TWM403700U - Multi-point touch structure of surface capacitive touch panel - Google Patents

Multi-point touch structure of surface capacitive touch panel Download PDF

Info

Publication number
TWM403700U
TWM403700U TW99214937U TW99214937U TWM403700U TW M403700 U TWM403700 U TW M403700U TW 99214937 U TW99214937 U TW 99214937U TW 99214937 U TW99214937 U TW 99214937U TW M403700 U TWM403700 U TW M403700U
Authority
TW
Taiwan
Prior art keywords
touch panel
pattern layer
electrode pattern
side electrodes
electrode
Prior art date
Application number
TW99214937U
Other languages
Chinese (zh)
Inventor
Wu-Tung Kao
Chih-Ping Shu
Chi-Feng Chiu
Original Assignee
Igtek Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Igtek Corp filed Critical Igtek Corp
Priority to TW99214937U priority Critical patent/TWM403700U/en
Publication of TWM403700U publication Critical patent/TWM403700U/en

Links

Description

M403700 五、新型說明: 【新型所屬之技術領域】 本創作隸屬一種觸控面板之技術領域,具體而言係 指一種在同一水平或垂直之不同觸點阻抗產生梯度現象 、且能防止電流互相抵銷的表面電容式之觸控面板,藉 以使該觸控面板具有多觸點判定之功能。 【先前技術】 按,電子設備發展史中’鍵盤、滑鼠與觸控板等輸 入介面的出現,解決了輸入控制的問題。不過,這些輸 入介面所佔空間不小,例如,筆記型電腦或手機一半體 積都被鍵盤佔據。若能省下鍵盤空間,自然能提升產品 可攜性,最可行的方式,就是直接於面板以觸控方式進 行操作。觸控面板確實能取代大多數鍵盤、滑鼠功能, 並賦與使用者更直覺、便利的操作體驗;以更大的面板 替代鍵盤,還能設計出更輕薄、時尚造型;加上完全採 用固態面板技術,不需擔心鍵盤、滑輪…等機械零件故 障的問題。 從技術原理來區別觸控面板,其可分為電阻技術觸 控f板、電容軸㈣面板、紅外線技術職面板、表 面聲波,_控吨、電雜韻控©板與*學技術觸 控,板等。其中⑽式觸控面板的定位準確,但其價格 3外易?:紅外線技術觸控面板的價格低廉, *令易產生光干擾,曲面情況下失真;而 ,主異卫面板解決了以往觸控式螢幕的各種缺陷, 清晰抗暴,適於次^ β ^ 、谷種場合,缺憾疋面板表面的水滴、塵 3 M403700 土會使觸控面板變的遲鈍,甚至不工作。因此目前觸控 面板開發的在考量兼具耐祕、成本、反應速度與便利 性下,電阻式觸控面板與電容式觸控面板成為市場上的 主力產品。 近年來,爻到智慧型手機貼心的觸控介面,讓智慧 型手機有機會赢得更多人的青睞。而多點觸控功能的出 現【如iPhone、HTC等智慧型手機】,更造成使用介面 的新革命,舒能錢直觀的方式使用應關多點觸控 面板的電子產品。 不過,在前述多點觸控式智慧型手機推出已有一段 時間,但仍未見到市場上接二連三的相似概念產品出現 ,可見得在技術的實踐上確實存在著一道頗高的門檻。 目前在市場上存在多種觸控技術,只有電容式技術可望 實現多點觸控的功能。再進一步看,電容式觸控又可分 為表面電容式【Surface Capacitive】和投射電容式【 Projective Capacitive】兩種作法; 以其中表面電容式的技術作法來看,如第一圖所示 其為一傳統表面電容式觸控面板。該觸控面板(1〇)係 由一透明基板(11)、一透明導電層(12)、一電極圖 案層(13)及一絕緣保護用之硬化層(14)所構成,其 中該透明基板(11)可為玻璃、塑膠,該電極圖案層( 13)係由形成圍繞成矩形之兩相對X側電極(131)與 兩相對Y側電極(132)形成於該透明導電層(12)的 周緣部份,用以補償該透明導電層(12)上之一電場的 曲線分佈。此外,如第二圖所示,該觸控面板(1 〇)的 四角落處各與一連外之導線(151、152、153、154)相 4 M403700 接’用以分別接收一交流感測訊號【AC1、AC2、AC3、 AC4】’以供量測觸控面板上之一個觸點p的位 置用。在實際工作時,該等交流感測訊號ACl、AC2、 AC3、AC4為振幅大小相同之交流方波或弦波電壓訊號 ’此時各連外導線(151、152、153、154)上各有一電 流Π、12、13及14通過。藉由量取每一連外導線( 151、152、153、154)之在該觸點P出現前與出現時的 電流變化量ΔΙ1、ΔΙ2、ΔΙ3及ΔΙ4,該觸點P位置 的X、Y座標便可依下式被計算出: Χ=(Δ Ι3+Δ Ι4-Δ Il-Δ 12)/( Δ Il + Δ Ι2+Δ 13+Δ 14) Υ=(Δ Il + Δ Ι4-Δ Ι3-Δ 12)/(Δ Il + Δ Ι2+Δ Ι3+Δ 14) 因此在運作架構上,系統會在透明導電層(12)產 生一個均勻電場,當手指接觸面板會出現電容充電效應 ,面板上電極圖案層(13)的各透明X、γ側電極(131 、132)與手指間形成電容耦合,進而產生電容變化, 控制器只要量測四個角落電流強度,就可依電流大小計 异接觸位置。 由於其係透過手指接觸觸控面板造成靜電場改變進 行偵測,其中單點觸控電容式技術,其實已相當成熟, 也,是表面電容式(Surface Capacitive)。此技術架構 較單純,只需一面透明導電層(12)即可實現,而且此 透明導電| (12) +需特殊感測通道設計,週邊只需接 4條導線(151、152、153、154)和接地線即可,生產 難度及成本都可降低。而其最大的限制則是,它益法實 現多點觸控減,主要係因其在實際卫作#時,:同時 5 M403700 施於二個以上觸點,而進行兩觸點間之手勢動作時【如 縮放、旋轉或拖拉等】,其可能因兩指位置呈對應狀而 使輸出之電流相互抵銷,造成其觸點或動作的誤判,故 現有表面電容式觸控面板並不是多點觸控的理想技術。 也因此。投射電容式【Projected Capacitive】技 術就成了實現多點觸控的希望所在。如第三圖為一傳統 投射電容式觸控面板之立體分解圖。該電容式觸控面板 (20)係由一透明基板(21)、一 X透明電極圖案層( 22)、一透明介電層(23)及一 Y透明電極圖案層(24 )由下往上疊合形成,其中X與γ透明電極圖案層(22 、24 )上各形成行/列之感測圖案(25 )【sensing element】,用以與其它元件配合為用而判定該觸控面 板(20)上一或多個觸點的存在,其中X與γ透明電極 圖案層(22、24)之感測圖案(25)並與複數條外接導 線(28)相接。 相較於表面電容式,投射電容式採單層或多層樣式 化【patterned】形成行/列交錯感測圖案(25 )【 sensing element】矩陣。如此一來,整個使用生命週 期中’不需透過校準就能得到精確觸控位置,而且可以 使用較厚的覆蓋層,也能做到多點觸控操作。但這在市 場上仍屬於相當先進且複雜的技術,其螢冪的感測方式 必須採用多攔【coltmm】和多列【row】的矩陣【 Matrix】掃描模式,又可分為軸交錯式【Axis Intersect】和所有觸點可定位式【All P〇ints =d:ressable,APA】兩種感測螢幕。前者的實踐上較為 谷易,對於運算及儲存資源的要求也較低,不過如果想 6 M403700 實現精確的兩點觸控定位,還是得採用ApA的感測技術 •但不論何者,就目前的製造技術而言,其均需使用 到較向的製造技術,因此其製造成本極高,不符實際使 用的需求,更甚者受到其運算、儲存資源不足與感測準 確度的影響,目前投射電容式觸控面板的只能用於小尺 寸面板的量產上,對於使用中、大尺寸面板之產業【如 筆記型電腦、工業電腦、p〇S系統、ATM、醫療器材、M403700 V. New description: [New technical field] This creation belongs to the technical field of a touch panel. Specifically, it refers to a gradient phenomenon caused by different contact impedances at the same level or vertical, and can prevent current from reaching each other. The surface capacitive touch panel of the pin enables the touch panel to have a multi-contact determination function. [Prior Art] According to the appearance of the input interface of keyboard, mouse and touchpad in the history of electronic equipment, the problem of input control was solved. However, the space occupied by these input interfaces is not small. For example, half of the volume of a notebook or mobile phone is occupied by the keyboard. If you can save keyboard space, you can naturally improve the portability of the product. The most feasible way is to operate the touch panel directly on the panel. The touch panel can really replace most of the keyboard and mouse functions, and give users a more intuitive and convenient operation experience; replace the keyboard with a larger panel, and design a thinner and more stylish style; plus fully solid state Panel technology, no need to worry about the failure of mechanical parts such as keyboards, pulleys, etc. From the technical principle to distinguish the touch panel, it can be divided into resistance technology touch f board, capacitor shaft (four) panel, infrared technology job board, surface acoustic wave, _ control tons, electric noise control board and * learning technology touch, Board and so on. Among them, the positioning of the (10) type touch panel is accurate, but its price is easy to use? : Infrared technology touch panel is low in price, * makes it easy to produce light interference, and distortion in the case of the surface; however, the main isolator panel solves various defects of the previous touch screen, clear and anti-riot, suitable for secondary ^ β ^, valley In this case, the water droplets on the surface of the panel and the dust 3 M403700 soil will make the touch panel dull or even not working. Therefore, current touch panel development has become the main product on the market, considering the combination of resistance, cost, response speed and convenience. In recent years, the smart touch screen of smart phones has given smartphones the opportunity to win more people's favor. The emergence of multi-touch functions [such as iPhones, HTCs and other smart phones] has led to a new revolution in the use of interfaces, and Shuneng Qian's intuitive use of electronic products that require multi-touch panels. However, in the past, the multi-touch smart phone has been launched for some time, but it has not seen the emergence of similar concept products in the market. It is obvious that there is a high threshold in the practice of technology. Currently, there are many touch technologies on the market, and only capacitive technology is expected to realize multi-touch functions. Looking further, capacitive touch can be divided into surface capacitive type [Surface Capacitive] and projected capacitive type [Projective Capacitive]. In terms of surface capacitive technology, as shown in the first figure, A conventional surface capacitive touch panel. The touch panel (1) is composed of a transparent substrate (11), a transparent conductive layer (12), an electrode pattern layer (13) and a hardened layer (14) for insulating protection, wherein the transparent substrate (11) may be glass or plastic, and the electrode pattern layer (13) is formed on the transparent conductive layer (12) by forming two opposite X-side electrodes (131) and two opposite Y-side electrodes (132) formed in a rectangular shape. The peripheral portion is used to compensate for the curve distribution of an electric field on the transparent conductive layer (12). In addition, as shown in the second figure, the four corners of the touch panel (1 〇) are connected to an external wire (151, 152, 153, 154) 4 M403700 for receiving an alternating current sensing signal respectively. [AC1, AC2, AC3, AC4] 'Used to measure the position of a contact p on the touch panel. In actual operation, the AC sensing signals ACl, AC2, AC3, and AC4 are AC square wave or sine wave voltage signals of the same amplitude. At this time, each of the external wires (151, 152, 153, 154) has one Currents 12, 12, 13, and 14 pass. By measuring the amount of current change ΔΙ1, ΔΙ2, ΔΙ3, and ΔΙ4 of each of the outer leads (151, 152, 153, 154) before and during the occurrence of the contact P, the X and Y coordinates of the position of the contact P It can be calculated as follows: Χ=(Δ Ι3+Δ Ι4-Δ Il-Δ 12)/( Δ Il + Δ Ι2+Δ 13+Δ 14) Υ=(Δ Il + Δ Ι4-Δ Ι3- Δ 12) / (Δ Il + Δ Ι 2+ Δ Ι 3 + Δ 14) Therefore, in the operational architecture, the system will generate a uniform electric field in the transparent conductive layer (12), when the finger touches the panel, the capacitive charging effect will occur, and the upper electrode of the panel The transparent X and γ side electrodes (131, 132) of the pattern layer (13) form a capacitive coupling with the finger, thereby generating a capacitance change, and the controller can measure the four corner current intensities according to the current size. . Since the electrostatic field is changed by touching the touch panel with a finger, the single-touch capacitive technology is quite mature, and is also a Surface Capacitive. This technology architecture is relatively simple, only a transparent conductive layer (12) can be realized, and this transparent conductive | (12) + requires special sensing channel design, only need to connect 4 wires (151, 152, 153, 154) ) and the grounding wire can be used, and the production difficulty and cost can be reduced. The biggest limitation is that it benefits multi-touch reduction, mainly because it is in the actual Guardian #: At the same time, 5 M403700 is applied to more than two contacts, and the gesture between the two contacts is performed. When [such as zooming, rotating or dragging], it may cause the output currents to cancel each other due to the corresponding position of the two fingers, causing misjudgment of their contacts or actions. Therefore, the existing surface capacitive touch panel is not multi-point. The ideal technology for touch. So. Projected Capacitive technology is the hope of multi-touch. The third figure is an exploded perspective view of a conventional projected capacitive touch panel. The capacitive touch panel (20) is composed of a transparent substrate (21), an X transparent electrode pattern layer (22), a transparent dielectric layer (23) and a Y transparent electrode pattern layer (24) from bottom to top. Forming a stack, wherein the X and γ transparent electrode pattern layers (22, 24) each form a row/column sensing pattern (25) [sensing element] for use in conjunction with other components to determine the touch panel ( 20) The presence of one or more contacts, wherein the sensing patterns (25) of the X and γ transparent electrode pattern layers (22, 24) are in contact with a plurality of external leads (28). Compared to the surface capacitance type, the projected capacitive single layer or multi-layer patterning forms a row/column interleaved sensing pattern (25) [sensor element] matrix. In this way, the precise touch position can be obtained without calibration through the entire life cycle, and a thicker overlay can be used to achieve multi-touch operation. However, this is still a fairly advanced and complex technology in the market. The sensing method of the illuminating power must adopt the multi-block [coltmm] and multi-row [row] matrix [Matrix] scanning mode, and can be divided into axis interleaving. Axis Intersect] and all contact-positionable [All P〇ints =d:ressable, APA] two sensing screens. The former is more practical in practice, and the requirements for computing and storage resources are lower. However, if you want 6 M403700 to achieve accurate two-touch positioning, you still have to use ApA's sensing technology. But no matter what, the current manufacturing In terms of technology, both of them need to use more advanced manufacturing technology, so the manufacturing cost is extremely high, which is not in accordance with the actual use requirements, and even more affected by the calculation, storage resources and sensing accuracy. The touch panel can only be used for mass production of small-sized panels, for industries that use medium and large-sized panels [such as notebook computers, industrial computers, p〇S systems, ATMs, medical equipment,

監視器、、遊戲機、博奕產業等等】,尚無法有效的滿 足其多點觸控的需求。 換言之 由於表面電容式觸控面板具有架構簡易、 且易於製成及低成本的生產優勢,同時表面電容式 產品更具防塵、防火、_、強固耐用及具有高 = 等優點,故如能開發出具有多觸點判定功能的表二 式觸控面板,則可兼具使用的便利性與低成本之欵。今Monitors, game consoles, gaming industry, etc., are not yet able to effectively meet their multi-touch needs. In other words, since the surface capacitive touch panel has the advantages of simple structure, easy fabrication, and low cost, and the surface capacitive product is more dustproof, fireproof, _, strong and durable, and has high=, it can be developed. The two-dimensional touch panel with multi-touch determination function can combine the convenience and low cost of use. this

有鑑於此,本創作人乃針對前述現有可判定多 的觸控面板所面臨的問題深人探討,並藉由多年從: 關產業的研發與製造經驗,而積極尋求解決之道,f相 斷努力的研究與試作,終於成功的開發出表面電容2 控面板之多關㈣構,如歧财者製造難度2 產成本高等所造成的不便與困擾。 X/、生 【新型内容】 因此’本創作之主要目的係在提供一種表面 觸控面板之多關控結構,其麟_面板在同 或垂直之觸點阻抗產生梯度現象,防止兩觸點=平 7 降低其製造難度與成本。 為使貴審查委員能進一步了解本創作的構成、特 徵及其他目的,以下乃舉本創作之若干較佳實施例,並 配合圖式詳細說明如后,同時讓熟悉該項技術領域者 夠具體實施。 【實施方式】 本創作係表面電容式觸控面板之多點觸控結構,隨 =圖例不之本創作的具體實施例及其構件中,所有關於 則與後、左與右、頂部與底部、上部與下部、以及水平 與垂直的參考,僅用於方便進行描述,並非限制本創作 曰亦非將其構件限制於任何位置或空間方向。圖式與說 ,書中所指定的尺寸’當可在不離開本創作之中請專利 feu内’根據本創作之具體實施例的設計與需求而進行 變化。 本創作係一種表面電容式觸控面板,如第四圖所示 ’該觸控面板C 50)至少係由一透明基板(51)、一透 明導電層(52)、—電極圖案層(6G)及-絕緣保護用 之硬化層(54)所構成’其中電極圖案層(60)係以實 質矩形圍繞於觸控面板(5Q)透明導電層(52)表面周 緣而成’且電極圖案層UG)各相對平行之邊緣的阻抗 係向同側以等差或等比方麵增或誠佈設之,使觸控 面板(50)在同一水平或垂直之觸點阻抗產生梯度之現 象,防止兩觸點移動時電極圖案層(⑻輸出之電流互 相抵銷’而利用控制ϋ【圖中未示】量測四個角落電流 強度,就可依電流大小計算求得兩個不賴點的χ座標 M403700In view of this, the creator is deeply involved in the problems faced by the above-mentioned existing determinable touch panels, and actively seeks solutions through years of experience in research and development and manufacturing of the industry. Efforts to study and test, finally successfully developed the surface capacitance 2 control panel of the multi-level (four) structure, such as the inconvenience and trouble caused by the high cost of production. X/, raw [new content] Therefore, the main purpose of this creation is to provide a multi-control structure for the surface touch panel, and the Lin_panel produces a gradient phenomenon in the same or vertical contact impedance to prevent two contacts = Level 7 reduces the difficulty and cost of manufacturing. In order to enable the review committee to further understand the composition, characteristics and other purposes of the creation, the following are some of the preferred embodiments of the creation, and together with the detailed description of the drawings, and to enable those skilled in the technical field to implement . [Embodiment] The present invention is a multi-touch structure of a surface capacitive touch panel, and in the specific embodiment of the creation and its components, all related to the rear, left and right, top and bottom, The upper and lower sections, as well as the horizontal and vertical references, are for convenience of description only and are not intended to limit the creation or limitation of its components to any position or spatial orientation. The drawings and the description of the dimensions specified in the book may be changed in accordance with the design and needs of the specific embodiment of the present invention without departing from the creation of the patent. The present invention is a surface capacitive touch panel. As shown in the fourth figure, the touch panel C 50 is composed of at least a transparent substrate (51), a transparent conductive layer (52), and an electrode pattern layer (6G). And a hardened layer (54) for insulating protection, wherein the electrode pattern layer (60) is formed in a substantially rectangular shape around the surface periphery of the transparent conductive layer (52) of the touch panel (5Q) and the electrode pattern layer UG) The impedance of each of the relatively parallel edges is increased or equal to the same side in the same or equal ratio, so that the touch panel (50) has a gradient in the same horizontal or vertical contact impedance, preventing the two contacts from moving. When the electrode pattern layer (the output current of (8) cancels each other' and the four corner currents are measured by the control ϋ [not shown], the two coordinates of the stagnation point M403700 can be obtained according to the current size calculation.

共同設有一用於量測電壓、電流之導線(66),又第二 X侧電極(62)與第二Y侧電極(64)的相對端點共同 設有一用於量測電壓、電流之導線(67),至於第二γ 側電極(64)與第一 γ側電極(63)的相對端點共同設 有一用於量測電壓、電流之導線(68),前述導線(65 、66、67及68)係選自導電性材料’如碳膠、銀膠、 銅膠或其混合等,本創作以銀膠為主要實施例,且導線 (65、66、67及68)並以網版印刷方式佈設於觸控面 板(50)之非工作區表面,又觸控面板(5〇)上並具有 一供導線(65、66、67及68)另侧端點佈設之連^部 (69) ’以供導線(65、66、67及⑻分別電氣串接 觸控面板(50)之一控制器【圖中未示】; 可利用其電極圖案層(60)之第 楮此A wire (66) for measuring voltage and current is provided together, and a wire for measuring voltage and current is provided together with the opposite ends of the second X-side electrode (62) and the second Y-side electrode (64). (67), as for the second γ-side electrode (64) and the opposite end points of the first γ-side electrode (63), a wire (68) for measuring voltage and current is provided, and the wire (65, 66, 67) And 68) is selected from conductive materials such as carbon glue, silver glue, copper glue or a mixture thereof, etc. The present invention uses silver glue as a main example, and the wires (65, 66, 67 and 68) are screen printed. The method is disposed on the non-working area of the touch panel (50), and has a connection panel (5) on the touch panel (5〇) and has a connecting portion for the other end of the wire (65, 66, 67 and 68). 'For the conductors (65, 66, 67 and (8), respectively, one of the controllers of the electrical contact panel (50) [not shown]; the second layer of the electrode pattern layer (60) can be utilized

電極(6卜62)與第-、二γ侧電極(63、⑷的阻抗 係向同侧以等差或等比方式遞增或遞減佈設之,使觸控 ,板(50)在同—水平或垂直之觸點阻抗產生梯度之^ 象’防止兩觸點移動時電極圖案層(6G)輸出之電流互 相抵銷,而組構成—表面電容式觸控面板結構者。 ,在之實際運用,則仍請參看第七圖所示 示時’该觸控面板(50)的電極圖案層(6〇 )=第-、,Χ側電極(6卜62)與第一、二γ側電極 67、fiSW目對四㈣處各與—連外之導線(65、66、 AC2、AC3 ^分職收—交流感測訊號【ΑΠ、 量==(5°)上兩個不 個不同觸點m、PB)的位置=可進行手勢操作之兩 12 首先,係於觸控面板(5〇)的工作區上設定複數等 專距佈δ又有板正點,且各相鄰校正點的χ轴距與γ轴距 分別呈等距狀,如第八圖所示,本創作以25點為主要 實施例,校正點被分別定義為(Ρ1〜ρ25); 接著,利用相同面積之感測件【其大小為摸擬手指 碰觸時的面積】依序置於前述校正點(Ρ1〜Ρ25)上, 並分別量測各校正點(Ρ1〜Ρ25)的電流值,並求得兩 兩相鄰之校正點(Ρ1〜Ρ25)的中心點;且透過前述量 測的校正點(Ρ1〜Ρ25)電流值,而計算求得總能量【 即電流總和】及電極圖案層(6〇)之第一、二X側電極 (61、62)與第一、二γ側電極(⑽、64)的各別能量 【即各別電流總和】,而製作成對應各校正點(pl〜 Ρ25)的权正表,其包含兩兩相鄰之校正點(pi〜pm) 的中心點、電流總和、電極的各別電流; 之後’透過前述已知的校正點(Ρ1〜Ρ25)的中心 點、電流總和、電極的各別電流可以求得前述兩個不同 觸點(ΡΑ、ΡΒ)的距離【即開度】與相對角度之計算公 式; 緊接著’將求得的兩個不同觸點(PA、ΡΒ)之距離 巧相:度配合前述之校正表’依比例計算出 ΡΑ、ΡΒ)的電流令心; ’透過前述之兩個不同觸點(ρΑ、ρΒ)的距離 pa U心’而進—步分別求得兩個不同觸點( ΡΑ、ΡΒ)的X座標與γ座標。 在運作架構上’彡齡麵控面板⑼)之透明導 會出現雷j不均勻電場,當手指接觸觸控面板(5°) (60)的^電效應,使觸控面板(5G)上電極圖案層 側雷二x側電極(6卜62)與第-、二Y :==,電_合,進而產生電 且剎田甘^透過前述方式量測四個角落電流強度, 且^電極圖案層(6〇)之第一、二X侧電極(61、 I朱、、一 Y側電極(63、64)的阻抗係向同側以 μ ^ 4比方式遞增或遞減佈設之,使觸控面板(50 ) 兩個在同—水平或垂直之觸點阻抗產生梯度之現象, ,效防止兩個不同觸點(ΡΑ、ρΒ)移動時,電極圖案層 輪出之電流互相抵銷,如此就可依電流大小計算 兩個不同觸點(ρΑ、ρΒ)的位置,以便於控制器判斷 f後續之縮放、旋轉與拖拉動作,以滿足表面電容式觸 工面板的多觸點需求,且能大幅簡化多點式觸控面板的 構成與製造難度,進而降低其製造成本,有效大幅提升 表面電容式觸控面板的附加價值與經濟效益。 ,又本創作另有一實施例,前述電極圖案層(6〇)係 為八個輸出端點之設計,其係如第九圖所示,該電極圖 案層(60)之第一 X侧電極(61)的兩端分設有一供量 測電壓、電流之導線(651、652 ),而第一 γ侧電極( 63) 的兩端分設有一供量測電壓、電流之導線(661、 662 ),又第二X側電極(62)的兩端分設有一供量測 電壓、電流之導線(671、672),至於第二γ側電極( 64) 的兩端分設有一供量測電壓、電流之導線(681、 682),前述導線(651、652、661、662、671、672、 68卜682 )係選自導電性之銀膠,且導線(651、652、 14 M403700 662 671、672、681及682)並以網版印刷方式 佈:於觸控面板(5〇)之非工作區表面,又觸控面板( 5〇)上並具有兩供導線U51、652、661、662、671、 672 681、682 )另側端點佈設之連接部(69ι、692 ) 以供刀別電氣串接觸控面板(50)之控制器【圖中未 示】。 再者,如第十圖所示,係本創作之再一實施例,前 述電極圖案層(60)的第―、二X側電極(61、62)與 第 一 Y側電極(63、64)係呈多段式,使電極圖案 層(60)於觸控面板(5G)圍繞形成複數職的虛擬工 作區’且各段相對之第—、二χ側電極(6卜62)與各 段相對之第—、:Υ侧電極⑽、64)的阻抗係向同側 以等差或等比方式遞增或遞減佈設之,以本實施例之較 佳狀態,係令該第—、二χ側電極(6卜62)具有兩段 第一 X側電極(61卜612)與兩段第二χ側電極(621 622)且兩#又第一 X側電極(611、612)與兩段第 一 X側電極(621、622)的斜率由相接點以等差方式由 中心向左右兩端漸縮延伸,使第一、二X側電極(61、 62)的阻抗係由中心向兩端遞減,而達到使其阻抗呈等 差遞減之目的,至於該第一、二y側電極(63、64)且 有兩段第一 γ側電極(631、632)與兩段第二Y側電ς (64卜642),且兩段第一 γ側電極(肋卜632)與兩 段第二Υ側電極(64卜642)的斜率由相接點以等差方 式由中心向上下兩端漸縮延伸,使第一、二γ側電極( 63、64)的阻抗係由中心向兩端遞減,而達到使其阻抗 呈等差遞減之目的,使觸控面板(50)在同一水平或^ 15 M403700 第九圖·作校正表的校正觸點位置示意圖; 第九圖.係本創作之表面電容式觸控面板結構另 例之平面示意圖;以及 &The electrodes (6 and 62) and the first and second gamma side electrodes (63, (4) are impedance-increasing or decreasing in the same or equal ratio to the same side, so that the touch, the plate (50) is at the same level or The vertical contact impedance produces a gradient image that prevents the currents of the electrode pattern layer (6G) from canceling each other when the two contacts move, and the group constitutes a surface capacitive touch panel structure. In practical applications, Still referring to the figure shown in the seventh figure, the electrode pattern layer (6〇) of the touch panel (50)=the first, the side electrode (6b 62) and the first and second γ side electrodes 67, fiSW Look at the four (four) at each and the other wires (65, 66, AC2, AC3 ^ sub-receipt - AC sensing signal [ΑΠ, quantity == (5 °) on the two different contacts m, PB Position=Two of the gestures can be performed. Firstly, the fixed-number cloth δ and the plate punctuality are set on the working area of the touch panel (5〇), and the χ wheelbase and γ of each adjacent correction point are The wheelbases are equidistant, as shown in the eighth figure. The original design is 25 points. The correction points are defined as (Ρ1~ρ25) respectively. Then, the same area is used. The measuring piece [the size of which is the area when the touch finger touches] is sequentially placed on the aforementioned correction points (Ρ1~Ρ25), and the current values of the respective correction points (Ρ1~Ρ25) are respectively measured, and two or two are obtained. The center point of the adjacent correction point (Ρ1~Ρ25); and the current value of the calibration point (Ρ1~Ρ25) measured by the above is calculated, and the total energy [ie, the sum of the current] and the electrode pattern layer (6〇) are calculated. The respective energies of the first and second X-side electrodes (61, 62) and the first and second γ-side electrodes ((10), 64), that is, the sum of the respective currents, are formed to correspond to the respective correction points (pl~ Ρ25). The weight table, which contains the center points of the adjacent correction points (pi~pm), the sum of the currents, and the respective currents of the electrodes; then 'passes the center point of the known correction points (Ρ1~Ρ25), current The sum and the individual currents of the electrodes can be used to calculate the distance between the two different contacts (ΡΑ, ΡΒ) [ie the opening] and the relative angle; followed by the two different contacts that will be obtained (PA, ΡΒ) The distance between the phases: the degree of coordination with the aforementioned calibration table 'calculated according to the ratio of ΡΑ, ΡΒ) current The 'X coordinate and the γ coordinate of the two different contacts (ΡΑ, ΡΒ) are obtained by the distance of the two different contacts (ρΑ, ρΒ). In the operation structure, the transparent guide of the 'old age face control panel (9) will appear uneven electric field, when the finger touches the touch panel (5 °) (60) ^ electric effect, the touch panel (5G) upper electrode The pattern layer side side two x-side electrode (6b 62) and the first-, second-Y:==, electric_combined, and then generate electricity and the brake field is measured by the foregoing method to measure the four corner current intensity, and the ^ electrode pattern The impedance of the first and second X-side electrodes (61, I Zhu, and Y-side electrodes (63, 64) of the layer (6〇) is increased or decreased in the μ^4 ratio on the same side to make the touch Panel (50) Two phenomena in which the contact impedance of the same-horizontal or vertical contact produces a gradient, which prevents the currents of the electrode pattern layer from canceling each other when the two different contacts (ΡΑ, ρΒ) move, so that The position of two different contacts (ρΑ, ρΒ) can be calculated according to the current size, so that the controller can judge the subsequent scaling, rotation and dragging action to meet the multi-contact requirement of the surface capacitive touch panel, and can greatly Simplify the composition and manufacturing difficulty of the multi-touch panel, thereby reducing its manufacturing cost and effectively The additional value and economic benefit of the surface capacitive touch panel. In addition, in the present invention, the electrode pattern layer (6〇) is a design of eight output terminals, which is shown in the ninth figure. Two ends of the first X-side electrode (61) of the electrode pattern layer (60) are provided with wires (651, 652) for measuring voltage and current, and two ends of the first γ-side electrode (63) are separately provided. There is a wire (661, 662) for measuring voltage and current, and a wire (671, 672) for measuring voltage and current is provided at both ends of the second X-side electrode (62), and the second γ-side electrode is provided. (64) is provided with a wire (681, 682) for measuring voltage and current, and the wires (651, 652, 661, 662, 671, 672, 68b 682) are selected from conductive silver glue. And the wires (651, 652, 14 M403700 662 671, 672, 681, and 682) are printed by screen printing: on the non-working area of the touch panel (5〇), and on the touch panel (5〇) And having two connecting wires U51, 652, 661, 662, 671, 672 681, 682) connecting the other end points (69ι, 692) for the knife The touch panel electrically connected in series (50) of the controller [not shown]. Furthermore, as shown in the tenth embodiment, in another embodiment of the present invention, the first and second X side electrodes (61, 62) and the first Y side electrode (63, 64) of the electrode pattern layer (60) are provided. The multi-stage type is such that the electrode pattern layer (60) surrounds the touch panel (5G) to form a virtual working area of the plurality of positions, and the opposite sides of the first and second side electrodes (6b 62) are opposite to the respective segments. The impedance of the first and second electrodes (10), 64) is increased or decreased in the same or equal ratio to the same side. In the preferred state of the embodiment, the first and second side electrodes are 6) 62) having two first X-side electrodes (61 612) and two second χ-side electrodes (621 622) and two #first X-side electrodes (611, 612) and two first X-sides The slopes of the electrodes (621, 622) are gradually extended from the center to the left and right ends by the junctions in an equidistant manner, so that the impedances of the first and second X-side electrodes (61, 62) are decreased from the center to the both ends, and To achieve the purpose of equalizing the impedance, the first and second y-side electrodes (63, 64) have two first gamma side electrodes (631, 632) and two second Y-side electrodes (64). Bu 642) And the slopes of the two first gamma side electrodes (ribs 632) and the two second side electrodes (64 642) are gradually extended from the center to the upper and lower ends by the junction point, so that the first The impedance of the two gamma side electrodes (63, 64) decreases from the center to the ends, and the impedance is reduced by the same purpose, so that the touch panel (50) is at the same level or ^ 15 M403700 Schematic diagram of the calibration contact position of the calibration table; ninth diagram. is a schematic plan view of another example of the surface capacitive touch panel structure of the present invention; and &

第十圖:係本創作之表面電容式觸控面板結構再—實施 例之平面示意圖。 【主要元件符號說明】 (10) 觸控面板 (11) 透明基板 (12) 透明導電層 (13) 電極圖案層 (131) X側電極 (132) Y侧電極 (14) 硬化層 (151) 導線 (152) 導線 (153) 導線 (154) 導線 (20) 觸控面板 (21) 透明基板 (22) X透明電極圖案層 (23) 透明介電層 (24) Y透明電極圖案層 (25) 感測圖案 (28) 導線 (50) 觸控面板 (51) 透明基板 (52) 透明導電層 (54) 硬化層 (60) 電極圖案層 (61) 第一 X側電極 (611) 第一 X側電極 (612) 第一 X側電極 (62) 第二X侧電極 (621) 第二X侧電極 ( 622) 第二X側電極 (63) 第一 Y側電極 (631) 第一 Y側電極 ( 632) 第一 Y側電極 (64) 第二Y侧電極 (641) 第二Y側電極 ( 642) 第二Y側電極 (65) 導線 (651) 導線 ( 652) 導線 (66) 導線 (661) 導線 17 M403700 ( 662) 導線 (67) 導線 (671) 導線 ( 672) 導線 (68) 導線 (681) 導線 ( 682) 導線 (69) 連接部 (691) 連接部 ( 692) 連接部Fig. 10 is a plan view showing the structure of the surface capacitive touch panel of the present invention. [Main component symbol description] (10) Touch panel (11) Transparent substrate (12) Transparent conductive layer (13) Electrode pattern layer (131) X side electrode (132) Y side electrode (14) Hardened layer (151) Conductor (152) Conductor (153) Conductor (154) Conductor (20) Touch Panel (21) Transparent Substrate (22) X Transparent Electrode Pattern Layer (23) Transparent Dielectric Layer (24) Y Transparent Electrode Pattern Layer (25) Measurement pattern (28) Conductor (50) Touch panel (51) Transparent substrate (52) Transparent conductive layer (54) Hardened layer (60) Electrode pattern layer (61) First X-side electrode (611) First X-side electrode (612) First X-side electrode (62) Second X-side electrode (621) Second X-side electrode (622) Second X-side electrode (63) First Y-side electrode (631) First Y-side electrode (632 ) First Y-side electrode (64) Second Y-side electrode (641) Second Y-side electrode (642) Second Y-side electrode (65) Conductor (651) Conductor (652) Conductor (66) Conductor (661) Conductor 17 M403700 ( 662) wire (67) wire (671) wire ( 672) wire (68) wire (681) wire ( 682) wire (69) connection (691) connection ( 692 ) connection

1818

Claims (1)

M403700 • · 六、申請專利範圍 : 1、一種表面電容式觸控面板之多點觸控結構,該觸控 • 面板至少係由一透明基板、一透明導電層及一電極 , 圖案層所構成,其中電極圖案層係以實質矩形圍繞 於觸控面板透明導電層表面周緣而成,其特徵為該 觸控面板在同一水平或垂直之觸點移動時阻抗產生 梯度之現象,令兩個不同觸點移動時電流不致互相 抵銷,再者電極圖案層四個角落分別電氣連接有一 供量測輸出電流之導線; 藉此,供透過電流大小計算求得兩個不同觸點的位 置,而組構成一可判定多觸點之表面電容式觸控面 板結構者。 2、一種表面電容式觸控面板之多點觸控結構,該觸控 面板至少係由一透明基板、一透明導電層及一電極 圖案層所構成,其中電極圖案層係於觸控面板上、 下邊緣分設有相對之至少一第一 X側電極與至少一 • 第二X側電極,又電極圖案層係於觸控面板左、右 邊緣分設有相對之至少一第一 Y側電極與至少一第 二Y側電極,且第一、二X側電極與第一、二Y側 電極以矩形圍繞於觸控面板表面周緣而成,其中第 一、二X側電極係呈阻抗係向同側以等差或等比方 式遞增或遞減,又第一、二Y.側電極亦係呈阻抗係 向同側以等差或等比方式遞增或遞減,且第一、二 X側電極與第一、二Y側電極之端部分別電氣連接 有一供量測輸出電流之導線; 19 M403700 藉此,使觸控面板在同一水平或垂直之觸點阻抗產 生梯度之現象,防止兩個不同觸點移動時電流互相 抵銷,供透過電流大小計算求得兩個不同觸點的位 置,而組構成一可判定多觸點之表面電容式觸控面 板結構者。 3、 如申請專利範圍第2項所述之表面電容式觸控面板 之多點觸控結構,其中該電極圖案層之第一、二X 侧電極係以改變其斜率、寬度、面積、厚度、間距 、材料、圈數或其混等方式來達成阻抗向同側以等 差或等比方式遞增或遞減之物理條件。 4、 如申請專利範圍第2項所述之表面電容式觸控面板 之多點觸控結構,其中該電極圖案層係網版印刷之 技術形成於觸控面板上。 5、 如申請專利範圍第2項所述之表面電容式觸控面板 之多點觸控結構,其中該電極圖案層係選自導電性 之碳膠。 6、 如申請專利範圍第2項所述之表面電容式觸控面板 之多點觸控結構,其中該電極圖案層之第一、二X 側電極,其係分別由兩段以上相對平行之第一、二 X側電極所争接而成。 7、 如申請專利範圍第2項所述之表面電容式觸控面板 之多點觸控結構,其中該電極圖案層之第一、二Y 側電極,其係分別由兩段以上相對平行之第一、二 Y側電極所串接而成。 20M403700 • · VI. Patent application scope: 1. A multi-touch structure of a surface capacitive touch panel, the touch panel comprises at least a transparent substrate, a transparent conductive layer and an electrode, and a pattern layer. The electrode pattern layer is formed by a substantially rectangular shape surrounding the peripheral edge of the transparent conductive layer of the touch panel, and is characterized in that the impedance of the touch panel is gradient when the same horizontal or vertical contact moves, so that two different contacts are obtained. The current does not cancel each other when moving, and the four corners of the electrode pattern layer are electrically connected with a wire for measuring the output current; thereby, the position of the two different contacts is obtained by calculating the magnitude of the transmission current, and the group is composed of one. A multi-contact surface capacitive touch panel structure can be determined. 2. A multi-touch structure of a surface capacitive touch panel, the touch panel being composed of at least a transparent substrate, a transparent conductive layer and an electrode pattern layer, wherein the electrode pattern layer is on the touch panel, The lower edge is provided with at least one first X-side electrode and at least one second X-side electrode, and the electrode pattern layer is disposed on the left and right edges of the touch panel with at least one first Y-side electrode and At least one second Y-side electrode, and the first and second X-side electrodes and the first and second Y-side electrodes are formed in a rectangular shape around the periphery of the surface of the touch panel, wherein the first and second X-side electrodes are impedance-oriented The side is incremented or decremented by equal or equal ratio, and the first and second Y. side electrodes are also increased or decreased in the same or equal ratio to the same side of the impedance system, and the first and second X-side electrodes and the first The ends of the first and second Y-side electrodes are electrically connected to a wire for measuring the output current; 19 M403700, thereby causing the touch panel to have a gradient at the same horizontal or vertical contact impedance, preventing two different contacts The currents offset each other when moving Calculate the current size of the obtained two different contact positions, and the group consisting of a surface structure of the capacitive touch panel by a plurality of contacts can be determined. 3. The multi-touch structure of the surface capacitive touch panel according to claim 2, wherein the first and second X-side electrodes of the electrode pattern layer are changed in slope, width, area, thickness, Pitch, material, number of turns, or a mixture thereof to achieve physical conditions in which the impedance is increased or decreased in an equal or equal manner to the same side. 4. The multi-touch structure of the surface capacitive touch panel of claim 2, wherein the electrode pattern layer is screen printed on the touch panel. 5. The multi-touch structure of the surface capacitive touch panel of claim 2, wherein the electrode pattern layer is selected from the group consisting of conductive carbon glue. 6. The multi-touch structure of the surface capacitive touch panel according to claim 2, wherein the first and second X-side electrodes of the electrode pattern layer are respectively two or more relatively parallel. The first and second X side electrodes are contiguous. 7. The multi-touch structure of a surface capacitive touch panel according to claim 2, wherein the first and second Y-side electrodes of the electrode pattern layer are respectively two or more relatively parallel. One or two Y-side electrodes are connected in series. 20
TW99214937U 2010-08-05 2010-08-05 Multi-point touch structure of surface capacitive touch panel TWM403700U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99214937U TWM403700U (en) 2010-08-05 2010-08-05 Multi-point touch structure of surface capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99214937U TWM403700U (en) 2010-08-05 2010-08-05 Multi-point touch structure of surface capacitive touch panel

Publications (1)

Publication Number Publication Date
TWM403700U true TWM403700U (en) 2011-05-11

Family

ID=45077570

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99214937U TWM403700U (en) 2010-08-05 2010-08-05 Multi-point touch structure of surface capacitive touch panel

Country Status (1)

Country Link
TW (1) TWM403700U (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246407A (en) * 2012-02-06 2013-08-14 联胜(中国)科技有限公司 Capacitive touch control plate
TWI450149B (en) * 2011-12-15 2014-08-21 Ind Tech Res Inst Touch apparatus and touch panel
TWI451305B (en) * 2011-11-25 2014-09-01 Voltage-based capacitive touch device and touch sensing method
TWI456453B (en) * 2011-09-01 2014-10-11 Tpk Touch Solutions Xiamen Inc Touch-on-lens device and a process of manufacturing the same
TWI471795B (en) * 2011-12-14 2015-02-01 Wintek Corp Capacitive touch panel
TWI514213B (en) * 2013-10-01 2015-12-21 E Ink Holdings Inc Touch structure and manufacturing method for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456453B (en) * 2011-09-01 2014-10-11 Tpk Touch Solutions Xiamen Inc Touch-on-lens device and a process of manufacturing the same
TWI451305B (en) * 2011-11-25 2014-09-01 Voltage-based capacitive touch device and touch sensing method
TWI471795B (en) * 2011-12-14 2015-02-01 Wintek Corp Capacitive touch panel
TWI450149B (en) * 2011-12-15 2014-08-21 Ind Tech Res Inst Touch apparatus and touch panel
CN103246407A (en) * 2012-02-06 2013-08-14 联胜(中国)科技有限公司 Capacitive touch control plate
TWI514213B (en) * 2013-10-01 2015-12-21 E Ink Holdings Inc Touch structure and manufacturing method for the same

Similar Documents

Publication Publication Date Title
JP5039747B2 (en) Input device and display device including the same
CN201837984U (en) Multi-point touch control structure for surface capacitive touch panel
KR20130018100A (en) A capacitive touch panel and a method of manufacturing the same
WO2010102470A1 (en) Pressure sensitive touch control device
TWM417607U (en) Touch panel device with dual sensing interface
JP2009146373A (en) Hybrid touch panel and method making thereof
KR101304891B1 (en) Capacitive touch sensitive panel and mobile terminal using the same
KR20120056033A (en) Touch screen panels and Image display devices having the same
TWM403700U (en) Multi-point touch structure of surface capacitive touch panel
US8907919B2 (en) Sensing structure of touch panel
US9535554B2 (en) Capacitive type touch panel
TW200846997A (en) A single layer of touch sensor structure and a touch display panel using the same
CN104951161A (en) Liquid crystal display with touch function and conducting layer structure thereof
TW201229850A (en) Touch-sensitive coordinate input apparatus, touch panel and electronic devices having the same
JP5832772B2 (en) Touch panel, touch panel system, and electronic device
CN202649986U (en) Capacitive touch apparatus
CN101430618B (en) Electronic device with multi-touch control characteristics and multi-mode touch control screen thereof
CN102375633A (en) Multi-touch structure of surface capacitive touch panel and method thereof
TWI395121B (en) Pressure detectable touch device
TWI450171B (en) Touch control module and electronic device thereof
CN202351840U (en) Capacitive touch control panel
CN103257775B (en) A kind of G1F structure condenser type touch screen
CN201436625U (en) Pressure sensitive touch control structure
TW201207705A (en) Multi-point touch structure and method of surface capacitive touch panel
TWM626838U (en) Suspension touch panel and suspension touch device

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees