TWM383209U - Flat fuel cell assembly - Google Patents
Flat fuel cell assembly Download PDFInfo
- Publication number
- TWM383209U TWM383209U TW098224141U TW98224141U TWM383209U TW M383209 U TWM383209 U TW M383209U TW 098224141 U TW098224141 U TW 098224141U TW 98224141 U TW98224141 U TW 98224141U TW M383209 U TWM383209 U TW M383209U
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- fuel cell
- material layer
- cathode
- gas barrier
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
A、新型說明: 【新型所屬之技術領域】 本創作是有關於-種燃料電池的結構(fuelcell),且特 J是有關於一種平面型燃料電池組(flat fuel cell assembly)。 【先前技術】 P近著JL業的進步’傳統能源如煤、石油及天然氣的消 ,量持續升高,由於天然能源的存量有限,因此必須研發 ’斤的替代能源以取代傳統H而燃料電池便是—種重要 且具實用價值之選擇。 簡單來說,燃料電池基本上是一種利用水電解之逆反 應而將化學能轉換成f能的發钱置。以質子交換膜燃料 t池來說,其主要是由一薄膜電極組(membrane dectrode assembly,簡稱MEA)及二電極板所構成。薄膜電極組是由 貝子傳導膜(proton exchange membrance)、一陽極觸媒 層、一陰極觸媒層、一陽極氣體擴散層(§狀出任1^〇111矽打, GDL)以及一陰極氣體擴散層所構成。其中,上述之陽極觸 媒層與陰極觸媒層分別配置於質子傳導膜的兩側,陽極氣 體擴散層與陰極氣體擴散層分別設置在陽極觸媒層與陰極 觸媒層之上。另外,一電極板包括一陽極與一陰極,其分 別配置於陽極氣體擴散層與陰極氣體擴散層之上。 目前業界常見的質子交換膜燃料電池是直接甲醇燃 料電池(Direct Methanol Fuel Cell,簡稱 DMFC),其是直接 陽極:ch3oh+h2o 4 c〇2+6H++6e-陰極:3/202+6H++6e 4 3h2〇 反應時,陽極會消耗1莫耳的水,陰極會2產生3莫耳的水, 而反應所產生的水要立即移除,何_在麟層的表面 上,如此才能夠使燃料電池持續進行反應,以產生電流。 .關於,燃料電池中的水管理,業界已提出多種處理方 式。例如’美國專利申請案之早期公開號獅別98八1 (U.S. Pub· No. 2G_G79398A1)題目為”FUEL CELL”,其 内容揭露’可另外使躲浦(pump)、散熱片、風扇等裝置, 將燃料電池情產生的水移出。然而,此種倾會增加成 本,且會造成整個元件的體積過大,而無法小型化。另外, 美國專利申5月案之早期公開號2004/0209154A1 (U.S. Pub. No. 2004/0209154A1)題目為,,pASSIVE water MANAGEMENT TECHNIQUES IN DIRECT METHANOL FULE CELLS,其内容揭露,在陰極外側配置具有微孔的 疏水材料層,使陰極的水在其間產生一背壓,接著利用質 子傳導膜兩側的壓力差,可將水滲透至陽極,使其可在燃 料電池内部循環應用。但是,此方式容易造成水阻塞在微 孔或是無法回收的問題。因此,此種方法的製作難度較高, 且甚至會造成空氣热法順利進入,進而使燃料電池的輸出 功率受到影響。 另一種關於燃料電池中的水管理為,日本專利w〇 M383209 9974:^ 年月 號公報所記載之燃料電池。此篇專利之内容 j =’.·,、料電池的陰極側設置有空氣室恤chambe小且 ^ m, M. m M(humidity-holding sheet) 〇 ^ ^ =禅Γ是抑制陰極側所產生的水產生蒸散:: ==媒層内的水分儲藏量增加。藉由滲透屋現象,可 成於陰極觸媒層的水移動至陽極觸媒層。 另外,日本補W0 2005/U2172A1號^所 將,體燃料氣化成分供應給觸縣之方式的燃料電池,1 燃料電池的陽極結構需要包括有燃料儲存槽、 枓乳化相及氣化燃·容”,以使液義料可氧、 化’而在陰極側則設置有-具有適當透濕伴 絲,但是此保濕層為-具有均句微小孔隙之保 貫際使料極易因水氣凝結而堵住保濕層上的孔隙 使得氣體無法進入,影響燃料電池輸出功率。 =上:知’水管理是燃料電池的重要關鍵技術,因 此已成為目剷業界極力發展的課題之一。 【新型内容】 本創作提供一種效能良好的平面型燃料電、也組 本創作提供-種平面型燃料電池組,其包括j薄膜電 極、组(membrane electrode assembly,MEA)、〜 、 5 ) '陰才虽多孔章 電層、-陽極多孔集電層、-阻氣材料層、〜外殼以及^ 匕-氣流職。陰極多孔集電層及陽極多孔集電^配置於 薄膜電極組的兩側。阻氣材料層配置於陰極笔二 、 ^ 夕孔集電層的 M383209 99. 4. 2mjf 1 ^W£i 側並具有至少一開孔以暴露陰極多孔集電層的一表 ,。=殼配置於賴電極组的—側,阻氣材料層配置於外 =及4膜電極組之間’且—氣體流道位於阻氣材料層及外 Λ又之間,另外,至少一氣流檔板配置於氣體流道之中。 “在^創作之一實施例中,薄膜電極組包括一質子傳導 、 膜陽检觸媒層’一陰極觸媒層、-陽極氣體擴散層以 及陰極氣體擴散層,其中陽極觸媒層以及陰極觸媒層分 # &配置於質子傳導膜的兩側且陽極氣體擴散層以及陰極 氣體擴散層分別配置於陽極觸媒層以及陰極觸媒層上。 在本創作之一實施例中,開孔的直徑為DI,而阻氣材 料層的厚度為T,且DI>2T。 在本創作之一實施例中,平面型燃料電池組更包括一 吸水性材料層配置於外殼上,其中吸水性材料層在外殼以 及阻氣材料層之間。 在本創作之一實施例中’平面型燃料電池組更包括一 風扇,用以產生一氣體流,其中此空氣從氣體流道的一氣 ® 體入口流至氣體流道的一氣體出口。 - 在本創作之一實施例中’外殼為一不透氣的殼體。 在本創作之一實施例中’氣流檔板配置於阻氣材料層 上並且朝向外殼延伸。 在本創作之一實施例中,氣流檔板配置於外殼上並且 朝向阻氣材料層延伸。 在本創作之一實施例中,阻氣材料層的開孔率介於0.5 %-21%之中。 7 M383209 师Γ4:2 I月曰 t 在本創作之一實施例中,阻氣材料層的材料包括一聚 $聚合物或一聚烯烴聚合物’其中聚酯聚合物例如為聚對 本二甲酸乙二醇酯(pET)或聚丙烯腈(pAN),且聚烯烴聚合 物例如為聚乙烯(PE)或聚丙烯(pp),或其他適於開孔製程 的氣體屏障材料。 在本創作之一實施例中,阻氣材料層的厚度介於1〇μιη 〜5mm之中。 隹♦在本創作之一實施例中,在阻氣材料層以及陰極多孔 集電層之間存在有一間隙,且此間隙小於1.5Cm。 層接^本創作之一實施例中,阻氣材料層與陰極多孔集電 ☆在本創作之一實施例中,平面型燃料電池組更包括一 疏水性多孔材料㈣置於陰極多⑽電層以及阻氣材料層 之間。疏水性多孔材料層的材質例如為聚四 ^ (PTFE)、聚两稀(pp)、或聚_風_)、或其他具有疏水性 材料塗佈於其表面及開孔的相關材料。在—實施例中,疏 水性多孔材料層係全面性覆蓋於陰極多孔集電層上。在其 他實施例中,疏水性多孔材料層位於陰極多孔^電層上了 且被阻氣材料層的開孔所暴露。 本 θ ’ 在本創作之-實施例中,質子傳導臈的材質例如為聚 合物膜。 在本創作之-實施例中,陽極觸媒層的材質例如為翻/ 釕的合金、鍍上歸Τ合金的碳質粒子麵上㈣碳質粒 子0 、 8 M383209A. New description: [New technical field] This creation is about a fuel cell structure, and it is related to a flat fuel cell assembly. [Prior Art] P is close to the progress of JL industry. Traditional energy sources such as coal, oil and natural gas have continued to increase. Due to the limited stock of natural energy, it is necessary to develop alternative energy sources to replace traditional H and fuel cells. It is an important and practical choice. Simply put, a fuel cell is basically a money-making device that converts chemical energy into energy using the inverse reaction of water electrolysis. In the case of a proton exchange membrane fuel t-cell, it is mainly composed of a membrane dectrode assembly (MEA) and a two-electrode plate. The thin film electrode set is a proton exchange membrance, an anode catalyst layer, a cathode catalyst layer, an anode gas diffusion layer (§1 〇111 矽, GDL), and a cathode gas diffusion layer. Composition. The anode catalyst layer and the cathode catalyst layer are disposed on both sides of the proton conducting membrane, and the anode gas diffusion layer and the cathode gas diffusion layer are respectively disposed on the anode catalyst layer and the cathode catalyst layer. Further, an electrode plate includes an anode and a cathode which are disposed on the anode gas diffusion layer and the cathode gas diffusion layer, respectively. The proton exchange membrane fuel cell commonly used in the industry is a Direct Methanol Fuel Cell (DMFC), which is a direct anode: ch3oh+h2o 4 c〇2+6H++6e-cathode: 3/202+6H+ +6e 4 3h2〇, the anode will consume 1 mole of water, the cathode will produce 3 moles of water, and the water produced by the reaction should be removed immediately, and on the surface of the layer, so The fuel cell is continuously reacted to generate an electric current. Regarding water management in fuel cells, various treatment methods have been proposed in the industry. For example, the US Patent Application No. 2G_G79398A1 is entitled "FUEL CELL", and its content reveals that it can additionally make devices such as pumps, heat sinks, and fans. The water produced by the fuel cell is removed. However, such a tilt increases the cost and causes the entire component to be too bulky to be miniaturized. In addition, U.S. Patent Application Publication No. 2004/0209154A1 (US Pub. No. 2004/0209154A1) is entitled, pASSIVE water MANAGEMENT TECHNIQUES IN DIRECT METHANOL FULE CELLS, the disclosure of which is disclosed in the outside of the cathode with micropores The hydrophobic material layer causes the cathode water to generate a back pressure therebetween, and then the pressure difference between the two sides of the proton conducting membrane can be used to permeate the water to the anode so that it can be recycled inside the fuel cell. However, this method is liable to cause water to clog in the micropores or to be unrecoverable. Therefore, the method is difficult to manufacture, and even the air thermal method can be smoothly entered, thereby affecting the output power of the fuel cell. Another type of water management in a fuel cell is a fuel cell described in Japanese Patent Publication No. M383209 9974: ^. The content of this patent is j = '.·, the cathode side of the battery is provided with an air chamber shirt chambe small and ^ m, M. m M (humidity-holding sheet) 〇 ^ ^ = Zen Γ is to suppress the cathode side The water produces evapotranspiration:: == The amount of water stored in the media layer increases. By the permeation phenomenon, water that can be formed in the cathode catalyst layer moves to the anode catalyst layer. In addition, Japan supplements W0 2005/U2172A1, which supplies fuel gasification components to the fuel cell of the method of Touch County. The anode structure of the fuel cell needs to include a fuel storage tank, an emulsion phase, and a gasification combustion capacity. "In order to make the liquid material oxygenable," and on the cathode side - there is a suitable moisture permeable wire, but the moisture layer is - with a uniform pore size, the material is easily condensed by moisture Blocking the pores on the moisturizing layer makes the gas inaccessible, affecting the output power of the fuel cell. = Top: Knowing that water management is an important key technology for fuel cells, it has become one of the most important topics in the industry. This creation provides a kind of flat-type fuel electric energy with good performance. It also provides a kind of flat fuel cell stack, which includes j membrane electrode assembly (MEA), ~, 5) The electric layer, the anode porous collector layer, the gas barrier material layer, the outer shell, and the 匕-air flow. The cathode porous collector layer and the anode porous collector are disposed on both sides of the membrane electrode group. The M383209 99. 4. 2mjf 1 ^W£i side of the cathode pen 2, the ^ hole collector layer has at least one opening to expose a surface of the cathode porous collector layer, and the shell is disposed in the Lai electrode group. The side, the gas barrier material layer is disposed between the outer and the 4 membrane electrode groups' and the gas flow channel is located between the gas barrier material layer and the outer gas layer, and at least one gas flow baffle is disposed in the gas flow channel In one embodiment, the thin film electrode assembly includes a proton conducting, a membrane positive sensing layer, a cathode catalytic layer, an anode gas diffusion layer, and a cathode gas diffusion layer, wherein the anode catalyst layer and The cathode catalyst layer is disposed on both sides of the proton conducting membrane, and the anode gas diffusion layer and the cathode gas diffusion layer are disposed on the anode catalyst layer and the cathode catalyst layer, respectively. In one embodiment of the present invention, the diameter of the opening is DI, and the thickness of the gas barrier material layer is T, and DI > 2T. In one embodiment of the present invention, the planar fuel cell stack further includes a layer of water absorbing material disposed on the outer casing, wherein the layer of water absorbing material is between the outer casing and the gas barrier material layer. In one embodiment of the present invention, the planar fuel cell stack further includes a fan for generating a gas stream, wherein the air flows from a gas inlet of the gas flow passage to a gas outlet of the gas flow passage. - In one embodiment of the present invention, the outer casing is an airtight casing. In one embodiment of the present invention, the airflow baffle is disposed on the gas barrier material layer and extends toward the outer casing. In one embodiment of the present invention, the airflow baffle is disposed on the outer casing and extends toward the layer of gas barrier material. In one embodiment of the present invention, the gas barrier material layer has an open cell ratio of between 0.5% and 21%. 7 M383209 师 4:2 I月曰t In one embodiment of the present invention, the material of the gas barrier material layer comprises a poly-polymer or a polyolefin polymer, wherein the polyester polymer is, for example, poly-p-dicarboxylic acid A glycol ester (pET) or a polyacrylonitrile (pAN), and the polyolefin polymer is, for example, polyethylene (PE) or polypropylene (pp), or other gas barrier material suitable for the open cell process. In one embodiment of the present invention, the thickness of the gas barrier material layer is between 1 〇 μηη and 5 mm. In one embodiment of the present invention, there is a gap between the gas barrier material layer and the cathode porous collector layer, and the gap is less than 1.5 cm. In one embodiment of the present invention, the gas barrier material layer and the cathode porous collector ☆ In one embodiment of the present invention, the planar fuel cell stack further comprises a hydrophobic porous material (4) placed on the cathode (10) electrical layer And between the layers of gas barrier material. The material of the hydrophobic porous material layer is, for example, polytetrazole (PTFE), polydiphenyl (pp), or poly-wind, or other related materials having a hydrophobic material applied to the surface and the opening. In an embodiment, the layer of hydrophobic porous material is entirely overlying the cathode porous collector layer. In other embodiments, the layer of hydrophobic porous material is on the cathode porous layer and is exposed by the openings of the gas barrier material layer. In the present invention, the material of the proton conducting iridium is, for example, a polymer film. In the present invention, the material of the anode catalyst layer is, for example, an alloy of turning/turning, a carbonaceous particle surface coated with a bismuth alloy (IV) carbonaceous particles 0, 8 M383209
在本創作之一實施例中,陰極觸媒層的材質例如是知 合金、鍍上鉑合金的碳質粒子或鍍上鉑的碳質粒子。 必須瞭解上面的概略描述以及下述的細節描述皆為典 型範例,且可由本創作之申請專利範圍得到更進一步的& 釋。 【實施方式】 圖1A為本創作一實施例之平面型燃料電池組的結攝 示意圖。參考圖1A,平面型燃料電池組1〇〇包括—薄膜曹 極組(MEA) 102,一陰極多孔集電層1〇4,一陽極多孔^ 電層106 ’ 一阻氣材料層1〇8 ’ 一外殼13〇以及至少一氣流 檔板140。如圖1A所示,外殼130配置於薄膜電極組1〇2 的一側,阻氣材料層108配置於外殼13〇以及薄膜電極組 102的之間,且氣體流道A位於阻氣材料層1〇8以及外殼 130之間。此外,氣流檔板14〇配置於氣體流道A中。外 殼130與阻氣材料層108之間的距離例如係介於〇.3mm至 3mm之間。 在本貫施例中,薄膜電極組1〇2包括一質子傳導膜 U0,一陽極觸媒層111,一陰極觸媒層113、一陽極氣體 擴散層(GDL) 112以及一陰極氣體擴散層114,其中陽 極觸媒層111及陰極觸媒層113分別配置於許傳導膜 11〇的兩側,且陽極氣體擴散層以及陰絲體擴散層 114分別配置於陽極觸媒層lu卩及陰極觸媒層113上。 上述之陽極觸媒層11 i的材質例如是钻/舒合金(驗㈠、外 =/釕=轉錄糾微减其 材料:陰極觸媒層113的材質例如是始合金 : 之f才餘/卜鍍仏碳材顺或其他合適讀料。質子 來當作傳輸β的電解質膜’質子傳導膜 110的材貝例如是高分子膜’其例如是使用美 (DuP〇nt)公司生產的Naflon膜(商品名)。。 陽極多孔集電層106配置於薄膜電極組1〇2之陽極氣 體擴散層112 -側。陽極多孔集電層ι〇6的材質例如是使 用導電材料,其例如是使用鈦(邛及其合金。陰極多孔集 電層1G4配置於薄膜電極組1G2之陰極氣體擴散層ιι4 一 側。在本創作-實施例巾,陰極多孔集電層綱的材質例 如是使用導電材料,其例如是鈦及其合金。 本實施例之平面型燃料電池組100還包括一阻氣材料 層108 ’其配置於陰極多孔集電層104上,且阻氣材料層 108與陰極多孔集電層104相接觸。阻氣材料層108的材 質包括-聚賴向分子或—輯鋪高分子。其中,聚脂 類高分子例如是聚對笨二曱酸乙二脂(p〇lyethylene terephthalate ’ PET)或聚丙烯氰(polyacrylonitrile,PAN), 聚烯烴類高分子例如是聚乙烯(pQly e% lene ,PE)、聚丙烯 (polypropylene ’ PP)或其他可作開孔加工之阻氣材料。阻 氣材,層的厚度例如是介於i 〇 μπι〜5麵之間。在本創作 之_ Λ施例中,阻氣材料層1〇8的厚度例如約為μπι。 阻氣材料層108 %作用是可控制反應後陰極觸媒層113所 產生的水的瘵發速率,使陰極觸媒層η3的水可經質子傳In one embodiment of the present invention, the material of the cathode catalyst layer is, for example, an alloy, a platinum alloy-plated carbonaceous particle or a platinum-plated carbonaceous particle. It is to be understood that the above general description and the following detailed description are exemplary of the invention and may be further & [Embodiment] Fig. 1A is a schematic diagram showing the junction of a planar fuel cell stack according to an embodiment of the invention. Referring to FIG. 1A, a planar fuel cell stack 1 includes a thin film corona electrode set (MEA) 102, a cathode porous collector layer 1〇4, an anode porous electric layer 106', and a gas barrier material layer 1〇8'. An outer casing 13A and at least one airflow baffle 140. As shown in FIG. 1A, the outer casing 130 is disposed on one side of the thin film electrode group 1〇2, the gas barrier material layer 108 is disposed between the outer casing 13〇 and the thin film electrode group 102, and the gas flow path A is located in the gas barrier material layer 1 Between the 〇8 and the outer casing 130. Further, the air flow baffle 14 is disposed in the gas flow path A. The distance between the outer casing 130 and the gas barrier material layer 108 is, for example, between 〇3 mm and 3 mm. In the present embodiment, the thin film electrode assembly 1〇2 includes a proton conducting membrane U0, an anode catalyst layer 111, a cathode catalyst layer 113, an anode gas diffusion layer (GDL) 112, and a cathode gas diffusion layer 114. The anode catalyst layer 111 and the cathode catalyst layer 113 are respectively disposed on both sides of the conductive film 11A, and the anode gas diffusion layer and the cathode body diffusion layer 114 are respectively disposed on the anode catalyst layer and the cathode catalyst. On layer 113. The material of the anode catalyst layer 11 i is, for example, a drill/shu alloy (test (1), outer = / 钌 = transcription correction, and the material of the cathode catalyst layer 113 is, for example, the first alloy: The rhodium-plated carbon material is cis or other suitable reading material. Protons are used as the electrolyte membrane for transporting β. The material of the proton conductive membrane 110 is, for example, a polymer membrane, which is, for example, a Naflon membrane produced by the company DuP〇nt. The anode porous collector layer 106 is disposed on the anode gas diffusion layer 112 side of the thin film electrode group 1 2 . The material of the anode porous collector layer ι 6 is, for example, a conductive material, which is, for example, titanium (邛 and its alloy. The cathode porous collector layer 1G4 is disposed on the cathode gas diffusion layer ιι4 side of the thin film electrode group 1G2. In the present invention, the material of the cathode porous collector layer is, for example, a conductive material, for example, Titanium and its alloys. The planar fuel cell stack 100 of the present embodiment further includes a gas barrier material layer 108' disposed on the cathode porous collector layer 104, and the gas barrier material layer 108 is opposite to the cathode porous collector layer 104. Contact. Material pack of gas barrier material layer 108 Including a poly-molecular molecule or a polymer, wherein the polyester polymer is, for example, p〇lyethylene terephthalate 'PET or polyacrylonitrile (PAN), The olefin polymer is, for example, polyethylene (pQly e% lene, PE), polypropylene (polypropylene 'PP) or other gas barrier material which can be used for opening processing. The gas barrier material has a thickness of, for example, i 〇μπι Between the five sides, in the present embodiment, the thickness of the gas barrier material layer 1 〇 8 is, for example, about μπι. The 108% function of the gas barrier material layer is controlled by the cathode catalyst layer 113 after the reaction. The rate of water bursting allows the water in the cathode catalyst layer η3 to pass through the proton
V膜lio擴散至陽極觸媒層in,而使陰極觸媒層I〗]的 水可提供給陽極觸媒層U1反應所使用。 阻氣材料層108中具有暴露出陰極多孔集電層1〇4表 面的至少一個開孔,在本實施例中是以繪示有多個開孔 116為例作說明。而且,在本創作之實施例中,並不對開 . 孔U6之形狀作特別的限定。由於,本創作之平面型燃料 電池組會在陰極觸媒層113進行反應而產生水,因此阻氣 •=料層108的開孔116的尺寸必須具有防止造成淹水的考 而經驗上要避免水造成開孔116堵塞,則開孔116的 最短孔徑必須大於阻氣材料層108厚度的兩倍。亦即是, 若開孔116為圓形開孔,則其直徑D][需大於阻氣材料層 Ι0δ厚度的兩倍。在本實施例中,開孔116的直徑DI約為 大於200 μηι;若開孔丨16為長方形開孔,則其短邊的長度 必須大於阻氣材料層1〇8厚度的兩倍,在本實施例中,開 孔116的短邊的長度約為大於2〇〇 μιη 〇 阻氣材料層108中之整體的開孔率介於0.5%〜21%之 隹間,在本創作之一實施例中,阻氣材料層1〇8的開孔率例如 • 約為5%左右。以下,將利用公式計算來詳細說明本創作之 阻氣材料層的開孔率之適當性。一般而言,當燃料電極組 產生1安培(Α)電流時’陰極觸媒層需要3.5毫升/分鐘 (ml/min)的氧氣(〇2)參與反應,亦即是,大約需要17.4 ml/mm的空氣量,實際應用上則至少必須將此氣體量增加 1.1〜4倍左右,以確保足夠的氧氣進入陰極觸媒層。阻氣 材料層所具備的透氣程度可以用下面之擴散公式(1)來估 M383209The V film lio diffuses to the anode catalyst layer in, and the water of the cathode catalyst layer I] is supplied to the anode catalyst layer U1 for use in the reaction. The gas barrier material layer 108 has at least one opening exposing the surface of the cathode porous collector layer 1-4, and in the embodiment, a plurality of openings 116 are illustrated as an example. Further, in the embodiment of the present invention, the shape of the hole U6 is not particularly limited. Since the planar fuel cell stack of the present invention reacts in the cathode catalyst layer 113 to generate water, the size of the opening 116 of the gas barrier layer must be prevented from being flooded and empirically avoided. The water causes the opening 116 to become clogged, and the shortest aperture of the opening 116 must be greater than twice the thickness of the gas barrier material layer 108. That is, if the opening 116 is a circular opening, the diameter D] [is required to be greater than twice the thickness of the gas barrier material layer Ι0δ. In this embodiment, the diameter DI of the opening 116 is greater than about 200 μm; if the opening 16 is a rectangular opening, the length of the short side must be greater than twice the thickness of the gas barrier layer 1〇8. In an embodiment, the length of the short side of the opening 116 is greater than about 2 μm η. The overall opening ratio of the gas barrier material layer 108 is between 0.5% and 21%, in one embodiment of the present invention. The opening ratio of the gas barrier material layer 1〇8 is, for example, about 5%. Hereinafter, the formula calculation will be used to explain in detail the appropriateness of the opening ratio of the gas barrier material layer of the present invention. In general, when the fuel electrode group generates 1 ampere (Α) current, the cathode catalyst layer requires 3.5 ml/min (ml/min) of oxygen (〇2) to participate in the reaction, that is, approximately 17.4 ml/mm is required. The amount of air, in practical applications, must at least increase the amount of this gas by about 1.1 to 4 times to ensure that sufficient oxygen enters the cathode catalyst layer. The gas permeability of the gas barrier material layer can be estimated by the following diffusion formula (1).
-nru· ⑴,-nru· (1),
Ay 其中,z為單位面積產生之電流量,單a 2 為莫耳(_e)數,在陰極觸媒層的反早位為(A/Cm广« 於4莫耳的電子,因此禮為4每料=耳^^ * ^ 96500 c〇ul/mole ; ί (Ay where z is the amount of current produced per unit area, single a 2 is the number of moles (_e), and the reverse position of the cathode catalyst layer is (A/Cm wide « 4 m of electrons, so the ceremony is 4 Every material = ear ^^ * ^ 96500 c〇ul/mole ; ί (
係數約為〇.2〜o域;二在二中差氧氣„= 3、 句,辰度差,早位為 8.6Χ1(^ι在氣壓常溫的環境* ’ 1立方公分約有 . 、的氧氣,办為擴散路徑長度,單位為公分。 以阻氣材料層厚度為邊2公分,阻氣材料層關孔率為 1/。為=,則以方程式⑴所計算出的電流值z•為66〇 mA/cm,此值尚必須除以u〜4,而其已㈣供應許多情 況所需之發電量。The coefficient is about 〇.2~o domain; the second is the difference between the two oxygens „= 3, the sentence, the difference between the Chen, the early position is 8.6Χ1 (^ι in the atmosphere at room temperature * 1 cubic centimeter is about. The length of the diffusion path is in centimeters. The thickness of the gas barrier material layer is 2 cm, and the gas barrier material layer is 1%. For =, the current value calculated by equation (1) is 66. 〇 mA / cm, this value must be divided by u ~ 4, and it has (4) the amount of power required to supply many conditions.
刖述之外殼130例如為一不透氣之殼體。值得注意的 疋外λ又130可為一電子裝置的一外殼(〇uter h〇using), 或者疋組裝於一外殼内之内殼(inner housing )。此外, 氣體流道A的一氣體入口 A1及一氣體出口 A2係由外殼 130所界定。如圖1A所示,除了氣體入口 A1及氣體出口 A2之外,本實施例不需再於外殼13〇上設計以能夠讓水蒸 發為目的孔洞。在本實施例中,平面型燃料電池組1〇〇更 包括一風扇150以產生一氣體流(如虛線所示),其中氣 體係從氣體流道A的氣體入口 A1流至氣體流道A的氣體 12 M383209 99Γ4Γ 年月The outer casing 130 is, for example, an airtight casing. It is worth noting that the external λ 130 can be an outer casing of an electronic device or an inner housing assembled in a casing. Further, a gas inlet A1 and a gas outlet A2 of the gas flow path A are defined by the outer casing 130. As shown in Fig. 1A, in addition to the gas inlet A1 and the gas outlet A2, the present embodiment does not need to be designed on the outer casing 13 to allow water to evaporate as a target hole. In the present embodiment, the planar fuel cell stack 1 further includes a fan 150 to generate a gas flow (as indicated by a broken line), wherein the gas system flows from the gas inlet A1 of the gas flow channel A to the gas flow channel A. Gas 12 M383209 99Γ4Γ Year
出口 A2〇承上述,即使外殼130被物體所遮擋住,仍能藉 由風扇150提供充足的氧氣於氣體流道a中,以使平面型 燃料電池組100的操作不受影響。值得注意的是,由控制 風扇150所產生的氣體流可用以活化陰極觸媒層ι13,即 所謂空氣耗盡程序(Air starvation)。The outlet A2 bears the above, and even if the outer casing 130 is blocked by the object, the fan 150 can supply sufficient oxygen in the gas flow path a to prevent the operation of the flat type fuel cell stack 100 from being affected. It is worth noting that the gas flow generated by the control fan 150 can be used to activate the cathode catalyst layer ι13, the so-called Air Starvation.
在本實施例中’平面型燃料電池組1 〇〇可進一步包括 一吸水材料層160配置於外殼130的内表面上。換言之, 吸水材料層160位於外殼130與阻氣材料層108之間吸 水材料層160有助於防止水分累積。在一實施例中,吸水 材料層160為一厚度約為1〇〇微米的親水性材料層,而吸 水材料層160例如是全面性覆蓋於外殼130的内表面或是 部分覆蓋於外殼130的内表面。此外,吸水材料層160可 包括多個細條紋的圖案(未繪示)。In the present embodiment, the 'planar fuel cell stack 1' may further include a water absorbing material layer 160 disposed on the inner surface of the outer casing 130. In other words, the water absorbing material layer 160 is located between the outer casing 130 and the gas barrier material layer 108 to help prevent moisture accumulation. In one embodiment, the water absorbing material layer 160 is a hydrophilic material layer having a thickness of about 1 〇〇 micrometer, and the water absorbing material layer 160 is, for example, entirely covering the inner surface of the outer casing 130 or partially covering the outer casing 130. surface. Further, the water absorbing material layer 160 may include a plurality of fine stripe patterns (not shown).
如圖1A所示,圖中所示之多個氣流檔板14〇以及氣 流檔板140係配置於阻氣材料層108上,並且朝向外殼13〇 延伸。配置於阻氣材料層108上的氣流檔板14〇之分佈型 fe與數量可視設計的霈求而作適當的更動。在一較佳的實 施例中’氣流檔板140係配置於氣體出口 A2旁,以期更 有效地將空氣傳導至陰極多孔集電層1〇4中。 圖1B為本創作另一實施例之平面型燃料電池組的結 構示意圖。參考圖1B,本實施例的平面型燃料電池組1〇〇a 與上述實施例的平面型燃料電池組1〇〇類似,惟二者主要 差異之處在於:氣流檔板140係配置於外殼130上,並且 朝向阻氣材料層108延伸。由圖ία與圖1B可知,在一實 M383209 曰翻丨 py. 4. 2 年月 施例中,部分的氣流檔板140係配置於外殼i3〇上,並且 朝向阻氣材料層1〇8延伸,而其他的氣流檔板14〇則配置 於随氣材料層108上,並且朝向外殼13〇延伸。 請參考圖2,其繪示為另一實施例所繪示之平面型燃 料電池組的結構示意圖。如圖2所示,本實施例之平面型 火’二料书池組1〇〇’與上述實施例之平面型燃料電池組類 t,惟二者之主要差異在於:平面型燃料電池組 100’之阻 氣材料層108,配置於陰極多孔集電層1〇4上,且阻氣材料 層108’中具有多個開孔116,,以暴露出陰極多孔集電層 之表面。此外,在阻氣材料層1〇8,與陰極多孔集電層 1〇4之間存在一間隙d。,且此間隙d例如是小於15公分曰。 本創作之平面型燃料電池組僅需於陰極多孔集電層上 =具有開孔的阻氣材料層,而且阻氣材料層之開孔率在 厂適當範圍内,因此陰極觸媒層能夠得以減少水分蒸發, 極觸媒層到陽極觸媒層的濃度梯度差異,造成 水分向陽極觸媒層方向擴散’達到使陰極觸 媒層的水喊至陽_縣再使用的目的,目 較為簡單,且整個燃料電池的 、 劣料以2 + 的件較少,所以可節 之:t ,本創作不需更改現行燃料電池十 行陰極觸^且::^即可以簡單且有效的方式來進 於本創作之平面型燃料電池組可使 农才觸媒層的水回收至%極觸媒層再使用 古 濃度的燃料來進行反庫,如μ 口此可使用同 丁應如此一來可提高燃料的能量轉換 14 M383209 • 年月曰解8 • L 補充ί 效率 ο 接著,將以圖1Α之平面型燃料電池組1〇〇為例子, 詳細說明平面型燃料電池組之陰極觸媒層的水回收方法。 繼續參考圖1Α,將燃料導入陽極多孔集電層1〇6中, 在此實施例甲,是使用甲醇(Me〇H>]c溶液當作燃料。當 然,本創作之平面型燃料電池組的燃料還例如是使用乙 . 醇、丙醇或其他適合之燃料。另外,空氣由阻氣材料層1〇8 • #開孔116進入’經過陰極多孔集電層1〇4與陰極氣體擴 散層Π4,而傳遞至陰極觸媒層113。經由陽極觸媒層ui 的作用可使得甲醇水溶液反應產生質子(H+)、電子(e_)與二 氧化碳(c〇2)。上述所產生之質子會經由質子傳導膜11〇 至陰極觸媒層113側,電子則經由外電路到達陰極觸媒層 側,且經由陰極觸媒層113的作用可與空氣所提供的 氧形成水(H2〇)。當陰極觸媒層113反應生成水之後,阻氣 才才料層108可控制累積在陰極觸媒層113側的水的蒸發速 . 率,進行形成質子傳導膜110左右兩邊的水的濃度差:使 陰極觸媒層側的水擴散至陽極解媒層ηι側,達到回 水目標。 ' ' ^更詳細而言,請參照圖3,其繪示本創作之平面型燃 料包池組之陰極觸媒層側所產生的水的蒸發機制。圖3中 僅繪不出阻氣材料層,而省略繪示出平面型燃料電池組的 2他構件。如圖3所示,在不同位置產生之水蒸氣,其蒸 發路,會不同。陰極觸媒層反應所生成的一部份水蒸氣’、,、、 會沿著蒸發路徑118、120穿過阻氣材料層122的開孔124 年月 墓it大氣巾。另外,如蒸發路徑128所示,其餘的水 被阻氣材料層122所哺。由此可知,本創作之 燃料電池组的阻氣材料層可用崎低整體的水蒸氣 ?,、、t速率,以提高濕度進而達到回水的目的。 P且疔明再人麥照圖3 ’依蒸發路徑118、120、128可明瞭, =料層122的開孔124的周圍區域126是一相對較乾 =區域。亦即是,開孔124的周圍區域126的濕度會較 ς餘#的阻氣材料層122的濕度低。因此,為了更佳提 :。尺效果,在本創作之平面型燃料電池組中還可配置有 < 夕孔材料層。以下,特舉出多個實施例以詳細說明。 、,叫參照圖4,其為依照本創作之又一實施例所繪示之 平面型燃料電池組的結構示意圖。如圖4所示,本實施例 ^平面型燃料電池組2〇〇與圖ιΑ之平面型燃料電池組1〇〇 颁似准一者之主要差異在於:平面型燃料電池組2〇〇還 包括有疏水性多孔材料層202。疏水性多孔材料層2〇2配 置在陰極多孔集電層1〇4與阻氣材料層1〇8之間,且全面 復蓋在陰極多孔集電層1〇4上。疏水性多孔材料層2〇2的 材貝例如疋 t 四氟乙烯(p〇lytetra£|u〇r〇ethyiene,ptfe)、聚 丙烯(polypropylene ’ PP)、聚越硬(p〇iyestersu比〇ne,pEs) 或是表面與孔洞披覆有疏水處理的相關材質。疏水性多孔 材料層202的厚度例如約為5〇μιη〜2mm。因為,此疏水 性多孔材料層202具有可保持水蒸氣的功能,所以可使阻 氣材料層108之開孔1丨6正下方及周圍區域的蒸發速率降 低。換言之,在阻氣材料層108之開孔116周圍區域就不 16As shown in Fig. 1A, a plurality of air baffles 14A and air baffles 140 are shown disposed on the gas barrier material layer 108 and extend toward the outer casing 13A. The distribution pattern of the airflow baffle 14 disposed on the gas barrier material layer 108 and the number of visual design requirements are appropriately changed. In a preferred embodiment, the airflow baffle 140 is disposed adjacent to the gas outlet A2 to more efficiently conduct air into the cathode porous collector layer 1〇4. Fig. 1B is a schematic view showing the structure of a planar fuel cell stack according to another embodiment of the present invention. Referring to FIG. 1B, the planar fuel cell stack 1A of the present embodiment is similar to the planar fuel cell stack 1A of the above embodiment, but the main difference is that the airflow baffle 140 is disposed on the outer casing 130. Up and extending toward the gas barrier material layer 108. It can be seen from FIG. 1A and FIG. 1B that in a real M383209 曰 丨 py. 4. 2 ー embodiment, part of the airflow baffle 140 is disposed on the casing i3 , and extends toward the gas barrier material layer 1 〇 8 The other air baffles 14 are disposed on the gas material layer 108 and extend toward the outer casing 13A. Please refer to FIG. 2, which is a schematic structural view of a planar fuel cell stack according to another embodiment. As shown in FIG. 2, the planar type of fire material of the present embodiment is the same as that of the above-described embodiment of the planar fuel cell stack t, but the main difference is that the planar fuel cell stack 100 The gas barrier material layer 108 is disposed on the cathode porous collector layer 1〇4, and the gas barrier material layer 108' has a plurality of openings 116 therein to expose the surface of the cathode porous collector layer. Further, a gap d exists between the gas barrier material layer 1〇8 and the cathode porous collector layer 1〇4. And the gap d is, for example, less than 15 cm. The planar fuel cell stack of the present invention only needs to be on the cathode porous collector layer = the gas barrier material layer having the opening, and the opening ratio of the gas barrier material layer is within the proper range of the factory, so the cathode catalyst layer can be reduced. The evaporation of water, the difference in the concentration gradient between the polar catalyst layer and the anode catalyst layer, causes the water to diffuse toward the anode catalyst layer, so that the water of the cathode catalyst layer is shouted to the yang county for reuse, and the purpose is simple, and The entire fuel cell has less than 2 + parts, so it can be saved: t, this creation does not need to change the current fuel cell ten-line cathodic contact ^ and :: ^ can be entered in this simple and effective way The created flat fuel cell stack can recover the water from the agricultural catalyst layer to the % polar catalyst layer and then use the ancient concentration of fuel to carry out the anti-banking. For example, the μ port can be used to improve the fuel. Energy Conversion 14 M383209 • Year Month Solution 8 • L Supplement ί Efficiency ο Next, the water recovery method of the cathode catalyst layer of the planar fuel cell stack will be described in detail by taking the planar fuel cell stack 1 of FIG. 1 as an example. . With continued reference to Fig. 1A, the fuel is introduced into the anode porous collector layer 1〇6. In this embodiment, a solution of methanol (Me〇H>]c is used as a fuel. Of course, the planar fuel cell stack of the present invention The fuel is also, for example, a B. alcohol, a propanol or other suitable fuel. In addition, the air is passed through the gas barrier material layer 1〇8 • #孔孔116 into the 'passing through the cathode porous collector layer 1〇4 and the cathode gas diffusion layerΠ4 And passing to the cathode catalyst layer 113. The action of the anode catalyst layer ui allows the aqueous methanol solution to react to generate protons (H+), electrons (e_) and carbon dioxide (c〇2). The protons generated above are transmitted via protons. The film 11 is on the side of the cathode catalyst layer 113, and the electrons reach the side of the cathode catalyst layer via the external circuit, and the water (H2〇) can be formed with the oxygen supplied from the air via the action of the cathode catalyst layer 113. When the cathode catalyst After the layer 113 reacts to form water, the gas barrier layer 108 can control the rate of evaporation of water accumulated on the side of the cathode catalyst layer 113, and the concentration difference of water on the left and right sides of the proton conductive membrane 110 is formed: the cathode catalyst is made. The water on the layer side diffuses to the side of the anode degassing layer ηι , to reach the return water target. ' ' ^ In more detail, please refer to Figure 3, which shows the evaporation mechanism of water generated on the cathode catalyst layer side of the planar fuel cell stack of the present invention. The gas barrier material layer is not shown, and the other components of the planar fuel cell stack are omitted. As shown in Fig. 3, the water vapor generated at different positions may have different evaporation paths. The cathode catalyst layer reaction is generated. A portion of the water vapor ',,, will pass through the opening 124 of the gas barrier material layer 122 along the evaporation path 118, 120. The other portion of the water is shown as the evaporation path 128. The gas barrier material layer 122 is fed. It can be seen that the gas barrier material layer of the fuel cell stack of the present invention can be used to lower the overall water vapor, and the t-rate to increase the humidity and thereby achieve the purpose of returning water. According to the evaporation path 118, 120, 128, the surrounding area 126 of the opening 124 of the material layer 122 is a relatively dry = area. That is, the surrounding area 126 of the opening 124 The humidity of the gas barrier material layer 122 is lower than that of the gas barrier material layer 122. Therefore, in order to better mention The ruler effect may be arranged in the planar fuel cell stack of the present invention. The layer of the layer material may be disposed in detail. Hereinafter, a plurality of embodiments will be described in detail, and reference is made to FIG. 4, which is in accordance with the present invention. A schematic structural view of a planar fuel cell stack according to another embodiment of the present invention. As shown in FIG. 4, the planar fuel cell stack 2 of the present embodiment and the planar fuel cell stack 1 of FIG. The main difference is that the planar fuel cell stack 2 also includes a hydrophobic porous material layer 202. The hydrophobic porous material layer 2〇2 is disposed on the cathode porous collector layer 1〇4 and the gas barrier material layer. Between 1 and 8, and fully covered on the cathode porous collector layer 1〇4. The hydrophobic porous material layer 2〇2 of the material such as 疋t tetrafluoroethylene (p〇lytetra£|u〇r〇ethyiene, ptfe), polypropylene (polypropylene 'PP), poly (harder) (p〇iyestersu than 〇ne , pEs) or related materials with surfaces and holes covered with hydrophobic treatment. The thickness of the hydrophobic porous material layer 202 is, for example, about 5 μm to 2 mm. Since the hydrophobic porous material layer 202 has a function of retaining water vapor, the evaporation rate of the gas barrier material layer 108 directly under the opening 1 丨 6 and the surrounding area can be lowered. In other words, the area around the opening 116 of the gas barrier material layer 108 is not 16
^存在有相對乾燥區域,而阻氣材料層108上會存在有極 向且均勾的濕度,如此一來可使回水效果更佳提高且穩定。 、,請參照圖5,其為依照本創作之又一實施例所繪示之 平面型燃料電池組的結構示意圖。如圖5所示,本實施例 之平面型燃料電池組200,與圖1A之平面型燃料電池組 類似,惟二者之主要差異在於:平面型燃料電池組200, 逛包括有疏水性多孔材料層202,。疏水性多孔材料層2〇2, • 配置在陰極多孔集電層1〇4與阻氣材料層1〇8之間,且位 於阻氣材料層104之開孔116所暴露出之陰極多孔集電層 108上。疏水性多孔材料層202’的材質例如是聚四氟乙烯 (polytetraflu⑽ethylene,pTFE)、聚丙埽(p〇lypr㈣⑽, PP)、聚醚砜(p〇iyestersulfone,PES)或是表面與孔洞披覆 有疏水處理的相關材質。疏水性多孔材料層202,的厚度例 如約為50 μηι〜2麵。此疏水性多孔材料層2〇2,不僅可降 低阻氣材料層1〇8之開孔116正下方及周圍區域的蒸發速 藝率,以提高回水效果。而且,疏水性多孔材料層2〇2,還可 使阻氣材料層1〇8下方之水*氣橫向擴散’如此同樣有助 於使阻氣材料層108上會存在有極高且均勻的濕度。 另外,本創作之實際測試資料,可如表一所二。表一 ^包括比較例1〜2以及實驗例i〜7的測試結果,其中比 較例1〜2是以平面型燃料電池組並無配置阻氣材料層所 做之測試,而實驗例卜2、3〜4、5〜6是以平面型焊料電 ,分別配置厚度為⑽μΓη ' μπι、 _的阻氣材 料層所做之測試。實驗例7則是平面型燃料電池组配置厚 17 M383209 年月日, 箭无There is a relatively dry area, and there is a polar and uniform humidity on the gas barrier material layer 108, so that the water return effect is better and more stable. Referring to FIG. 5, it is a schematic structural view of a planar fuel cell stack according to another embodiment of the present invention. As shown in FIG. 5, the planar fuel cell stack 200 of the present embodiment is similar to the planar fuel cell stack of FIG. 1A, but the main difference between the two is that the planar fuel cell stack 200 includes a hydrophobic porous material. Layer 202,. The hydrophobic porous material layer 2〇2, • is disposed between the cathode porous collector layer 1〇4 and the gas barrier material layer 1〇8, and is located at the cathode porous collection exposed by the opening 116 of the gas barrier material layer 104. On layer 108. The material of the hydrophobic porous material layer 202' is, for example, polytetrafluoro(10)ethylene (pTFE), polypropylene (p〇lypr (4) (10), PP), polyethersulfone (PES) or surface and pore coated with hydrophobic The relevant material to be processed. The thickness of the hydrophobic porous material layer 202 is, for example, about 50 μηι 〜2 faces. The hydrophobic porous material layer 2〇2 not only reduces the evaporation rate immediately below the opening 116 of the gas barrier material layer 1 and the surrounding area, but also improves the water returning effect. Moreover, the hydrophobic porous material layer 2〇2, and the lateral diffusion of water* under the gas barrier material layer 1〇8, also contributes to the presence of extremely high and uniform humidity on the gas barrier material layer 108. . In addition, the actual test data of this creation can be as shown in Table 1. Table 1 includes the test results of Comparative Examples 1 to 2 and Experimental Examples i to 7, wherein Comparative Examples 1 to 2 are tests in which a planar fuel cell stack is not provided with a gas barrier material layer, and Experimental Example 2 3 to 4 and 5 to 6 are tests in which a gas barrier material layer having a thickness of (10) μΓη 'μπι, _ is disposed in a planar solder. Experimental example 7 is a flat fuel cell stack configuration thickness 17 M383209 year, month, no arrow
度100 μιη的阻氣材料層與5〇〇 μπι的疏水性多孔 做之測試。 曰η 志一 陡氣材料層厚 度 (μπι) 阻氣材料層 開孔率 燃料濃度 (vol.%) 實際陽極水消耗 量/理論陽極水 消耗量 比較例1 無 100% 3 2.13 --— 比較例2 _ 無 100% 10 12.41 — 實驗例1 _ 100 3% 10 -0.25 實驗例2 _ 100 4% 8.5 -0.02 — 實驗例3 200 、— 21% 10 -2.56 — 實驗例4 、200 11% 10 -2.97 --S 實驗例5 _ 400 21% 10 -2.74 實驗例6 400 ~~— 11% 10 -3.14 實驗例7 ΙΟΟμιη 阻氣材料層 +500μιη 堍水性多孔材料 、層 5% 10 -6.28 —J A例1〜2的測试結果可知,無配置阻氣材料層 =、’面型燃料電池組沒有辦法達到陰極回水的功效。由實 ^例1的測試結果可知,阻氣材料層的厚度為100 μιη、開 孔率為3%,實際陽極水消耗量/理論陽極水消耗量為 〇·25,其表示從陰極回水的水量大於陽極消耗的水量,亦 即疋可達到陰極回水的功效。由此可知,本創作之平面型 18 V·/»A 100 μιη gas barrier material layer and a 5 μ μm hydrophobic porous layer were tested.曰η Zhiyi steep gas material layer thickness (μπι) gas barrier material layer open cell ratio fuel concentration (vol.%) actual anode water consumption / theoretical anode water consumption comparison example 1 no 100% 3 2.13 --- comparative example 2 _ none 100% 10 12.41 - Experimental Example 1 _ 100 3% 10 - 0.25 Experimental Example 2 _ 100 4% 8.5 - 0.02 - Experimental Example 3 200, - 21% 10 - 2.56 - Experimental Example 4, 200 11% 10 - 2.97 --S Experimental Example 5 _ 400 21% 10 -2.74 Experimental Example 6 400 ~~- 11% 10 -3.14 Experimental Example 7 ΙΟΟμιη Gas barrier material layer +500μιη Hydrophobic porous material, layer 5% 10 -6.28 - JA case The test results of 1 to 2 show that there is no configuration of gas barrier material layer =, 'face type fuel cell group has no way to achieve the effect of cathode backwater. From the test results of Example 1, the thickness of the gas barrier material layer is 100 μm, the opening ratio is 3%, and the actual anode water consumption/theoretical anode water consumption is 〇·25, which means that the water is returned from the cathode. The amount of water is greater than the amount of water consumed by the anode, that is, the effect of the cathode backwater can be achieved. It can be seen that the flat type of this creation is 18 V·/»
.__補充I 燃料電池組確實可回收驗極觸媒層的水再利用。 料声的 ==Γ3'4與實驗例5、6可知,在阻氣材 =====效果越佳。此 阻氣材料層的,,則陰極回水效:::果可以知運, 在阻氘材卜料上二驗例1、2與實驗例7之比較,可以知道 佳的i極回再加上疏水性多孔材料層,可以得到更 辦料結果可知阻氣材料層的厚度、開孔率和 燃枓辰度皆會影響陰極 干π 料層的厚度愈厚、開孔率^的^养° H,阻氣材 險搞Υι,丨M k八坤1孔羊愈小,均會使得水蒸發量愈少, 二有利於r 2、T度就愈南’而陽極側的燃料濃度愈高,則 心有利於形成水從陰極擴 夠適當的搭配這_件的/辰度梯度。因此若能 以洁到祕心件本創作之平面型燃料電池組可 〜圖媒層的水时至陽極觸媒層使用的目的。 圖。討考圖面燃料電池組的結構示意 述圖4中的平而剂ί 平面型燃料電池組200,與上 之處在於.太^燃料電池組類似,惟三者主要差異 詳電池組細,沒有使用氣 —嗑眩+心 本只鈿例之平面型燃料電池組200,包括 —陰極多孔集電層⑽、一陽極多孔集 :以及二F且氣㈣層雨、—外殼130、—吸水材料層 以月陪瑞夕以產生氣流的風扇150。陰極多孔集電層104 *夕孔集電層106係配置於薄膜電極組1Q2的兩 M383209 年月日@-28.__Supplement I The fuel cell stack does recover the water reuse of the polar catalyst layer. The sound of the ==Γ3'4 and the experimental examples 5 and 6 show that the effect of the gas barrier material ===== is better. The layer of gas barrier material, the cathode back water effect::: fruit can be known, in the resistance of the material, the second test case 1, 2 and the experimental example 7, can know the good i pole back The upper layer of the hydrophobic porous material can be obtained. It can be seen that the thickness of the gas barrier material layer, the opening ratio and the burning degree all affect the thickness of the cathode dry π layer, and the opening ratio is improved. H, the gas barrier material is Υι, 丨M k 八坤 1 hole sheep is smaller, both will make the water evaporation less, the second is good for r 2, T degree is more south' and the anode side fuel concentration is higher, The heart is then conducive to the formation of water from the cathode to expand the proper matching of the / length gradient. Therefore, if it is possible to clean the secret type of the fuel cell, the planar fuel cell stack can be used for the purpose of using the water layer of the dielectric layer to the anode catalyst layer. Figure. The structure of the fuel cell stack is shown in Fig. 4. The flat fuel cell stack 200 in Fig. 4 is similar to the fuel cell stack in the above, but the main difference is that the battery pack is fine. A gas fuel cell stack 200 using gas-dizzing + heart-only embodiment, including a cathode porous collector layer (10), an anode porous layer: and a second F and gas (four) layer rain, an outer casing 130, a water absorbing material layer A fan 150 that produces a gas flow in a month. Cathode porous collector layer 104 * Xikong collector layer 106 is disposed on the film electrode group 1Q2 two M383209 months @-28
補无I 側。阻氣材料層108配置於陰極多孔集電層1〇4的一側, 並且具有至少一開孔116。具體而言,阻氣材料層1〇8配 置於疏水性多孔材料層202的表面上,且疏水性多孔材料 層202的表面被開孔116所暴露。外殼13〇配置於薄膜電 極組102的一側,阻氣材料層1〇8配置於外殼13〇與薄膜 電極組102之間,且氣體流道A位於阻氣材料層1〇8以及 外冗又130之間。吸水材料層16〇配置於外殼13〇上,盆中 吸水材料層160介於外殼130以及阻氣材料層ι〇8之^。 空氣從氣體流道A的氣體入口 A1流入氣體流道a中,並 從氣體出口 A2排出。 圖7A及圖7B為圖6之平面型燃料電池組的立體示意 圖。请參考圖7A及圖7B,在平面型燃料電池組2〇〇,經過 長時間運作之後,在陰極觸媒層113的表面上會形成氧化 物’因此’為了確保平面型燃料電池組2〇〇,之效能,平面 型燃料電池組200’需要被活化。當陰極觸媒層U3的表面 上產生氧化物時,陰極觸媒層113的活性即減少,且平面 型燃料電池组200的效能亦隨之降低。為了活化平面型燃 料電池組,本領域具有通常知識者可停止供應空氣至陰 極,如此,燃料便會跨過薄膜電極組1〇2以使達到'陰極被 還原。在本實施例中,平面型燃料電池組2〇〇,的活化可僅 藉由關閉風扇150之動作來達成,不需要 A2。在此情況下,本實_-_足驗的 於圖7A與圖7B )。 當關閉風扇150時’氣體流道A中的氧氣會漸漸被消 20 耗。假如距離X夠長,從氣體出口 A2擴散進氣體流道中的 氡氣含量便會不足,此時,平面型燃料電池組200,可順利 進行活化之程序。氣體流道的氧氣量可經由下述的擴散公 式(2)估算:Fill the I side. The gas barrier material layer 108 is disposed on one side of the cathode porous collector layer 1〇4 and has at least one opening 116. Specifically, the gas barrier material layer 1〇8 is disposed on the surface of the hydrophobic porous material layer 202, and the surface of the hydrophobic porous material layer 202 is exposed by the opening 116. The outer casing 13〇 is disposed on one side of the thin film electrode assembly 102, the gas barrier material layer 1〇8 is disposed between the outer casing 13〇 and the thin film electrode group 102, and the gas flow channel A is located at the gas barrier material layer 1〇8 and is redundant. Between 130. The water absorbing material layer 16 is disposed on the outer casing 13A, and the water absorbing material layer 160 in the basin is interposed between the outer casing 130 and the gas barrier material layer ι8. Air flows into the gas flow path a from the gas inlet A1 of the gas flow path A, and is discharged from the gas outlet A2. 7A and 7B are perspective views of the planar type fuel cell stack of Fig. 6. Referring to FIG. 7A and FIG. 7B, in the planar fuel cell stack 2, after a long period of operation, an oxide is formed on the surface of the cathode catalyst layer 113. Therefore, in order to secure the planar fuel cell stack 2 The effectiveness of the planar fuel cell stack 200' needs to be activated. When an oxide is generated on the surface of the cathode catalyst layer U3, the activity of the cathode catalyst layer 113 is reduced, and the efficiency of the planar fuel cell stack 200 is also lowered. In order to activate a planar fuel cell stack, one of ordinary skill in the art can stop supplying air to the cathode so that the fuel crosses the membrane electrode assembly 1〇2 so that the cathode is reduced. In the present embodiment, the activation of the planar fuel cell stack 2 can be achieved only by the action of turning off the fan 150, and A2 is not required. In this case, the actual _-_ is fully tested in Figures 7A and 7B). When the fan 150 is turned off, the oxygen in the gas flow path A is gradually depleted. If the distance X is long enough, the amount of helium gas diffused into the gas flow path from the gas outlet A2 will be insufficient. At this time, the planar fuel cell stack 200 can be smoothly activated. The amount of oxygen in the gas flow path can be estimated by the following diffusion formula (2):
J = -D~A ^ (2), 其中’ J表不擴散至氣體流道的氧氣量,其單位為 mole/s ’ D表示擴散係數,其單位為cm2/s,且一般來說, 在空氣中的氧氣擴散係數約〇.2-0.3cm2/s,Ac表示濃度差, 其單位為mole/cm3,且在一大氣壓的正常溫度的環境下, 在一立方公分下約有8.6xl〇-6mole的氧,表示擴散路徑 的距離,其單位為公分’且A表示氣體出口的截面積。 舉例而言,當平面型燃料電池組2〇〇,正常操作時,橫 跨薄膜電極組1〇2的燃料量通常大於5[xm〇b/cm2/min,且 所需的含氧量需要大於7.5fxmole/cm2/min。本實施例中’ 饭设A為8.6xl〇_6m〇le/cm3,薄膜電極組的面積與a/也 ^間的關係纷示於圖8。具體而言’在圖8中說明的薄膜 電極組的面積與A/办的比例約〇〇73。似导注意的是氣體 出口 =任何形狀,且氣體出口的數量可為—個或是多個。 μ的為形薄膜電極組,且氣體出口 可誇得上寻於方形賴電極組iQ2的長度時,吾人 9。又.叶、电極組的面積與d/zbc之間的關係,其繪示於圖 练上所述,本創作至少具有下述優點之一。 99. 4. 2 年月 補充丨 〗·本創作的製造方式較為簡單,且整個燃料電池系統 、所需的元件較少,所以可節省製造成本。 以# 1·本創作不需更改現行薄膜電極組的内部結構,即可 間單且有效的方式來進行陰極觸媒層的水的回收。 古,喊3、.本創作可使用高濃度的燃料來進行反應,如此可提 阿九、:料的能量轉換效率。 任何所屬技術領域中具有通常知識者,在不脫離本創 ,精2和圍内,*可作些許之更動與㈣飾,故本創作 保護範圍當視後附之申請專利範_界定者為準。 【圖式簡單說明】 示意^ 〇lA為本創作一實施例之平面型燃料電池組的結構 構示為本創作另—實施例之平面型燃料電池組的結 的創作之另一實施例之-種平面型燃料電池組 圖3為繪示本創作之平面型揪 側所產生的水的蒸發機制。 电池組之陰極觸媒層 圖4為依照本創作又一實施例所 池組的結構示意圖 差會 示之平面型燃料電 圖5為依照本創作再一實施例 _ 池組的結構示意圖。 、㈢不之平面型燃料電 圖6為本創作-實施例之平面型 意圖。 “’、科電池組的結構示 體示意 圖7A及圖7B為圖6之平面型燦料電池組的立 22J = -D~A ^ (2), where 'J is the amount of oxygen that does not diffuse into the gas flow channel, the unit of which is mole/s ' D represents the diffusion coefficient, the unit is cm2/s, and in general, The oxygen diffusion coefficient in air is about 2-.2-0.3cm2/s, Ac means the concentration difference, the unit is mole/cm3, and under the normal temperature of one atmosphere, about 8.6xl 一 in one cubic centimeter - 6 mole of oxygen, indicating the distance of the diffusion path, the unit is in centimeters ' and A represents the cross-sectional area of the gas outlet. For example, when the planar fuel cell stack 2 is in operation, the amount of fuel across the membrane electrode assembly 1〇2 is typically greater than 5 [xm〇b/cm2/min, and the required oxygen content needs to be greater than 7.5fxmole/cm2/min. In the present embodiment, the rice setting A is 8.6 x 〇 _6 m 〇 le / cm 3 , and the relationship between the area of the thin film electrode group and a / is also shown in Fig. 8 . Specifically, the ratio of the area of the thin film electrode group illustrated in Fig. 8 to the A/office is about 〇〇73. It is noted that the gas outlet = any shape, and the number of gas outlets may be one or more. The μ is a thin film electrode group, and the gas outlet can be exaggerated when looking for the length of the square-shaped electrode group iQ2, 9 . Further, the relationship between the area of the leaf and the electrode group and the d/zbc, which is illustrated in the drawings, has at least one of the following advantages. 99. 4. 2 years Months Supplement 丨 · The creation method of this creation is relatively simple, and the entire fuel cell system and the required components are small, so the manufacturing cost can be saved. With #1·This creation does not need to change the internal structure of the current thin film electrode set, and the water recovery of the cathode catalyst layer can be performed in a single and effective manner. Ancient, shouting 3. This creation can use a high concentration of fuel to carry out the reaction, so that the energy conversion efficiency of the material can be improved. Anyone who has the usual knowledge in the technical field can make some changes and (4) decorations without departing from the creation, fine 2 and the surrounding area. Therefore, the scope of this creation protection shall be subject to the definition of the patent application. . BRIEF DESCRIPTION OF THE DRAWINGS The structure of a planar fuel cell stack according to an embodiment of the present invention is another embodiment of the creation of a junction of a planar fuel cell stack according to another embodiment - Planar Fuel Cell Group FIG. 3 is a diagram showing the evaporation mechanism of water generated by the planar side of the present invention. The cathode catalyst layer of the battery pack Fig. 4 is a schematic view showing the structure of the pool group according to another embodiment of the present invention. Fig. 5 is a schematic view showing the structure of a pool group according to still another embodiment of the present invention. (3) Non-planar fuel power Figure 6 is a plan view of the creation-embodiment. Fig. 7A and Fig. 7B are the vertical type of the battery pack of Fig. 6;
M383209 圖8為表示薄膜電極組的面積及Α/Δχ之間的關係圖。 圖9為表示薄膜電極組的面積及d/Δχ之間的關係圖。 【主要元件符號說明】 100、100a、100’、200、200’ :平面型燃料電池組 102 :薄膜電極組 104 :陰極多孔集電層 106 :陽極多孔集電層 108、108’ :阻氣材料層 110 :質子傳導膜 111 :陽極觸媒層 112 :陽極氣體擴散層 113 :陰極觸媒層 114 :陰極氣體擴散層 116、116’、124 :開孔 118、120、128 :蒸發路徑 122 阻氣材料層 126 環繞區域 130 外殼 140 氣流檔板 150 風扇 160 吸水材料層 202、202’ :疏水性多孔材料層 A:氣體流道 A1 :氣體入口 A2 :氣體出口M383209 Fig. 8 is a graph showing the relationship between the area of the thin film electrode group and Α/Δχ. Fig. 9 is a graph showing the relationship between the area of the thin film electrode group and d/Δχ. [Description of main component symbols] 100, 100a, 100', 200, 200': planar fuel cell stack 102: thin film electrode set 104: cathode porous collector layer 106: anode porous collector layer 108, 108': gas barrier material Layer 110: proton conducting membrane 111: anode catalyst layer 112: anode gas diffusion layer 113: cathode catalyst layer 114: cathode gas diffusion layer 116, 116', 124: openings 118, 120, 128: evaporation path 122 gas barrier Material layer 126 Surrounding area 130 Housing 140 Airflow baffle 150 Fan 160 Water absorbing material layer 202, 202': Hydrophobic porous material layer A: Gas flow path A1: Gas inlet A2: Gas outlet
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/624,429 US9048466B2 (en) | 2006-10-20 | 2009-11-24 | Flat fuel cell assembly with air channel defined by case |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM383209U true TWM383209U (en) | 2010-06-21 |
Family
ID=50600133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098224141U TWM383209U (en) | 2009-11-24 | 2009-12-23 | Flat fuel cell assembly |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM383209U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI458171B (en) * | 2010-12-16 | 2014-10-21 | Ind Tech Res Inst | Fuel distribution structure and fuel cell having the same |
TWI473334B (en) * | 2011-07-12 | 2015-02-11 | Nat Inst Chung Shan Science & Technology | Membrane electrode assembly with non-uniform catalyst distribution |
-
2009
- 2009-12-23 TW TW098224141U patent/TWM383209U/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI458171B (en) * | 2010-12-16 | 2014-10-21 | Ind Tech Res Inst | Fuel distribution structure and fuel cell having the same |
TWI473334B (en) * | 2011-07-12 | 2015-02-11 | Nat Inst Chung Shan Science & Technology | Membrane electrode assembly with non-uniform catalyst distribution |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI272739B (en) | Fuel cell | |
US20110091778A1 (en) | Fuel cell and fuel cell stack | |
JP2006523936A (en) | Passive water management technology in direct methanol fuel cell | |
JP2009026762A (en) | Porous transportation structure for direct oxidization fuel cell system operated by enriched fuel | |
JP4580852B2 (en) | Fuel cell | |
KR100877273B1 (en) | Fuel cell | |
JP2007227372A (en) | Stack for fuel mixture type fuel cell and fuel mixture type fuel cell system provided with the same | |
TWI332726B (en) | ||
JP2006228501A (en) | Polymer electrolyte fuel cell | |
JP4768261B2 (en) | Basic fuel cell element to limit methanol passing through the electrolyte layer | |
TWI328899B (en) | ||
JP2007207685A (en) | Fuel cell and method of manufacturing fuel cell | |
TWM383209U (en) | Flat fuel cell assembly | |
JP2009140618A (en) | Liquid fuel supply type fuel cell | |
TW201025712A (en) | Flat fuel cell assembly | |
TW200820482A (en) | Fuel cell systems | |
TW201011960A (en) | Membrane-electrode assembly and fuel cell | |
CN100585932C (en) | Plane type fuel cells | |
JP2008293705A (en) | Membrane-electrode assembly, and fuel cell | |
TW200820479A (en) | Flat fuel cell assembly | |
JP2009231195A (en) | Fuel cell and electronic device | |
TW200836393A (en) | Fuel battery | |
JP2010205593A (en) | Fuel cell | |
TW200836394A (en) | Fuel cell | |
JP2010277782A (en) | Membrane electrode assembly, fuel cell, and method of manufacturing them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4K | Expiration of patent term of a granted utility model |