TWM378489U - Antenna of double star global satellite positioning system - Google Patents

Antenna of double star global satellite positioning system Download PDF

Info

Publication number
TWM378489U
TWM378489U TW98213659U TW98213659U TWM378489U TW M378489 U TWM378489 U TW M378489U TW 98213659 U TW98213659 U TW 98213659U TW 98213659 U TW98213659 U TW 98213659U TW M378489 U TWM378489 U TW M378489U
Authority
TW
Taiwan
Prior art keywords
circuit layer
layer
antenna
amplifier circuit
positioning system
Prior art date
Application number
TW98213659U
Other languages
Chinese (zh)
Inventor
Ming-Feng Liu
Li-Yang Cai
ji-xiong Lin
jian-kun Zhang
Ren-Jie Lin
Bo-Cun Chen
Original Assignee
Allis Comm Company Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allis Comm Company Ltd filed Critical Allis Comm Company Ltd
Priority to TW98213659U priority Critical patent/TWM378489U/en
Publication of TWM378489U publication Critical patent/TWM378489U/en

Links

Description

M378489 .五、新型說明: 【新型所屬之技術領域】 本創作為提供一種全球衛星定位系統之天 線’ 一種能達到高頻寬之圓形極化的雙星全球 衛星疋位系統之天線。 【先前技術】 按’目前正在運行的全球衛星定位系統有 φ 美國的(Global Position System-GPS)-全 球衛星定位系統和俄羅斯的(G1〇bal Navigati on Satellite System— GLONASS)—全球導航 衛星系統’而GPS系統共有2 4顆定位衛星, 分6個軌道面,每個執道面分佈4顆衛星,其 中3顆衛星待命備用在距離地球表面約2 〇, 000公里的太空執道中運行,執道面傾斜角 為5 5度,提供全球全天候,每秒一次持續不 鲁斷的疋位訊號,目前一共有25顆定位衛星可 供使用。 目前GPS —全球衛星定位系統的量測訊號 在兩個頻率上播放:主要的訊號在i 5 7 5. 4 2 MHz (L1)而另一個在 1227. 6 MHz (L 2)° 另外’為蘇聯太空計劃部於1 9 7 〇年開 始發展,其功能類似GPS系統,亦是一全球性、 全天候2 4小時使用之定位系統,glonasS—全 3 M378489 球導航衛星糸統主要的訊號在1600 MHz- 、 1 6 1 0 MHz ° 而這些訊號是同步產生,因此,如果用戶 的設備可以同時接收這兩個訊號的話,就可以 有更多衛星可調整因電離層、離子層、震盪器 時間差...等所產生的誤差,越多顆的衛星進入演 算,則準確度就能更準確,但是,一般GPS用 戶的設備性能只能接收美國GPS L1訊號而已。 然而,近幾年俄羅斯在中國的資助下,GL0 φ NASS的衛星數已經達到可營運的數量了 :,.因此 全球許多系統廠商已紛紛投入開發雙星定位系 統的解碼器,而民用頻帶L1部份,GPS使用頻 率到GLONASS使用頻率的頻寬約60MHz,一般使 用陶瓷設計的GPS天線只有20MHz,且其陶瓷物 理特性的關係,A X i a 1 R a t i 〇 (轴比)十分窄頻, 因此使用陶瓷設計的Patch (貼片式)天線,使 用起來收訊效果並不佳。 馨 是以,要如何解決上述習用之問題與缺 失,即為本創作之創作人與從事此行業之相關 廠商所亟欲研究改善之方向所在者。 【新型内容】 故,本創作之創作人有鑑於上述缺失,乃 搜集相關資料,經由多方評估及考量,並以從 事於此行業累積之多年經驗,經由不斷試作及 4 M378489 -修改’始設計出此種全球衛星定位系統 線’ 一種能達到高頻寬之圓形極化的雙 衛星定位系統之天線的新型專利者。 本創作之主要目的在於:一種雙星 星定位系統之天線,該天線主要由輻射 一介質層、線路層、第二介質層、接地 三介質層及放大器電路層所依序層疊構 輻射面上朝放大器電路層貫穿有複數導 鲁其中第一介質層之厚度係大於第二介質 三介質層進而產生頻率響應,另外輻射 導通孔可與介質層產生匹配獲得雙星之 應,再經由線路層之9 0度相位差枝幹| 術產生圓形極化’並透過放大器電路層 放大輸出,而上述該些介質層的材質係 玻璃纖維’藉以達到高頻寬之圓形極化 本創作之次要目的在於:由於第一 φ 之厚度係大於第二介質層及第三介質層 可產生不同的頻率響應。 本創作之另一目的在於:能將頻帶 5 5 0 MHz〜1 6 1 〇 MHz,而其 Axial 在此頻寬中皆低於3dB以内。 本創作之又一目的在於:於放大器 之天 星全球 全球衛 面、第 層、第 成,而 通孔, 層及第 面上之 頻率響 I合器技 將訊號 為利用 天線。 介質層 ,因此 達到1 Ratio 周圍之 M378489 【實施方式】 為達成上述目的及功效, 技術手段及構造,茲繪圖就 創作所採用之 詳加說明其特徵與功能如 劊作較佳實施例 請參閱第一圖、第—八俾,70全了解。 圖所示,係為本創作較佳於、第二圖及第三 圖、較佳實施例麵射面導例之立體示意 各層之披覆狀皞亍立_^之立體示意圖、 晷圖,由圖中可清接砉 面不 全球.星定位系創作係為一種雙星 射…、第-d;而:線1主要如輻 一入 ;丨霄盾11、線路層12、第 :二質層1 3、接地層1 4、第三介質層i 5 大器電路層1 6所依序層疊構成,而輻射 面1 0上朝放大器電路層1 6貫穿有複數導通 孔2,其中,導通孔2係包含一由該放大器電 路層1 6貫穿至該輻射面1 ◦之第一導通孔2 0’至少一由線路層1 2與放大器電路層1 6 導通之第二導通孔2 2、至少一由該輻射面1 〇貫穿至該線路層1 2之第三導通孔2 4及至 少一由接地層14與放大器電路層16之第四 導通孔2 6所組成。 由於第一介質層11之厚度係大於第二介 質層13及第三介質層15進而產生頻率響 應’另外界定於輻射面1 〇上之該些導通孔2 係可產生匹配後獲得雙星之頻率響應,再經由 6 iUJ/M89 -線路層1 2之9 〇 °相位差枝幹耦合器技術使 -訊號產生圓形極化,而放大器電路層1 6係可 供被動訊號由該導通孔2輸出並進行訊號放大 輪出’上述之該些介質層11 、13、15的 材質係為利用玻璃纖維’而線路層則運用枝幹 輕合器(Branch Line Hybrid)之技術,藉以達 到高頻寬之圓形極化天線。 由第三圖可清楚得知’第一介質層i丄之 鲁厚度係大於第二介質層13及第三介質層1 5 ’且由於各介質層1 1 、13、15係運用 破璃纖維,另外,線路層1 2透過第三導通孔 2 4與枝幹耦合器技術使訊號產生9 〇。旋轉 而產生圓形極化,而該些被動訊號經由第二導 通孔22透過放大器電路層16進行訊號放大 以便於輸出,此外,位於放大器電路層1 6周 圍之第四導通孔26則可除消除放大器電路層 ’ 16本身之EMI (電磁干擾)之功能外,亦有 產生電容電感效應達到天線匹配至雙頻天 功用。 # 言月同時配合參閱第四圖 布1圓夂第六圖 所示係為本創作頻率為丄5 7 3 MHz之輻射場 型圖、頻率為! 5 9 〇MHz之輻射場型圖及頻率 為1 6 1 ΟΜΗζ之輻射場型圖,由第四圖中得 知,操作於1 573 MHz頻率時,其正頂端正視 角峰値增益約為2dBi,而軸比(EUipticity 〇 7 M378489 f polarization(AR))則約為 2.g 1 ,且其透 過放大器電路層(請參閱第二圖所示)所輸出 的Gain値約為2 5 · 5 dB。 由弟五圖中得知 ^ ^ ,不 |卜 茨貝平 1 b y υ muz 時’其正頂端正視角峰値增益約為2 dBi’而軸 比(Ellipticity of p〇Urization(AR))則約 為2.7 8,且其透過放大器電路層(請參閱第 一圖所不)所輸出的Gain値約為2 6 . 8 dB。 由第六圖中得知’操作於頻率1 6 1 〇mHz 時〜其正頂端正視角峰値增益約為2 d时·,而軸 比(Ellipticity of p〇iarizati〇n(AR))則約 為2·5 6 ,且其透過放大器電路層(請參閱第 +圖所示)所輸出的Gain値約為2 γ.ΐ dB。 藉f上述方式所測得第四圖〜第六圖的輻射場 坚能得到較佳軸比及頻寬較寬之結果。 准,以上所述僅為本創作之較佳實施例而 $田非因此即偈限本創作之專利範圍,故舉凡 =本創作說明書及圖式内容所為之簡易修飾 等二結構變化,均應同理包含於本創作 利範圍内,合予陳明。 統之=所述,本創作之雙星全球衛星定位系 的,故:於使用時,為確實能達到其功效及目 人 創作誠為一實用性優異之創作,為 審委早曰賜、!二 提出申請,盼 早日賜准本創作,以保障創作人之辛苦 M378489 創作,倘若 鈞局審委有任何稽疑,請不吝來 函指示,創作人定當竭力配合,實感德便。 M378489 意 示 •體 立 之 例 施 實 佳 較 作 1 創 明本 說為。 單係圖 簡 式圖 圖一 ί 第 第一 A圖 係為本創作較佳實施例輻射面導通 孔之立體示意圖。 第 二 圖 係 為 本 創 作 各層之 披 覆 狀 態 不意 圖。 第 二 圖 係 為 第 一 圖 A - -A 剖 面 示 意 圖。 第 四 圖 係 為 本 創 作 頻帶為 1 5 7 3 MHz 之輻 射 場 型 圖 〇 第 五 圖 係 為 本 創 作 另一 .頻 帶 為 1 5 9 0 MHz 之 輻 射 場 型 圖。 第 六 圖 係 為 本 創 作 又一 -頻 帶 為 1 6 10 MHz 之 輻 射 場 型 圖。 [ 主 要 元 件 符 號 說 明 天 線 番 參 1 輻 射 面 1 0 第 一 介 質 層 1 1 線 路 層 1 2 第 二 介 質 層 1 3 接 地 層 1 4 第 二 介 質 層 1 5 放 大 器 電 路 層 1 6 導 通 孔 2 第 一 導 通 孔 鲁 • • · 2 0 10 M378489 第二導通孔 第三導通孔 第四導通孔M378489 . V. New description: [New technology field] This creation is to provide a global satellite positioning system antenna. A kind of antenna that can achieve the high-frequency wide circular polarization of the binary satellite global clamping system. [Prior Art] According to the 'current global positioning system, there are φ (Global Position System-GPS) - Global Positioning System (GPS) and Russia (G1〇bal Navigati on Satellite System - GLONASS) - Global Navigation Satellite System The GPS system has a total of 24 positioning satellites, divided into 6 orbital planes, and each satellite has 4 satellites, 3 of which are on standby for operation in a space of about 2,000 kilometers from the Earth's surface. With a face tilt angle of 55 degrees, it provides a universal, uninterrupted position signal every second, and there are currently 25 positioning satellites available. At present, the GPS-Global Positioning System (GPS) measurement signal is played on two frequencies: the main signal is at i 5 7 5. 4 2 MHz (L1) and the other at 1227. 6 MHz (L 2) ° The Space Planning Department began development in the year of 1970. It functions like a GPS system. It is also a global, all-weather 24-hour positioning system. The main signal of the glonassS-all 3 M378489 ball navigation satellite system is at 1600 MHz. , 1 6 1 0 MHz ° and these signals are generated synchronously. Therefore, if the user's device can receive these two signals at the same time, more satellites can be adjusted due to ionosphere, ion layer, oscillator time difference, etc. The resulting error, the more satellites enter the calculation, the accuracy can be more accurate, but the general GPS user's device performance can only receive the US GPS L1 signal. However, in recent years, with the support of Russia in China, the number of satellites of GL0 φ NASS has reached the operational number: therefore, many system manufacturers around the world have invested in the development of decoders for dual-star positioning systems, and the L1 part of the civilian frequency band. The frequency of GPS use frequency to GLONASS is about 60MHz. Generally, the GPS antenna designed by ceramics is only 20MHz, and the relationship between ceramic physical properties and AX ia 1 R ati 轴 (axis ratio) is very narrow, so the ceramic design is used. The patch (slice type) antenna is not good for receiving. Xin is how to solve the above problems and problems in the past, that is, the creators of the creation and the relevant manufacturers engaged in this industry are eager to study the direction of improvement. [New content] Therefore, the creators of this creation, in view of the above-mentioned deficiencies, are collecting relevant information, and through multiple assessments and considerations, and through years of experience in the industry, through continuous trials and 4 M378489 - modified 'start design This global satellite positioning system line is a new patent for an antenna that can achieve a high-frequency wide circular polarization dual satellite positioning system. The main purpose of the present invention is: an antenna of a dual star positioning system, which is mainly composed of a radiation layer, a circuit layer, a second dielectric layer, a grounded dielectric layer and an amplifier circuit layer. The circuit layer runs through a plurality of guides, wherein the thickness of the first dielectric layer is greater than the dielectric gradient of the second dielectric to generate a frequency response, and the radiation vias can be matched with the dielectric layer to obtain a double star, and then pass through the circuit layer at 90 degrees. Phase difference branches | The technique produces a circular polarization 'and amplifies the output through the amplifier circuit layer, and the above-mentioned dielectric layers are made of fiberglass' to achieve high-frequency wide circular polarization. The second purpose of this creation is: A thickness of φ greater than the second dielectric layer and the third dielectric layer can produce different frequency responses. Another purpose of this creation is to be able to range from 5 5 0 MHz to 1 6 1 〇 MHz, and its Axial is less than 3 dB in this bandwidth. Another purpose of this creation is to use the antenna in the global global surface, the first layer, and the first generation of the antenna of the amplifier, and the frequency response of the through hole, the layer and the surface. M378489, which achieves the above purpose and effect, technical means and structure, and the features and functions of the drawing are described in detail. A picture, the first gossip, 70 full understanding. The figure is a three-dimensional schematic diagram and a schematic diagram of the draping of the layers of the surface of the preferred embodiment, the second figure and the third figure, and the surface of the preferred embodiment. In the figure, the 砉 砉 不 不 不 . 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星 星3, the ground layer 1 4, the third dielectric layer i 5 the large circuit layer 16 is sequentially stacked, and the radiating surface 10 has a plurality of via holes 2 penetrating toward the amplifier circuit layer 16, wherein the via hole 2 is Included in the first via hole 20' through which the amplifier circuit layer 16 penetrates to the radiating surface 1 至少, at least one second via hole 2 that is electrically connected to the amplifier circuit layer 16 by the circuit layer 12, at least one The radiating surface 1 〇 extends through the third via hole 24 of the circuit layer 12 and at least one of the ground via layer 14 and the fourth via hole 26 of the amplifier circuit layer 16. Since the thickness of the first dielectric layer 11 is greater than the second dielectric layer 13 and the third dielectric layer 15 to generate a frequency response, the via holes 2 additionally defined on the radiating surface 1 可 can generate a frequency response of the binary star after matching. Then, through the 6 iUJ/M89-line layer 1 2 〇° phase difference branching coupler technology, the signal is circularly polarized, and the amplifier circuit layer 16 is used for the passive signal to be outputted by the via hole 2 and The signal amplification is performed by 'the above-mentioned dielectric layers 11, 13, 15 are made of glass fiber', and the circuit layer is made of a Branch Line Hybrid technique, thereby achieving a high-frequency wide circular pole. Antenna. It can be clearly seen from the third figure that the thickness of the first dielectric layer is greater than that of the second dielectric layer 13 and the third dielectric layer 15 5 and because each of the dielectric layers 1 1 , 13 , 15 uses a glass fiber. In addition, the circuit layer 12 transmits the signal through the third via hole 24 and the branch coupler technology to generate 9 〇. Rotating to generate circular polarization, and the passive signals are amplified by the second conductive via 22 through the amplifier circuit layer 16 for output, and the fourth via hole 26 around the amplifier circuit layer 16 can be eliminated. In addition to the EMI (electromagnetic interference) function of the amplifier circuit layer '16 itself, there is also a capacitive inductance effect to achieve antenna matching to dual-frequency antenna function. #月月 at the same time with reference to the fourth picture. The first picture of the circle 1 is the radiation field pattern of the creation frequency of 丄5 7 3 MHz, the frequency is! The radiation field pattern of 5 9 〇MHz and the radiation field pattern with a frequency of 1 6 1 , are known from the fourth figure. When operating at 1 573 MHz, the positive top-view peak-angle gain is about 2 dBi. The axial ratio (EUipticity 〇7 M378489 f polarization(AR)) is about 2.g 1 , and the Gain値 output through the amplifier circuit layer (see the second figure) is about 2 5 · 5 dB. It is known from the fifth picture that ^ ^ , not | Buzzepin 1 by υ muz 'the positive top positive angle peak 値 gain is about 2 dBi' and the axial ratio (Ellipticity of p〇Urization (AR)) is about It is 2.7 8, and its Gain値 output through the amplifier circuit layer (see the first figure) is about 26.68 dB. It is known from the sixth figure that 'when operating at a frequency of 16 1 〇mHz~ its positive peak positive viewing angle peak 値 gain is about 2 d·, and the axial ratio (Ellipticity of p〇iarizati〇n(AR)) is about It is 2·5 6 and its output Gain値 through the amplifier circuit layer (see Figure +) is about 2 γ.ΐ dB. The radiation field of the fourth to sixth graphs measured by the above method is the result of obtaining a better axial ratio and a wider bandwidth. As mentioned above, the above description is only a preferred embodiment of the present invention, and Tian Fei is therefore limited to the scope of the patent of this creation. Therefore, the two structural changes, such as the simple modification of the creation manual and the graphic content, should be the same. It is included in the scope of this creation and is combined with Chen Ming. Tongzhi = said, the creation of the double-star global satellite positioning system, therefore: in use, in order to achieve its efficacy and the creation of the person is a practical and excellent creation, for the trial committee early, give! To apply, I hope to grant this creation as soon as possible to protect the creator's hard work M378489. If there is any doubt in the ruling committee, please do not hesitate to give instructions, the creator will try his best to cooperate and feel good. M378489 means that the example of physique is better than that of 1 Creativity. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a radiation surface via hole in a preferred embodiment of the present invention. The second figure is the disambiguation state of each layer of this creation. The second figure is a cross-sectional view of the first figure A - -A. The fourth picture is the radiation field pattern of the creation band of 1 5 7 3 MHz. The fifth picture is the radiation field pattern of the other band with a frequency band of 1 5 9 0 MHz. The sixth picture shows a radiation field pattern with a frequency band of 1 6 10 MHz. [Main component symbol description Antenna parameter 1 Radiation surface 1 0 First dielectric layer 1 1 Circuit layer 1 2 Second dielectric layer 1 3 Ground layer 1 4 Second dielectric layer 1 5 Amplifier circuit layer 1 6 Via 2 First conduction Konglu • • · 2 0 10 M378489 Second via hole third via hole fourth via hole

Claims (1)

M378489 六、申請專利範圍: 1 、一種雙星全球衛星定位系統之天線,該天 線係包含: 一輻射面,該輻射面係披覆於一第一介質 層之一側面; 一線路層,該線路層係披覆於該第一介質 層且背離該輻射面之側面,並於該線路層 另一側面則彼覆有一第二介質層; 一接地層,該接地層係披覆於該第二介質 ……層且背離該線路層.之側面,且該接地-層之 另一側面則彼覆有一第三介質層;及 一放大器電路層,係彼覆於該第三介質層 之另一側面,而該放大器電路層係形成有 複數供被動訊號傳輸之導通孔。 2、 如申請專利範圍第1項所述之雙星全球衛 星定位系統之天線,其中該導通孔係包含: 一由該放大器電路層貫穿並電性導通至該 輻射面之第一導通孔; 至少一由該線路層及該放大器電路層電性 導通之第二導通孔; 至少一由該輻射面貫穿並電性導通至該線 路層之第三導通孔;及 至少一由該接地層貫穿並電性導通至該放 大器電路層之第四導通孔。 3、 如申請專利範圍第2項所述之雙星全球衛 12 M378489 星定位系統之天線,其中該放大器電路層 之輻射訊號由該第二導通孔輸出並進行訊 號放大輸出。 4、如申請專利範圍第1項所述之雙星全球衛 星定位系統之天線,其中該第一介質層之 厚度係大於該第二介質層及該第三介質 層。 5 、如申請專利範圍第1項所述之雙星全球衛 星定位系統之天線,其中該等介質層係為 玻璃纖維。 6 、如申請專利範圍第1項所述之雙星全球衛 星定位系統之天線,其中該第四導通孔係 界定於該放大器電路層周圍以供除消除放 大器電路層本身之EM I (電磁干擾),亦 產生電容電感效應。 13M378489 VI. Patent application scope: 1. An antenna of a binary satellite global positioning system, the antenna comprising: a radiating surface, the radiating surface is coated on one side of a first dielectric layer; and a circuit layer, the circuit layer And a side of the circuit layer facing away from the radiation surface, and a second dielectric layer on the other side of the circuit layer; a ground layer, the ground layer is coated on the second medium... a layer facing away from the side of the circuit layer, and the other side of the ground layer is covered with a third dielectric layer; and an amplifier circuit layer overlying the other side of the third dielectric layer The amplifier circuit layer is formed with a plurality of via holes for passive signal transmission. 2. The antenna of the binary satellite global positioning system according to claim 1, wherein the via hole comprises: a first via hole penetrating through the amplifier circuit layer and electrically conducting to the radiation surface; at least one a second via hole electrically connected by the circuit layer and the amplifier circuit layer; at least one third via hole penetrating through the radiation surface and electrically conducting to the circuit layer; and at least one of the ground layer penetrates and electrically Conducting to a fourth via of the amplifier circuit layer. 3. The antenna of the Double Star Global Guardian 12 M378489 satellite positioning system according to claim 2, wherein the radiation signal of the amplifier circuit layer is output by the second via hole and amplified by the signal. 4. The antenna of the binary satellite global positioning system according to claim 1, wherein the first dielectric layer has a thickness greater than the second dielectric layer and the third dielectric layer. 5. The antenna of the Double Star Global Locator system according to claim 1, wherein the dielectric layers are glass fibers. 6. The antenna of the binary satellite global positioning system according to claim 1, wherein the fourth via hole is defined around the amplifier circuit layer for eliminating EM I (electromagnetic interference) of the amplifier circuit layer itself. A capacitive inductance effect is also produced. 13
TW98213659U 2009-07-24 2009-07-24 Antenna of double star global satellite positioning system TWM378489U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98213659U TWM378489U (en) 2009-07-24 2009-07-24 Antenna of double star global satellite positioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98213659U TWM378489U (en) 2009-07-24 2009-07-24 Antenna of double star global satellite positioning system

Publications (1)

Publication Number Publication Date
TWM378489U true TWM378489U (en) 2010-04-11

Family

ID=50595670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98213659U TWM378489U (en) 2009-07-24 2009-07-24 Antenna of double star global satellite positioning system

Country Status (1)

Country Link
TW (1) TWM378489U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505565B (en) * 2011-11-22 2015-10-21 Chunghwa Telecom Co Ltd Dual - frequency chip antenna structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI505565B (en) * 2011-11-22 2015-10-21 Chunghwa Telecom Co Ltd Dual - frequency chip antenna structure

Similar Documents

Publication Publication Date Title
CN106099337B (en) Large-scale K-band conformal antenna front and preparation method thereof
Lai et al. Interferometric mapping of magnetic fields in star-forming regions. I. W51 e1/e2 molecular cores
CN102117962B (en) Double-frequency antenna
WO2018049945A1 (en) High-precision real-time satellite positioning method
US20160070001A1 (en) Satellite navigation using side by side antennas
CN102509845B (en) Multimode occulting antenna with stable phase center
US10416268B2 (en) Multipolarized vector sensor array antenna system for search and rescue applications
US20150011159A1 (en) System for dual frequency range mobile two-way satellite communications
CN201797041U (en) Measurement type double-frequency microstrip antenna
JP5633900B2 (en) Partial discharge orientation apparatus and partial discharge orientation method
US8941540B2 (en) Antenna array
US6198439B1 (en) Multifunction printed-circuit antenna
WO2014176868A1 (en) Combined antenna and handheld antenna device
CN101916901A (en) Double-frequency microstrip antenna
KR101174739B1 (en) Dual patch antenna
CN104241826A (en) Broadband single-dielectric-layer GNSS measurement type antenna device
US9917369B2 (en) Compact broadband antenna system with enhanced multipath rejection
Song et al. Azimuth-elevation direction finding using a microphone and three orthogonal velocity sensors as a non-collocated subarray
TWM378489U (en) Antenna of double star global satellite positioning system
TW201121142A (en) Broadband circularly polarized annular ring slot antenna.
CN205264853U (en) Circular polarization satellite navigation antenna
Reddy et al. Dual band circularly polarized microstrip antenna for IRNSS reference receiver
Shupler et al. Geodetic GPS Antennas
Ando et al. Partial differential equation-based localization of a monopole source from a circular array
CN109783901A (en) Series feed VICTS flat plate array antenna scanning beam estimation method and device

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees