M397571 五、新型說明: 【新型所屬之技術領域】 本創作係關於-種座標輸人衫,特別铜於—種可搞式 光學輸入裝置。 【先前技術】 習知美國專利US7, 236,162B2「被動觸控^統以及偵測使 ^(Passive Touch System And Method OfM397571 V. New description: [New technical field] This creation is about a kind of coordinate input shirt, especially copper-type optical input device. [Prior Art] US Patent No. 7,236,162B2 "Passive Touch System And Method Of"
Detective User I叩ut)」乃揭露一種被動觸控系統,其在螢 幕的四個角落設置照像機(Camera),處理器接收與處理至少 由二個照像機所麟的影像,來姻出—個指標物(p〇inter) 是否存在H找該指標物相對在榮幕的位置。然而上述 美國專利US7’236’162B所述之觸控系統必須必需有實體的螢 幕才可進行操作’錢環境受到關;再者,實體營幕價格 不便宜;糾,螢幕具有-定體積,使得賴控祕的尺寸 無法細知更小而便於樵帶;由前述可知,使用環境、成本、 體積及攜帶性係為該觸控系統有待解決之問題。 本創作創作人有鑑於上述習知技藝的缺失,乃亟思創作 改良而創作出一種可攜式光學輸入裝置,可改善上述缺失。 【新蜇内容】 本創作目的係提供一種可攜式光學輸入裝置,可調整觸 3 控區域的大小。本創作另一目的係提供一種可攜式光學輸入 裝置,可方便攜帶使用。 為達成本創上述目的,本創作提供一種可攜式光學輸入 裝置,包括.一伸縮裝置其係一長度可變化的伸縮結構;兩 個光學取像裝置其感測範圍為部份重疊,而此部分重疊的區 域用以定義一觸控區域,且該兩個光學取像裝置係分別設置 於该伸縮裝置之兩端且分別用以摘取位於該觸控區域内之至 少一物件之影像;一處理電路其係電性連接於該兩個光學取 像裝置,並依據該兩個光學取像裝置所擷取到之該物件之影 像來計算該物件的座標並輸出該座標訊號。 再者,為達成本創上述目的,本創作提供一種可攜式光 學輸入裝置’包括:-第-光學感測裝置與—第二光學感測 裝置,其中該第一、二光學_裝置的感測範圍為部份重疊, 而此部分重疊的區_叹義—觸控區域;—連接裝置其連 接該第-絲感測裝置與該第二光學❹罐置,其中該第一 光學感測裝置與該第二光學感測裝置之間的距離為—預定長 度;-處理電路其侧於當有—物件位於朗控區域内 處理,路便雜該兩光學_裝置㈣酬賴物件之影像 來計算該物件的座標並輸出所述座標。 7v 為使貴審查委員對本創作之構造、特徵及其使用功效 識與瞭解,較佳之可行實施例並配合圖 M397571 【實施方式】 第-圖顯*本創作,式光學輸人裝置料觀示意圖, 第二圖齡本創作可料光學輸人裝置之光學取像裝置的結 構方塊圖’ ^二關示袖作可攜絲學輸人裝置伸長伸縮 裝置後的外赫意圖’叹細_林_可攜式光學輸 入裝置的結構圖。本創作可搞式光學輸人裝置10乃包括:伸 縮裝置10卜第一光學取像裝i 103、第二光學取像裝置1〇4、 處理電路105以及通訊介面⑽,齡職明如后内文。伸縮 裝置101 h采行長度可變化的桿體結構,伸縮裝i 1〇1例如 可參考採行伸縮天線的伸縮桿體結構、多段式可伸縮長度的 桿體結構或是滑軌結構來達成長度可調整之功能,然本發 明之伸縮裝置101並不限用於上述實現方式。且兩個光學取 像裝置103及104是分別設置於伸縮裝置101的兩端。左、 右兩側的光學取像裝置103及104的感測範圍乃是部份重 疊’而此部分重疊的區域是用來定義一觸控區域20。左、右 兩側的光學取像裝置103及104的主要功能是用來擷取位於 觸控區域20内之至少一物件30之影像,而物件30的具體例 例如是手指頭或筆狀物。所述光學取像裝置(optical capturing device)亦稱為光學感測裝置(optical sensing device) ° 藉由伸縮裝置101能夠改變長度的功能,因此兩個光學 5 M39J571 取像裝置103及104之間的距離也隨之改變,觸控區域20的 面積大小亦會隨之變化。使用者可因應不同應用 (Applications)的需要,將伸縮裝置101伸縮成不同的長度, 來配合這些應用的輸入(Input),並可將該些不同應用的觸控 區域20的面積大小預設於該處理電路105中,舉例來說,將 該可揭式光學輸入裝置10當成一虛擬滑鼠使用時,那麼於光 * 學取像裝置103及104前方之觸控區域20的面積大小便可依 _ 使用者操作貫體滑鼠之使用習慣範圍而加以定義於該處理電 路105内’例如是定義成15cm X 15cm大小的觸控範圍。 處理電路105係電性連接於兩個光學取像裝置1〇3及 104,並依據兩個光學取像裝置1〇3及1〇4所擷取到之物件3〇 之影像,來計具物件30的座標,並輸出該座標訊號。處理電 路105乃包含至少一個以上的電子元件,其中至少一個電子 元件,例如處理器(圖未顯示),係電性連接於光學取像裝置 馨- 103及104。處理電路105可採行設置於伸縮裝置101,例如 • 設置於伸縮裝置的巾空内部。處理電路105亦可採行設置於 伸縮裝置101的外部。處理電路105亦可採行設置於兩個光 學取像裝置103及104其中之一個的内部。 處理器的功能如下所述,當物件3〇位於觸控區域2〇 内,光學取像裝置103及1〇4便能分別擷取得物件如之影 像’並將該等影像資料直接傳給處理器或者光學取像裝 置103及104亦能將影像資料進行前置處理而取得影像之 6 特徵資料(例如物件影像之面積、 我見比、邊界、多必^ 度寺參數)後,再傳給處理器,以減輕處理 /、π 理器便依據這絲像資料或影像之特”、擔’而處 件30的座標。其中,處理器係依據習知的=出物 ^學原理,碰據習知縣計料㈣物 座標(下-段將進-步說明),處理器可採 、 理器⑽)'觀微處理器或娜處理器來實現,處 處理為可預先定義出光學取像裝置1〇3及ι〇4在* 之座標位置;處㈣並可分料Μ物件30於_影像 中心'重4平触,錢鄕料㈣料轩等份 =等=負表角度丨度,定義影像右邊界為角 度〇度’而左邊界為角度90度,當物件之中心、重心或平均 值落在影像_,即可騎摘物㈣於秘像情分別代 表的角度’此兩角度即為物件3G在空財相對於兩光學取像 裝置103、HM之座標位置;_已知的兩絲取像裝置之座 標值與兩纽,即刊賴斜公式(pQint_si〇pe f㈣)求得 兩直線方m處理n職計算出該兩直線的交點,此交 點即物件30的座標。 處理電路105 75電性連接通訊介面1〇6,而通訊介面1〇6 的具體手段可_習知無線通訊触,可跡無線發射對應 於所述物件30的賴誠,f知無顧賴_如可採用藍 芽(BIueTooth)無線傳輸介面、無線通用串列匯流排 M397571 (Wireless Universal Series Bus,Wireless USB)介面或是超 寬頻(Ultra Wide Band, UWB)無線介面,但不以此為限。通 訊介面106的具體手段亦可採用習知有線連接介面,例如是 通用串列匯流排(Universal Series Bus,USB)介面,USB 1,〇、 USB U、USB 2.0或USB 3.0,但不以此為限,透過咖連 接介面傳送對應於所述物件3〇的座標訊號。 處理電路105將所述座標訊號輸出至一電子裝置(圖未 顯示),該電子裝置具有一顯示螢幕,並與該電子裝置進行 通訊,以便利用該顯示螢幕的游標位置來反應出物件3〇 之座標。该電子裝置例如是筆記型電腦。 第一光學取像裝置103的具體實施例乃包括:影像感測 器103b、紅外光發射裝置1〇3e、以及一只能讓紅外光通過之 紅外光渡光裝置103c。紅外光發射裝置1()3e的功能係用來發 射紅外光以照射物件30。紅外光濾光裝置1〇3c乃設置於影像 感測态103b的前方。影像感測器1〇3b能夠透過其對應的红 外光;慮光裝置103c來取得物件30反射該紅外光之影像,其 中影像感測器l〇3b可為電荷耦合元件(charge c〇upled device, CCD)或互補式金氧半影像感測元件(CM〇s image SenS〇r),而外型可為矩陣形式(Array)或線性形式(Linear)。 第-光學取像裝置1〇3的另一具體實施例乃包括:影像 感測器103b、紅外光發射裝置職、以及光學鏡片組麵。 紅外光發射裝置l〇3e的功能係用來發射紅外光以照射物件 8 M397571 30。光學鏡片組103d中的至少一個光學鏡片i〇3l交錯塗佈 有多層的氧化鎂(MgO)以及多層的二氧化鈦(Ti02)或二氧化 矽(Si02),以使該至少一光學鏡片1031產生類似於紅外光 濾光裝置103c的效果。光學鏡片組l〇3d乃設置於影像感測 器103b的前方。光學鏡片組l〇3d包含光學鏡片1031及1032, 在此例中,影像感測器103b的視角約為30〜45度,因此 光學取像裝置103必須採用光學鏡片組l〇3d來將影像感測 器103b的視角擴增到至少為90度,以便使得光學取像裝 置103的感測範圍涵蓋觸控區域20。而在光學鏡片組l〇3d 中’每一個光學鏡片1031及1032分別可增加影像感測器 103b的視角至少30度。其中影像感測器i〇3b可為電荷耦 合元件(charge-coupled device, CCD)或互補式金氧半影像 感測元件(CMOS image sensor),而外型可為矩陣形式 (Array)或線性形式(Linear)。 第一光學取像裝置103的再另一具體實施例乃包括:影 像感測器103b、紅外光發射裝置1 〇3e、紅外光渡光裝置1 〇3c、 以及光學鏡片組103d。紅外光濾光裝置i〇3c乃設置介於影像 感測器103b與光學鏡片組l〇3d之間。 第一光學取像裝置103尚可包括光學鏡片i〇3f。光學鏡 片103f是設置於紅外光發射裝置i〇3e的前方,用以將紅外 光均勻發射至觸控區域20内。 第一光學取像裝置103包括一透光部i〇3a,其形狀與大 9 小必須設計成能讓光學取像裝置103感測到觸控區域2〇内 的影像’同時透光部103a也不能去阻擋到紅外光發射裝 置103e透過光學鏡片l〇3f所發射的紅外光的行進方向而 使紅外光無法照射到觸控區域20中的任一個位置。 弟一光學取像裝置104之結構方塊圖與第一光學取像事 置103相同。透光部104a乃相同於透光部103a ;影像感測 器l〇4b乃相同於影像感測器103b ;紅外光濾光裝置1〇4c乃 相同於紅外光濾光裝置l〇3c;光學鏡片組1〇4d乃相同於光學 鏡片組103d;紅外光發射裝置l〇4e乃相同於紅外光發射裝置 103e;光學鏡片i〇4f乃相同於光學鏡片1〇3f。光學鏡片組 104d的光學鏡片1〇41及1〇42乃相同於光學鏡片組1〇如的 光學鏡片1031及1032。 請參見第五圖,本創作所述的伸縮裝置1〇1乃可使用具 有已’大小的預定長度的連接裝置⑽來取代,而兩個光 學取像裝置103及104是分別設置於連接裝置1〇9的兩端。 本創作可攜式光學輸入裝置10可放置在一個平面上,即 可以操作使用,例如將可攜式光學輸入1〇放置於電腦桌的桌 面上,或是放置工作桌、餐桌等等的桌面上。再者,本創作 可攜式光學輸入裝置10可掛置在—個牆面上,亦可以於牆面 上進行操作使用。 本創作可攜式光學輸入裝置1〇不必像習知光學影像式輪 入裝置必須掛置在-個螢幕的正前方來使用,因此本創作可 攜式光學輸入裝置10能夠在更多樣性的環境上來使用。 本創作可攜式光學輸入裝置10容易實施為易攜帶的可攜 式光學輸入裝置,在相較於習知可攜式光學輸入裝置之下, 本創作可攜式光學輸入裝置10可方便地與攜帶型電子機器 (例如平板電腦、手機、筆記型電腦等等)搭配使用。 本創作光可攜式光學輸入裝置,具備可變化長度的伸縮 裝置设計,因而可制的至少二種以上不同大小感測面積的 觸控區域翻’此即為本_效絲著增進之處。再者,本 創作可攜式光學輸入裝置學能夠在更多樣性的環境上來使 用,此即為本創作額外的效果顯著增進之處。 惟以上所述者,僅為本創作之較佳實施例,當不能用以 限疋本創作可貫施之範圍,凡熟悉於本技藝人士所明顯可作 又匕飾,皆應視為不悖離本創作之實質内容。 【圖式簡單說明】 f—®顯示本創作可攜式光學輸人裝置的外觀示意圖。 可攜式光學輸入裝置之光學取像裝置的 結構方塊圖。 A U 7F本創作可搞式光學輸入裝置伸長伸縮裝置後的 外觀示意圖。 第四圖.4不本創作可機式光學輸人裝置的結構圖。 員示本創作可攜式光學輸入裝置的另-變化實例的 M397571 外觀示意圖。 【主要元件符號說明】 10 可攜式光學輸入裝置 101 伸縮裝置 103、104 光學取像裝置 103a ' 104a 透光部 103b、104b 影像感測器 103c、104c 紅外光濾光裝置 103d、104d 光學鏡片組 103e、104e 紅外光發射裝置 103f、104f 光學鏡片 105 處理電路 106 通訊介面 1031、1032、1041、1042 光學鏡片 109 連接裝置 20 觸控區域 30 物件 12Detective User I叩ut) reveals a passive touch system that sets up a camera in four corners of the screen. The processor receives and processes images from at least two cameras. - an indicator (p〇inter) Whether there is an H to find the indicator relative to the position of the honor. However, the touch system described in the above-mentioned U.S. Patent No. 7'236'162B must have a physical screen to operate. 'The money environment is shut down; in addition, the physical screen price is not cheap; the correction, the screen has a fixed volume, so that The size of the control system cannot be known to be smaller and easier to carry. As can be seen from the foregoing, the environment, cost, volume and portability are the problems to be solved by the touch system. In view of the lack of the above-mentioned conventional skills, the author of the creation has created a portable optical input device that can improve the above-mentioned deficiency. [New Content] This creation aims to provide a portable optical input device that can adjust the size of the touch control area. Another object of the present invention is to provide a portable optical input device that can be conveniently carried. In order to achieve the above object, the present invention provides a portable optical input device, comprising: a telescopic device which is a telescopic structure with a variable length; two optical imaging devices have a sensing range partially overlapping, and this The partially overlapping area is used to define a touch area, and the two optical imaging devices are respectively disposed at two ends of the telescopic device and are respectively used for extracting an image of at least one object located in the touch area; The processing circuit is electrically connected to the two optical imaging devices, and calculates coordinates of the object according to the image captured by the two optical imaging devices and outputs the coordinate signal. Furthermore, in order to achieve the above object, the present invention provides a portable optical input device 'including: - a first optical sensing device and a second optical sensing device, wherein the first and second optical devices The measurement range is a partial overlap, and the partially overlapped area _ sin-touch area; the connection device is connected to the first wire sensing device and the second optical ❹ can, wherein the first optical sensing device The distance between the second optical sensing device and the second optical sensing device is - a predetermined length; - the processing circuit is disposed on the side of the object when the object is located in the remote control region, and the road is mixed with the image of the optical device (4) The coordinates of the object and output the coordinates. 7v In order to enable your review board to understand and understand the structure, characteristics and use efficiency of this creation, the preferred feasible embodiment and the figure M397571 [Embodiment] The first-picture shows the schematic view of the optical input device. The second figure is the structural block diagram of the optical imaging device of the optical input device. ^^The two sleeves are used as the portable silk input device. A structural diagram of a portable optical input device. The creative optical input device 10 includes: a telescopic device 10, a first optical image capturing device 103, a second optical image capturing device 1〇4, a processing circuit 105, and a communication interface (10). Text. The telescopic device 101 h adopts a rod structure with a variable length. For example, the telescopic assembly i 1〇1 can refer to the telescopic rod structure adopting the telescopic antenna, the multi-segment telescopic length rod structure or the slide rail structure to achieve the length. The adjustable function, however, the expansion device 101 of the present invention is not limited to the above implementation. The two optical imaging devices 103 and 104 are respectively disposed at both ends of the telescopic device 101. The sensing ranges of the optical imaging devices 103 and 104 on the left and right sides are partial overlaps and the partially overlapping regions are used to define a touch region 20. The main functions of the optical imaging devices 103 and 104 on the left and right sides are to capture images of at least one object 30 located in the touch area 20, and specific examples of the object 30 are, for example, a finger or a pen. The optical capturing device is also referred to as an optical sensing device. The function of changing the length by the stretching device 101 is therefore between the two optical 5 M39J571 image capturing devices 103 and 104. The distance also changes, and the size of the touch area 20 also changes. The user can expand and contract the expansion device 101 to different lengths according to the requirements of different applications to match the input of the applications, and preset the area of the touch area 20 of the different applications to In the processing circuit 105, for example, when the removable optical input device 10 is used as a virtual mouse, the size of the touch area 20 in front of the optical imaging devices 103 and 104 can be determined. _ The user operates within the processing circuit 105 by operating a range of habits of the mouse. For example, it is defined as a touch range of 15 cm X 15 cm. The processing circuit 105 is electrically connected to the two optical image capturing devices 1〇3 and 104, and the object is counted according to the image of the object 3〇 captured by the two optical image capturing devices 1〇3 and 1〇4. The coordinates of 30 and output the coordinate signal. The processing circuit 105 includes at least one or more electronic components, at least one of which is electrically coupled to the optical imaging devices xin-103 and 104, such as a processor (not shown). The processing circuit 105 can be disposed on the telescopic device 101, for example, • disposed inside the towel empty of the telescopic device. The processing circuit 105 can also be disposed outside of the telescopic device 101. The processing circuit 105 can also be disposed inside one of the two optical imaging devices 103 and 104. The functions of the processor are as follows. When the object 3 is located in the touch area 2, the optical image capturing devices 103 and 1 can respectively acquire the image of the object and transmit the image data directly to the processor. Alternatively, the optical imaging devices 103 and 104 can also perform pre-processing on the image data to obtain 6 characteristic data of the image (for example, the area of the object image, the ratio of the object, the boundary, and the multi-parameter parameter), and then transmit the processing to the processing. In order to reduce the processing /, π processor according to the characteristics of the silk image or image "," and the coordinates of the object 30. Among them, the processor is based on the conventional = output principle, according to the law The county's metering (four) object coordinates (lower-segment will be step-by-step description), the processor can be used, the processor (10)) 'viewing the microprocessor or the nano processor to achieve, the processing can be pre-defined optical imaging device 1 〇3 and ι〇4 at the coordinate position of *; at (4) and can be divided into objects _ image center 'heavy 4 flat touch, money ( ( (4) 料 轩 等等 = = = negative angle 丨 degree, define the image The right boundary is the angle ' degree and the left boundary is the angle 90 degrees, when the center, center of gravity or flat of the object The value falls on the image _, and the object can be picked up (4) at the angle represented by the secret image. 'The two angles are the coordinates of the object 3G in the empty money relative to the two optical imaging devices 103, HM; _ known two The coordinates of the wire-receiving device and the two-point, ie, the slanting formula (pQint_si〇pe f(4)) are obtained by two straight squares m, and the intersection of the two straight lines is calculated, and the intersection is the coordinate of the object 30. The processing circuit 105 75 is electrically connected to the communication interface 1〇6, and the specific means of the communication interface 1〇6 can be _known wireless communication touch, can trace wireless transmission corresponding to the object 30 of Lai Cheng, f know no need to rely on Bluetooth (BIueTooth) wireless transmission interface, wireless universal serial bus M397571 (Wireless Universal Series Bus, Wireless USB) interface or Ultra Wide Band (UWB) wireless interface, but not limited to this. Communication interface 106 The specific means can also be a conventional wired connection interface, such as a Universal Serial Bus (USB) interface, USB 1, 〇, USB U, USB 2.0 or USB 3.0, but not limited thereto. Coffee connection interface corresponds to the office The coordinate signal of the object 3〇. The processing circuit 105 outputs the coordinate signal to an electronic device (not shown), the electronic device has a display screen and communicates with the electronic device to utilize the cursor position of the display screen. The electronic device is, for example, a notebook computer. The specific embodiment of the first optical image capturing device 103 includes: an image sensor 103b, an infrared light emitting device 1〇3e, and a Infrared light passes through the infrared light illuminating device 103c. The function of the infrared light emitting device 1() 3e is to emit infrared light to illuminate the object 30. The infrared light filter unit 1〇3c is disposed in front of the image sensing state 103b. The image sensor 1〇3b can transmit the image of the infrared light through the corresponding infrared light; the light-sensing device 103c, wherein the image sensor 3.1b can be a charge coupled device (charge c〇upled device, CCD) or a complementary MOS image sensing element (CM〇s image SenS〇r), and the shape can be in the form of an array (Array) or a linear form (Linear). Another specific embodiment of the first optical imaging device 1A includes an image sensor 103b, an infrared light emitting device, and an optical lens assembly. The function of the infrared light emitting device 103e is to emit infrared light to illuminate the object 8 M397571 30. At least one of the optical lens groups 103d is interleaved with a plurality of layers of magnesium oxide (MgO) and a plurality of layers of titanium oxide (Ti02) or cerium oxide (SiO 2 ) to cause the at least one optical lens 1031 to be similar. The effect of the infrared light filtering device 103c. The optical lens group 103a is disposed in front of the image sensor 103b. The optical lens group 10d includes optical lenses 1031 and 1032. In this example, the image sensor 103b has a viewing angle of about 30 to 45 degrees. Therefore, the optical imaging device 103 must use the optical lens group l3d to sense the image. The viewing angle of the detector 103b is amplified to at least 90 degrees so that the sensing range of the optical imaging device 103 covers the touch area 20. In the optical lens group 10', each of the optical lenses 1031 and 1032 can increase the viewing angle of the image sensor 103b by at least 30 degrees. The image sensor i〇3b may be a charge-coupled device (CCD) or a complementary CMOS image sensor, and the shape may be in an array form or a linear form. (Linear). Still another embodiment of the first optical imaging device 103 includes an image sensor 103b, an infrared light emitting device 1A3e, an infrared light illuminating device 1A3c, and an optical lens group 103d. The infrared light filtering means i3c is disposed between the image sensor 103b and the optical lens group 103d. The first optical imaging device 103 may further include an optical lens i〇3f. The optical lens 103f is disposed in front of the infrared light emitting device i〇3e for uniformly emitting infrared light into the touch region 20. The first optical image capturing device 103 includes a light transmitting portion i3a, which has a shape and a size of 9 and must be designed to allow the optical image capturing device 103 to sense an image in the touch region 2' while the light transmitting portion 103a is also It is impossible to block the traveling direction of the infrared light emitted from the infrared light emitting device 103e through the optical lens 103f, so that the infrared light cannot be irradiated to any one of the touch regions 20. The block diagram of the optical image capturing device 104 is the same as that of the first optical image capturing device 103. The light transmitting portion 104a is the same as the light transmitting portion 103a; the image sensor 10b is the same as the image sensor 103b; the infrared light filtering device 1〇4c is the same as the infrared light filtering device 103c; the optical lens The group 1〇4d is the same as the optical lens group 103d; the infrared light emitting device 10e is the same as the infrared light emitting device 103e; the optical lens i〇4f is the same as the optical lens 1〇3f. The optical lenses 1〇41 and 1〇42 of the optical lens group 104d are the same as the optical lenses 1031 and 1032 of the optical lens group 1. Referring to FIG. 5, the telescopic device 1〇1 of the present invention can be replaced by a connecting device (10) having a predetermined length of a size, and the two optical imaging devices 103 and 104 are respectively disposed on the connecting device 1.两端9 at both ends. The portable optical input device 10 can be placed on a flat surface, that is, can be operated, for example, the portable optical input 1 〇 is placed on the desktop of the computer desk, or placed on the desktop of the work table, the dining table, and the like. . Furthermore, the portable optical input device 10 can be hung on a wall surface or used on a wall surface. The portable optical input device of the present invention does not have to be mounted in front of a screen like the conventional optical image type wheel-in device, so that the portable optical input device 10 can be more diverse. The environment is used. The portable optical input device 10 can be easily implemented as a portable optical input device. The portable optical input device 10 can be conveniently combined with the conventional portable optical input device. Portable electronic devices (such as tablets, mobile phones, notebooks, etc.) are used together. The present invention is an optical portable input device with a variable length telescopic device design, so that at least two different touch areas of different size sensing areas can be turned over. . Furthermore, the creation of portable optical input device technology can be used in a more diverse environment, which is a significant improvement for the additional effects of the creation. However, the above descriptions are only preferred embodiments of the present invention, and should not be used to limit the scope of the creation of the creation, and those who are familiar with the skill of the art can clearly and swear, and should be regarded as unscrupulous. The essence of this creation. [Simple description of the diagram] f-® shows the appearance of the portable optical input device. A block diagram of the optical imaging device of the portable optical input device. A U 7F is a schematic diagram of the appearance of the optical input device after extending the telescopic device. The fourth figure is a structural diagram of the machine-type optical input device. A brief view of the appearance of the M397571, another variation of the portable optical input device. [Main component symbol description] 10 Portable optical input device 101 Telescopic device 103, 104 Optical imaging device 103a '104a Light transmitting portion 103b, 104b Image sensor 103c, 104c Infrared light filtering device 103d, 104d Optical lens group 103e, 104e infrared light emitting device 103f, 104f optical lens 105 processing circuit 106 communication interface 1031, 1032, 1041, 1042 optical lens 109 connecting device 20 touch area 30 object 12