second collecting lens (the unit is public)厘), L is the refractive index of the second polyalpha lens, and D is the effective opening diameter (in mm) of the concave surface of the second concentrating lens on the emission side. Another object of the present invention is to provide a The illuminating device comprises a divergent light source and the concentrating lens module described above, which can solve the problem that the conventional halogen lens can only collimate the light beam, make the light beam uniform, and cannot condense again; wherein the divergent light source can emit one a light beam is projected onto the concentrating lens module; the concentrating lens module is configured to gather the light beams emitted from the divergent light source to generate an illumination beam, and the feature is as described above. Still another object of the present invention is to provide a projection device The invention includes a lighting device, a beam splitter, a light valve and a projection lens, wherein the lighting device is configured to generate an illumination beam and project to the beam splitter; the beam splitter is configured to receive the illumination beam, The The illumination beam is split; the light valve is configured to receive the illumination beam from the beam splitter and generate an image beam to the projection lens; the projection lens is configured to receive the image beam and generate a projection image. 100100097 Form No. 101 0101 Page 8 / Total 36 pages 1002000174-0 201229609 [0019] [0022] [0022] [0023]

[0024] 本發明又一目的係提供一種顯示裝置,包含一背光模組 · ,該背光模組包含:一前述的照明裝置與一光擴散裝置 ;其中,該照明裝置用以產生一照明光束,投射於該光 擴散裝置,構成顯示裝置之一背光模組。 承上所述,依本發明之聚光透鏡模組、其照明裝置、其 投影裝置及其顯示裝置,具有下述優點: (1) 本發明之聚光透鏡模組可將入射發散光束予以有效的 聚集並均勻投射至發射侧,使發射側之光束可以均勻化 並提高光強度,可改善習知技術之光束聚集效率不高之 缺點。 更進一步,本發明之第一聚光透鏡若選用玻璃材質以模 造玻璃之製造方法製造,則可提高第一光學面R1與第二 光學面R2之曲率半徑,以增加第一聚光透鏡的聚光能力 〇 〇 (2) 本發明之照明裝置係利用前述之聚光透鏡模組,將發 散光源發出的光束予以聚集、均勻,以提高光強度,而 叮供投影裝置及顯示裝置使用,改善習知技術的照明裝 置的光強度分佈不均或光強度不高的缺點。 (3) 本發明之投影裝置係利用前述之照明裝置,可將發散 光源發出的光束予以聚集、均勻,以提高光強度,使投 影裝置產生投影影像,可改善習知技術的投影裝置的光 強度不高的缺點。 本發明之顯示裝置係利用前述之照明裝置,可將發散光 源發出的光束予以聚集、均勻,以提高光強度,使顯示 100100097 表單編號A0101 第9頁/共36頁 1002000174-0 201229609 * 裝置之背光模組的亮度大幅提高,可改善習知技術的背 光模組的光強度不高的缺點。 【貫施方式】 [0025] 請參閱第5圖,其係為本發明之聚光透鏡模組11之示意圖 。聚光透鏡模組11係用於聚集及均勻發散光源20(如LED 、鹵素燈、CCFL但不為其所限)發射出之光束。圖中,聚 光透鏡模組11由第一聚光透鏡111及第二聚光透鏡112所 組成,第一聚光透鏡111與第二聚光透鏡112設置於光軸Z 上。 [0026] 第一聚光透鏡111,具有正屈光度且設置於光束入射側, 其具有至少一凸面,例如其可為一雙凸型透鏡或一平凸 型透鏡。第一聚光透鏡111具有第一光學面R1與第二光學 面R2,藉由第一光學面R1與第二光學面R2以聚集發散光 源20發射之光束。 [0027] 第二聚光透鏡112為一新月型透鏡,具有凸表面之第三光 學面R3及凹表面之第四光學面R4,且該凸表面朝向第一 聚光透鏡111。在製造容許公差範圍下,該凸表面(第三 光學面R3)與該凹表面(第四光學面R4)間之厚度ΐ滿足△ t$3%(式(1)),較佳地是Δΐ = 0。其中,t為第三光學面 R3任一點的法線沿線上與第四光學面R4之間的厚度,單 位為公釐;At為第二聚光透鏡112的任一點厚度t之差異 百分比。 [0028] 第二聚光透鏡112接收來自該第一聚光透鏡111所聚集的 光束,並將該光束再次聚集及均勻,投射於該凹表面(第 100100097 四光學面R4)外。 表單編號A0101 第10頁/共36頁 1002000174-0 201229609 [0029] 第二聚光透鏡112的凸表面(第三光學面R3)與該凹表面( 第四光學面R4),為使製作方便,減少模具的製作,可採 用相同的曲率半徑,可滿足下式條件: [0030] 2. 5(mm)^R^9(mm) (3) [0031] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐mm),在製造容差範圍下, 第三光學面R3與第四光學面R4的曲率半徑為相近似。 [0032] 第二聚光透鏡112的厚度係由第三光學面R3與第四光學面 O R4所界定,由於第三光學面R3與第四光學面R4的曲率半 徑相同,其厚度為均一,可滿足下式條件: [0033] 2^R/t (4) [0034] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐mm)、t為第三光學面R3任 一點的法線沿線上與第四光學面R 4之間的厚度(單位為公 董mm) ° [0035] 第二聚光透鏡11 2的材料選擇可採用光學塑膠材料或光學 玻璃材料,但為有較佳的光學效果,可滿足下式條件: [0036] 0. 15^NVR^0. 6 (5) α [0037] 其中,R為該第二聚光透鏡之第三光學面R3與第四光學面 R4的曲率半徑(單位為公釐mm)、N,為第二聚光透鏡112 α 之折射率。 [0038] 第二聚光透鏡112的開口大小,係決定投射的光束總量, 過大的開口雖可將進入第二聚光透鏡112的光束儘量予以 100100097 表單編號Α0101 第11頁/共36頁 1002000174-0 201229609 投射出去,但將造成投射目標的投射面上的光強度不均 勻的現象;反之,過小的開口將降低光束的有效利用率 ;較佳的情形,第二聚光透鏡11 2的開口直徑(單位為公 釐)D,可滿足下式條件: [0039] 0.55SR/DS1.1 (6) [0040] 其中,R為第二聚光透鏡112之第三光學面R3與第四光學 面R4的曲率半徑(單位為公釐_)、卩為第二聚光透鏡 11 2之凹表面在發射側的有效開口直徑(單位為公釐mm )。 [0041] 為使本發明更加明確詳實,茲列舉較佳實施例並配合下 列圖示,將本發明之聚光透鏡模組11、運用此聚光透鏡 模組11構成的照明裝置2、運用此照明裝置2構成的投影 裝置3及其顯示裝置4、5的結構及其技術特徵詳述如後: [0042] 本發明以下所揭示之實施例,乃是針對本發明之聚光透 鏡模組、運用此聚光透鏡模組構成的照明裝置、運用此 照明裝置構成的投影裝置及其顯示裝置的結構而作說明 ,因此本發明以下所揭示之實施例雖是應用於一發光二 極體發散光源,但不以發光二極體為發光源之發散光源 為限,因此一般在此領域中熟悉此項技藝之人士瞭解, 本發明所揭示聚光透鏡模組、其照明裝置、其投影裝置 及其顯示裝置之構成元件並不限制於以下所揭示之實施 例結構,也就是該聚光透鏡模組、其照明裝置、其投影 裝置及其顯示裝置之各構成元件是可以進行許多改變、 修改、甚至等效變更的。 [0043] 〈第一實施例〉 100100097 表單編號A0101 第12頁/共36頁 1002000174-0 201229609 [0044] [0045] ❹ [0046] 〇 [0047] [0048] 請繼續參閱圖5,本實施例之聚光透鏡模組11係聚集及均 勻發散光源2 0所發出的光束,發散光源20係以發光二極 體受激發後發出光束,其發出光通量(Luminous power)為以100流明(Lumen)的光束為例。 聚光透鏡模組Π由第一聚光透鏡111及第二聚光透鏡112 所組成,第一聚光透鏡111與第二聚光透鏡112設置於光 軸Z上;第一聚光透鏡111為一雙凸型透鏡,設置於光束 入射側,具有第一光學面R1與第二光學面R2接收發散光 源20發出的光束予以聚集,投射至第二聚光透鏡112。 第二聚光透鏡112設置於第一聚光透鏡111之投射側,具 有面向入射侧為凸表面之第三光學面R3及凹表面之第四 光學面R4。第二聚光透鏡112係使用N,l. 53的玻璃材料 製成,其第三光學面R3與第四光學面R4為非球面,係使 用式(2)之非球面所構成,該凸表面(第三光學面R3)與該 凹表面(第四光學面R4)間的厚度相同(即Δί = 0)或厚度 滿足At S3%(式(1))。其中,t為第三光學面R3任一點 的法線沿線上與第四光學面R4之間的厚度,單位為公釐 ,At為第二聚光透鏡112的任一點厚度t之差異百分比。 第二聚光透鏡11 2接收來自該第一聚光透鏡111所聚集的 光束,並將該光束再次聚集及均勻投射於該凹表面(第四 光學面R4)外之發射侧。 第二聚光透鏡112光學特性與非球面係數如表一及表二, 並滿足式(3)〜式(6)之條件’如表三。 表一、第二聚光透鏡112光學特性 100100097 表單編號A0101 第13頁/共36頁 1002000174-0 [0049] 201229609 [0050] [0051] [0052] D 8 R 8 t 1.2 Nd 1.53 焦距f 321 表二、 第二聚光透鏡112光學面之非球面係數 光學 面 K a4 a6 As A] 〇 R3* -0.16 -0.01 -2.00E-04 1.30Ε-05 4.5Ε-06 R4* -0.16 -O.Ol -2.00E-04 1.30Ε-05 4.5Ε-06 氺: R3與R4為非球面 表三、 滿足條件 R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 [0053] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為60 0, 0 0OLux的光 束,其分佈如第10圖。於圖中,X與Y係聚光透鏡模組11 100100097 表單編號A0101 第14頁/共36頁 1002000174-0 201229609 投射出的光束,投射於距離第二聚光透鏡11 2之第四光學 面R 4中心轴上1 9. 7公釐上目標物上的水平轴與垂直軸量 測位置。由第1 0圖可知,藉由本實施例之聚光透鏡模組 11可將發散光源20所發出的光束有效聚集,並投射出均 勻光強度的照明光束,可用於照明裝置、投影裝置與顯 示裝置等,而提昇本發明之應用性。 [0054] ❹ 〈第二實施例〉 本實施例之聚光透鏡模組11係聚集發散光源20所發出的 光束,使用的發散光源20與第一實施例相同,第一聚光 透鏡111及第二聚光透鏡112的配置也相同於第一實施例 ,在此不再贅述。 其中,第二聚光透鏡112係使用N,l.8的玻璃材料或塑膠 材料製成,第三光學面R3與第四光學面R4為球面。第二 聚光透鏡112光學特性如表四,並滿足式(3)〜式(6)之條 件,如表五。 表四、第二聚光透鏡112光學特性 Ο [0055] D 6 R 3.5 t 1.5 Nd 1.8 焦距f 93 表五、滿足條件 表單編號Α0101 第15頁/共36頁 100100097 1002000174-0 201229609 R 3.50 R/t 2.33 Nd/R 0.51 R/D 0.58 [0056] 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集及均勻,形成中心光照度約為 530, OOOLux的光束,其分佈如第11圖。由第11圖可知, 藉由本實施例之聚光透鏡模組11可將發散光源20所發出 的光束有效聚集,並投射出中心部份均勻光強度、外圓 光強度較高的照明光束,可用於照明裝置、投影裝置與 顯示裝置等,係可利用外圓光強度較高的照明光束補償 照明裝置、投影裝置與顯示裝置邊緣較弱的缺點,而提 昇本發明之應用性。 [0057] 〈第三實施例〉 本實施例之聚光透鏡模組11係聚集發散光源20所發出的 光束,使用的發散光源20與第一實施例相同,第一聚光 透鏡111及第二聚光透鏡112的配置也相同於第一實施例 ,在此不再贅述。 其中,第二聚光透鏡112係使用= 1.49的PMMA塑膠材料 α 製成,第三光學面R3與第四光學面R4為非球面,係使用 式(2)之非球面所構成,第三光學面R3與第四光學面R4間 沿光軸的厚度相同(即△ t = 0)或厚度滿足△ t S 3%(式 (1))。第二聚光透鏡112光學特性與非球面係數如表六及 100100097 表單編號A0101 第16頁/共36頁 1002000174-0 201229609 [0058] [0060] Ο 表七,並滿足式(3 )〜式(6 )之條件,如表八。 表六、第二聚光透鏡112光學特性 Ο [0059] D 8 R 8 t 1.2 Nd 1.49 焦距f 139 表七、 第二聚光透鏡112光學面之非球面係數 光學 面 K a4 Αό As Αι〇 R3* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 R4* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 * : R3與R4為非球面 表八、滿足條件 [0061] R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 經由此所構成的聚光透鏡模組11 ,可將發散光源20發出 的光束予以聚集,形成中心光照度約為580, OOOLux的光 100100097 表單編號A0101 第17頁/共36頁 1002000174-0 201229609 束,其分佈如第12圖,由第12圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出光強度分佈為橢圓的照明光束,可用於照明 裝置、投影裝置與顯示裝置等,係可利用橢圓光強度分 佈的照明光束補償照明裝置、投影裝置與顯示裝置單邊 較弱的缺點,而提昇本發明之應用性。 [0062] 〈第四實施例〉 本實施例之聚光透鏡模組11係聚集及均勻發散光源20所 發出的光束,使用的發散光源20與第一實施例相同,第 一聚光透鏡111及第二聚光透鏡112的配置也相同於第一 實施例,在此不再贅述。其中,第二聚光透鏡11 2係使用 N,2. 0的玻璃材料或塑膠材料製成,第三光學面R3與第 d 四光學面R4為球面。第二聚光透鏡112光學特性如表九, 並滿足式(3)〜式(6)之條件,如表十。 [0063] 表九、第二聚光透鏡112光學特性 D 7 R 5 t 2 Nd 2.0 焦距f 104 表十、滿足條件 100100097 表單編號A0101 第18頁/共36頁 1002000174-0 201229609 R 5.00 R/t 2.50 Nd./R 0.40 R/D 0.71 [0065] Ο 經由此所構成的聚光透鏡模組11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為520, OOOLux的光 束,其分佈如第13圖。由第13圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出中心部份均勻光強度、外圓光強度較高的照 明光束,可用於照明裝置、投影裝置與顯示裝置等,係 可利用外圓光強度較高的照明光束補償照明裝置、投影 裝置與顯示裝置邊緣較弱的缺點,而提昇本發明之應用 性。 [0066] Ο 〈第五實施例〉 本實施例之聚光透鏡模組11係聚集及均勻發散光源20所 發出的光束,使用的發散光源20與第一實施例相同,第 一聚光透鏡111及第二聚光透鏡112的配置也相同於第一 實施例,在此不再贅述。 [0067] 其中,第二聚光透鏡112係使用N,l.2的玻璃材料或塑膠 材料製成,第三光學面R3與第四光學面R4為球面。第二 聚光透鏡112光學特性如表十一,並滿足式(3)~式(6)之 條件,如表十二。 100100097 表單編號Α0101 第19頁/共36頁 1002000174-0 201229609 [0068] 表十一、第二聚光透鏡112光學特性 D 7 R 5 t 0.6 Nd 1.2 焦距f 124 [0069] 表十二、滿足條件 R 5.00 R/t 8.33 Nd/R 0.24 R/D 0.71 [0070] 100100097 經由此所構成的聚光透鏡模组11,可將發散光源20發出 的光束予以聚集,形成中心光照度約為320, 0 0OLux的光 束,其分佈如第14圖。由第14圖可知,藉由本實施例之 聚光透鏡模組11可將發散光源20所發出的光束有效聚集 ,並投射出單邊光強度較高的照明光束,可用於照明裝 置、投影裝置與顯示裝置等,係可利用單邊光強度較高 的照明光束補償照明裝置、投影裝置與顯示裝置部份區 域較弱的缺點,而提昇本發明之應用性。 〈第六實施例〉 表單編號A0101 第20頁/共36頁 1002000174-0 [0071] 201229609 請參考第6® ’當本發明之聚_鏡模組&quot;可顧於照明 ’本實^m供-種照明裝置2,係包含發散錢2〇與第 -實施例至第五實施例之任—種聚光透鏡模&amp;ιι。發散 光源20係設置於聚光透鏡模_之人射側,可發射出光 束投射至聚; Μ錢肋旧以將該發 散光源20發出的光束聚集及均勻後產生一照明光束;對 於使用不同的聚紐鏡模組1卜其照明光束的光強度分 佈可有不同,可依據照明裝置2使用的目的而選擇搭配, 更可擴大應用的方便。 〈第七實施例〉 請參考第7圖,本發明之照明裝置2可應用於投影裝置3, 本實施例投影裝置3包含有第六實施例之照明裝置2、一 分光器31、一光閥32及一投影鏡頭33。照明裝置2可產生 一照明光束’投射於該分光器31,用以接收照明光束, 將該照明光束進行分光。 [0073] Ο 對於微型投影裝置的應用,該分光器31可為偏極化分光 稜鏡(Polarization Beam Splitter ; PBS),在入射 的照明光束中同時具有P極化光及S極化光,偏極化分光 棱鏡(PBS)可同時將照明光束中白光中之S極化光反射’ 並讓照明光束中之P極化光穿透;而穿透之P極化光經過 間隔設置的半波長板後’會被調變為3極化光’因此’穿 透過上述偏極化分光棱鏡(PBS)之照明光束,為一僅具有 單一極性(S極化光)之偏振照明光束,可投射至光閥32。 當光閥32接收來自該分光器31之分光後的照明光束,依 據光閥32的控制,在不同時序通過不同光譜(或極化光) 100100097 表單編號A0101 第21頁/共36頁 1002000174-0 [0074] 201229609 的光束’以產生一影像光束,該影像光束照射至投影鏡 頭33。 投影鏡頭33為一組光學透鏡組,利用多片的光學透鏡, 將影像光束產生一投影影像,投影在目標物(未於圖上顯 示)上。 [0075] [0076] 〈弟八實施例〉 請參考第8圖’係為本發明之顯示裝置實施例的示意圖, 顯示裝置包含有一背光模組4,在本實施例為邊光式之背 光模組4,背光模組4包含有第六實施例之照明裝置2與光 擴散裝置41。照明裝置2可產生一照明光束,投射於該光 擴散裝置41 ’該光擴散裝置41接收該照明光束,並使該 照明光束產生均勻擴散,構成顯示裝置之背光模組4。 光擴散裝置41包含有導光板411(iight guide plate) 、反射片 412(reflection sheet)、擴散片 413(diffuse sheet)及稜鏡片 414(prism sheet); 當照明裝置2發出的照明光束^:射於導光板4丨i,照明光 束在導光板411内折射前進,當折射的照明光束角度小於 導光板411的臨界角度時,照明光束會被折射回到導光板 411,當折射的照明光束角度大於導光板411的臨界角度 時,照明光束會向下穿出導光板411由反射片412反射回 到導光板411内,或向上穿出導光板411進入擴散片413 〇 擴散片4丨3可將照明光束予以均勻分散,再投射至棱鏡片 414,由稜鏡片414將照明光束再次分散以達均勻背光的 目的。 100100097 表單編號A0101 第22頁/共36頁 1002000174-0 [0077] 201229609 [0078] 由於背光模組4通常相對很大’需要由許多的照明裝置2 配合光擴散裝置41 ’使背光模組4有均勻的光強度分佈; 在習知技術上需要級過許多光束折射的調整,以避免背 光模組4邊緣或部份地區的光強度不均勻的現象。本發明 之顯不裝置之背光模組4,可使用不同的聚光透鏡模組 11(如第一實施例至第五實施例)之不同光強度分佈,構 成不同的照明裝置2 ’利用不同功能的照明裝置2配置, 可達到背光模組4均勻光強度的功效。 [0079] ❹ 〈第九實施例〉 請參考第9圖’係為本發明之顯示裝置另一個實施例的示 意圖,顯示裝置包含有一背光模組5,在本實施例為直下 式之背光模組4,背光模組4包含有第气實施例之照明裝 置2與直下式光擴散裝置42。照明裴置2可產生一照明光 束’投射於該直下式光擴散裝置42,構成顯示裝置之背 光模組5。 [0080] Ο 光擴散裝置42包含有擴散.片fuse sheet)及棱 鏡片424(prism sheet);照明3裝蔞2發出的照明光束直 接投射於擴散片423,擴散片423可將照明光束予以均勻 分散’再投射至棱鏡片424,由稜鏡片424將照明光束再 次分散以達均勻背光的目的。 [0081] 由於背光模組5通常需要很多個照明裝置2放置於擴散片 423下端,發出照明光束對擴散片423照射;本發明之照 明裝置2,可選用不同光學係數所構成的第一聚光透鏡 111及第二聚光透鏡112,其可以產生不同的照明光束之 光強度分佈之照明裝置2,如第一實施例至第五實施例, 100100097 表單編號A0101 第23頁/共36頁 1002000174-0 201229609 分別佈設於背光模組5的不同位置,例如,於使用第二、 第四實施例之聚光透鏡模組11佈設於背光模組5接近於邊 緣地區,以補償接近於邊緣地區較弱的情形;或使用第 二貫施例之聚光透鏡模組11佈設於背光模組5邊緣地區, 以補償邊緣地區較弱的情形;或使用第五實施例之聚光 透鏡模組11佈設於背光模組5需要加強照明的地區,以增 強特定地區的照明;由此,可達背光模組5更為均勻照明 的效果。 [0082] [0083] 以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與範疇,而對其進行之等效修改或變更,均 應包含於後附之申請專利範固中。 【圖式簡單說明】 第1圖係為習知技藝之聚光透鏡及其構成的發光二極體晶 片投影模組的示意圖; 第2圖係為習知技藝之聚光璋鏡的光強度分佈圖; 第3圖係為另一種習知技藝之聚卷透鏡及其構成的發光二 極體晶片投影模組的示意圖; 第4圖係為另一種習知技藝之聚光透鏡的光強度分佈圖; 第5圖係為本發明之聚光透鏡模組之示意圖; 第6圖係為本發明之照明裝置第五實施例之示意圖; 第7圖係為本發明之投影裝置第六實施例之示意圖; 第8圖係為本發明之顯示裝置第七實施例之示意圖; 第9圖係為本發明之顯示裝置第八實施例之示意圖; 第10圖係為第一實施例之聚光透鏡模組光照度與位置之 關係圖; 100100097 表單編號A0101 第24頁/共36頁 1002000174-0 201229609 第11圖係為第二實施例之聚光透鏡模組光照度與位置之 關係圖; 第12圖係為第三實施例之聚光透鏡模組光照度與位置之 關係圖; 第1 3圖係為第四實施例之聚光透鏡模組光照度與位置之 關係圖;以及 第14圖係為第五實施例之聚光透鏡模組光照度與位置之 關係圖^ 【主要元件符號說明】 [0084] 11 :聚光透鏡模組(concentrating lens module); 111 :第一聚光透鏡(first concentrating lens); 112 :第二聚光透鏡(second concentrating lens); 2 :照明裝置(iliuminating device); 20 :發散光源(divergent light source); 3 :投影裝置(projecting apparatus); 31 :分光器(beam splitter); 32 :光閥(light valve); 33 :投影鏡頭(projector lens); 4 :背光模組(back light module); 41 :光擴散裝置(light diffuse device); 42:直下式光擴散裝置(direct light diffuse device); 411 :導光板(light guide plate); 412 :反射片(reflection sheet); 413 :擴散片(diffuse sheet); 414 :棱鏡片(prism sheet); 100100097 表單編號 A0101 第 25 頁/共 36 頁 1002000174-0 201229609 423 :擴散片(diffuse sheet); 424 :稜鏡片(prism sheet); 5:背光模組(back light module); 51 :投影裝置(projector device); 511 :發光二極體(light emitting diode、LED); 512 :聚光鏡片(concentrating lens); 513 :偏極光轉換器(ps-converter) 514 :分光器(beam splitter); 515 ··光閥(light valve); 52 :投影裝置(project〇r device); 521 : LED(light emitting diode); 522 :聚光鏡片(concentratin:g. lens) 523 :偏極光轉換器(ps-confeirter〉 524 :分光器(beam splitter); 525 :光閥(light valve); 526 :均光透鏡(light un:i form lens); :第一光學面(first optical lens); R2 :第二光學面(first optical lens); R3 ♦第三光學面(first optical lens); R4 ·第四光學面(first optical lens); D:有效開 口直徑(diameter of opening); ΐ ·厚度(thickness); △ t :第二聚光透鏡的厚度之差異百分比;以及 Z :光軸(optical axis) 〇 100100097 表單編號A0101 第26頁/共36頁 1002000174-0[0024] A further object of the present invention is to provide a display device including a backlight module, the backlight module comprising: a lighting device and a light diffusing device; wherein the lighting device is used to generate an illumination beam. Projected on the light diffusing device to form a backlight module of the display device. According to the present invention, the concentrating lens module, the illuminating device, the projection device and the display device thereof have the following advantages: (1) The concentrating lens module of the present invention can effectively make the incident divergent beam The aggregation and uniform projection to the emitting side enables the beam on the emitting side to be uniformized and the light intensity to be improved, which can improve the shortcomings of the beam collection efficiency of the prior art. Further, if the first concentrating lens of the present invention is made of a glass material by the manufacturing method of the molded glass, the radius of curvature of the first optical surface R1 and the second optical surface R2 can be increased to increase the aggregation of the first concentrating lens. Light capacity 〇〇 (2) The illuminating device of the present invention uses the concentrating lens module described above to gather and evenly distribute the light beam emitted from the divergent light source to improve the light intensity, and to use the projection device and the display device to improve the learning The illuminating device of the prior art has the disadvantage of uneven light intensity distribution or low light intensity. (3) The projection device of the present invention can use the illumination device described above to collect and evenly distribute the light beam emitted from the divergent light source to increase the light intensity, and to cause the projection device to generate a projected image, which can improve the light intensity of the projection device of the prior art. Not high disadvantages. The display device of the present invention utilizes the illumination device described above to collect and evenly distribute the light beam emitted by the divergent light source to increase the light intensity, so that the display 100100097 Form No. A0101 Page 9 / Total 36 Page 1002000174-0 201229609 * Backlight of the device The brightness of the module is greatly improved, which can improve the shortcoming of the light intensity of the backlight module of the prior art. [Comment] [0025] Please refer to FIG. 5, which is a schematic view of the concentrating lens module 11 of the present invention. The concentrating lens module 11 is used to concentrate and uniformly diverge the light beam emitted by the light source 20 (such as LED, halogen lamp, CCFL but not limited thereto). In the figure, the condensing lens module 11 is composed of a first condensing lens 111 and a second condensing lens 112, and the first condensing lens 111 and the second condensing lens 112 are disposed on the optical axis Z. The first condensing lens 111 has a positive refracting power and is disposed on the incident side of the light beam, and has at least one convex surface, for example, it may be a lenticular lens or a plano-convex lens. The first collecting lens 111 has a first optical surface R1 and a second optical surface R2, and the first optical surface R1 and the second optical surface R2 are used to concentrate the light beam emitted from the divergent light source 20. The second condensing lens 112 is a crescent lens having a third optical surface R3 of a convex surface and a fourth optical surface R4 of the concave surface, and the convex surface faces the first condensing lens 111. The thickness ΐ between the convex surface (third optical surface R3) and the concave surface (fourth optical surface R4) satisfies Δt$3% (formula (1)), preferably Δΐ = under the manufacturing tolerance range. 0. Wherein t is the thickness between the normal line of any point of the third optical surface R3 and the fourth optical surface R4, and the unit is a centimeter; At is a percentage difference of the thickness t of any point of the second condensing lens 112. The second condensing lens 112 receives the light beam collected from the first condensing lens 111, and condenses and uniformizes the light beam, and projects it outside the concave surface (the 100100097 fourth optical surface R4). Form No. A0101, page 10, page 36, 1002000174-0, 201229609 [0029] The convex surface (third optical surface R3) of the second condensing lens 112 and the concave surface (fourth optical surface R4) are made easy to manufacture. To reduce the fabrication of the mold, the same radius of curvature can be used to satisfy the following conditions: [0030] 2. 5 (mm) ^ R ^ 9 (mm) (3) [0031] wherein R is the second collecting lens 112 The radius of curvature (in mm) of the third optical surface R3 and the fourth optical surface R4 is similar to the radius of curvature of the third optical surface R3 and the fourth optical surface R4 within the manufacturing tolerance range. [0032] The thickness of the second collecting lens 112 is defined by the third optical surface R3 and the fourth optical surface O R4. Since the third optical surface R3 and the fourth optical surface R4 have the same radius of curvature, the thickness thereof is uniform. The following condition can be satisfied: [0033] where R is the radius of curvature of the third optical surface R3 and the fourth optical surface R4 of the second collecting lens 112 (in mm) Mm), t is the thickness between the normal line of any point of the third optical surface R3 and the fourth optical surface R 4 (unit is mm mm) ° [0035] The material selection of the second collecting lens 11 2 can be The optical plastic material or the optical glass material is used, but for better optical effect, the following condition can be satisfied: [0036] 0. 15^NVR^0. 6 (5) α [0037] wherein R is the second The radius of curvature (unit: mm) of the third optical surface R3 and the fourth optical surface R4 of the condensing lens, and N, is the refractive index of the second condensing lens 112α. [0038] The opening size of the second collecting lens 112 determines the total amount of the projected light beam. The excessively large opening can make the light beam entering the second collecting lens 112 as much as possible. 100100097 Form No. 1010101 Page 11/36 pages 1002000174 -0 201229609 Projected, but will cause uneven light intensity on the projection surface of the projection target; conversely, too small opening will reduce the effective utilization of the beam; preferably, the opening of the second condenser lens 11 2 The diameter (in mm) D can satisfy the following condition: [0039] 0.55SR/DS1.1 (6) wherein R is the third optical surface R3 and the fourth optical of the second collecting lens 112 The radius of curvature of the surface R4 (in mm), and the diameter of the effective opening of the concave surface of the second collecting lens 11 2 on the emission side (in mm). In order to make the present invention clearer and more detailed, the illuminating lens module 11 of the present invention and the illuminating device 2 using the concentrating lens module 11 are used in conjunction with the following embodiments. The structure of the projection device 3 and the display devices 4, 5 of the illumination device 2 and the technical features thereof are as follows: [0042] The embodiments disclosed below are directed to the concentrating lens module of the present invention, The illuminating device comprising the concentrating lens module, the projection device using the illuminating device, and the structure of the display device are described. Therefore, the embodiment disclosed in the present invention is applied to a light emitting diode divergent light source. However, the dimming lens module, the illumination device thereof, and the projection device thereof are generally known to those skilled in the art. The constituent elements of the display device are not limited to the structure of the embodiment disclosed below, that is, the constituent elements of the concentrating lens module, the illuminating device, the projection device thereof, and the display device thereof Is that many changes, modifications, or even equivalent change. <First Embodiment> 100100097 Form No. A0101 Page 12/36 Page 1002000174-0 201229609 [0045] [0046] [0047] [0048] Please continue to refer to FIG. 5, this embodiment The concentrating lens module 11 collects and uniformly diverges the light beam emitted by the light source 20, and the divergent light source 20 emits a light beam after being excited by the light emitting diode, and emits a luminous flux of 100 lumens (Lumen). The beam is an example. The concentrating lens module Π is composed of a first concentrating lens 111 and a second condensing lens 112. The first concentrating lens 111 and the second concentrating lens 112 are disposed on the optical axis Z. The first concentrating lens 111 is A pair of convex lenses are disposed on the light beam incident side, and the first optical surface R1 and the second optical surface R2 receive the light beams emitted from the divergent light source 20 and are collected and projected onto the second condensing lens 112. The second condensing lens 112 is disposed on the projection side of the first condensing lens 111, and has a third optical surface R3 facing the incident side as a convex surface and a fourth optical surface R4 having a concave surface. The second condensing lens 112 is made of a glass material of N, 1.53, and the third optical surface R3 and the fourth optical surface R4 are aspherical, and are formed by using an aspherical surface of the formula (2). The thickness (the third optical surface R3) is the same as the thickness of the concave surface (the fourth optical surface R4) (ie, Δί = 0) or the thickness satisfies At S3% (formula (1)). Wherein t is the thickness between the normal line of any point of the third optical surface R3 and the fourth optical surface R4, and the unit is mm, and At is the percentage difference of the thickness t of any point of the second collecting lens 112. The second condensing lens 11 2 receives the light beam collected from the first condensing lens 111, and again concentrates and uniformly projects the light beam on the emission side outside the concave surface (fourth optical surface R4). The optical characteristics and aspherical coefficients of the second condensing lens 112 are as shown in Table 1 and Table 2, and satisfy the conditions of the formulas (3) to (6) as shown in Table 3. Table 1, second concentrating lens 112 optical characteristics 100100097 Form No. A0101 Page 13 / Total 36 pages 1002000174-0 [0049] [0052] [0052] D 8 R 8 t 1.2 Nd 1.53 Focal length f 321 Table Second, the aspherical coefficient of the optical surface of the second collecting lens 112 is optical surface K a4 a6 As A] 〇R3* -0.16 -0.01 -2.00E-04 1.30Ε-05 4.5Ε-06 R4* -0.16 -O.Ol -2.00E-04 1.30Ε-05 4.5Ε-06 氺: R3 and R4 are aspherical Table 3. Satisfy condition R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 [0053] Concentrated light The lens module 11 can collect the light beams emitted from the divergent light source 20 to form a light beam having a central illumination of about 60 0,0 0 OLux, and its distribution is as shown in FIG. In the figure, the X and Y concentrating lens modules 11 100100097 Form No. A0101 Page 14 / Total 36 pages 1002000174-0 201229609 The projected light beam is projected onto the fourth optical surface R of the second collecting lens 11 2 . 4 On the central axis, the position of the horizontal axis and the vertical axis on the target is 9.7 mm. It can be seen from FIG. 10 that the concentrating lens module 11 of the present embodiment can effectively collect the light beams emitted by the divergent light source 20 and project an illumination beam of uniform light intensity, which can be used for the illumination device, the projection device and the display device. Etc., to enhance the applicability of the present invention. [Second Embodiment] The concentrating lens module 11 of the present embodiment collects the light beam emitted from the divergent light source 20, and the divergent light source 20 used is the same as that of the first embodiment, the first condensing lens 111 and the first The configuration of the dichroic lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of a glass material or a plastic material of N, 1.8, and the third optical surface R3 and the fourth optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 4, and satisfy the conditions of the formulas (3) to (6), as shown in Table 5. Table 4, Optical characteristics of the second collecting lens 112 [0055] D 6 R 3.5 t 1.5 Nd 1.8 Focal length f 93 Table 5, Satisfaction conditions Form number Α 0101 Page 15 / Total 36 pages 100100097 1002000174-0 201229609 R 3.50 R/ t 2.33 Nd/R 0.51 R/D 0.58 [0056] Through the concentrating lens module 11 thus constructed, the light beam emitted from the divergent light source 20 can be concentrated and uniform to form a light beam having a central illuminance of about 530, OOOLux. The distribution is shown in Figure 11. It can be seen from FIG. 11 that the concentrating lens module 11 of the present embodiment can effectively concentrate the light beams emitted by the divergent light source 20 and project an illumination beam with a uniform central light intensity and a high external light intensity, which can be used for The illuminating device, the projection device, the display device, and the like can improve the applicability of the present invention by utilizing an illumination beam having a high external light intensity to compensate for the disadvantages of the illumination device, the projection device and the edge of the display device being weak. <Third Embodiment> The condensing lens module 11 of the present embodiment collects the light beam emitted from the divergent light source 20, and the divergent light source 20 used is the same as that of the first embodiment, the first condensing lens 111 and the second The configuration of the condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 112 is made of PMMA plastic material α of 1.49, and the third optical surface R3 and the fourth optical surface R4 are aspherical, and are formed by using an aspherical surface of the formula (2), and the third optical The thickness of the surface R3 and the fourth optical surface R4 along the optical axis is the same (i.e., Δt = 0) or the thickness satisfies Δt S 3% (formula (1)). The optical characteristics and aspherical coefficients of the second condensing lens 112 are as shown in Table 6 and 100100097. Form No. A0101 Page 16 / Total 36 Pages 1002000174-0 201229609 [0058] 00 Table VII, and satisfy the formula (3)~ 6) The conditions are as shown in Table 8. Table 6: Optical characteristics of the second collecting lens 112 [0059] D 8 R 8 t 1.2 Nd 1.49 Focal length f 139 Table 7. Aspherical coefficient of the optical surface of the second collecting lens 112 Optical surface K a4 Αό As Αι〇R3 * -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 R4* -0.31 -0.0001 3.70Ε-03 4.20E-04 7.10E-05 * : R3 and R4 are aspherical table VIII, satisfying the condition [0061 ] R 8.00 R/t 6.67 Nd/R 0.19 R/D 1.00 By the concentrating lens module 11 thus constructed, the light beam emitted from the divergent light source 20 can be collected to form a light having a central illuminance of about 580, OOOLux 100100097. No. A0101, page 17 / page 36, 1002000174-0, 201229609, the distribution of which is shown in FIG. 12, which can be seen from Fig. 12, the light beam emitted by the divergent light source 20 can be effectively gathered by the collecting lens module 11 of the present embodiment. And projecting an illumination beam having an elliptical light intensity distribution, which can be used for an illumination device, a projection device, a display device, etc., and can utilize an illumination beam of an elliptical light intensity distribution to compensate for the disadvantage that the illumination device, the projection device, and the display device are weak on one side. And enhance the applicability of the invention<Fourth Embodiment> The concentrating lens module 11 of the present embodiment collects and uniformly diverge the light beam emitted from the light source 20, and the divergent light source 20 used is the same as the first embodiment, the first condensing lens 111 and The configuration of the second condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. The second concentrating lens 11 2 is made of a glass material or a plastic material of N, 2.0, and the third optical surface R3 and the d fourth optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 9, and satisfy the conditions of the formulas (3) to (6), as shown in Table 10. [0063] Table IX, second concentrating lens 112 optical characteristics D 7 R 5 t 2 Nd 2.0 focal length f 104 Table 10, meeting the condition 100100097 Form No. A0101 Page 18 / Total 36 Page 1002000174-0 201229609 R 5.00 R/t 2.50 Nd./R 0.40 R/D 0.71 [0065] The condensing lens module 11 thus constructed can converge the light beams emitted from the divergent light source 20 to form a light beam having a central illuminance of about 520, OOOLux. As shown in Figure 13. It can be seen from FIG. 13 that the condensing lens module 11 of the present embodiment can effectively concentrate the light beam emitted by the divergent light source 20 and project an illumination beam with a uniform central light intensity and a high external light intensity, which can be used for The illuminating device, the projection device, the display device, and the like can improve the applicability of the present invention by utilizing an illumination beam having a high external light intensity to compensate for the disadvantages of the illumination device, the projection device and the edge of the display device being weak. [Fifth Embodiment] The concentrating lens module 11 of the present embodiment collects and uniformly diverges the light beam emitted from the light source 20, and the divergent light source 20 used is the same as that of the first embodiment, and the first condensing lens 111 is used. The configuration of the second condensing lens 112 is also the same as that of the first embodiment, and details are not described herein again. [0067] The second concentrating lens 112 is made of a glass material or a plastic material of N, 1.2, and the third optical surface R3 and the fourth optical surface R4 are spherical surfaces. The optical characteristics of the second collecting lens 112 are as shown in Table 11 and satisfy the conditions of the formulas (3) to (6), as shown in Table 12. 100100097 Form No. 1010101 Page 19/36 Page 1002000174-0 201229609 Table XI, Second Condenser Lens 112 Optical Characteristics D 7 R 5 t 0.6 Nd 1.2 Focal Length f 124 [0069] Table 12, Satisfaction Conditions R 5.00 R/t 8.33 Nd/R 0.24 R/D 0.71 [10070] 100100097 By the concentrating lens module 11 thus constructed, the light beams emitted from the divergent light source 20 can be collected to form a central illuminance of about 320,0 0 OLux. The beam is distributed as shown in Figure 14. It can be seen from FIG. 14 that the concentrating lens module 11 of the present embodiment can effectively concentrate the light beams emitted by the divergent light source 20 and project an illumination beam with a high unilateral light intensity, which can be used for the illumination device, the projection device, and the projection device. A display device or the like can compensate for the disadvantages of the illuminating device, the projection device and the partial portion of the display device by using an illumination beam having a high unilateral light intensity, thereby improving the applicability of the present invention. <Sixth embodiment> Form No. A0101 Page 20/36 page 1002000174-0 [0071] 201229609 Please refer to Section 6® 'When the poly-mirror module of the present invention&quot; can be used for illumination' A lighting device 2 comprising a diverging money 2 〇 and a concentrating lens mold &amp; ιι of any of the first to fifth embodiments. The divergent light source 20 is disposed on the human shooting side of the collecting lens module, and can emit a light beam to be projected onto the poly; the old ribs are used to gather and evenly distribute the light beam emitted by the divergent light source 20 to generate an illumination beam; The light beam intensity distribution of the illumination beam can be different, and can be selected according to the purpose of the illumination device 2, and the application convenience can be expanded. <Seventh Embodiment> Referring to FIG. 7, the illumination device 2 of the present invention can be applied to the projection device 3. The projection device 3 of the present embodiment includes the illumination device 2 of the sixth embodiment, a spectroscope 31, and a light valve. 32 and a projection lens 33. The illumination device 2 can generate an illumination beam 'projected' to the beam splitter 31 for receiving the illumination beam and splitting the illumination beam. [0073] Ο For the application of the micro-projection device, the beam splitter 31 may be a Polarization Beam Splitter (PBS), which has both P-polarized light and S-polarized light in the incident illumination beam. A polarizing beam splitting prism (PBS) can simultaneously reflect the S-polarized light in the white light of the illumination beam and allow the P-polarized light in the illumination beam to penetrate; and the P-polarized light that passes through the spaced half-wavelength plate After the 'will be modulated into 3 polarized light', so 'the illumination beam that penetrates the above-mentioned polarization polarizing prism (PBS) is a polarized illumination beam with only a single polarity (S-polarized light), which can be projected to the light. Valve 32. When the light valve 32 receives the split illumination beam from the beam splitter 31, according to the control of the light valve 32, different spectra (or polarized light) are passed at different timings. 100100097 Form No. A0101 Page 21 / Total 36 Page 1002000174-0 [0074] The light beam '201229609' to generate an image beam that is incident on the projection lens 33. The projection lens 33 is a group of optical lens groups that use a plurality of optical lenses to generate a projection image of the image beam and project it onto a target (not shown). [0076] FIG. 8 is a schematic view showing an embodiment of a display device according to the present invention. The display device includes a backlight module 4, which is an edge-light type backlight module in this embodiment. In the group 4, the backlight module 4 includes the illumination device 2 and the light diffusing device 41 of the sixth embodiment. The illumination device 2 generates an illumination beam that is projected onto the light diffusing device 41'. The light diffusing device 41 receives the illumination beam and uniformly diffuses the illumination beam to form a backlight module 4 of the display device. The light diffusing device 41 includes an iight guide plate 411, a reflection sheet 412, a diffuser sheet 413, and a prism sheet 414. When the illumination device 2 emits an illumination beam: In the light guide plate 4丨i, the illumination beam is refracted in the light guide plate 411. When the angle of the refracted illumination beam is smaller than the critical angle of the light guide plate 411, the illumination beam is refracted back to the light guide plate 411 when the angle of the refracted illumination beam is greater than When the critical angle of the light guide plate 411 is reached, the illumination beam will pass down through the light guide plate 411 and be reflected by the reflection sheet 412 back into the light guide plate 411, or go up through the light guide plate 411 and enter the diffusion sheet 413. The diffusion sheet 4丨3 can be illuminated. The beam is evenly dispersed and projected onto the prism sheet 414, and the illumination beam is again dispersed by the slab 414 for uniform backlighting. 100100097 Form No. A0101 Page 22/36 Page 1002000174-0 [0077] 201229609 [0078] Since the backlight module 4 is generally relatively large, the backlight module 4 needs to be provided by a plurality of illumination devices 2 in cooperation with the light diffusion device 41'. Uniform light intensity distribution; In the prior art, adjustment of many beam refractions is required to avoid uneven light intensity at the edge or part of the backlight module 4. The backlight module 4 of the display device of the present invention can use different light intensity distributions of different concentrating lens modules 11 (such as the first embodiment to the fifth embodiment) to form different illuminating devices 2 'utilizing different functions The lighting device 2 is configured to achieve the uniform light intensity of the backlight module 4. [Ninth Embodiment] Referring to FIG. 9 is a schematic view showing another embodiment of the display device of the present invention. The display device includes a backlight module 5, which is a direct-lit backlight module in this embodiment. 4. The backlight module 4 includes the illumination device 2 of the first embodiment and the direct light diffusion device 42. The illumination device 2 can generate an illumination beam 'projected onto the direct-type light diffusing device 42 to form the backlight module 5 of the display device. [0080] The light diffusing device 42 includes a diffusion sheet and a prism sheet 424. The illumination beam emitted by the illumination 3 is directly projected on the diffusion sheet 423, and the diffusion sheet 423 can evenly illuminate the illumination beam. The dispersion is re-projected to the prism sheet 424, and the illumination beam is again dispersed by the slab 424 for the purpose of uniform backlighting. [0081] Since the backlight module 5 generally requires a plurality of illumination devices 2 to be placed at the lower end of the diffusion sheet 423, an illumination beam is emitted to illuminate the diffusion sheet 423. The illumination device 2 of the present invention may select a first concentrating light composed of different optical coefficients. The lens 111 and the second condensing lens 112, which can generate illumination device 2 of different illumination beam light intensity distributions, as in the first embodiment to the fifth embodiment, 100100097 Form No. A0101 Page 23 / Total 36 Page 1002000174- 0 201229609 is disposed at different positions of the backlight module 5, for example, the concentrating lens module 11 of the second and fourth embodiments is disposed on the edge of the backlight module 5 to be close to the edge region, so as to compensate for the weaker near the edge region. Or the concentrating lens module 11 of the second embodiment is disposed in the edge region of the backlight module 5 to compensate for the weaker edge region; or the concentrating lens module 11 of the fifth embodiment is used to The backlight module 5 needs to be reinforced to enhance the illumination of a specific area; thus, the backlight module 5 can achieve a more uniform illumination effect. [0083] The above description is only illustrative, and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional concentrating lens and a light-emitting diode projection module thereof; FIG. 2 is a light intensity distribution of a conventional collecting concentrating mirror Figure 3 is a schematic view of another conventionally disclosed multi-roll lens and a light-emitting diode projection module thereof; Figure 4 is a light intensity distribution diagram of another conventional collecting lens. 5 is a schematic view of a concentrating lens module of the present invention; FIG. 6 is a schematic view showing a fifth embodiment of the illuminating device of the present invention; and FIG. 7 is a schematic view showing a sixth embodiment of the projection device of the present invention; 8 is a schematic view showing a seventh embodiment of the display device of the present invention; FIG. 9 is a schematic view showing an eighth embodiment of the display device of the present invention; and FIG. 10 is a concentrating lens module of the first embodiment; Diagram of illuminance and position; 100100097 Form No. A0101 Page 24/36 Page 1002000174-0 201229609 Figure 11 is a diagram showing the relationship between illuminance and position of the concentrating lens module of the second embodiment; Condenser lens mold of three embodiments Figure 134 shows the relationship between the illuminance and the position of the concentrating lens module of the fourth embodiment; and Fig. 14 shows the illuminance and position of the concentrating lens module of the fifth embodiment. Relationship diagram ^ [Description of main component symbols] [0084] 11 : concentrating lens module; 111: first concentrating lens; 112: second concentrating lens 2; illumination device (iliuminating device); 20: divergent light source; 3: projection apparatus; 31: beam splitter; 32: light valve; Projector lens; 4: backlight module; 41: light diffuse device; 42: direct light diffuse device; 411: light guide Plate 412: reflection sheet; 413: diffuse sheet; 414: prism sheet; 100100097 Form No. A0101 Page 25 of 36 1002000174-0 201229609 423: Diffusion sheet Diffuse sheet); 424: prism sheet; 5: backlight module; 51: projector device; 511: light emitting diode (LED); 512: condensing mirror Concentrating lens; 513: ps-converter 514: beam splitter; 515 · light valve; 52: projection device (project〇r device); 521 : LED (light emitting diode); 522: concentrating lens (concentratin: g. lens) 523: polarized light converter (ps-confeirter > 524: beam splitter; 525: light valve; 526: uniform light (light un: i form lens); : first optical lens; R2: first optical lens; R3 ♦ first optical lens; R4 · fourth optical First optical lens; D: effective diameter of opening; ΐ · thickness; Δ t : percentage difference in thickness of the second concentrating lens; and Z: optical axis 〇100100097 Form No. A0101 Page 26 / Total 36 Page 1002000174-0

Claims (1)

201229609 七、申請專利範圍: 1 . 一種聚光透鏡模組,用於聚集及均勻一發散光源所發射之 一光束,包含:一第一聚光透鏡與一第二聚光透鏡;其中 ' 該第一聚光透鏡,具有正屈光度,用以聚集該光束; 該第二聚光透鏡,為一新月型透鏡,具有一凸表面及一凹 表面,該凸表面朝向該第一聚光透鏡,該第二聚光透鏡用 以將來自該第一聚光透鏡所聚集之該光束聚集且均勻投射 於該凹表面外,並滿足下列條件: Ο Δ t ^3% 其中,Δΐ為該第二聚光透鏡的任一點厚度ΐ之差異百分比 ;t為該第二聚光透鏡該凸表面任一點的法線沿線上與該 凹表面之間的厚度。 2.如申請權利範圍第1項所述之聚光透鏡模組,其中該第二 聚光透鏡滿足下式條件之一或其組合: 2. 5^R^9 ' 2^R/t^9 ' Q 0. 15^N /R^O. 6 ' d 0· 55SR/DS1. 1 ; 其中,R為該第二聚光透鏡之該凸表面與該凹表面的曲率 半徑,單位為公釐、L為該第二聚光透鏡之折射率、D為 α 該第二聚光透鏡之該凹表面的有效開口直徑,單位為公釐 、t為該第二聚光透鏡該凸表面任一點的法線沿線上與該 凹表面之間的厚度。 3 .如申請權利範圍第1項所述之聚光透鏡模組,其中該發散 100100097 表單編號A0101 第27頁/共36頁 1002000174-0 201229609 光源為一發光二極體。 4 .如申請權利範圍第1項所述之聚光透鏡模組,其中該第二 聚光透鏡為玻璃或塑膠材質製成。 5 .如申請權利範圍第1項所述之聚光透鏡模組,其中該第二 聚光透鏡之該凸表面或該凹表面為球面或非球面。 6 .如申請權利範圍第1項所述之聚光透鏡模組,其中該第一 聚光透鏡具有一凸面,朝向該第二聚光透鏡,且該凸面為 球面。 7 .如申請權利範圍第6項所述之聚光透鏡模組,其中該第一 聚光透鏡為一雙凸型透鏡。 8 . —種照明裝置,用以發射出一照明光束,包含: 一發散光源,用以發射出一光束;以及 一聚光透鏡模組,係由申請權利範圍第1項至第7項任一項 之聚光透鏡模組所構成,用於聚集及均句該發散光源所發 射之該光束。 9 . 一種投影裝置,包含一照明裝置、一分光器、一光閥與一 投影鏡頭;其中, 該照明裝置,係由申請權利範圍第8項之照明裝置所構成 ,用以發射出一照明光束; 該分光器,用以接收照明裝置發出的該照明光束,將該照 明光束進行分光; 該光閥,用以接收來自該分光器之該照明光束,並產生一 影像光束照射至該投影鏡頭; 該投影鏡頭,用以接收該影像光束並產生一投影影像。 1 0 . —種顯示裝置,包—背光模組,該背光模組係包含:一 照明裝置與一光擴散裝置;其中,該照明裝置,係由申請 100100097 表單編號A0101 第28頁/共36頁 1002000174-0 201229609 權利範圍第8項之照明裝置所構成,用以發射出一照明光 束; 該光擴散裝置,用以接收該照明裝置發出的該照明光束, 並使該照明光束均勻擴散。 〇 1002000174-0 100100097 表單編號A0101 第29頁/共36頁201229609 VII. Patent application scope: 1. A concentrating lens module for collecting and uniformly emitting a light beam emitted by a divergent light source, comprising: a first concentrating lens and a second concentrating lens; wherein a concentrating lens having a positive refracting power for concentrating the light beam; the second condensing lens being a crescent lens having a convex surface and a concave surface facing the first concentrating lens, The second concentrating lens is configured to gather and uniformly project the light beam collected from the first concentrating lens outside the concave surface, and satisfy the following condition: Ο Δ t ^3%, wherein Δΐ is the second concentrating light The percentage difference of the thickness ΐ of any point of the lens; t is the thickness between the normal line at any point of the convex surface of the second concentrating lens and the concave surface. 2. The concentrating lens module of claim 1, wherein the second concentrating lens satisfies one of the following conditions or a combination thereof: 2. 5^R^9 ' 2^R/t^9 'Q 0. 15^N /R^O. 6 ' d 0· 55SR/DS1. 1 ; wherein R is the radius of curvature of the convex surface of the second concentrating lens and the concave surface, in units of mm, L is the refractive index of the second concentrating lens, D is α, the effective opening diameter of the concave surface of the second concentrating lens, the unit is mm, and t is any point of the convex surface of the second concentrating lens The thickness between the line and the concave surface. 3. The concentrating lens module according to claim 1, wherein the divergence 100100097 form number A0101 page 27/36 page 1002000174-0 201229609 The light source is a light emitting diode. 4. The concentrating lens module of claim 1, wherein the second concentrating lens is made of glass or plastic material. 5. The concentrating lens module of claim 1, wherein the convex surface or the concave surface of the second concentrating lens is spherical or aspherical. 6. The concentrating lens module of claim 1, wherein the first concentrating lens has a convex surface facing the second concentrating lens, and the convex surface is a spherical surface. 7. The concentrating lens module of claim 6, wherein the first concentrating lens is a lenticular lens. 8. A lighting device for emitting an illumination beam, comprising: a divergent light source for emitting a light beam; and a concentrating lens module, according to any one of claims 1 to 7 The concentrating lens module of the item is configured to gather and uniformly emit the light beam emitted by the divergent light source. 9. A projection device comprising a lighting device, a beam splitter, a light valve and a projection lens; wherein the lighting device is constituted by the lighting device of claim 8 for emitting an illumination beam The beam splitter is configured to receive the illumination beam emitted by the illumination device to split the illumination beam; the light valve is configured to receive the illumination beam from the beam splitter and generate an image beam to be irradiated to the projection lens; The projection lens is configured to receive the image beam and generate a projection image. A display device, a package-backlight module, comprising: a lighting device and a light diffusing device; wherein the lighting device is applied by the application 100100097, form number A0101, page 28/total 36 pages 1002000174-0 201229609 The lighting device of claim 8 is configured to emit an illumination beam; the light diffusing device is configured to receive the illumination beam emitted by the illumination device and uniformly spread the illumination beam. 〇 1002000174-0 100100097 Form No. A0101 Page 29 of 36
TW100100097A 2011-01-03 2011-01-03 Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same TW201229609A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100100097A TW201229609A (en) 2011-01-03 2011-01-03 Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same
CN2011100070829A CN102563523A (en) 2011-01-03 2011-01-13 Condensing lens module, lighting device, projection device and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100100097A TW201229609A (en) 2011-01-03 2011-01-03 Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same

Publications (1)

Publication Number Publication Date
TW201229609A true TW201229609A (en) 2012-07-16

Family

ID=46409681

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100100097A TW201229609A (en) 2011-01-03 2011-01-03 Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same

Country Status (2)

Country Link
CN (1) CN102563523A (en)
TW (1) TW201229609A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104864359A (en) * 2015-05-08 2015-08-26 欧普照明股份有限公司 Lens and lamp having the same
FR3090523B1 (en) * 2018-12-19 2021-01-01 Valeo Comfort & Driving Assistance Lighting device for vehicle ceiling light

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085910A (en) * 1993-10-28 1996-01-12 Asahi Optical Co Ltd Image forming lens system
CN1412592A (en) * 2001-10-12 2003-04-23 里程碑株式会社 Imaging lens
JP4130336B2 (en) * 2002-07-15 2008-08-06 株式会社エンプラス Imaging lens
JP2004109591A (en) * 2002-09-19 2004-04-08 Fuji Photo Optical Co Ltd Single focal lens
CN101650471B (en) * 2008-08-15 2012-07-18 一品光学工业股份有限公司 Two-piece type ftheta lens of MEMS laser scanning device

Also Published As

Publication number Publication date
CN102563523A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
TWI377709B (en) Led lens and light source device using the same
WO2017013816A1 (en) Illumination device, illumination method, and image projection device using same
TW200827855A (en) Light cube and flat light unit and liquid crystal display device including light cube
TWI418855B (en) Illuminant module with an optical film of multiple curvatures
TW201235707A (en) LED lens and light emitting device using the same
TW200536147A (en) Light-collecting illumination system
KR200473436Y1 (en) Wire grid polarizer, polarizing beam splitter and projection apparatus
TWI287111B (en) LED light concentrating system using imaging method
TW200909938A (en) Back light module
WO2019037370A1 (en) Hud illumination system, head-up display device and realization method
JP2013061611A (en) Optical film, and backlight module and liquid crystal display having the optical film
JP2012164635A (en) Flat panel type light source for transmission lighting device for microscope
TWI404893B (en) An illuminating device without a light guide board
TW201502592A (en) Lens, light source device and direct type light source module
CN207034987U (en) A kind of light distribution element, light-emitting device and lighting apparatus
TW201229609A (en) Concentrating lens module and illuminating device, projecting apparatus, display apparatus using the same
CN206400247U (en) A kind of CF LCOS lamp optical systems
US20150176774A1 (en) Light Emitting Module and Optical Lens Thereof
JP4903767B2 (en) Light mixing device
JP2008070769A (en) Light source unit, illumination device and projector device
RU100180U1 (en) LED LIGHTING DEVICE
TWM410222U (en) Concentrating lens module, illumination device, projection device and display device thereof
TWM424460U (en) Optical lens with inflection point and light-emitting device consisting of the optical lens thereof
TWM446344U (en) Backlight module and optical lens thereof
TWI391021B (en) Light emitting diode package and projection apparatus