TWM379764U - Light guide module and optical touch module - Google Patents

Light guide module and optical touch module Download PDF

Info

Publication number
TWM379764U
TWM379764U TW98220814U TW98220814U TWM379764U TW M379764 U TWM379764 U TW M379764U TW 98220814 U TW98220814 U TW 98220814U TW 98220814 U TW98220814 U TW 98220814U TW M379764 U TWM379764 U TW M379764U
Authority
TW
Taiwan
Prior art keywords
light
waveguide
module
touch area
convex
Prior art date
Application number
TW98220814U
Other languages
Chinese (zh)
Inventor
Hung-Ching Lai
Chiang-Yuan Chuang
Hui-Hsuan Chen
Original Assignee
Pixart Imaging Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pixart Imaging Inc filed Critical Pixart Imaging Inc
Publication of TWM379764U publication Critical patent/TWM379764U/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

A light guide module is applied in an optical touch module. A focusing component of the light guide module focuses the light emitted from a light guide component of the light guide module, so that all the light emitted from the light guide component can be convergently distributed in a touch area of the optical touch module. In this way, the light provided by a lighting component of the optical touch module can be effectively utilized, and the signal to noise ratio of the received signal of a sensor of the optical touch module increases. Therefore, the optical touch module can determines the location of the finger or the contacting object more correctly.

Description

五、新型說明: 【新型所屬之技術領域】 於光學觸控模組 之波=係關於一種波導模組’特別是-種適用 【先前技術】 近年來,觸控螢幕(亦即觸控面板)由於可以直接於勞i 以物體或手胁_ 、了以直接於縣上直接 者觸控了躲上切_作。當使用 的程式.轉各種連縣置,並藉由錄畫面呈現生動的影音效果。 式算常ίΓΓ控螢幕_控方式有纽式、電容式、綠式與光學 ;I觸控螢幕是_猶物間隔開兩組銦錫氧化物(砸⑽ Hi X1 e,IT〇)導電層,當使用時利用壓力使上下電極導通以測知營 =上的電壓變絲計算出接繼錄進行輸人。電容摘控榮幕是 用制之透明電極與人體之間的靜電結合所產生之電容變化,從 所產生之誘導電流來檢測其座標。聲波式觸控絲事先利用電訊號 經由轉能轉換成超音波,並直接傳送稿控面板的表面 ,當使用 觸控面板時赌齡做超音波造絲減,經姐對使用前 後的哀減量並計算後得出精確位置。 光學式觸控錄是糊光源接收麟原理,當光線遭遮斷時 即可得知收不到訊號接收器的位置,進而確定其精確位置。光學式 觸控螢幕的組成元件,包括玻璃基板、發光裝置、光接收器與透鏡。 裝置方式是將發光裝置與光接收器配放於玻璃基板的右上頂角上, 並在玻璃基板的左側與下側裝置反光條。經由發光裝置照亮遠端的 反光條,當手指或接觸物遮斷光線時,光接收器可以經過透鏡收集 *到手指或接觸物在玻璃基板的相對位置。 S知之光學式觸控螢幕由於利用反光條來反射發光裝置所發出 之光線以偵測到手指或接觸物在玻璃基板的相對位置,因此容易受 到環境光源的影響。同樣的反光條所反射之光線與發光裝置所發出 之光線會對光接收器產生交互影響。另外,由於置放於玻璃基板右 上頂角的發光裝置必須照亮遠端的反光條,因此需要較精準的對位 以及較大的輸出亮度與輸出電流。 【新型内容】 本創作提供一種波導模組。該波導模組適用於一光學觸控模 組。該光學觸控模組包含一觸控區域、一感測器與一發光元件。該 感測器位於該觸控區域之一第一角落。該發光元件用以提供一光 線。該波導模組與該發光元件設置在該觸控區域之一第一侧邊,用 以將該發光元件所提供之該光線均勻分佈至該觸控區域。該波導模 組包含一波導元件以及一聚光元件。該波導元件用來引導該光線沿 考該波導元件擴散。該波導元件包含一入光面,以及一出光面。兮 入光面面向該發光元件以接收該光線。該出光面面向該觸控區域。 M379764 該聚光元件用來匯聚從該出光面所射出 散佈於該觸控區域。 之該光線,以使該光線集 中 本創作另提供-種光學觸顧組。該光學觸控模組包含—觸控 區域、-感測器'-發光元件,以及—波導模組。該感測器位於該 觸控區域之H落。該發技件設置在該觸控區域之一第—側 邊,用以提供-光線。該波導模組設置在侧控區域之該第一側邊, 用以將該發光元件所提供之該親均勻分佈至_控區域。該波導 模組包含-波導元件,以及-聚光元件。該波導元件用來引導該光 線沿著該波導元件擴散。該波導元件包含一入光面,以及一出光面。 該入光面面向該發^<元件以接收該n該出絲面向該觸控區 域。S亥聚光元件用來匯聚從該出光面所射出之該光線,以使該光線 集中散佈於該觸控區域。 【實施方式】 第1圖係為根據本創作第一實施例之光學觸控模組俯視圖。請 參考第1圖,於此實施例,光學觸控模組可位於顯示螢幕(諸如:液 晶顯示器的螢幕、陰極射線管顯示器的螢幕、電子白板等)上。 光學觸控模組包含有一觸控區域4〇〇、一感測器300、一發光元 件100 ’以及一波導元件200。感測器300係設置於觸控區域400 之角落。發光元件100、波導元件200與感測器300的數量可係為1 個,也可以係2個以上。為了方便說明,於此實施例,發光元件ι〇〇 ,數量係為1個、波導元件2GG的數量係為2個、感測n 300的數 量係為1個’但不以此受限。波導元件2〇〇設置在觸控區域柳的 至少一側邊。其中,觸控區域400可係為多邊形(諸如:四邊形、五 邊形或六邊形等),且波導元件2〇〇設置於多邊形的觸控區域4〇〇的 側邊。波導το件2〇〇可包含有一入光面21〇與一出光面22〇。入光 ‘面210可係面向發光元件1〇〇。換句話說,入光面21〇可係鄰接於 •务光元件1〇〇亦即入光面210可係與發光元件1〇〇的出光表面相 •貼合’或入光面210與發光元件100的出絲面係間隔相對應。出 光面220可係面向觸控區域4〇〇。 光學觸控模組更可包括有透鏡5()()。透鏡通可係對應於感測 器300。透鏡500可位於所對應之感測器3〇〇與觸控區域4〇〇之間。 透鏡500可係鄰接於感測器3〇〇,亦即透鏡5〇〇可係與感測器綱 的收絲面相齡,或透鏡,贼湘敝絲面係間隔相 . 對應。 發光元件100可位於觸控區域400相對感測器3〇〇之一角落。 本實施例的觸控區域400可係為矩形(四邊形)。感測器3〇〇可 係設置在觸控區域400的一角落。此時,發光元件1〇〇可與感測器 300設置在觸控區域400相同或相異的角落。換句話說,感測器3〇〇 可設置在觸控區域400的一角落,且發光元件1〇〇可設置在觸控區 域400相對感測器300的角落,其中發光元件1〇〇設置在觸控區域 M379764 400相對感測器300的角落位置可以是發光元件1〇〇設置在與感測 器300相鄰的鄰角位置,也可是發光元件励設置在與感測器· 間隔相對的對角位置。當發光元件1〇〇設置在與感測器3〇〇間隔相 對的對角位置時’二個波導元件2⑻可係分別設置於與發光元件漏 相鄰的觸控區域4〇〇的兩側邊上。波導元件2〇〇的形狀可係為靠近 發光兀件100的-端較厚’遠離發光元件1〇〇的一端較薄的横型結· 構,也可係平板結構。 ' 觸控區域4〇〇亦可為五邊形以上之多邊形,此時發光元件刚# 可係設置在與感測器300相鄰的鄰角位置,也可係發光元件廳設 置在與感測H 3⑻間隔相鄰的角落上,更可以係發光元件刚設置 在與感測益300間隔相對的對角位置。 發光兀件100可用以產生光線並提供光線射出發光元件⑽。 …中’發光元件100所發出之光線可係為紅外光可見光等。發光 兀件100可係為紅外線發光二極體、彳見光發光二極體等。 鲁 光面210可用以接收發光元件所發射之光線。入光面210 的形狀可係對應發光元件i⑻的形狀。其中,入光面21〇可係為一 光/月表面用以避免發光元件⑽所發射之光線人射人光面21〇時, 會因為入光面210表面的粗輪而造成光線散射等效應產生,使得光 線入射入光面210的效率降低。 8 由入光面210進入波導元件後,她,光線在經 遞。出光面_以提供光線離開波 ==構。擴散結射係為光柵結構或不規則結構等用1Γ由 晴之的光線射出至擴散結構時,不再因為全反射 =!Γ 遞,而係經由擴散結構將光線經由折射等出 射離開波導讀娜擴散結構可係於波導元件賴具製作時, 先饤於模具上設計出擴散結構的形狀與擴散結構的位置,因此波導 兀件200射出成型或輯成型時,擴散結構即位於出光面22〇上。 擴散結構亦可係魏導元件2_出成型賴鑄成碰,加工(喷沙 等方式)以形成擴散結構於其上。透鏡用以增加感測器3〇〇的收 光角度A ’亦即藉由透鏡5〇〇使原本收光角度較小的感測器能 接收到較大角度範圍的光線。以本實施例為例,觸控區域柳係為 .矩形(四邊形),觸控區域4〇〇的四個角均為9〇度。一般的感測器3〇〇 的收光角度小於90度,因此當感測器3〇〇設置於觸控區域4〇〇的一 角時,只能接收局部角度範圍内的光線,並無法接收觸控區域4〇〇 内全部的光線。因此當手指或其他接觸物體位於觸控區域4〇Cj且位 於感測器300的收光角度範圍外,感測器3〇〇無法感知手指或其他 接觸物體在觸控區域400的相對位置。因此藉由在感測器300與觸 控區域400之間設置透鏡500,用以提高感測器30〇的收光角度範 圍,以本實施例為例,感測器3〇〇可經由透鏡5〇〇使感測器300可 接收到大於90度角度範圍的光線,亦即當感測器3〇〇設置於觸控區 = 4〇〇 ft糾’由於感測器3⑻可透過對應之透鏡·接收到大 ;9〇度角度圍的光線,因此可藉由一個感測器結合透鏡5〇〇 接收到觸控區域400内的所有光線。 根據本創作所揭露之光學觸控模組,當發光元件議發出光線 後’會先由面向於發光元件100的二個波導元件 200的入光面210 來接收發光元件励所發出的光線。藉由波導元件與外界空氣 折射率的差異’將光線限制於二個波導元件·^傳遞,最後光線 :左由出光面220的擴散結構離開二個波導元件2〇〇並分佈於觸控 區域400内。再由感測器3〇〇結合透鏡5〇〇來接收觸控區域柳内 的所有光線。當手指或其他接觸物體位於觸控區域4⑻時,會遮斷 邛刀由出光面220射出至觸控區域4〇〇的光線,感測器3〇〇在接收 不到被遮斷光線後,會進而判斷手指或其他接觸物體位於觸控區域 400的相對位置。於此,藉由二個波導元件2〇〇將發光元件1㈨所 發出之光線均勻分佈至觸控區域4〇〇,用以取代習知使用反光條反 射發光7C件1〇〇所發出之光線’可增加光學觸控模組對環境光源的 抵抗能力、避免掉習知之發光元件1〇〇所發出之光線與反光條反射 之光線對感測器300所造成的交互影響。同時,能達到降低發光元 件100的發光亮度、減少電流損耗以及光學觸控模組的對位精準度。 第2圖係為根據本創作第二實施例之光學觸控模組俯視圖。請 參考第2圖,併合參考前述實施例。於此實施例,二個波導元件2〇〇 亦可係二個波導元件2〇〇中之一設置於與發光元件1〇〇相鄰的觸控 M379764 區域400的-側邊上。二個波導元件巾之另一則係設置於與發 光元件100相鄰的觸控區域4〇〇的另一側邊上,其中遠離發光元件 100的-端沿著觸控區域40㈣角落雜轉折延伸至與發光元件腦 間隔相對的對角位置。在轉折延伸至與發光元件100間隔相對的對 角位置的波導元件内,於轉折的位置處可製作—反射面250, •使光線能經由反射面在波導元件細内反射傳遞至與發光元件議 •間隔相對的對角位置。於此,藉由二個波導元件200將發光元件勘 _所發出之光線傳導至觸控區域400的三側邊,光線會由波導元件厕 射出並均勻分佈於觸控區域彻,用以取代習知使用反光條反射發 2元件100所發出之光線,可增加光學觸控模組對環境光源的抵抗 能力、避免掉習知之發光元件⑽所發出之光線與反光條反射之光 線對感測器300所造成的交互影響。同時,能達到降低發光元件觸 的發光党度、減少電流損耗以及光_擁_對位精準度。 第3圖係為根據本創作第三實施例之光學觸控模組俯視圖。請 參考第3圖’併合參考前述實施例。於此實施例,光學觸控模組可 包含有二個發光元件100與三個波導元件200。於此實施例,觸控 區域4〇0可係為矩形(四邊形)。感測器3〇〇設置在觸控區域的 一角洛,且二個發光元件議中之一設置在觸控區域400相對感測 器300的角落,二個發光元件100中之另-則係設置在觸控區域400 相鄰感測器300的角落。三個波導元件200巾之-可係設置於觸控 區域楊位於二個發光元件励之間的-側邊上。三個波導元件2〇0 中之二則分別設置於觸控區域400與發光元件100相鄰的另一側邊 11 上。根據本創作露之絲觸控模組,t ,後,會辕射面向於每一發光元件10。的二 入"面210來接收母一發光元件觸所發出的光線。藉由波導元件 ”外界工氣折射率的差異,將光線限制於三個波導元件内 傳遞,最後光線會經由出光面挪的擴散結構離開三個波導元件· 並分佈於觸控區域伽内。再由感測器結合透鏡來接收觸 控區域400内的所有光線。當手指或其他接觸物體位於觸控區域· 時二會遮斷部分由出光面22〇射出至觸控區域彻的光線。此時感 測益300在接料職綱光線後,會進辭筒手減其他接觸物 體位於觸控區域4GG的相對位置。於此,藉由三個波導元件將 二個發光元件100所發出之光線均勻分佈至觸控區域·,用以取. 代習知使用反光條反射發光元件觸所發出之光線,可增加光學觸 控模組對環境光源的抵抗能力、避免掉習知之發光元件1〇〇所發出 之光線與反光條反射之光線對感測器3〇〇所造成的交互影響。同 時,旎達到降低發光元件1〇〇的發光亮度、減少電流損耗以及光學 觸控模組的對位精準度。 第4圖係為根據本創作第四實施例之光學觸控模組侧視圖。請 參考第4圖’併合參考前述實施例。於此實施例,光學觸控模組包 含有基板600。基板600可位於觸控區域400下。基板600可係為 印刷電路板’亦可係為銦錫氧化物(jjjdiumTinOxideJTO)玻璃。於 此實施例’感測器300、觸控區域400與透鏡500可係位於液晶面 板700上。其中液晶面板700可係由ITO玻璃、液晶與濾光片等所 12 MJ/9764 組成。發光元件100可位於ITO玻璃(基板6〇〇)面向觸控區域400 的表面上。波導70件200可係鄰接發光元件1〇(),用以將發光元件 100所發出之光線經由入光面21〇入射至波導元件2〇〇内由波導 元件200將光線傳導至觸控區域4〇〇的一側邊上。由於ιτ〇玻璃上 具有傳導線路與電晶體以㈣液晶面板巾驗晶鋪。因此發 光元件100可係於ΙΤΟ玻璃的製程中一併製作於ΙΤ〇玻璃上。再利 用波導7L件200將波導元件200戶斤發出之光線傳導至液晶面板7〇〇 上,袁後使光線離開波導元件2〇〇並射出至觸控區域4〇〇。 根據本創作所揭露之光學觸控模組,將發光元件1〇〇製作於液 晶面板的ΙΤΟ玻璃(基板_)上,再利用波導元件將發光元件 100所發出之光線限制於波導元件200内傳遞’最後光線會出射離 開波導元件200並分佈於觸控區域4〇〇内。再由感測器3〇〇結合透 鏡5〇〇來接收觸控區域4〇〇内的所有光線。當手指或其他接觸物體 位於觸控區域400時,會遮斷部分由出光面22〇射出至觸控區域 的光線,感測器300在接收不到被遮斷光線後,會進而判斷手指或 其他接觸物體位於觸控區域400的相對位置。於此,藉由將發光元 件100製作於基板600上,再利用波導元件2〇〇將發光元件1〇〇所 發出之光線均勻分佈至觸控區域400,可降低光學觸控模組的厚 度,同時減少將發光元件另行製作於印刷電路板上等的成本。 第5圖係為根據本創作第五實施例之波導元件與發光元件鄰接 處示意圖。如第5圖所示,合併參考第四實施例。於此實施例,波 13 導疋件200可係一端具有容置發光元件漏之容置區,另一端分成 兩子波導元件2〇〇a、2〇〇b分別朝向觸控區域4〇〇相鄰的兩側邊延 伸其中谷置發光元件1〇〇之容置區的形狀可係對應發光元件 的形狀’且容置區之内壁為入光面21〇。發光元件1〇〇所發出之光 線b透過入光面21〇入射波導元件2〇〇,由波導元件的兩子波導元 a 200b將光線傳導至觸控區域的相鄰兩側邊。於此,藉 由將發光元件1〇〇製作於基板_上,並由波導元件的入光面 210接收發光元件100所發出之光線。光線在波導元件2⑻内會分 別由兩子波導元件200a、200b將光線傳導至觸控區域4〇〇的相鄰兩 側邊並射出至觸控區域4〇〇。如上所述,可降低光學觸控模組的厚 度,同時減少將發光元件另行製作於印刷電路板上等的成本。根據 本創作所揭露之光學觸控模組,藉由波導元件2〇〇將發光元件1〇〇 所發出之光線均勻分佈至觸控區域400,可增加光學觸控模組對環 境光源的抵抗能力、降低發光元件1〇〇的發光亮度、減少電流損耗 以及光學觸控模組的對位精準度。 請參考第6圖。第6圖係為說明根據本創作之第六實施例之波 導模組800之示意圖。波導模組800可應用於本創作所述之光學觸 控模組。波導模組800係根據前述之波導元件200加以改良,以將 發光疋件1〇〇所提供之光線作更有效率的利用,並同時將光線均勻 分佈至觸控區域4〇〇。波導模組800包含一波導元件81〇,以及—聚 光兀件820。波導元件810之結構以及工作原理與前述之波導元件 2〇〇類似。波導元件81〇用來引導光線沿著波導元件81〇擴散,波 M379764 導元件810包含一入光面811以及-出光面812,入光面811面向 發光7G件100以接收光線。出光面812面向觸控區域4〇〇。聚光元 件820,用來匯聚從出光面812所射出之光線,以使光線集中散佈 於觸控區域。此外,#發光耕勘係為紅外光發光二極體(也 就是說,發光元件1〇〇發出紅外光時),聚光元件㈣係為可透紅外 ^ 光之透鏡。 ' 聲 請參考第7圖、第8圖、第9圖、第1〇圖,以及第u圖。第 7圖係為說明當光線從波導元件·直接射出至觸控區域之示 意圖。第8圖、第9圖、第1〇圖,以及第u圖係為說明藉由不同 結構之聚光元件820,波導模組800可將發光元件1〇〇所提供之光 線作更有效率的利用之工作原理之示意圖。·由第7圖可看出,由於 當發光元件100所提供之光線直接從波導元件200射出時,光線之 強度係大約呈朗伯分佈(lambertiandistribution),也就是說,當光線 從波導元件200射出時,光線會在各方向上皆均勻散射。然而,由 •於從波導元件2〇〇射出之光線會均勻分佈於垂直方向上,因此表示 部份光線直接遠離觸控區域4〇〇(舉例而言,如第7圖所示之光線 LA) ’以及部份光線被基板600反射後,而遠離觸控區域4〇〇(舉例而 言,如第7圖所示之光線LB)。換句話說,發光元件1〇〇所提供之 光線無法集中於觸控區域400。如此,感測器3〇〇可接收到之光線 之能量較少’因此表示感測器300所接收之訊號之訊雜比降低,而 造成光學觸控模組較不易判斷手指或接觸物之位置。如第8圖、第 9圖、第10圖’以及第11圖所示,聚光元件82G可為凸凹透鏡、 15 MJ/y/04 平透i凸凸透鏡,或是平喊鏡。更明確地說 1-凸凹透鏡時(如第8 _示),該凸凹透鏡响 犯,且該凸凹透鏡之凹面面向觸控區面 =;=82°為,透鏡時(如第11心: 且ΓΓ 12,且該平凹透鏡之凹面面向該觸控區 域400。且由第8圖、第9圖、第H)圖,以及第U圖可看出,藉 由聚光元件_聚從波導元件810之出光面812所射出之光/ 可使先線接近平行入射於觸控區域權。因此,相較於波導元件 200 ’波導模組800藉由聚光元件82〇匯聚從出光面812所射出之光 線,可使發光元件1〇〇所提供之光線不會直接遠離觸控區域·, 也不會因被基板600反射後,而遠離觸控區域4〇〇。如此一來,發 光το件100所提供之光線可集中於觸控區域4〇〇,而提高感測器· 所接收到之光線之能量,也就是說,提高感測器3〇〇所接受之訊號 之訊雜比。因此’光箱減組可更正確地騎手指或接觸物之位 置。 請參考第12圖。第12圖係為說明根據本創作之第七實施例之 波導模組900之示意圖。相較於波導模組8〇〇,波導模組9〇()另包 含有一固定元件(holder)930,耦接至聚光元件820。固定元件930 係用來包覆波導元件810,以將波導模組900固定於基板600之上。 16 M379764 此外’在第12 ®之聚光元件82〇係以凸凹透鏡作為舉例,然而聚光 元件820也可為凸平透鏡、凸凸透鏡,或是平凹透鏡。 請參考第13圖。第13圖係為說明藉由如前述之波導元件包含 反射面之設計,波導模組800可引導發光元件1〇〇所提供之光線從 觸控區域400之多個不同之侧邊射入觸控區域4〇〇之示意圖。在第 13圖中’波導模组8〇〇之波導元件⑽另包含一反射面。反射 面815之結構與工作原理與反射面25〇類似。反射面815位於波導 兀件810之轉折處。反射面815,用來使光線能經由反射面815以 在波導元件810内反射而不經由波導元件81〇之轉折處射出。換句 話說,藉由反射面815之設計’波導模組800可設置於觸控區域4〇〇 的多個側邊。舉例而言,在第13圖中,波導模組8〇〇係設置於觸控 區域400之三個側邊。如此一來,表示在光學觸控模組中,僅需要 一發光元件(1〇〇)以及一波導模組(8〇〇),即可將光線從觸控區域4〇〇 之多個不同之侧邊導入觸控區域4〇〇,而使光線均勻地散佈至觸控 區域中。此外,與波導元件2〇〇類似,波導元件81〇的形狀,可為 一楔型結構(如第1圖〜第3圖所示,靠近發光元件100的一端較厚, 遠離發光元件100的一端較薄),也可為一平板結構(如第13圖所示)。 請參考第14圖。第14圖係為說明波導元件81〇之結構之示意 圖。波導元件810另包含一導光條813,以及一反射元件814。如第 14圖所不,導光條813之表面8131用來作為入光面811。因此,導 光條813之表面8131面向發光元件1〇〇。導光條813之表面8132 17 M379764 用來作為出光面m。反射元件_包覆導光條犯。反射元件綱 用來反射非從出光面導光條813之表面⑽)所射出之光線回 到導光條813 ’以使波導元件㈣則導之光料從出光面叫導 光條813之表面8132)射入觸控區域4〇〇。舉例而言在第14圖中 之光線LC射至導光條813之表面8133時,光線&被反射元件814 反射回導光條813。因此,最後,光線Lc從出光面812(導光條813 之表面8132)射出。 請參考第15圖。第15圖係為說明波導元件之結構之另一實施 例1000之示意圖。相較於第14圖之波導元件810,波導元件1〇〇〇 另包含一轉向結構1010。轉向結構1〇1〇係用來將入光面8ιι轉置 為面向基板600,並將自入光面811所接收之光線轉向為平行於基 板’以將光線引導至導光條813。更明確地說,藉由轉向結構ι〇ι〇, 在波導元件1000中,入光面811可面向基板6〇〇。因此,發光元件 1〇〇可直接設置在基板600上,而不需透過其他連接器以將發光元 件1〇〇所提供之光線轉向。舉例而言,在第15圖中,轉向結構ι〇ι〇 係為將反射元件814與導光條813轉折以形成一三角形之結構,當 發光兀件100所提供之一光線Ld向上方射入轉向結構1〇1〇時,光 線LD會先經過導光條813,然後再被轉向結構1〇1〇中屬於反射元 件814的部份反射,而轉向右方入射。此外,由於波導元件係為扁 平形狀’因此在第14圖中導光條813之表面8131(入光面811)之面 積非常小。如此’造成發光元件100所提供之光線無法有效地射入 導光條813之表面8131(入光面811)。然而,在第15圖中,由於藉 18 由轉向結構1_之餅’入光面811可面向基板_,因此即使波 導元件画為扁平形狀,入光面811之面積仍不會受到限制。如此, 入光面811之面積可設計的足夠大,以有效地接收發光元件觀所 提供之光線。 月參考第16圖第16圖係為說明本創作利用波導模組之光學 觸控模組麵之難實麵之純_。絲難模組腦包含一 觸控區域161G、-感測器162〇、—發光元件163(),以及一波導模 組1640。感測器162〇位於觸控區域161〇之一第一角落(在第㈣ 中以右上角落作為舉例)。發光元件163〇設置在觸控區域161〇之一 第-側邊(在第16圖中以左側邊作為舉例),用以提供光線。波導模 組1640 ’設置在觸控區域161〇之三個側邊,用以將發光元件脳 所提供之光線均勻分佈至觸控區域161〇。利用第6圖至第15圖所 述之波導模組之結構以實施波導模組丨640,波導模組1640之波導 元件之入光面可面向下方之基板,因此發光元件163〇可直接設置於 該基板上對應於波導模組1640之波導元件之入光面之位置。如此, 發光元件1630所提供之光線可藉由波導模組164〇之波導元件與聚 光元件,以集中於觸控區域1610,而提高感測器1620所接受之訊 號之訊雜比。因此’光學觸控模組16〇〇可更正確地判斷手指或接觸 物之位置。此外,在第丨6圖中,以光學觸控模組16〇〇僅包含一發 光元件1630為例’藉由波導元件810之反射面815之設計,波導模 組1640可將發光元件1630所提供之光線引導自觸控區域161〇之三 個側邊射入觸控區域161(^然而,當光學觸控模組16〇〇之發光元 19 M379764 件之位置魅目改變時,光學觸減組獅之鱗池之位置盘數 目也可根據前述說明作出對應的設計。舉例而言,光學觸控模組 1_可以類似帛i圖之方式實施,也就是說,兩個波導模組分設於 觸控區域之兩侧邊,並接收同—發光元件所提供之光線,以將光線 從觸控區域之兩㈣導人;絲觸鋪組麵也可以触第2圖之 方式實施,也就是說,三個波導模組分別設置於觸控區域之三側邊, 以將兩發光元件所提供之親自觸控區域之三側邊導人;或是,光 學觸控模組1600也可簡㈣3圖之方式實施,也就是說,一第一 波導模組設區域之第—側邊(左側邊),—第二波導模組藉 由反光面之設計’以設置_魏域之第二側邊(下側邊)與第三側 邊(右側邊)’第-與第二波導模組接收同一發光元件所提供之光 線’並將光線從觸控區域之第―、第二以及第三侧邊導人觸控區域。 細上所述’本翁提供—觀導馳,可細於絲觸控模組。 本創作之波導·,藉由聚光元件輯從料元件射出之光線,可 使絲集中散佈於光學觸控模組之觸控區域。如此—來,發光元件 所提供之光線可财效地· ’且提高❹m所錢之訊號之訊雜 比。因此,光學觸控模組可更正確地判斷手指或接觸物之位置。此 外’本創作之波導模組,藉由轉向結構之設計,可使人絲面向基 板’因此人絲之面積較不受_,可有效地接收發光元件所提供 之光線,且就元件可雜織於紐上,帶給者更大的方便。 以上所述僅為賴作讀佳實_,凡依本創作^請專利範圍 20 所做之均等變化與修飾,皆應屬本創作之涵蓋範圍。 【圖式簡單說明】 第1圖係為根據本創作第-實細之光學觸域⑽視圖。 第2圖係為根據本_第二實施例之光學觸控敎俯視圖·。 第3圖係為根據本創作第三實施例之光學觸控模組俯視圖。 第4圖係為根據本創作第四實施例之光學觸控模組側視.圖。 第5圖係為根據本創作第五實施例之波導元件與發光元件鄰接處的 示意圖。 第6圖係為說明根據本創作之第六實施例之波導模組之示,圖。 第7圖係為制當规從波導元件直接射出至區域之示意圖。 第8圖、第9圖、第1Q圖,以及第u _、為顧波導模柯將發 光兀件所提供之光線作更有效率的利用之工作原理之示意圖。 第12圖係為說明根據本創作之第七實施例之波導模組之^意圖。 第13圖係為說明波導元件之反射面之示意圖。 · 第14圖係為說明波導元件之結構之示意圖。 第15圖係為·波導元件之結構之另—實施例之示意圖。 第16圖係為說明利驗導模組之光賴控模③之示意圖。 【主要元件符號說明】 100、1630 發光元件 200a > 200b 子波導元件 . 3〇〇、1620 感測器 M379764 400 、 1610 500 600 700 800、900、1000 1640 810 、 200 820 811 ' 210 812 、 220 813 814 815 930 1010 1600V. New description: [New technology field] The wave of the optical touch module is related to a waveguide module. In particular, it is applicable [previous technology] In recent years, touch screen (also known as touch panel) Because you can directly use the object or hand threat _, and directly touch the direct directly in the county to hide and cut. When using the program, turn to various county settings, and display vivid video effects by recording the picture.算 算 ΓΓ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ When in use, the upper and lower electrodes are turned on by using pressure to measure the voltage change on the camp=============================== Capacitor Extraction Control is the change of capacitance generated by the electrostatic combination between the transparent electrode and the human body, and the coordinates are detected from the induced current generated. The acoustic wave touch wire is converted into ultrasonic waves by using the electric signal in advance, and directly transmits the surface of the manuscript control panel. When the touch panel is used, the gambling age is supersonic and the silk is reduced, and the sisters use the amount of sorrow before and after use. The exact position is obtained after calculation. Optical touch recording is the principle of receiving light from the paste source. When the light is blocked, it can know that the position of the signal receiver is not received, and then the precise position is determined. The components of the optical touch screen include a glass substrate, a light emitting device, a light receiver, and a lens. The device is arranged to arrange the light-emitting device and the light receiver on the upper right corner of the glass substrate, and to reflect the strip on the left side and the lower side of the glass substrate. Illuminating the distal reflective strip via the illumination device, the light receiver can collect through the lens when the finger or contact blocks the light* to the relative position of the finger or contact on the glass substrate. The optical touch screen of S knows that it is easy to be affected by the ambient light source because the reflective strip is used to reflect the light emitted by the light-emitting device to detect the relative position of the finger or the contact on the glass substrate. The light reflected by the same reflective strip and the light emitted by the illumination device can have an interactive effect on the optical receiver. In addition, since the illuminating device placed on the upper right corner of the glass substrate must illuminate the reflective strip at the far end, a more accurate alignment and a large output brightness and output current are required. [New content] This creation provides a waveguide module. The waveguide module is suitable for an optical touch module. The optical touch module includes a touch area, a sensor and a light emitting element. The sensor is located at a first corner of the touch area. The light emitting element is for providing a light line. The waveguide module and the light emitting component are disposed on a first side of the touch area for uniformly distributing the light provided by the light emitting element to the touch area. The waveguide module includes a waveguide element and a concentrating element. The waveguide element is used to direct the light to diffuse along the waveguide element. The waveguide component includes a light incident surface and a light exiting surface. The light incident surface faces the light emitting element to receive the light. The light emitting surface faces the touch area. M379764 The concentrating element is used to converge and scatter from the illuminating surface to be dispersed in the touch area. The light is made so that the light is concentrated in the creation of the optical contact group. The optical touch module includes a touch area, a sensor, a light emitting element, and a waveguide module. The sensor is located at the touch area of the H drop. The hair piece is disposed on the first side of the touch area to provide - light. The waveguide module is disposed on the first side of the side control area for uniformly distributing the prous provided by the illuminating element to the _ control area. The waveguide module includes a -waveguide component and a concentrating component. The waveguide element is used to direct the light to diffuse along the waveguide element. The waveguide component includes a light incident surface and a light exiting surface. The light incident surface faces the light emitting element to receive the n the silk surface facing the touch area. The S-light concentrating element is configured to converge the light emitted from the light-emitting surface to concentrate the light on the touch area. [Embodiment] FIG. 1 is a plan view of an optical touch module according to a first embodiment of the present invention. Referring to FIG. 1, in this embodiment, the optical touch module can be located on a display screen such as a screen of a liquid crystal display, a screen of a cathode ray tube display, an electronic whiteboard, or the like. The optical touch module includes a touch area 4A, a sensor 300, a light emitting element 100', and a waveguide element 200. The sensor 300 is disposed at a corner of the touch area 400. The number of the light-emitting element 100, the waveguide element 200, and the sensor 300 may be one or two or more. For convenience of explanation, in this embodiment, the number of the light-emitting elements ι is one, the number of the waveguide elements 2GG is two, and the number of sensing n 300 is one', but is not limited thereto. The waveguide element 2 is disposed on at least one side of the touch area. The touch area 400 may be a polygon (such as a quadrangle, a pentagon or a hexagon), and the waveguide element 2 is disposed on a side of the touch area 4〇〇 of the polygon. The waveguide τ 2 member 2 can include a light incident surface 21 〇 and a light exit surface 22 。. The incident light 'face 210 may be facing the light-emitting element 1'. In other words, the light incident surface 21 can be adjacent to the optical light element 1 , that is, the light incident surface 210 can be attached to the light emitting surface of the light emitting element 1 • or the light incident surface 210 and the light emitting element The hairline of 100 is correspondingly spaced. The light exit surface 220 can face the touch area 4〇〇. The optical touch module may further include a lens 5 () (). The lens pass may correspond to the sensor 300. The lens 500 can be located between the corresponding sensor 3〇〇 and the touch area 4〇〇. The lens 500 can be adjacent to the sensor 3, that is, the lens 5 can be connected to the wire receiving surface of the sensor, or the lens, the squirrel. The light emitting element 100 can be located at a corner of the touch area 400 opposite to the sensor 3〇〇. The touch area 400 of this embodiment may be rectangular (quadrilateral). The sensor 3A can be disposed at a corner of the touch area 400. At this time, the light-emitting element 1A can be disposed at the same or different corners of the touch area 400 as the sensor 300. In other words, the sensor 3A can be disposed at a corner of the touch area 400, and the light emitting element 1 can be disposed at a corner of the touch area 400 opposite to the sensor 300, wherein the light emitting element 1 is disposed at The corner position of the touch area M379764 400 relative to the sensor 300 may be that the light-emitting element 1 is disposed at an adjacent angular position adjacent to the sensor 300, or the light-emitting element may be disposed opposite to the sensor. Corner position. When the light-emitting elements 1 are disposed at opposite diagonal positions from the sensor 3, the two waveguide elements 2 (8) may be respectively disposed on both sides of the touch area 4 相邻 adjacent to the light-emitting element drain. on. The shape of the waveguide element 2'''''''''''''''''''''''''''''''' The touch area 4〇〇 may also be a polygon of a pentagon or more. In this case, the light-emitting element may be disposed at an adjacent position adjacent to the sensor 300, or may be disposed and sensed by the light-emitting element hall. H 3 (8) spaced adjacent corners, more preferably the light-emitting element is just placed at a diagonal position opposite to the sensing benefit 300. The illuminating element 100 can be used to generate light and provide light to exit the illuminating element (10). The light emitted by the light-emitting element 100 may be infrared light visible light or the like. The light-emitting element 100 can be an infrared light-emitting diode, a light-emitting diode, or the like. Luguang 210 can be used to receive light emitted by the illuminating elements. The shape of the light incident surface 210 may correspond to the shape of the light emitting element i (8). Wherein, the light-incident surface 21 can be used as a light/moon surface to prevent the light emitted by the light-emitting element (10) from being emitted by the light surface 21〇, which may cause light scattering due to the coarse wheel on the surface of the light-incident surface 210. The efficiency of light incident on the light surface 210 is reduced. 8 After entering the waveguide element by the light entrance surface 210, her light is passing. Light surface _ to provide light leaving the wave == structure. When the diffused junction system is a grating structure or an irregular structure and is emitted from a clear light to a diffused structure, it is no longer due to total reflection =! ,, but the light is emitted from the waveguide through the diffusion structure. The structure may be such that when the waveguide component is fabricated, the shape of the diffusion structure and the position of the diffusion structure are designed on the mold. Therefore, when the waveguide element 200 is injection molded or formed, the diffusion structure is located on the light exit surface 22〇. The diffusion structure may also be formed by forming a brazing element 2 into a bump, processing (sanding, etc.) to form a diffusion structure thereon. The lens is used to increase the light-receiving angle A' of the sensor 3', that is, the lens 5's original light-receiving angle can receive light of a larger angle range. Taking the embodiment as an example, the touch area is a rectangle (quadrilateral), and the four corners of the touch area 4 are all 9 degrees. Generally, the light receiving angle of the sensor 3〇〇 is less than 90 degrees. Therefore, when the sensor 3 is disposed at a corner of the touch area 4〇〇, only the light within a local angle range can be received, and the touch cannot be received. Control all the light in the area 4〇〇. Therefore, when the finger or other contact object is located in the touch area 4〇Cj and is outside the range of the light receiving angle of the sensor 300, the sensor 3〇〇 cannot sense the relative position of the finger or other contact object in the touch area 400. Therefore, by providing the lens 500 between the sensor 300 and the touch area 400, the range of the light receiving angle of the sensor 30 is increased. In this embodiment, the sensor 3 can pass through the lens 5.感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感 感The light is received at a wide angle of 9 degrees, so that all the light in the touch area 400 can be received by a sensor in combination with the lens 5 . According to the optical touch module disclosed in the present invention, when the light-emitting element emits light, the light-emitting surface 210 of the two waveguide elements 200 facing the light-emitting element 100 is first received by the light-emitting element. The light is confined to the two waveguide elements by the difference in refractive index between the waveguide element and the outside air. Finally, the left light is separated from the two waveguide elements 2 by the diffusion structure of the light exit surface 220 and distributed in the touch area 400. Inside. Then, the sensor 3 is combined with the lens 5 to receive all the light in the touch area. When the finger or other contact object is located in the touch area 4 (8), the light emitted from the light exit surface 220 to the touch area 4〇〇 is blocked, and the sensor 3 is not received after the blocked light is received. Further, it is determined that the finger or other contact object is located at a relative position of the touch area 400. Herein, the light emitted by the light-emitting element 1 (nine) is evenly distributed to the touch area 4〇〇 by the two waveguide elements 2〇〇, instead of using the light-reflecting strip to reflect the light emitted by the light-emitting element 7C. The optical touch module can increase the resistance to the ambient light source, and avoid the interaction between the light emitted by the conventional light-emitting element 1 and the light reflected by the reflective strip on the sensor 300. At the same time, the brightness of the light-emitting element 100 can be reduced, the current loss can be reduced, and the alignment accuracy of the optical touch module can be achieved. 2 is a top view of the optical touch module according to the second embodiment of the present invention. Please refer to Fig. 2 for reference to the foregoing embodiment. In this embodiment, the two waveguide elements 2 can also be disposed on one side of the touch M379764 region 400 adjacent to the light-emitting element 1A. The other of the two waveguide elements is disposed on the other side of the touch area 4A adjacent to the light-emitting element 100, wherein the end away from the light-emitting element 100 extends along the corner of the touch area 40 (four) A diagonal position opposite the brain spacing of the illuminating element. In the waveguide element in which the turning extends to a diagonal position opposite to the light-emitting element 100, a reflecting surface 250 can be formed at the position of the turning, and the light can be transmitted to the light-emitting element through the reflection surface in the fine reflection of the waveguide element. • Diagonal positions relative to each other. In this case, the light emitted by the illuminating element is transmitted to the three sides of the touch area 400 by the two waveguide elements 200, and the light is emitted by the waveguide element and evenly distributed in the touch area to replace the light. It is known that using the reflective strip to reflect the light emitted by the 2 element 100 can increase the resistance of the optical touch module to the ambient light source, and avoid the light emitted by the conventional light-emitting element (10) and the light reflected by the reflective strip to the sensor 300. The interaction caused. At the same time, it can achieve the reduction of the luminous party of the light-emitting element touch, reduce the current loss and the accuracy of the light_holding_alignment. Figure 3 is a plan view of the optical touch module according to the third embodiment of the present invention. Please refer to Fig. 3' for reference to the foregoing embodiment. In this embodiment, the optical touch module can include two light emitting elements 100 and three waveguide elements 200. In this embodiment, the touch area 4〇0 can be rectangular (quadrilateral). The sensor 3 is disposed at a corner of the touch area, and one of the two light-emitting elements is disposed at a corner of the touch area 400 opposite to the sensor 300, and the other of the two light-emitting elements 100 is set. The touch area 400 is adjacent to a corner of the sensor 300. The three waveguide elements 200 can be disposed on the side of the touch area between the two light-emitting elements. Two of the three waveguide elements 2〇0 are respectively disposed on the other side 11 of the touch area 400 adjacent to the light emitting element 100. According to the present invention, the silk touch module, t, will be directed to face each of the light-emitting elements 10. The second input " face 210 receives the light emitted by the parent-light-emitting element. By the difference of the refractive index of the external component of the waveguide element, the light is confined to the three waveguide elements, and finally the light leaves the three waveguide elements through the diffusing structure of the light exiting surface and is distributed in the touch area gamma. All the light in the touch area 400 is received by the sensor in combination with the lens. When the finger or other contact object is located in the touch area, the light that is emitted from the light exit surface 22 to the touch area is blocked. After sensing the light of the task, the sensor 300 will reduce the relative position of the other contact objects in the touch area 4GG. Here, the light emitted by the two light-emitting elements 100 is uniform by the three waveguide elements. Distributed to the touch area · for use. It is known that the use of reflective strips to reflect the light emitted by the light-emitting elements can increase the resistance of the optical touch module to the ambient light source, and avoid the conventional light-emitting elements. The interaction between the emitted light and the light reflected by the reflective strip on the sensor 3 。. At the same time, the illuminating brightness of the illuminating element 1 降低 is reduced, the current loss is reduced, and the optical The alignment accuracy of the touch module. Fig. 4 is a side view of the optical touch module according to the fourth embodiment of the present invention. Please refer to Fig. 4 for the reference to the foregoing embodiment. In this embodiment, the optical touch The control module includes a substrate 600. The substrate 600 can be located under the touch area 400. The substrate 600 can be a printed circuit board or can be an indium tin oxide (JJJdium TinOxide JTO) glass. In this embodiment, the sensor 300, The touch area 400 and the lens 500 can be located on the liquid crystal panel 700. The liquid crystal panel 700 can be composed of 12 MJ/9764, such as ITO glass, liquid crystal and filter. The light emitting element 100 can be located on the ITO glass (substrate 6 〇〇). ) facing the surface of the touch area 400. The waveguide 70 piece 200 may be adjacent to the light emitting element 1 〇 ( ) for injecting light emitted by the light emitting element 100 into the waveguide element 2 through the light incident surface 21 由 by the waveguide The component 200 conducts light to one side of the touch area 4. The light-emitting element 100 can be attached to the glass-lined process because of the conductive line and the transistor on the glass. Also produced in Yubo Then, the waveguide 7L member 200 is used to conduct the light emitted from the waveguide element 200 to the liquid crystal panel 7〇〇, and the light causes the light to leave the waveguide element 2 and emit the light to the touch region 4〇〇. In the disclosed optical touch module, the light-emitting element 1 is fabricated on the glass substrate (substrate_) of the liquid crystal panel, and the light emitted by the light-emitting element 100 is confined in the waveguide element 200 by the waveguide element to transmit the last light. The light exits the waveguide element 200 and is distributed in the touch area 4〇〇. The sensor 3〇〇 combines the lens 5〇〇 to receive all the light in the touch area 4〇〇. When the finger or other contact object is located When the area 400 is controlled, the light emitted from the light-emitting surface 22 to the touch area is blocked. After receiving the blocked light, the sensor 300 further determines that the finger or other contact object is located in the touch area 400. relative position. In this case, by forming the light-emitting element 100 on the substrate 600 and then distributing the light emitted by the light-emitting element 1 to the touch region 400 by using the waveguide element 2, the thickness of the optical touch module can be reduced. At the same time, the cost of separately manufacturing the light-emitting element on the printed circuit board or the like is reduced. Fig. 5 is a schematic view showing a vicinity of a waveguide element and a light-emitting element according to a fifth embodiment of the present invention. As shown in Fig. 5, reference is made to the fourth embodiment. In this embodiment, the wave 13 guiding member 200 may have a receiving area for accommodating the leakage of the light emitting element at one end, and the other end is divided into two sub-waveguide elements 2〇〇a and 2〇〇b respectively facing the touch area. The shape of the accommodating area in which the light-emitting elements 1 谷 are disposed on the two sides of the adjacent side may correspond to the shape of the light-emitting element and the inner wall of the accommodating area is the light-incident surface 21 〇. The light line b emitted from the light-emitting element 1 is transmitted through the light-incident surface 21 to the waveguide element 2, and the two sub-waveguides a 200b of the waveguide element conduct light to the adjacent side edges of the touch area. Here, the light-emitting element 1 is fabricated on the substrate_, and the light emitted from the light-emitting element 100 is received by the light-incident surface 210 of the waveguide element. The light rays are conducted by the two sub-waveguide elements 200a, 200b in the waveguide element 2 (8) to the adjacent two sides of the touch area 4A and are emitted to the touch area 4A. As described above, the thickness of the optical touch module can be reduced, and the cost of separately manufacturing the light-emitting element on the printed circuit board can be reduced. According to the optical touch module disclosed in the present invention, the light emitted by the light-emitting element 1 is evenly distributed to the touch area 400 by the waveguide element 2, thereby increasing the resistance of the optical touch module to the ambient light source. The illumination brightness of the light-emitting element 1 降低 is reduced, the current loss is reduced, and the alignment accuracy of the optical touch module is reduced. Please refer to Figure 6. Fig. 6 is a schematic view showing a waveguide module 800 according to a sixth embodiment of the present invention. The waveguide module 800 can be applied to the optical touch control module described in the present application. The waveguide module 800 is modified in accordance with the waveguide element 200 described above to more efficiently utilize the light provided by the illuminating element 1 while distributing the light evenly to the touch area. The waveguide module 800 includes a waveguide element 81A and a collector element 820. The structure and operation of the waveguide element 810 are similar to those of the waveguide element 2 described above. The waveguide element 81 is used to guide the light to diffuse along the waveguide element 81. The wave M379764 is provided with a light incident surface 811 and a light exiting surface 812. The light incident surface 811 faces the light emitting 7G member 100 to receive light. The light emitting surface 812 faces the touch area 4〇〇. The concentrating element 820 is configured to converge the light emitted from the light emitting surface 812 to concentrate the light on the touch area. In addition, the illuminating illuminating system is an infrared light emitting diode (that is, when the illuminating element 1 〇〇 emits infrared light), and the concentrating element (4) is an infrared permeable lens. ' Sound Please refer to Figure 7, Figure 8, Figure 9, Figure 1, and Figure u. Fig. 7 is a view for explaining the direct emission of light from the waveguide element to the touch area. 8 , 9 , 1 , and u are diagrams illustrating that the waveguide module 800 can more efficiently illuminate the light provided by the light-emitting element 1 by using the concentrating element 820 of different structures. A schematic diagram of the working principle of utilization. As can be seen from Fig. 7, since the light provided by the light-emitting element 100 is directly emitted from the waveguide element 200, the intensity of the light is approximately a lamberian distribution, that is, when the light is emitted from the waveguide element 200. When the light is evenly scattered in all directions. However, the light emitted from the waveguide element 2 is uniformly distributed in the vertical direction, so that part of the light is directly away from the touch area 4 (for example, the light LA as shown in FIG. 7). And some of the light is reflected by the substrate 600 away from the touch area 4 (for example, the light LB as shown in Fig. 7). In other words, the light provided by the light-emitting element 1〇〇 cannot be concentrated on the touch area 400. In this way, the energy of the light received by the sensor 3〇〇 is less, thus indicating that the signal-to-noise ratio of the signal received by the sensor 300 is reduced, and the optical touch module is less likely to determine the position of the finger or the contact object. . As shown in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, the concentrating element 82G may be a convex-concave lens, a 15 MJ/y/04 translucent i convex lens, or a flat mirror. More specifically, when a convex-concave lens is used (as shown in FIG. 8), the convex-concave lens is slammed, and the convex surface of the convex-concave lens faces the touch area == 82° is the lens (such as the 11th heart: ΓΓ 12, and the concave surface of the plano-concave lens faces the touch area 400. As can be seen from FIG. 8, FIG. 9 and FIG. H), and the U-picture, the concentrating element _ concentrating from the waveguide element 810 The light emitted by the light-emitting surface 812 can cause the first line to be close to the right of the touch area. Therefore, compared with the waveguide element 200, the waveguide module 800 converges the light emitted from the light-emitting surface 812 by the concentrating element 82, so that the light provided by the illuminating element 1 is not directly away from the touch area. It is also away from the touch area 4〇〇 after being reflected by the substrate 600. In this way, the light provided by the illuminating device 100 can be concentrated on the touch area 4〇〇, and the energy of the received light of the sensor is improved, that is, the sensor 3 is improved. The signal ratio of the signal. Therefore, the light box reduction group can more accurately ride the position of the finger or the contact object. Please refer to Figure 12. Figure 12 is a schematic view showing a waveguide module 900 according to a seventh embodiment of the present invention. The waveguide module 9A () further includes a holder 930 coupled to the concentrating element 820. The fixing member 930 is used to cover the waveguide member 810 to fix the waveguide module 900 on the substrate 600. 16 M379764 Further, the concentrating element 82 of the 12th is exemplified by a convex-concave lens, but the concentrating element 820 may also be a convex flat lens, a convex convex lens, or a plano-concave lens. Please refer to Figure 13. FIG. 13 is a view showing that the waveguide module 800 can guide the light provided by the light-emitting element 1 to be touched from a plurality of different sides of the touch area 400 by using a design of the waveguide element as described above. A schematic diagram of the area 4〇〇. In Fig. 13, the waveguide element (10) of the waveguide module 8 further includes a reflecting surface. The structure and working principle of the reflecting surface 815 is similar to that of the reflecting surface 25〇. The reflecting surface 815 is located at the turning point of the waveguide element 810. Reflecting surface 815 is used to enable light to be reflected within waveguide element 810 via reflective surface 815 without exiting through the corners of waveguide element 81. In other words, the waveguide module 800 can be disposed on the plurality of sides of the touch area 4 by the design of the reflective surface 815. For example, in FIG. 13, the waveguide module 8 is disposed on three sides of the touch area 400. In this way, in the optical touch module, only one light-emitting element (1〇〇) and one waveguide module (8〇〇) are needed, so that the light can be separated from the touch area 4 by a plurality of different ones. The side is introduced into the touch area 4〇〇, and the light is evenly distributed into the touch area. Further, similar to the waveguide element 2〇〇, the shape of the waveguide element 81〇 may be a wedge-type structure (as shown in FIGS. 1 to 3, the one end near the light-emitting element 100 is thicker, away from the end of the light-emitting element 100. Thinner) can also be a flat structure (as shown in Figure 13). Please refer to Figure 14. Fig. 14 is a schematic view showing the structure of the waveguide element 81. The waveguide element 810 further includes a light guide strip 813 and a reflective element 814. As shown in Fig. 14, the surface 8131 of the light guiding strip 813 is used as the light incident surface 811. Therefore, the surface 8131 of the light guiding strip 813 faces the light emitting element 1A. The surface 8132 17 M379764 of the light guiding strip 813 is used as the light emitting surface m. The reflective element _ is covered with a light guide strip. The reflecting element is configured to reflect the light emitted from the surface (10) of the light-emitting surface light guiding strip 813 back to the light guiding strip 813' so that the light guiding material of the waveguide element (4) is called the surface 8132 of the light guiding strip 813 from the light emitting surface. ) into the touch area 4〇〇. For example, when the light ray LC in Fig. 14 is incident on the surface 8133 of the light guiding strip 813, the light & is reflected back to the light guiding strip 813 by the reflecting element 814. Therefore, finally, the light ray Lc is emitted from the light-emitting surface 812 (the surface 8132 of the light guiding strip 813). Please refer to Figure 15. Fig. 15 is a schematic view showing another embodiment 1000 of the structure of the waveguide element. The waveguide element 1 〇〇〇 further includes a steering structure 1010 as compared to the waveguide element 810 of FIG. The steering structure 1 〇 1 用来 is used to transpose the light-incident surface 8 ι to face the substrate 600 and divert the light received from the illuminating surface 811 parallel to the substrate ‘ to guide the light to the light guiding strip 813. More specifically, in the waveguide element 1000, the light incident surface 811 can face the substrate 6A by the steering structure ι〇ι〇. Therefore, the light-emitting element 1 can be directly disposed on the substrate 600 without passing through other connectors to steer the light provided by the light-emitting element 1 . For example, in FIG. 15, the steering structure ι〇ι〇 is a structure in which the reflective element 814 and the light guiding strip 813 are turned to form a triangular structure, and one of the light rays Ld provided by the light emitting element 100 is incident upward. When the steering structure is 1〇1〇, the light LD passes through the light guiding strip 813 first, and then is reflected by the portion of the steering structure 1〇1 that belongs to the reflecting element 814, and turns to the right. Further, since the waveguide element is in a flat shape, the area of the surface 8131 (light incident surface 811) of the light guiding strip 813 in Fig. 14 is extremely small. Thus, the light supplied from the light-emitting element 100 cannot be efficiently incident on the surface 8131 (light-incident surface 811) of the light guiding strip 813. However, in Fig. 15, since the light incident surface 811 of the steering structure 1_ can be faced to the substrate _ by 18, even if the waveguide element is drawn in a flat shape, the area of the light incident surface 811 is not limited. Thus, the area of the light incident surface 811 can be designed to be large enough to effectively receive the light provided by the light-emitting element. Referring to Figure 16 and Figure 16 of the month, the pure _ of the hard-to-face surface of the optical touch module using the waveguide module is illustrated. The wire-hard module brain includes a touch area 161G, a sensor 162A, a light-emitting element 163(), and a waveguide module 1640. The sensor 162 is located at one of the first corners of the touch area 161 (in the fourth (in the fourth), the upper right corner is taken as an example). The light-emitting element 163 is disposed on one of the first side of the touch area 161 (in the 16th figure, the left side is exemplified) for providing light. The waveguide module 1640' is disposed on three sides of the touch area 161 to uniformly distribute the light provided by the light-emitting element 至 to the touch area 161. The waveguide module 640 is implemented by using the structure of the waveguide module described in FIG. 6 to FIG. 15 , and the light incident surface of the waveguide component of the waveguide module 1640 can face the substrate below, so that the light emitting element 163 can be directly disposed on The substrate corresponds to the position of the light incident surface of the waveguide element of the waveguide module 1640. In this manner, the light provided by the light-emitting element 1630 can be concentrated by the waveguide element 164 and the concentrating element to concentrate on the touch area 1610, thereby increasing the signal-to-noise ratio of the signal received by the sensor 1620. Therefore, the optical touch module 16 can more accurately determine the position of the finger or the contact. In addition, in FIG. 6 , the optical touch module 16 〇〇 includes only one light-emitting element 1630 as an example. By the design of the reflective surface 815 of the waveguide element 810 , the waveguide module 1640 can provide the light-emitting element 1630 . The light guides the three sides of the touch area 161 into the touch area 161 (however, when the position of the light element 19 M379764 of the optical touch module 16 changes, the optical touch group The number of positions of the lion scale pool can also be correspondingly designed according to the foregoing description. For example, the optical touch module 1_ can be implemented in a manner similar to the 帛i diagram, that is, the two waveguide mode components are set in touch. Controlling both sides of the area, and receiving the light provided by the same light-emitting element to guide the light from the two (four) of the touch area; the wire touch-laying surface can also be implemented by means of Figure 2, that is, The three waveguide modules are respectively disposed on the three sides of the touch area to guide the three sides of the personal touch area provided by the two light-emitting elements; or the optical touch module 1600 can also be simplified (4) Method implementation, that is, a first waveguide module set The first side (left side), the second waveguide module is designed by the reflective surface to set the second side (lower side) and the third side (right side) of the Wei domain - Receiving light from the same light-emitting element with the second waveguide module and directing light from the first, second, and third sides of the touch area to the touch area. Chi, can be thinner than the silk touch module. The waveguide of this creation, the light emitted from the material component by the concentrating component can be concentrated on the touch area of the optical touch module. The light provided by the illuminating element can effectively increase the signal-to-noise ratio of the signal of the ❹m. Therefore, the optical touch module can more accurately determine the position of the finger or the contact object. The group, by the design of the steering structure, can make the human silk face the substrate. Therefore, the area of the human filament is relatively free of _, and the light provided by the illuminating element can be effectively received, and the component can be woven on the button. More convenient. The above is only for reading good _, Fan Yiyi creation ^ The equal changes and modifications made in the scope of patents 20 shall fall within the scope of this creation. [Simplified description of the drawings] Figure 1 is a view of the optical contact area (10) according to the first-solid part of the creation. The optical touch panel according to the second embodiment is a top view of the optical touch module according to the third embodiment of the present invention. FIG. 4 is an optical touch according to the fourth embodiment of the present creation. Figure 5 is a schematic view of a waveguide element according to a fifth embodiment of the present invention adjacent to the light-emitting element. Figure 6 is a diagram illustrating a waveguide module according to a sixth embodiment of the present invention. Fig. 7 is a schematic diagram of the direct injection of the waveguide element from the waveguide element to the region. Fig. 8, Fig. 9, Fig. 1Q, and u_, for the waveguide element, provided by the illuminating element A schematic diagram of the working principle of light more efficient use. Fig. 12 is a view for explaining the waveguide module according to the seventh embodiment of the present invention. Figure 13 is a schematic view showing the reflecting surface of the waveguide element. Fig. 14 is a schematic view showing the structure of a waveguide element. Fig. 15 is a schematic view showing another embodiment of the structure of the waveguide element. Fig. 16 is a schematic view showing the light control mode 3 of the inspection module. [Main component symbol description] 100, 1630 light-emitting element 200a > 200b sub-waveguide element. 3〇〇, 1620 sensor M379764 400 , 1610 500 600 700 800 , 900 , 1000 1640 810 , 200 820 811 ' 210 812 , 220 813 814 815 930 1010 1600

8131 〜8133 A8131 ~ 8133 A

La 〜Ld 觸控區域 透鏡 基板 液晶面板 波導模組 波導元件 聚光元件 入光面 出光面 導光條 反射元件 反射面 固定元件 轉向結構 光學觸控模組 表面 收光角度 光線 22La ~ Ld Touch area Lens Substrate Liquid crystal panel Waveguide module Waveguide component Concentrating component Into the light surface Emission surface Light guide strip Reflective element Reflecting surface Fixed component Steering structure Optical touch module Surface Dimming angle Light 22

Claims (1)

M379764 六、申請專利範圍: 1. 一種波導模組,適用於一光學觸控模組,該光學觸控模組包含 -觸控區域、-感測器與-發光元件,該感測器位於該觸控區 域之一第一角落,該發光元件用以提供一光線,該波導模組與 該發光元件设置在該觸控區域之一第一側邊,用以將該發光元 件所提供之該光線均勻分佈至該觸控區域,該波導模組包含: 一波導元件(light guide),用來引導該光線沿著該波導元件擴 散,包含: 一入光面,面向該發光元件以接收該光線;以及 一出光面,面向該觸控區域;以及 一聚光元件,用來匯聚從該出光面所射出之該光線,以使該光 線集中散佈於該觸控區域。 2·如請求項1所述之波導模組,其中該波導元件另包含: 一導光條’該導光條之一第一表面用來作為該入光面,該導光 條之一第二表面用來作為該出光面;以及 一反射元件’包覆該導光條’用來反射非從該出光面所射出之 該光線回到該導光條’以使該波導元件所引導之該光線從該 出光面射入該觸控區域。 3.如請求項1所述之波導模組,其中該發光元件係為紅外光發光 二極體,且該聚光元件係為可透紅外光之透鏡。 23 M379764 4.如切求項1所述之波導模組,其中該波導模組另包含有一固定 元件(holder).,用來包覆該波導元件以將該波導模組固定於一基 板。 5_如凊求項4所述之波導模組,其巾絲板係為觸氧化物(ιτ〇) 玻璃。 6.如凊求項4所述之波導馳,其中該發光元件位於該觸控區域 之一第二側邊之一第二角落; 其中該第一侧邊與該第二側邊相對。 如請求項6所述之波導模組,其中該波導模組另包含一轉向結 構,該轉向結構絲將該人光_置為面向該基板,並將自該 入光面所減之光_向為平行於該絲,且雜光元件設置 於5玄基板而該發光元件對該入光面發光。 i所述之錄,其中該聚光元件係為凸凹透鏡、 凸平透鏡、凸凸透鏡,或是平凹透鏡。 9·如請求項8所述之波導模組, 24 M379764 之凸面面向該出光面,且該凸平透鏡時之平面面向該觸控區 域;當該聚光元件為一平凹透鏡時,該平凹透鏡之平面面向該 出光面,且該平凹透鏡之凹面面向該觸控區域。 10.如請求項1所述之波導模組,其中該波導元件另包含一反射面, 該反射面位於該波導元件之一轉折處,用來使該光線能經由該 反射面以在該波導元件内反射而不經由該波導元件之該轉折處 射出。 11. 一種光學觸控模組,包含: 一觸控區域; 一感測器’位於該觸控區域之一第一角落; 一發光元件,设置在該觸控區域之一第一侧邊,用以提供一光 線;以及 波導模組’ 3又置在該觸控區域之該第一侧邊,用以將該發光 元件所提供之該光線均勻分佈至該觸控區域,該波導模組包 含: 一波導元件,用來引導該光線沿著該波導元件擴散,包含: 一入光面,面向該發光元件以接收該光線;以及 一出光面,面向該觸控區域;以及 一聚光元件,用來匯聚從該出光面所射出之該光線,以使該 光線集中散佈於該觸控區域。 25 如印求項11所述之光學觸控模組,其中該波導元件另包含: 一導光條’該導光狀-第-表面用來作為該人光面,該導光 條之一第一表面用來作為該出光面丨以及 一反射元件,包覆該導光條’用來反射雜該出光面所射出之 該光線回_導光條,崎誠導元件所將之該光線從該 出光面射入該觸控區域。 13·如请求項11所述之光學觸控模組,其中該發光元件係為紅外光 發光二極體,且該聚光元件係為可透紅外光之透鏡。 14.如請求項1丨所述之光學觸控模組,其中該波導模組另包含有一 固定元件,絲包覆該波導元件以將該波賴組固定於一基板。 15·如請求項14所述之光學觸控模組,其中該基板係為銦錫氧化物 坡璃。 Μ·如請求項14所述之光學觸控模組,其中該發光元件位於該觸控 區域之一第二侧邊之一第二角落; 其中該第一侧邊與該第二側邊相對。 17.如請求項16所述之光學觸控模組,其中該波導模組另包含一轉 向結構,該轉向結構用來將該入光面轉置為面向該基板,並將 自該入光面所接收之光線轉向為平行於該基板,且該發光元件 26 M379764 設置於該基板而該發光元件對該人光面發光。 I8·如睛求項11所述之光學觸控模組,其中該聚光元件係為凸凹透 鏡、凸平透鏡、凸凸透鏡,或是平凹透鏡。 19. 如請求項18所述之光學觸控模組,其中當該聚光元件為凸凹透 鏡時,該凸凹透鏡之凸面面向該出光面,且該凸凹透鏡之凹面 面向該觸控區域;當該聚光元件為凸平透鏡時,該凸平透鏡之 凸面面向該出光面,且該凸平透鏡時之平面面向該觸控區域; 當該聚光元件為平凹透鏡時,該平凹透鏡之平面面向該出光 面,且該平凹透鏡之凹面面向該觸控區域。 20. 如請求項11所述之光學觸控模組,其中該波導元件另包含一反 射面,該反射面位於該波導元件之一轉折處,用來使該光線能 經由該反射面以在該波導元件内反射而不經由該波導元件之該 轉折處射出。 七、囷式: 27M379764 VI. Patent Application Range: 1. A waveguide module suitable for an optical touch module, the optical touch module comprising a touch area, a sensor and a light-emitting element, wherein the sensor is located a first corner of the touch area, the light emitting element is configured to provide a light, and the waveguide module and the light emitting element are disposed on a first side of the touch area for the light provided by the light emitting element Evenly distributed to the touch area, the waveguide module includes: a light guide for guiding the light to diffuse along the waveguide element, comprising: a light incident surface facing the light emitting element to receive the light; And a light emitting surface facing the touch area; and a light collecting element for collecting the light emitted from the light emitting surface to concentrate the light on the touch area. The waveguide module of claim 1, wherein the waveguide component further comprises: a light guiding strip, wherein a first surface of the light guiding strip is used as the light incident surface, and the light guiding strip is second a surface is used as the light-emitting surface; and a reflective element 'covers the light-guiding strip' for reflecting the light that is not emitted from the light-emitting surface back to the light-guiding strip 'to direct the light guided by the waveguide element The light-emitting surface is incident on the touch area. 3. The waveguide module of claim 1, wherein the illuminating element is an infrared light emitting diode, and the concentrating element is an infrared permeable lens. The waveguide module of claim 1, wherein the waveguide module further comprises a fixing member for covering the waveguide member to fix the waveguide module to a substrate. 5_ The waveguide module according to claim 4, wherein the towel board is made of oxy-cerium. 6. The waveguide of claim 4, wherein the light emitting element is located at a second corner of one of the second sides of the touch area; wherein the first side is opposite the second side. The waveguide module of claim 6, wherein the waveguide module further comprises a steering structure, the steering structure wire is configured to face the substrate, and the light subtracted from the light incident surface The light-emitting element is disposed parallel to the wire, and the stray light element is disposed on the light-emitting surface. In the recording, the concentrating element is a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. The waveguide module of claim 8, wherein the convex surface of the 24 M379764 faces the light emitting surface, and the plane of the convex flat lens faces the touch area; when the light collecting element is a plano-concave lens, the flat concave lens The plane faces the light exiting surface, and the concave surface of the plano-concave lens faces the touch area. 10. The waveguide module of claim 1, wherein the waveguide component further comprises a reflective surface located at a corner of the waveguide element for enabling the light to pass through the reflective surface at the waveguide component The internal reflection is not emitted through the corner of the waveguide element. An optical touch module comprising: a touch area; a sensor 'located in a first corner of the touch area; a light emitting element disposed on a first side of the touch area, Providing a light beam; and the waveguide module 3 is disposed on the first side of the touch area for uniformly distributing the light provided by the light emitting element to the touch area, the waveguide module comprising: a waveguide element for guiding the light to diffuse along the waveguide element, comprising: a light incident surface facing the light emitting element to receive the light; and a light emitting surface facing the touch area; and a light collecting element, The light emitted from the light exiting surface is concentrated to cause the light to be concentratedly distributed in the touch area. The optical touch module of claim 11, wherein the waveguide component further comprises: a light guiding strip 'the light guiding shape-the first surface is used as the light surface of the person, and the light guiding strip is one of the light guiding strips a surface is used as the light-emitting surface and a reflective element, and the light-guiding strip is covered to reflect the light emitted from the light-emitting surface, and the light is emitted from the The light emitting surface is incident on the touch area. The optical touch module of claim 11, wherein the light emitting element is an infrared light emitting diode, and the light collecting element is a lens that can transmit infrared light. 14. The optical touch module of claim 1, wherein the waveguide module further comprises a fixing component, the wire encasing the waveguide component to fix the ray group to a substrate. The optical touch module of claim 14, wherein the substrate is indium tin oxide. The optical touch module of claim 14, wherein the light emitting element is located at a second corner of one of the second sides of the touch area; wherein the first side is opposite the second side. The optical touch module of claim 16, wherein the waveguide module further comprises a steering structure, the steering structure is configured to transpose the light incident surface to face the substrate, and the light incident surface is The received light is turned parallel to the substrate, and the light-emitting element 26 M379764 is disposed on the substrate and the light-emitting element emits light to the human surface. The optical touch module of claim 11, wherein the concentrating element is a convex-concave lens, a convex flat lens, a convex convex lens, or a plano-concave lens. The optical touch module of claim 18, wherein when the concentrating element is a convex-concave lens, the convex surface of the convex-concave lens faces the light-emitting surface, and the concave surface of the convex-concave lens faces the touch area; When the concentrating element is a convex flat lens, the convex surface of the convex flat lens faces the light emitting surface, and the plane of the convex flat lens faces the touch area; when the concentrating element is a plano-concave lens, the plane surface of the plano-concave lens The light exiting surface, and the concave surface of the plano-concave lens faces the touch area. 20. The optical touch module of claim 11, wherein the waveguide element further comprises a reflective surface, the reflective surface being located at a corner of the waveguide element for enabling the light to pass through the reflective surface The waveguide element reflects internally without exiting through the corner of the waveguide element. Seven, squat: 27
TW98220814U 2009-08-19 2009-11-10 Light guide module and optical touch module TWM379764U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23534509P 2009-08-19 2009-08-19

Publications (1)

Publication Number Publication Date
TWM379764U true TWM379764U (en) 2010-05-01

Family

ID=43786225

Family Applications (2)

Application Number Title Priority Date Filing Date
TW98138063A TWI410685B (en) 2009-02-25 2009-11-10 Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module
TW98220814U TWM379764U (en) 2009-08-19 2009-11-10 Light guide module and optical touch module

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW98138063A TWI410685B (en) 2009-02-25 2009-11-10 Light guide module, optical touch module, and method of increasing signal to noise ratio of optical touch module

Country Status (2)

Country Link
CN (1) CN101996003B (en)
TW (2) TWI410685B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423098B (en) * 2010-07-15 2014-01-11 Quanta Comp Inc Optical touch structure
TWI497376B (en) * 2011-07-22 2015-08-21 Rapt Ip Ltd Optical coupler assembly for use in an optical touch sensitive device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201239710A (en) * 2011-03-29 2012-10-01 Genius Electronic Optical Co Ltd Optical touch system
TWI456460B (en) 2011-06-02 2014-10-11 Pixart Imaging Inc Light path adjusting assembly and optical touch device suing the same
CN102830853B (en) * 2011-06-14 2016-08-03 原相科技股份有限公司 Light path adjusts assembly and uses the optical touch control apparatus of this structure
CN102841709A (en) * 2011-06-22 2012-12-26 原相科技股份有限公司 Light guide assembly and optical touch module with same
TWI452361B (en) * 2011-11-15 2014-09-11 Sonix Technology Co Ltd Light guide element, optical system and optical touch display module
CN203012682U (en) * 2012-11-30 2013-06-19 北京汇冠新技术股份有限公司 Infrared touch screen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4665240B2 (en) * 2001-06-25 2011-04-06 富士通株式会社 Optical transmission equipment
CN100498675C (en) * 2003-12-26 2009-06-10 北京汇冠新技术有限公司 Photoelectric detection positioning system and method for touch panel of computer
US8184108B2 (en) * 2004-06-30 2012-05-22 Poa Sana Liquidating Trust Apparatus and method for a folded optical element waveguide for use with light based touch screens
AU2006209811A1 (en) * 2005-02-07 2006-08-10 Rpo Pty Limited Waveguide design incorporating reflective optics
CN101432647B (en) * 2006-05-01 2013-01-30 Rpo私人有限公司 Waveguide materials for optical touch screens
US7369724B2 (en) * 2006-10-03 2008-05-06 National Semiconductor Corporation Apparatus and method for an improved lens structure for polymer wave guides which maximizes free space light coupling
TWM363032U (en) * 2009-02-25 2009-08-11 Pixart Imaging Inc Optical touch control module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI423098B (en) * 2010-07-15 2014-01-11 Quanta Comp Inc Optical touch structure
TWI497376B (en) * 2011-07-22 2015-08-21 Rapt Ip Ltd Optical coupler assembly for use in an optical touch sensitive device

Also Published As

Publication number Publication date
CN101996003B (en) 2012-12-26
CN101996003A (en) 2011-03-30
TWI410685B (en) 2013-10-01
TW201107807A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
TWM379764U (en) Light guide module and optical touch module
CN110263773B (en) Display module, display device and manufacturing method of grating film layer
CN109478083B (en) Optical fingerprint sensor with force sensing capability
US8860696B2 (en) Integrated touch-sensing display apparatus and method of operating the same
US8854336B2 (en) Light guide module, optical touch module, and method of increasing a signal to noise ratio of an optical touch module
JP4513918B2 (en) Illumination device and electro-optical device
WO2020077498A1 (en) Light emitting device, biometric feature detection device, and electronic apparatus
CN111052137A (en) Optical fingerprint identification device and electronic equipment
JP5515280B2 (en) Position detecting device and electro-optical device
TWM363032U (en) Optical touch control module
JP2009295318A (en) Lighting system and electro-optical device
TWM517370U (en) Optical touch control apparatus
JP2014021790A (en) Coordinate input device, coordinate detection method and coordinate input system
US9880669B2 (en) Touch panel with infrared light receiving elements, and display device
US11417141B2 (en) In-screen fingerprint identification apparatus and electronic device
US8462138B2 (en) Optical touch module capable of increasing light emitting angle of light emitting unit
TWM379804U (en) Optical position detecting device
WO2013094376A1 (en) Input system
CN211087258U (en) Optical fingerprint identification device and electronic equipment
JP2013250815A (en) Coordinate input device and coordinate input system
WO2013128734A1 (en) Input device, and input system provided with said input device
JP2013250817A (en) Coordinate input device and coordinate input system
JP2016151988A (en) Input system
WO2021128025A1 (en) Fingerprint recognition apparatus, backlight module, display screen, and electronic device
JP5823283B2 (en) Operation member having a light emitting unit, and input system including the operation member

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model