TWM360369U - Photographic lens, camera module, and photographic equipment - Google Patents

Photographic lens, camera module, and photographic equipment Download PDF

Info

Publication number
TWM360369U
TWM360369U TW97215722U TW97215722U TWM360369U TW M360369 U TWM360369 U TW M360369U TW 97215722 U TW97215722 U TW 97215722U TW 97215722 U TW97215722 U TW 97215722U TW M360369 U TWM360369 U TW M360369U
Authority
TW
Taiwan
Prior art keywords
lens
object side
photographic
curvature
radius
Prior art date
Application number
TW97215722U
Other languages
Chinese (zh)
Inventor
Takayuki Noda
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Publication of TWM360369U publication Critical patent/TWM360369U/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Description

M360369 五、新型說明: 【新型所屬之技術領域】 本創作係關於一種攝影設備,尤指一種適用在 CCD(Charge Coupled Device)或 CMOS(Complementary 5 Metal Oxide Semiconductor)等攝影元件上成像被拍攝體 的光學像的攝影透鏡、及將由其攝影透鏡形成的光學像轉 換成攝影信號的照相機模組、以及裝載該攝影透鏡而進行 攝影的數位相機或具攝影鏡頭的手機及個人數字助理 (PDA . Personal Digital Assistance)等攝影設備。 10 【先前技術】 ^近幾年,隨著個人電腦在一般家庭等的普及,可將插 2的風景或人物像等圖像資訊輸人到個人電腦的數位相搞 15 急速地普及。而且’在手機上裝載圖像輸入用照相機模細 的現象也多起來。在具有這種攝影功能的設備上使用 或CMOS等攝影元件。近幾年,該些攝影元件的微型化發 展’對攝料備㈣及裝餘其巾的攝影錢也要求微型 :。而j,同時攝影元件的高像素化也在發展,要求攝影 透鏡的高清晰度、高性能化。 化)及種要求’例如’為了達成微型化(光軸方向的縮短 -成本化、高清晰度化’將透鏡片數設為四片結構, 為了達成高性能化,可考膚籍 1〜4公卩^、1 使帛非球面。在專利文獻 二有為這種四片結構且使用非球面的攝影透鏡。 利文獻Π日本專利公開2〇〇4- 302057號公報 20 M360369 【專利文獻2】日本專利公開2〇07_丨7984號公報 【專利文獻3】日本專利公開2〇〇2 — 228922號公報 【專利文獻4】美國專利第6,917,479號說明書 在如上述攝影設備中,要求考慮量產性,並且將光學 、5性能的缺限限制為最小’並減少照相機模組整體的光軸方 、 肖的長度(=高度)。然而’若將透鏡後焦距(從透鏡的最靠 像側的位置到像面的距離)單純地設為過小,則一般難以滿 足光線的射出角度的規格或在最終透鏡面的劃痕、異物等 • 夕卜觀上的規格。而且’若將透鏡系統的厚度DL(DL:透鏡 10全厚度=從最靠近物體側的透鏡面的頂點到最靠近像側透 鏡面的頂點的距離)單純地設為過小,則有必要將各透鏡元 件的中心厚度〇設為過小,或使非球面的效果過強,產生 由透鏡形狀引起的成型時内部歪曲、轴偏移傾倒、由外觀 規格製造適當的缺限。從而,在進行全長脑化的情況下, 15有必要將透鏡後焦距、透鏡系統的厚度%、各透鏡元件的 中心厚度等設小,並且在適當條件下平衡地組裝它們,且 0 在量產性時維持良好的光學性能。 上述專利文獻1所述的攝影透鏡,由於光攔在第2透鏡 的後側,因此,若進行全長縮短化,則存在光線的射出角 2〇度容易急劇變大的問題。而且,在專利文獻2公開有各種種 類的四片結構的攝影透鏡,但报難說對每個實施例是非常 適合的設計。例如,關於焦距小的類型的實施例(表示4前 後的值),全長㈣於焦距之比大於】.25。其以外的實施例 的透鏡大’認為沒有充分考慮到對小型化的中心厚度等可 M360369 f3 :第3透鏡的焦距, f4 :第4透鏡的焦距, DL :從第1透鏡的物體側面頂點到第4透鏡的像側面頂 點的光軸上的距離, U1:第1透鏡的阿貝數, U 2 :第2透鏡的阿貝數, U3:第3透鏡的阿貝數,M360369 V. New Description: [New Technology Area] This creation is about a kind of photographic equipment, especially one that is suitable for imaging objects on photographic components such as CCD (Charge Coupled Device) or CMOS (Complementary 5 Metal Oxide Semiconductor). A photographic lens for an optical image, a camera module that converts an optical image formed by the photographic lens into a photographic signal, and a digital camera or a digital camera with a photographic lens mounted on the photographic lens (PDA. Personal Digital Assistance) and other photographic equipment. 10 [Prior Art] In recent years, with the popularization of personal computers in general households, it is possible to rapidly spread the image information of the scenery or the image of the person who is plugged into the personal computer. Moreover, the phenomenon of mounting a camera for image input on a mobile phone is also increased. A photographic element such as CMOS is used on a device having such a photographing function. In recent years, the miniaturization of these photographic components has also required micro-photographs for the preparation of photographs (4) and for the storage of their towels. On the other hand, at the same time, the high pixelation of the photographic elements is progressing, and high definition and high performance of the photographic lens are required. In order to achieve miniaturization (shortening in the direction of the optical axis - cost reduction, high definition), the number of lenses is set to four pieces, and in order to achieve high performance, the skin can be tested 1 to 4 The 卩^, 1 is aspherical. The patent document 2 has such a four-piece structure and uses an aspherical photographic lens. Japanese Patent Laid-Open Publication No. Hei 4-3-4057-A No. 20 M360369 [Patent Document 2] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. And limit the optical and 5-performance limitations to a minimum 'and reduce the optical axis of the camera module as a whole, and the length of the chord (= height). However, if the lens back focal length (from the most image side of the lens) When the distance to the image plane is simply too small, it is generally difficult to meet the specifications of the light emission angle or the scratches on the final lens surface, the foreign matter, etc., and the thickness of the lens system. DL (DL: the total thickness of the lens 10 = the distance from the vertex of the lens surface closest to the object side to the vertex closest to the image side lens surface) is simply too small, and it is necessary to set the center thickness of each lens element to 〇 Too small, or the effect of the aspherical surface is too strong, resulting in internal distortion due to the shape of the lens, tilting of the shaft, and proper defects in the appearance specifications. Therefore, in the case of full-length brainization, it is necessary to The lens back focal length, the thickness % of the lens system, the center thickness of each lens element, and the like are set small, and they are assembled in a balanced manner under appropriate conditions, and 0 maintains good optical performance in mass productivity. In the photographic lens, since the light is blocked on the rear side of the second lens, when the total length is shortened, there is a problem that the light emission angle 2 is easily increased rapidly. Further, Patent Document 2 discloses various types. A four-piece photographic lens, but it is difficult to say that it is a very suitable design for each embodiment. For example, an embodiment of a type with a small focal length (representing the value before and after 4), full length The ratio of the focal length is larger than 0.25. The lens larger than the other embodiments is considered to be insufficiently considered for the center thickness of the miniaturization, etc. M360369 f3: focal length of the third lens, f4: focal length of the fourth lens, DL: The distance from the vertex of the object side surface of the first lens to the optical axis of the apex of the image side surface of the fourth lens, U1: Abbe number of the first lens, U 2 : Abbe number of the second lens, U3: 3rd lens Abbe number,

10 υ 4 :第4透鏡的阿貝數。 在本創作的攝影透鏡中,作為整體為四片的透鏡結構 中,將透鏡系統的厚度DL保持在適當的範圍,並有效使用 非球面達成各透鏡形狀的最佳化,而且,収規定的條件 式而達成透鏡結構的最佳化,因而,能夠在考慮可製造性 的同時獲得全長的縮短化和高成像性能。 ^ 並且,進 1510 υ 4 : Abbe number of the 4th lens. In the photographic lens of the present invention, in the lens structure of four sheets as a whole, the thickness DL of the lens system is maintained in an appropriate range, and the aspherical surface is effectively used to optimize the shape of each lens, and the predetermined conditions are obtained. In the formula, the optimization of the lens structure is achieved, and thus, the shortening of the full length and the high imaging performance can be obtained while considering the manufacturability. ^ and, enter 15

歹达過週富選擇採用以下理扠 足,從而能夠考慮可製造性的同彳 ° ' 化或成像性能。 训#加_於全長的縮短 在本創作的攝影透鏡中,較佳 條件。 ~ W田選擇地滿足以下 20 '1.0^ f/R3 ^ 0.4 2.08^f/Ri^3.3 3.0mm^ DL^ 4.0mm 〇.l^MIN(D)/fS 1.0 此處, f :整體的焦距, ..(5) (6)..⑺.⑻ 7 -M360369 _— 曹 R1 :第1透鏡的物體側的面的近軸曲率半徑, R3 :第2透鏡的物體側的面的近軸曲率半徑, D L :從第1透鏡的物體側面頂點到第4透鏡的像側面頂 點的光抽上的距離, • 5 MIN(D):在第i至第4透鏡之中最小的中心厚度的值 、 (mm)。而且,在式(8)中的f、MIN(D)的單位設為爪爪。 而且,第1透鏡的像側的面在光軸附近較佳為凸形狀。 而且,第1透鏡、第2透鏡、第3透鏡、及第4透鏡分別 • 由樹脂材料構成也可。由此,有利於製造成本的降低。但, 10為了達成高性能化,例如由玻璃材料構成第丨透鏡也可。 _根據本創作的照相機模組包括:本創作的攝影透鏡、 輸出按照由此攝影透鏡形成的光學像的攝影信號的攝影元 ^在根據本創作的照相機模組中,根據透過本創作的攝 15影透鏡的高清晰度的光學像可獲得高清晰度的攝影信號。 而且基於本創作的攝影透鏡因達成全長縮短化,所以, 使用攝影透鏡組裝的相機模組整體可達成小型化。 模組基於本釗作的攝影設備是包括根據本創作的照相機 心f ^創作的攝影設備中,根據透過本創作的照相 U “于的高清晰度的光學像可獲得高清晰度的攝影信 I ’根據其攝影信號可獲得高清晰度的攝影圖像。 本創作的攝影透鏡,在整體為四片透鏡結構中, 、田軌圍内保持透鏡系統的厚度DL ’並有效率地使用非 20 M360369 球面達成各透鏡形狀的最佳化,而且,滿足規定的條件式 達成透鏡結構的最佳化,所以,能夠在全長的縮短化的同 時維持和高成像性能,並可實現製造適當良好的透鏡系統。 而且,根據本創作的照相機模組,透過具有全長的縮 5短化和高成像性能的本創作的攝影透鏡形成的光學像相對 應的攝影信號輸出,可獲得整體的小型化和高清晰度的攝 影信號。 而且,根據本創作的攝影設備,因裝載了本創作的照 相機模組’所以,能夠在達成攝影部分的小型化的同時, 1〇獲得高清晰度的攝影信號,根據該攝影信號可獲得高清晰 度的攝影圖像。 【實施方式】 以下,參照圖式對本創作的實施方式進行詳細說明。 15 圖1表不有本創作的一實施方式的攝影透鏡的第1實 施例。此實施例對應於後述的第】的數值實施例(圖7,圖13) ;M360369 攝影透鏡的實施例作為基本進行說明,根據需要對圖2至圖 6的實施例也進行說明。 本實施方式的攝影透鏡是適用於使用CCD或CMOS等 攝影το件的各種攝影設備,尤其是比較小型的便攜式終端 • 5及備,例如’數位相機、具攝影鏡頭的手機及pDA等。此 . 攝影透鏡,沿著光軸Z1從物體側依次包括:光欄St、第1 透鏡L1、第2透鏡L2、第3透鏡L3、第4透鏡L4。在此攝影 透鏡的成像面(攝像面)Simg配置CCD等攝影元件(圖中未 φ 示)。在第4透鏡L4和成像面(攝像面)Simg之間配置用於保 10濩成像面的玻璃罩、紅外線截止濾光片或低通濾波器等光 學部件CG也可。 光欄St為光學性孔徑光欄’較佳配置於最靠近物體 側。此處,「最靠近物體側」表示在光軸Z1上比第i透鏡 L1的像側的面頂點位置更靠近物體側,還表示包括例如, I5在光軸Z1上光攔St配置於第1透鏡L1的物體側的面頂點位 置的情況或光攔St配置於第1透鏡L1的物體側的面頂點位 鲁 置和像側的面頂點位置之間的情況。光攔st較佳配置於更 靠近物體側,例如,在光軸上配置於第】透鏡^的物體側 的面頂點位置和第1透鏡L1的物體側的面的端緣位置e(參 20 照圖1)之間即可。 此攝影透鏡’尤其第1透鏡L1的至少一面為非球面形 狀,並且第4透鏡L4的兩面均為非球面形狀。第2透鏡L2、 及第3透鏡L3,較佳為至少在一面分別包括非球面。 ;M360369 此處,尤其设為非球面形狀的情況,第2透鏡、第3 透鏡L3及第4透鏡L4與第i透鏡“相比容易成為複雜的形3 狀,而且,形狀也容易變大。因此,第2透鏡L2、第3透鏡 L3及第4透鏡L4在加工性或製造成本方面全部較佳由樹脂 * 5材料構成。重視製造成本時,第1透鏡!^較佳由樹脂材料 . 構成。但是,為了達成高性能化由玻璃材料構成第〗透鏡 L1也可。 第1透鏡L1具有正的光放大率(ρ〇ννβΓ:Α々 —)。第 • 1透鏡L1,物體側的面在光軸附近較佳為凸面,且像侧的 10面在光軸附近為凸形狀,在光軸附近為雙凸形狀。 第2透鏡L2具有負的光放大率。第2透鏡L2,像側的面 在光軸附近設為凹面。第2透鏡L2,較佳物體侧的面在光 軸附近设為凹形狀,在光軸附近為雙凹形狀。但是,也可 以如圖4的第4實施例,在光軸附近將物體側的面做成凸形 15狀,而使得在光軸附近為彎月形狀。 第3透鏡L3 ’在光軸附近成為將凹面朝向物體側的正 • 的彎月形透鏡。第4透鏡L4的像側的面,是在光軸附近朝 像側為凹形狀、而在周邊部朝像側為凸形狀的非球面。第4 透鏡L4的物體側的面,例如在光軸附近為凸面,從而使得 2〇在光軸附近為彎月形狀。但是,也可以如圖2的第2實施例、 及圖3的第3實施例那樣,在光軸附近將物體側的面做成凹 面’而使得在光轴附近為雙凹形狀。 此攝影透鏡,滿足以下條件式(1)〜(4)。 0.85 芸 DL/f各 0.93 (1) M360369 v \ — (υ 2+ υ 3+ υ 4)/3 ^ Ο ......(2) -0.58^ f4/f^ 0 ......(3) 0.35^ f3/f^ 0.75 ......(4) 此處, 5 f:整體的焦距, f3 :第3透鏡L3的焦距, f4 :第4透鏡L4的焦距, DL :從第1透鏡L1的物體側面頂點到第4透鏡L4的像 側面頂點的光軸上的距離(參照圖1), 10 w 1 :第1透鏡L1的阿貝數, υ 2 :第2透鏡L2的阿貝數, υ 3 :第3透鏡L3的阿貝數, υ 4 :第4透鏡L4的阿貝數。 而且,較佳地適當選擇地滿足以下條件。 15周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周 周Training #加__Full-length shortening In the photographic lens of this creation, the better condition. ~ W field selectively meets the following 20 '1.0^ f/R3 ^ 0.4 2.08^f/Ri^3.3 3.0mm^ DL^ 4.0mm 〇.l^MIN(D)/fS 1.0 Here, f: the overall focal length, ..(5) (6)..(7).(8) 7 -M360369 _—Cao R1: the paraxial radius of curvature of the object-side surface of the first lens, R3: the paraxial radius of curvature of the object-side surface of the second lens , DL : the distance from the apex of the object side of the first lens to the apex of the image side of the fourth lens, • 5 MIN (D): the value of the smallest center thickness among the i-th to fourth lenses, ( Mm). Further, the unit of f and MIN (D) in the formula (8) is a claw. Further, the image side surface of the first lens is preferably convex in the vicinity of the optical axis. Further, the first lens, the second lens, the third lens, and the fourth lens may be made of a resin material. Thereby, it is advantageous to reduce the manufacturing cost. However, in order to achieve high performance, for example, a second lens may be formed of a glass material. The camera module according to the present invention includes: a photographic lens of the present creation, and a photographic element for outputting a photographic signal of an optical image formed by the photographic lens. In the camera module according to the present creation, according to the photograph taken through the creation 15 A high-definition optical image of the shadow lens can obtain a high-definition photographic signal. Further, since the photographic lens based on the present invention has been shortened in total length, the entire camera module assembled using the photographic lens can be miniaturized. The photographic apparatus based on the present invention is a photographic apparatus including a camera core created according to the present invention, and a high-definition photographic letter I can be obtained according to the high-definition optical image of the photographic U through the creation. 'According to its photographic signal, high-definition photographic images can be obtained. The photographic lens of this creation, in the overall four-lens structure, maintains the thickness DL ' of the lens system in the field rail and efficiently uses non-20 M360369 The spherical surface is optimized for each lens shape, and the lens structure is optimized by satisfying a predetermined conditional expression. Therefore, it is possible to maintain a high overall imaging performance while shortening the total length, and it is possible to manufacture a lens system that is appropriately good. Moreover, according to the camera module of the present invention, the overall image size and high definition can be obtained by the photographic signal output corresponding to the optical image formed by the photographic lens having the full length of the shortening and high imaging performance. The photographic signal. Moreover, according to the photographic equipment of this creation, because of the camera module loaded with this creation, At the same time as partial miniaturization, a high-definition photographing signal is obtained, and a high-definition photographed image can be obtained from the photographing signal. [Embodiment] Hereinafter, an embodiment of the present creation will be described in detail with reference to the drawings. Fig. 1 shows a first embodiment of an photographic lens according to an embodiment of the present invention. This embodiment corresponds to a numerical embodiment (Fig. 7, Fig. 13) which will be described later; the embodiment of the M360369 photographic lens is basically carried out. In addition, the embodiment of FIGS. 2 to 6 will be described as needed. The photographic lens of the present embodiment is suitable for use in various photographic apparatuses such as CCD or CMOS, and is particularly small portable terminals. For example, a digital camera, a mobile phone with a photographic lens, a pDA, etc. The photographic lens includes a diaphragm St, a first lens L1, a second lens L2, and a third lens L3 in order from the object side along the optical axis Z1. The fourth lens L4 is provided with an imaging element such as a CCD (not shown in the figure) on the imaging surface (imaging surface) Simg of the imaging lens. The fourth lens L4 and the imaging surface (imaging surface) Simg are disposed between the fourth lens L4. It is also possible to use an optical component such as a glass cover, an infrared cut filter or a low-pass filter on the imaging surface of the 10 。. The optical column St is preferably disposed on the side closest to the object. The "close to the object side" indicates that the optical axis Z1 is closer to the object side than the surface vertex position of the image side of the i-th lens L1, and includes, for example, I5 on the optical axis Z1, the optical barrier St is disposed on the object side of the first lens L1. The case of the surface vertex position or the light barrier St is disposed between the surface vertex of the object side of the first lens L1 and the surface vertex position of the image side. The light barrier st is preferably disposed closer to the object side, for example, the surface vertex position of the object side disposed on the optical axis on the optical axis and the edge position e of the object side surface of the first lens L1 (see FIG. Figure 1) can be between. In particular, at least one surface of the photographic lens ‘the first lens L1 has an aspherical shape, and both surfaces of the fourth lens L4 have an aspherical shape. Preferably, the second lens L2 and the third lens L3 each include an aspherical surface on at least one side. M360369 Here, in particular, when the aspherical shape is used, the second lens, the third lens L3, and the fourth lens L4 are more likely to have a complicated shape than the i-th lens, and the shape is also likely to be large. Therefore, the second lens L2, the third lens L3, and the fourth lens L4 are preferably made of a resin*5 material in terms of workability and manufacturing cost. When the manufacturing cost is emphasized, the first lens is preferably made of a resin material. However, in order to achieve high performance, the first lens L1 may be formed of a glass material. The first lens L1 has a positive optical power (ρ〇ννβΓ: Α々—). The first lens L1 has an object side surface. The vicinity of the optical axis is preferably a convex surface, and the 10 sides on the image side have a convex shape in the vicinity of the optical axis and a biconvex shape in the vicinity of the optical axis. The second lens L2 has a negative optical power. The second lens L2 has an image side. The surface of the second lens L2 is preferably concave in the vicinity of the optical axis, and has a concave shape in the vicinity of the optical axis and a biconcave shape in the vicinity of the optical axis. However, the fourth embodiment of FIG. 4 may be employed. , the surface of the object side is formed into a convex shape 15 near the optical axis, so that the optical axis is attached The third lens L3' is a meniscus lens that faces the object side with the concave surface in the vicinity of the optical axis. The image side surface of the fourth lens L4 has a concave shape toward the image side in the vicinity of the optical axis. On the other hand, the aspherical surface having a convex shape on the image side is formed on the image side. The surface on the object side of the fourth lens L4 is convex in the vicinity of the optical axis, for example, so that 2〇 is a meniscus shape in the vicinity of the optical axis. As in the second embodiment of Fig. 2 and the third embodiment of Fig. 3, the surface on the object side is made concave in the vicinity of the optical axis so as to have a biconcave shape in the vicinity of the optical axis. This imaging lens satisfies the following conditions. Equations (1) to (4) 0.85 芸 DL/f each 0.93 (1) M360369 v \ — (υ 2+ υ 3+ υ 4)/3 ^ Ο ......(2) -0.58^ f4 /f^ 0 ......(3) 0.35^ f3/f^ 0.75 (4) Here, 5 f: overall focal length, f3 : focal length of the third lens L3, f4 : The focal length of the fourth lens L4, DL: the distance from the vertex of the object side surface of the first lens L1 to the optical axis of the vertex of the image side surface of the fourth lens L4 (see Fig. 1), 10 w 1 : Abbe of the first lens L1 Number, υ 2 : Abbe number of the second lens L2, υ 3 : 3rd lens L3 Abbe number, υ 4: L4 of the fourth lens and the Abbe number, preferably satisfies the following conditions are suitably selected 15.

(5) (6) ⑺ ⑻ -1.0^ f/R3^ 0.4 2.08^ f/Rl ^ 3.3 3.0mm^ DL^ 4.0mm 0.1^MIN(D)/f^ 1.0 此處, 2〇 f :整體的焦距, R1 .第1透鏡L1的物體側的面的近軸曲率半徑, R3 :第2透鏡L2的物體側的面的近軸曲率半徑, DL:從第1透鏡L1的物體側面頂點到第4透鏡的像側面 頂點的光軸上的距離。 12 M360369 MIN(D):在第i透鏡L1至第4透鏡“之中最小的中心 厚度的值。而且,在式⑻中的f、MlN(D)的單位設為麵。 而且’較佳地適當選擇地滿足以下條件气。 -1.0^ Rl/R2^ Ο (10) ..…01) (12) fl/f^ 0.8 0.9^ (R3+R4)/(R3-R4)^ 1.5 1.0^ fl2/f^ 1.6 此處’ f :整體的焦距, fl ’·第1透鏡L1的焦距, 1〇 :第1透鏡L1和第2透鏡L2的合成焦距, R1 :第1透鏡L1的物體側的面的近軸曲率半徑, R2 ··第1透鏡L1的像側的面的近軸曲率半徑, R3 :第2透鏡L2的物體側的面的近軸曲率半徑, R4 :第2透鏡L2的像側的面的近軸曲率半徑。 15 圖26是表示組裝本實施方式的攝影透鏡的相機模組 的一實施例。而且,圖27(A)、(B)係裝載圖26的相機模組 的攝影設備的一例表示具攝影鏡頭的手機。 在圖27(A)、(B)所示的具攝影鏡頭的手機包括上部殼 體(框體)2A和下部殼體2B,兩者朝圖27(A)的箭頭方向旋轉 20自如地構成。在下部殼體2B設有操作鍵21等。在上部殼體 2A設有照相機部丨(圖27(B))及顯示部22(圖27(A))等。顯示 部 22 由 LCD(液晶面板)或 EL(Electr〇 — Luminescence)面板 等顯示面板而構成。顯示部22配置於在折疊時成為内面的 侧在此顯示°卩22,除了顯示有關電話功能的各種選單 r s». ·* ί ·\ 13 M360369 的圖像等。照相機部 。但是,設置照相機 以外還可顯示透過照相機部1被攝影 i ’例如配置於上部殼體2A的内面側 部1的位置不限於此。 照相機部1具有本實施方式的照相機模組。此照 • 5模組,如圖26所示,包括有收納攝影透鏡2〇的鏡筒3、 ‘ 鏡筒3的支撐基板4、在支«板4上對應於攝影透鏡2〇的: 像面的位置上設置的攝影元件(圖中未示)。此照相機模組 還包括:電連接於支揮基板4上的攝影元件的可撓性 • 5、結構為能夠電連接於可撓性基板5並能夠連接於具二 ω鏡頭的手機等的終端設備主體側的信號處理電路的外部^ 接端子6。該些結構元件被一體構成。 在圖26所示的照相機模組中,由攝影透鏡卿成的光 學像透過攝影元件轉換成電攝影信號,該攝影信號透過可 撓性基板5及外部連接端子6被輸出到攝影設備主體側的信 號處理電路。此處,在此照相機模組中,使用本實施方式 2卿透鏡作為攝影透鏡2G,所以,可獲得被充分校正像 籲旦广厂晰度的攝影k號。在攝影設備主體側,根據其攝 影信號可生成高清晰度圖像。 卜本實施方式的攝影設備’不限於具攝影鏡頭的 2〇手機,例如為數位相機或PDA等也可。 接者’更誶細說明如以上結構的攝影透鏡的作用及效 果、尤其關於條件式的作用及效果。 本實施方式的攝影透鏡中,在整體為四片的透鏡結 在適§範圍保持透鏡系統的厚度DL,並有效率地使(5) (6) (7) (8) -1.0^ f/R3^ 0.4 2.08^ f/Rl ^ 3.3 3.0mm^ DL^ 4.0mm 0.1^MIN(D)/f^ 1.0 Here, 2〇f : overall focal length R1. the paraxial radius of curvature of the object-side surface of the first lens L1, R3: the paraxial radius of curvature of the object-side surface of the second lens L2, DL: from the object side vertex of the first lens L1 to the fourth lens The distance on the optical axis like the side vertex. 12 M360369 MIN (D): the value of the minimum center thickness among the i-th lens L1 to the fourth lens ". Moreover, the unit of f, MlN (D) in the formula (8) is set as a face. The following conditions are appropriately selected: -1.0^ Rl/R2^ Ο (10) .....01) (12) fl/f^ 0.8 0.9^ (R3+R4)/(R3-R4)^ 1.5 1.0^ fl2 /f^ 1.6 Here, f: the total focal length, fl '·the focal length of the first lens L1, 1〇: the combined focal length of the first lens L1 and the second lens L2, and R1: the object-side surface of the first lens L1 The paraxial radius of curvature, R2 · the paraxial radius of curvature of the image side surface of the first lens L1, R3: the paraxial radius of curvature of the object side surface of the second lens L2, R4: the image side of the second lens L2 Fig. 26 is a view showing an embodiment of a camera module in which the imaging lens of the present embodiment is assembled. Further, Fig. 27(A) and Fig. 27(B) are photographs in which the camera module of Fig. 26 is mounted. An example of the device indicates a mobile phone having a photographic lens. The mobile phone with a photographic lens shown in Figs. 27(A) and (B) includes an upper casing (frame) 2A and a lower casing 2B, both of which face FIG. 27 (A). ) The direction of the arrow rotates 20 freely The lower casing 2B is provided with operation keys 21, etc. The upper casing 2A is provided with a camera unit 丨 (Fig. 27(B)) and a display unit 22 (Fig. 27(A)), etc. The display unit 22 is made of an LCD (liquid crystal panel). Or a display panel such as an EL (Electr〇-Luminescence) panel. The display unit 22 is disposed on the side that becomes the inner surface at the time of folding, and displays a menu 卩22, in addition to displaying various functions related to the telephone function rs». ·* ί \ 13 M360369 image, etc. Camera unit. However, it is not limited to the position where the camera unit 1 is photographed, for example, disposed on the inner surface side portion 1 of the upper casing 2A. The camera unit 1 has this. The camera module of the embodiment. The photo module 5, as shown in FIG. 26, includes a lens barrel 3 that houses the photographic lens 2, a support substrate 4 of the lens barrel 3, and a photograph on the support plate 4 The lens 2 is: a photographic element (not shown) disposed at a position of the image plane. The camera module further includes: a flexible connector electrically connected to the photographic element on the support substrate 4. 5. The structure is electrically Connected to the flexible substrate 5 and can be connected to a two-omega lens The external signal terminal of the signal processing circuit on the main body side of the mobile phone or the like is connected to the terminal 6. These structural elements are integrally formed. In the camera module shown in Fig. 26, the optical image formed by the photographic lens is converted into a photographic element by the photographic element. The electrophotographic signal is output to the signal processing circuit on the side of the photographing apparatus main body through the flexible substrate 5 and the external connection terminal 6. Here, in this camera module, since the second lens of the present embodiment is used as the photographic lens 2G, it is possible to obtain the photographic k number which is sufficiently corrected for the image clarity. On the main side of the photographing apparatus, a high definition image can be generated based on its photographing signal. The photographing apparatus of the present embodiment is not limited to a mobile phone having a photographing lens, and may be, for example, a digital camera or a PDA. The receiver's more detailed description of the action and effect of the photographic lens as described above, especially regarding the action and effect of the conditional expression. In the photographic lens of the present embodiment, the thickness of the lens system DL is maintained in a range of four lens lenses as a whole, and is efficiently made.

14 M3 603 69 用非球面而達成各透鏡形狀的最佳化,而且滿足規定的條 件式達成透鏡結構的最佳化,由此能夠一邊充分专慮可製 造性以使成本不變高,一邊使的在全長縮短化的同 高成像性能。 & 5 M於非球面形狀’尤其使第4透鏡L4在中心部和周邊 部變化成不同形狀,而從像面中心部至周邊部良好地校正 像場彎曲。在第4透鏡L4中,與第1透鏡L1、第2透鏡L2、 及第3透鏡L3相比,光束在每視角(畫角)被分離。因此,透 過使最近於攝影元件的最終透鏡面的第4透鏡以的像側面 10在光軸附近朝向像側為凹形狀,而在周邊部朝像側成為凸 形狀,可適當校正每視角的像差,光束向攝影元件的入射 角度被控制為一定角度以下。從而,能夠減輕成像面全區 域的光量不均,並有利於像場彎曲或歪曲像差等的校正。 一般,在攝影透鏡系統中’較佳的遠心性(于b七^ 15卜V 7夕),即向攝影元件的主光線的入射角度較佳相對 於光軸接近平行(攝像面的入射角度相對於攝像面的法線 接近零)。為了確保此遠心性,光攔St較佳盡量配置於物體 側。另一方面,若光攔St配置於從第1透鏡L1的物體側的透 鏡面進一步向物體側方向離開的位置,該部分(光攔St和最 20靠近物體側的透鏡面的距離)作為光路長被加算,因此,在 整體結構的微型化方面較為不利。從而,透過在光軸Z J上 將光攔S t配置於與第i透鏡L1的物體側透鏡面頂點位置相 同的位置,或配置於第1透鏡L1的物體側的面頂點位置和 像側的面頂點位置之間,可達成全長的縮短化,並可確保 M360369 _ * 遠〜性。更加重視遠心性的確保時,在光軸上將光攔以配 置於第1透鏡L1的物體側的面頂點位置和第1透鏡L1的物 體側的面端緣位置E(參照圖丨)之間即可。 以下’對各條件式的具體意義進行說明。 .5 條件式(1)及條件式(7)係關於光軸上的透鏡系統的厚14 M3 603 69 The aspherical surface is optimized for the shape of each lens, and the lens structure is optimized by satisfying the predetermined conditional expression, so that the manufacturability can be fully considered so that the cost can be kept constant. The same high imaging performance is shortened in full length. & 5 M in the aspherical shape', in particular, the fourth lens L4 is changed into a different shape at the center portion and the peripheral portion, and the curvature of field is favorably corrected from the central portion of the image plane to the peripheral portion. In the fourth lens L4, the light beams are separated from the first lens L1, the second lens L2, and the third lens L3 at every viewing angle (an angle of view). Therefore, the image side surface 10 of the fourth lens closest to the final lens surface of the imaging element is concave toward the image side in the vicinity of the optical axis, and the convex portion is formed toward the image side in the peripheral portion, whereby the image of each angle of view can be appropriately corrected. Poor, the angle of incidence of the beam to the photographic element is controlled to be below a certain angle. Thereby, unevenness in the amount of light in the entire area of the image plane can be alleviated, and correction of field curvature or distortion can be facilitated. Generally, in the photographic lens system, 'better telecentricity (in b7^15 Bu V7), that is, the incident angle to the chief ray of the photographic element is preferably nearly parallel with respect to the optical axis (the incident angle of the imaging surface is relatively The normal to the imaging surface is close to zero). In order to ensure this telecentricity, the light stop St is preferably placed as far as possible on the object side. On the other hand, when the light barrier St is disposed at a position away from the lens surface on the object side of the first lens L1 toward the object side, the portion (the distance between the light barrier St and the lens surface of the most 20 near the object side) serves as an optical path. The length is added, so it is disadvantageous in terms of miniaturization of the overall structure. Therefore, the light intercept S t is disposed on the optical axis ZJ at the same position as the vertex position of the object side lens surface of the i-th lens L1, or on the object vertex position and the image side surface of the first lens L1. Between the vertex positions, the full-length shortening can be achieved, and the M360369 _ * far-to-sex can be ensured. When the securing of the telecentricity is more important, the light is placed on the optical axis between the vertex position of the object side disposed on the object side of the first lens L1 and the surface edge position E of the object side of the first lens L1 (see FIG. Just fine. The following is a description of the specific meaning of each conditional expression. .5 Conditional Formula (1) and Conditional Formula (7) relate to the thickness of the lens system on the optical axis.

度DL。為了滿足以下二個要求,即縮短透鏡全長以及使得 最接近於攝影元件的最終透鏡面不過於接近攝像面,有必 要將透鏡系統的厚度DL設為適當的範圍。若超過條件式(1) • 或條件式(7)的上限,則不利於全長的縮短化。縮小厚度DL 10直接關係到全長的縮短化,但若超過條件式(丨)或條件式(?) 的下限而過於縮小厚度DL,則發生像差性能的缺限及製造 組裝敏感度急劇下降的問題。 為了縮短全長,並獲得更良好的性能,條件式(1)的數 值範圍較佳: 15 0.85^ DL/f^ 0.92 ......(1,) 更佳為:Degree DL. In order to satisfy the following two requirements, that is, shortening the total length of the lens and making the final lens surface closest to the photographic element not close to the imaging surface, it is necessary to set the thickness DL of the lens system to an appropriate range. If the upper limit of conditional expression (1) • or conditional expression (7) is exceeded, it is not conducive to shortening the total length. The reduction of the thickness DL 10 is directly related to the shortening of the full length, but if the thickness DL is excessively reduced beyond the lower limit of the conditional expression (丨) or the conditional expression (?), the aberration performance is impaired and the manufacturing assembly sensitivity is drastically lowered. problem. In order to shorten the overall length and obtain better performance, the range of the conditional expression (1) is better: 15 0.85^ DL/f^ 0.92 (1,) More preferably:

0.87^ DL/f^ 0.90 ··..·.(1,’)即可。 條件式(2)規定各透鏡的色散(分散),透過滿足此數值 範圍且將第1透鏡L1的阿貝數相對設大,而可達成轴上 色像差的減少。若超過條件式(2)的下限,則不利於軸上色 像差的校正。 為了更加良好地校正色像差,進一步較佳適當滿足以 下條件。 (2,) ^ 1 - ( y 3+ y 4)/2> 5 20 M360369 υ 1 ~ 5 ......(2,,) 一滿足條件式(2,),例如在第3透鏡L3及第4透鏡L4的任 方使用色散比較大的材料,而有利於倍率色像差的校 正。而且’透過滿足條件式(2,,),而使得^透鏡u相對 於第4透鏡L4的阿貝數^; i較大,而可達成軸上色像差的減0.87^ DL/f^ 0.90 ··..·.(1,’). The conditional expression (2) defines the dispersion (dispersion) of each lens, and the transmission of the numerical range is satisfied, and the Abbe number of the first lens L1 is relatively large, whereby the axial chromatic aberration can be reduced. If the lower limit of the conditional expression (2) is exceeded, it is disadvantageous for the correction of the axial chromatic aberration. In order to correct the chromatic aberration more satisfactorily, it is further preferable to appropriately satisfy the following conditions. (2,) ^ 1 - ( y 3+ y 4)/2> 5 20 M360369 υ 1 ~ 5 (2,,) One satisfies the conditional expression (2,), for example, in the third lens L3 Any of the fourth lenses L4 and the fourth lens L4 use a material having a relatively large dispersion, which is advantageous for the correction of the chromatic aberration of magnification. Further, by satisfying the conditional expression (2,,), the Abbe number of the lens u with respect to the fourth lens L4 is large, and the reduction of the axial chromatic aberration can be achieved.

條件式(3)係關於第4透鏡L4的焦距f4。而且,條件弋 ⑷係關於第3透鏡L3的焦距f3。全長以小的狀態良好崎 =像,曲及歪曲像差等的諸像差,並為了達成充分的周 Ίΐ和適當的射出角度,需要條件式(3)和條件式⑷的平 若超過條件式(3)的上限,第4透鏡L4成為正透鏡 間視角的像場f㈣於偏負侧。若超過條件式(3)的下限, 則存在中間視角的像場彎曲偏正側的傾向。 15 為了得到更良好的性能,條件式(3 )的數值範圍較佳, -0.55^ f4/f^ 〇 ......(3,) 更佳為, (j ......(3,,) 進一步較佳, 20 -0.45^ f4/fg 〇 ......(3’’’)即可。 若超㈣料⑷的上限,料在光㈣射 角的傾向。若超過條件式⑷的下限,射 ς = 曲過於偏負側。 用的像 為了得到更良好的性能,條件式⑷的數值範圍較佳: 17 Γ' 3«. M360369 0.4^ f3/f^ 0.71 ......(4,) 更佳為, (4,,)。 0.6^ f3/f^ 0.71 條件式(5)係關於第2透鏡L2的物體侧的面的近軸曲率 半徑R3。而且,條件式(6)係關於第丄透鏡L1的物體側的面 的近軸曲率半徑R1。為了將全長、視角及射出角度維持成 適當的值,第1透鏡L1的光放大率及第丨透鏡L1的前面曲率 給:很大的影響。此時’在式⑹的條件中,滿足式(5)的條 件範圍較佳在校正球面像差及橫像差的方面。 J 右茭過條件式(5)的上限,則球面像差、及像場彎曲偏 負側’而歪曲成為正側。若超過條件式(5)的下限,則球面 像差、及像場彎曲偏正側,而歪曲成為負側。而且,在第2 透鏡L2的物體側的面,由於使周邊光線跳躍的光放 強,所以製造敏感度變大。 文 15The conditional expression (3) is the focal length f4 of the fourth lens L4. Further, the condition 弋 (4) is the focal length f3 of the third lens L3. In the small-scale state, the aberrations such as the image, the curvature, and the distortion are small, and in order to achieve a sufficient circumference and an appropriate injection angle, the conditional expression (3) and the conditional expression (4) are required to exceed the conditional expression. The upper limit of (3) is that the fourth lens L4 is the image field f (four) of the angle of view between the positive lenses on the negative side. When the lower limit of the conditional expression (3) is exceeded, there is a tendency that the image field of the intermediate viewing angle is bent to the positive side. 15 In order to obtain better performance, the value range of conditional formula (3) is better, -0.55^f4/f^ 〇...(3,) more preferably, (j ......( 3,,) Further preferably, 20 -0.45^ f4/fg 〇...(3'''). If the upper limit of the super (four) material (4) is expected to be in the light (four) angle of incidence. The lower limit of the conditional expression (4), the injection ς = the curve is too negative. The image used in order to obtain better performance, the value range of the conditional expression (4) is better: 17 Γ' 3«. M360369 0.4^ f3/f^ 0.71 .. (4,) is more preferably (4,,). 0.6^ f3/f^ 0.71 The conditional expression (5) is a paraxial radius of curvature R3 of the surface on the object side of the second lens L2. The conditional expression (6) is the paraxial radius of curvature R1 of the surface on the object side of the second lens L1. The optical power of the first lens L1 and the second lens L1 are used to maintain the full length, the angle of view, and the emission angle at appropriate values. The curvature of the front gives a great influence. At this time, in the condition of equation (6), the condition range satisfying equation (5) is better in correcting the spherical aberration and the lateral aberration. J Right-over conditional expression (5) Upper limit, spherical aberration, and image field When the bending is on the negative side, the distortion becomes the positive side. When the lower limit of the conditional expression (5) is exceeded, the spherical aberration and the curvature of field are positive, and the distortion becomes the negative side. Moreover, the object side of the second lens L2 The surface of the surface is made stronger by the light that makes the peripheral light jump, so the manufacturing sensitivity becomes large.

20 若超過條件式(6)的上限,則在第〗 面的光放大率過多增加,球面像差偏負側 $ 側的 側。若超過下限,則在第j透 、 曲成為負 率過於減少,在縮小全長第=不^物_的面的光放大 中,透鏡單趙的中心厚度。在此攝影透鏡 -達成阿性tb化積極使用非球 型化及高性能化,但在射出成形或 2面有助於微 定成形品質良好的透鏡產品,且可適^形時’為了可穩 動性或成形時的射出壓力及保麼,有:要=形材料的流 條件。若超過條件式⑻的上限,則不利於= 18 M360369 超過下限,在控制壓力的方面,為了防止成形時材料流動, 面形狀的轉印性會變差。 條件式(9)規定了第1透鏡L1的物體側及像側的面的近 軸曲率半徑R卜R2的適當關係。若超過條件式(9)的上限, 則尤其球面像差大大偏正側。若超過下限,則尤其球面像 差大大偏負側。 為了得到更良好的性能,條件式(9)的數值範圍較佳 為:20 If the upper limit of the conditional expression (6) is exceeded, the optical power at the front side is excessively increased, and the spherical aberration is on the side of the negative side. When the value exceeds the lower limit, the negative thickness of the first pass is reduced, and the center thickness of the lens is reduced in the optical enlargement of the face of the full length of the second object. In this photographic lens, the aspherical tb is used to actively use non-sphericalization and high performance. However, in the case of injection molding or two-sided lens, it is advantageous for micro-forming of a good lens quality product, and it can be stabilized. The injection pressure and the protection during the kinetic or forming are: the flow condition of the material to be shaped. If the upper limit of the conditional expression (8) is exceeded, it is disadvantageous that = 18 M360369 exceeds the lower limit, and in terms of controlling the pressure, in order to prevent the material from flowing during molding, the transfer property of the surface shape is deteriorated. The conditional expression (9) defines an appropriate relationship between the paraxial radius of curvature R R R2 of the object side and the image side surface of the first lens L1. If the upper limit of the conditional expression (9) is exceeded, the spherical aberration is particularly greatly positive. If the lower limit is exceeded, the spherical aberration is particularly negative on the negative side. In order to obtain better performance, the numerical range of the conditional expression (9) is preferably:

-0.9^ Rl/R2^ - 0.5 ......(9,)。 條件式(10)係關於第1透鏡L1的焦距fl。若超過條件式 (10) 的上限,則在縮小全長的方面不利。如超過下限,則 第2透鏡L2以後的光束寬度變大,像場彎曲容易朝負側偏 大’而且,尤其難以校正彗星像差。 為了得到更良好的性能,條件式⑽的數值範圍較佳 為: 〇^fl/f^0.73 ……(1〇,) 更佳為: fl/f^ 0.6 ......(10’’)即可。 條件式(11)係關於第2透鏡L2的形狀。若超過條件 (11) 的上限,則不利於縮小光線的射出角。若超過^阳工 則第1透鏡L1及第2透鏡L2的各軸偏移敏感度變大,不可<湓 足適當可製造性。 馬 條件式(12)係關於第1透鏡L1及第2透鏡12的合成隹 距。若超出條件式(12)的上限而成為反遠距式方向:則:-0.9^ Rl/R2^ - 0.5 ......(9,). The conditional expression (10) is about the focal length fl of the first lens L1. If the upper limit of the conditional expression (10) is exceeded, it is disadvantageous in that the overall length is reduced. When the lower limit is exceeded, the beam width after the second lens L2 becomes larger, and the curvature of field is more likely to be larger toward the negative side. Moreover, it is particularly difficult to correct the comet aberration. In order to obtain better performance, the numerical range of the conditional expression (10) is preferably: 〇^fl/f^0.73 ......(1〇,) More preferably: fl/f^ 0.6 ......(10'' ) Just fine. The conditional expression (11) relates to the shape of the second lens L2. If the upper limit of the condition (11) is exceeded, it is not conducive to reducing the exit angle of the light. If it exceeds the positive work, the sensitivity of each axis of the first lens L1 and the second lens L2 becomes large, and it is not possible to make the appropriate manufacturability. The conditional expression (12) is a synthetic pitch of the first lens L1 and the second lens 12. If the upper limit of conditional expression (12) is exceeded and it becomes the anti-distance direction: then:

19 M360369 點朝像側移動’所以,按原理難以縮短全長。若超過下限, 則存在切線像面祕偏負側的傾向。而且,存在周邊光量 變得過小的傾向。 為了得到更良好的性能,條件式⑽的數值範圍較佳 為, 1-0^ fl2/f^ 1.4 ......(12,) 更佳為, 1,1 ~ f12/f^ 1.2 ......(12’’)即可。 如以上說明,根據本實施方式的攝影透鏡,可實現全 1〇長縮短化的同時維持高成像性能,且製造適當良好的透鏡 系統。而且,根據本實施方式的照相機模組,因使之輸出 按照由全長縮短化的同時具有高成像性能的攝影透鏡形成 的光學像的攝影信號,所以,達成像模組一樣整體的小型 化的同時可獲得尚清晰度的攝影信號。而且,根據本實 15施方式的攝影設備,因裝載該照相機模組,所以,可達成 攝影部分的小型化的同時,獲得高清晰度的攝影信號,根 據其攝影信號可獲得高清晰度的攝影圖像。 ^接著,對本實施方式的攝影透鏡的具體數值實施例進 行說明在以下,匯總第1至第6的數值實施列進行說明。 20 ® 7及圖13表示有對應於圖示的攝影透鏡的結構 的具體透鏡數據。尤其,在圖7表示其基本的透鏡數據,在 圖13表示非球面的數據。在圖7所示的透鏡數據的面號碼 S卜欄表示有對實施例丨的攝影透鏡,以最靠近物體側的透 鏡元件的面作為第1個(以光攔St為第〇個)、隨著朝向像側 Γ L j 20 :M360369 依次增加的方式附上符號的第i個的面號碼。在曲率半徑Ri 一攔表示對應於在圖1所附上的符號Ri,從物體側起第“固 面的曲率半徑的值(tnm)。對面間隔Di的攔也同樣表示從物 體側第i個面Si和第I + 1個面Si + 1的光袖上的間隔(mm)。 5在Ndj欄表示從物體側起第j個光學要素的對d線(587 6nm) 的折射率的值。在vdj欄表示從物體側第j個光學要素的對d 線的阿貝數的值。在圖7的欄外作為諸數據表示整個系統的 焦距f(mm)的值。 此實施例1的攝影透鏡’第1透鏡L1為破璃材料,第2 10透鏡L2至第4透鏡L4為樹脂材料。 此實施例1的攝影透鏡,第i透鏡L1至第4透鏡L4的兩 面全部成為非球面形狀。在圖7的基本透鏡數據中,這些非 球面的曲率半徑表示光軸附近的曲率半徑的數值。 15 20 在圖13表示實施例丨的攝影透鏡的非球面數據。在非 球面數據所示的數值中,記號「E」表示緊跟其後的數值 為㈣為底的「冪指數」,表示其以1Q為底的指數函數所 表不的數值乘算「Ej之前的數值。例如,若為「玉.犯—, 則表示「1.〇χ1〇-2 球面數據’記錄根據以下式⑷所表示的非球面 離門ϋΓ係數Ai、K的值。詳而言之,z表示從位於 離開先轴馬度h的位置的非球面上 平面(垂直於弁心工 A的點向非球面頂點的接 丨直於先軸的平面)所引繪 例1的摄旦幻军線長度(mm)。在實施 1J i的攝衫透鏡中,各非球 3吹筮么田妆…非球面係數Ai有效使用第 3 一人苐10次的係數A3〜A10而表示。19 M360369 The point moves toward the image side. Therefore, it is difficult to shorten the full length according to the principle. If the lower limit is exceeded, there is a tendency that the tangent line is on the negative side. Further, there is a tendency that the amount of peripheral light becomes too small. In order to obtain better performance, the numerical range of the conditional expression (10) is preferably 1-0^ fl2/f^ 1.4 (12,) more preferably 1,1 ~ f12/f^ 1.2 . .....(12''). As described above, according to the photographing lens of the present embodiment, it is possible to maintain a high imaging performance while shortening the length of all the lengths, and to manufacture a suitably good lens system. Further, the camera module according to the present embodiment outputs an imaging signal of an optical image formed by a photographic lens having a high imaging performance while shortening the total length, so that the entire imaging module is miniaturized at the same time. A photographic signal of a still sharpness can be obtained. Further, according to the photographing apparatus of the present embodiment, since the camera module is mounted, it is possible to obtain a high-definition photographing signal while achieving a miniaturization of the photographing portion, and to obtain high-definition photographing based on the photographing signal. image. Next, a specific numerical embodiment of the photographing lens of the present embodiment will be described below, and the numerical examples of the first to sixth numerical examples will be described below. 20 ® 7 and Fig. 13 show specific lens data having a structure corresponding to the illustrated photographic lens. In particular, the basic lens data is shown in Fig. 7, and the aspherical data is shown in Fig. 13. The surface number S of the lens data shown in FIG. 7 indicates that the photographic lens of the embodiment , has the surface of the lens element closest to the object side as the first one (the light stop St is the third one). The i-th face number of the symbol is attached to the side like the side Γ L j 20 : M360369. The radius of curvature Ri is shown to correspond to the symbol Ri attached to Fig. 1, and the value of the radius of curvature of the solid surface (tnm) from the object side. The intercept of the opposite interval Di also represents the ith from the object side. The interval (mm) between the surface Si and the light sleeve of the first + 1 plane Si + 1. 5 The column of Ndj indicates the value of the refractive index of the j-th optical element from the object side to the d-line (587 6 nm). The value of the Abbe number of the j-th optical element from the object side on the d-line is shown in the column of vdj. The value of the focal length f (mm) of the entire system is shown as data outside the column of Fig. 7. The photographic lens of this embodiment 1 The first lens L1 is a glass material, and the second to fourth lenses L2 to L4 are made of a resin material. In the imaging lens of the first embodiment, both surfaces of the i-th lens L1 to the fourth lens L4 have an aspherical shape. In the basic lens data of Fig. 7, the radius of curvature of these aspherical surfaces indicates the numerical value of the radius of curvature in the vicinity of the optical axis. 15 20 The aspherical surface data of the imaging lens of the embodiment 表示 is shown in Fig. 13. In the numerical values shown by the aspherical data. The mark "E" indicates that the value immediately following it is the "power index" at the end of (4), indicating that it is The numerical value represented by the 1Q-based exponential function is multiplied by the value before Ej. For example, if it is "Jade. Off-, it means that "1.〇χ1〇-2 spherical data" is recorded according to the following formula (4). The value of the aspherical deviation threshold coefficient Ai, K. In detail, z represents the aspheric plane from the position away from the first axis horse h (the point perpendicular to the point of the centroid A to the aspherical vertex) The length of the illusion line (mm) of the photographed example 1 is shown in the plane perpendicular to the first axis. In the lens of the 1J i, each aspherical ball is blown by the amethyst makeup... the aspherical coefficient Ai is effectively used. 3 One person 苐 10 times the coefficient A3 ~ A10 and expressed.

21 M360369 Z=c . h2/{l + (l —κ · c2 · ΐ!2)1/2}+Σ Ai · hi J z .非球面的深度(mm), h :從光軸到透鏡面的距離(高度)(mm), • (A) 此處 K :遠心率 C :近軸曲率=1 /R, (R :近軸曲率半徑), Αι :第i次(i為3以上的整數)的非球面係數。 與以上實施例1的攝影透鏡同樣,將對應於圖2所示的 10攝影透鏡的結構的具體透鏡數據作為實施例2,表示於圖8 Q 14而且,同樣將對應於圖3〜圖6所示的攝影透鏡的 結構的具體透鏡數據作為實施例3〜實施例6,表示於圖9〜 圖12及圖15〜圖18。在該些實施例2〜6中,如同實施例工的 攝h透鏡帛1透鏡L1至第4透鏡[4的兩面全部成為非球面 15 形狀。 另外,在實施例2至實施例6中,第丨透鏡u至第4 L4全部為樹脂材料。 20 而且,在圖19 ’對各實施例匯總表示關於上述基本條 f⑴〜〇2)和其他條件式(2,)、(2,,)的值。如圖19所示, 實施例4中,脫離條件式⑴〜(12)之中條件式(5)及條件式 成為/及條件式(11)的數值範圍。此外’對各實施例全部 '、’、土本條件式的數值範圍内。 球面Γ Γ(Α)〜圖20(c)分別表示有在實施例1的攝影透鏡的 ^ 、像散、及畸變。在各像差圖表示以e線(546.07nm) 22 M360369 為基準波長的像差。在球面像差圖及像散圖中,也表示對 F線(波長486.13nm)、C線(波長656.27nm)的像差。在像散 圖中實線表示孤矢方向(S),而虛線表示切線方向(T)的像 差。FNo.表示F值,Y表示像高。 5 同樣地’在圖21(A)〜圖21(C)表示實施例2的攝影透鏡 的諸像差。同樣地,在圖22(A)〜圖22(C)表示實施例3的攝 影透鏡的諸像差,在圖23(A)〜圖23(C)表示實施例4的攝影 透鏡的諸像差’在圖24(A)〜圖24(C)表示實施例5的攝影透 鏡的諸像差,在圖25(A)〜圖25(C)表示實施例6的攝影透鏡 10 的諸像差。 如從以上各數值數據及各像差圖可知,對各實施例全 長的縮短化的同時可實現高成像性能。 另外,本創作不限於上述實施方式及各實施例,可種 種變形實施。例如,各透鏡參數的曲率半徑、面間隔及折 15射率的值等不限於在上述各數值實施例所示的值,可取其 他的值。21 M360369 Z=c . h2/{l + (l —κ · c2 · ΐ!2)1/2}+Σ Ai · hi J z . Aspheric depth (mm), h: from optical axis to lens surface Distance (height) (mm), • (A) where K: telecentricity C: paraxial curvature = 1 / R, (R: paraxial radius of curvature), Αι : i-th (i is an integer of 3 or more The aspheric coefficient of ). Similarly to the photographic lens of the first embodiment, the specific lens data corresponding to the configuration of the ten photographic lens shown in FIG. 2 is taken as the second embodiment, and is shown in FIG. 8 Q 14 and will also correspond to FIGS. 3 to 6. The specific lens data of the structure of the illustrated photographic lens is shown in Figs. 9 to 12 and Fig. 15 to Fig. 18 as Examples 3 to 6. In the second to sixth embodiments, all of the two faces of the lens l1 to the fourth lens [4] of the embodiment are in the shape of an aspherical surface. Further, in the second to sixth embodiments, all of the second to fourth lenses L to D4 are resin materials. Further, the values of the above basic strips f(1) to 〇2) and the other conditional expressions (2,) and (2,) are collectively shown in Fig. 19' for each embodiment. As shown in Fig. 19, in the fourth embodiment, the conditional expression (5) and the conditional expression in the conditional expressions (1) to (12) are in the numerical range of the conditional expression (11). Further, in the numerical ranges of all the ',' and the soil conditional expressions of the respective examples. The spherical Γ Α (Α) to 20 (c) respectively show the ^, astigmatism, and distortion of the photographic lens of the first embodiment. The aberration diagrams show aberrations with the e-line (546.07 nm) 22 M360369 as the reference wavelength. In the spherical aberration diagram and the astigmatism diagram, the aberrations on the F line (wavelength 486.13 nm) and the C line (wavelength 656.27 nm) are also shown. In the astigmatism diagram, the solid line indicates the orphan direction (S), and the broken line indicates the tangential direction (T) aberration. FNo. indicates the F value and Y indicates the image height. 5 Similarly, the aberrations of the imaging lens of the second embodiment are shown in Figs. 21(A) to 21(C). Similarly, the aberrations of the imaging lens of the third embodiment are shown in Figs. 22(A) to 22(C), and the aberrations of the imaging lens of the fourth embodiment are shown in Figs. 23(A) to 23(C). The aberrations of the imaging lens of the fifth embodiment are shown in Figs. 24(A) to 24(C), and the aberrations of the imaging lens 10 of the sixth embodiment are shown in Figs. 25(A) to 25(C). As can be seen from the above numerical data and the respective aberration diagrams, high imaging performance can be achieved while shortening the length of each embodiment. Further, the present creation is not limited to the above embodiment and each embodiment, and various modifications can be made. For example, the values of the radius of curvature, the interplanar spacing, and the refractive index of each lens parameter are not limited to those shown in the above numerical examples, and other values may be used.

【圖式簡單說明】 圖1疋本創作的一實施方式的攝影透鏡的第丨實施例,是對 2〇應於實施例1的透鏡剖面圖。 圖2疋本創作的一實施方式的攝影透鏡的第2實施例,是對 應於實施例2的透鏡剖面圖。 圖3是本創作的—實施方式的攝影透鏡的第3實施例,是對 應於實施例3的透鏡剖面圖。 23BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a lens according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view of a lens according to a second embodiment of the second embodiment of the photographic lens according to the embodiment of the present invention. Fig. 3 is a cross-sectional view of a lens according to a third embodiment of the third embodiment of the photographic lens of the present invention. twenty three

,M360369 mA 圖4是本創作的一實施方式的攝影透鏡的第4實施例,是對 應於實施例4的透鏡剖面圖。 圖5是本創作的一實施方式的攝影透鏡的第5實施例,是對 應於實施例5的透鏡剖面圖。 圖6是本創作的一實施方式的攝影透鏡的第6實施例,是對 應於實施例6的透鏡剖面圖。 圖7是本創作的實施例丨的攝影透鏡的基本透鏡數據的圖。 圖8疋本創作的實施例2的攝影透鏡的基本透鏡數據的圖。 圖9是本創作的實施例3的攝影透鏡的基本透鏡數據的圖。 10 圖10疋本創#的實施例4的攝影透鏡的基本透鏡數據的圖。 圖11是本創#的實施例5的攝影透鏡的基本透鏡數據的圖。 圖12是本創作的實施例6的攝影透鏡的基本透鏡數據的圖。 15 圖13是本創作的實施例!的攝影透鏡的非球面的數據的圖。 圖14是本創作的實施例2的攝影透鏡的非球面的數據的圖。 圖15是本創作的實施例3的攝影透鏡的非球面的數據的圖。 圖16是本創作的實施例4的攝影透鏡的非球面的數據的圖。 圖17是本創作的實施例5的攝影透鏡的非球面的數據的圖。 圖18是本創作的實施例6的攝影透鏡的非球面的數據的圖。 圖19是對各實施例匯總表示條件式的值的圖。 20 圖20是本創作的實施例1的攝影透 (A)球面像差、(B)像散、(c)畸變。 圖21疋本創作的實施例2的攝影透 (A)球面像差、(B)像散、(c)畸變。 鏡的諸像差的像差圖 鏡的諸像差的像差圖M360369 mA Fig. 4 is a cross-sectional view of a lens according to a fourth embodiment of the fourth embodiment of the photographic lens according to the embodiment of the present invention. Fig. 5 is a cross-sectional view of a lens according to a fifth embodiment of the fifth embodiment of the photographic lens according to the embodiment of the present invention. Fig. 6 is a cross-sectional view of a lens according to a sixth embodiment of the photographic lens according to the embodiment of the present invention. Fig. 7 is a view showing basic lens data of a photographing lens of the embodiment of the present invention. Fig. 8 is a view showing basic lens data of the photographic lens of Example 2 of the present invention. Fig. 9 is a view showing basic lens data of the photographing lens of Example 3 of the present invention. 10 is a view showing basic lens data of the photographic lens of Example 4 of 疋本创#. Fig. 11 is a view showing basic lens data of the imaging lens of Example 5 of the present invention. Fig. 12 is a view showing basic lens data of the photographing lens of Example 6 of the present invention. 15 Figure 13 is an embodiment of the present creation! A graph of the aspherical data of the photographic lens. Fig. 14 is a view showing data of an aspherical surface of the photographing lens of the second embodiment of the present invention. Fig. 15 is a view showing data of an aspherical surface of the photographing lens of Example 3 of the present invention. Fig. 16 is a view showing data of an aspherical surface of the photographing lens of Example 4 of the present invention. Fig. 17 is a view showing data of an aspherical surface of the photographing lens of Example 5 of the present invention. Fig. 18 is a view showing data of an aspherical surface of the photographing lens of Example 6 of the present invention. Fig. 19 is a view showing the values of the conditional expressions collectively for each embodiment. 20 is a photographing through (A) spherical aberration, (B) astigmatism, and (c) distortion of the first embodiment of the present invention. Fig. 21 is a photograph showing the spherical aberration (A) spherical aberration, (B) astigmatism, and (c) distortion of the second embodiment of the present invention. Aberration diagram of the aberrations of the aberration aberration mirrors of the mirror

Ϊ ¢=-- ~ι I H 24 :M360369 R4從物體側起第4個透鏡面的曲率半徑 R5從物體側起第5個透鏡面的曲率半徑 R6從物體側起第6個透鏡面的曲率半徑 R7從物體側起第7個透鏡面的曲率半徑 R8從物體側起第8個透鏡面的曲率半徑 R9從物體側起第9個透鏡面的曲率半徑 R10從物體側起第10個透鏡面的曲率半徑 D0從物體側起第〇個和第丨個透鏡面的面間隔 D1從物體側起第1個和第2個透鏡面的面間隔 D2從物體側起第2個和第3個透鏡面的面間隔 D3從物體侧起第3個和第4個透鏡面的面間隔 D4從物體側起第4個和第5個透鏡面的面間隔 D5從物體侧起第5個和第6個透鏡面的面間隔 D6從物體側起第6個和第7個透鏡面的面間隔 D7彳之物體側起第7個和第8個透鏡面的面間隔 D8從物體側起第8個和第9個透鏡面的面間隔 D9從物體側起第9個和第1〇個透鏡面的面間隔 D10從物體側起第1〇個和第u個透鏡面的面間隔 Γ 产'·ί I. a i 26Ϊ ¢=-- ~ι IH 24 :M360369 R4 The radius of curvature of the fourth lens surface from the object side R5 The radius of curvature of the fifth lens surface from the object side R6 The radius of curvature of the sixth lens surface from the object side R7 from the object side, the radius of curvature R8 of the seventh lens surface from the object side, the radius of curvature R9 of the eighth lens surface from the object side, the radius of curvature R10 of the ninth lens surface from the object side, the tenth lens surface from the object side The radius of curvature D0 is the surface interval D1 of the second and second lens faces from the object side. The surface interval D2 of the first and second lens faces from the object side is the second and third lens faces from the object side. The surface interval D3 from the object side, the surface interval D4 of the third and fourth lens faces from the object side, the surface interval D5 of the fourth and fifth lens faces from the object side, the fifth and sixth through The mirror surface interval D6 is from the object side, and the surface interval D8 of the seventh and eighth lens faces from the object side of the sixth and seventh lens faces is the eighth and ninth from the object side. The interplanar spacing D9 of the lens faces from the object side, the interplanar spacing D10 of the ninth and the first one lens faces, from the object side, between the faces of the first and the uth lens faces隔 Γ '·ί I. a i 26

Claims (1)

M360369 六、申請專利範圍: 1. 一種攝影透鏡,從物體側依次包括 光攔;M360369 VI. Scope of application for patents: 1. A photographic lens that includes light barriers in order from the object side; 第1透鏡,其至少一面為非球面形狀,並且物體側的 5面在光軸附近為凸面,且具有正的光放大率; 第2透鏡,其像側的面在光軸附近為凹面,其具有負 的光放大率; ' 第3透鏡,其在光軸附近將凹面朝向物體側,且為正 的彎月形透鏡;以及 0 第4透鏡,其兩面為非球面形狀,並且像側的面在光 轴附近為凹形狀’在周邊部為凸形狀,並且,滿足以下條 件式而構成: 15At least one surface of the first lens has an aspherical shape, and the five sides on the object side have a convex surface in the vicinity of the optical axis and have a positive optical power; and the second lens has a concave surface on the image side in the vicinity of the optical axis. Having a negative optical power; 'the third lens having a concave surface facing the object side in the vicinity of the optical axis and being a positive meniscus lens; and 0 fourth lens having aspherical shape on both sides and the image side surface The concave shape in the vicinity of the optical axis is convex at the peripheral portion, and is configured to satisfy the following conditional formula: 15 0.85^ DL/f^ 0.93 ......⑴ u 1 - 〇 2+ υ 3+ u 4)/3 g 〇 -0.58^ f4/f^0 ..···.(3) 0.35^ f3/f^ 0.75 .··.(4) 此處, f :整體的焦距, (2) f3 :第3透鏡的焦距, 20 f4 :第4透鏡的焦距, DL :從第1透鏡的物體側面頂點到 點的光軸上的距離, 第4透鏡的像側面頂 U 1 :第1透鏡的阿貝數, U 2 :第2透鏡的阿貝數, 27 M360369 u 3 :第3透鏡的阿貝數, U4.第4透鏡的阿貝數。 第二IS專利範圍第1項所述之攝影透鏡,其中,該 第1透鏡的像側的面在光軸附近為凸形狀。 3.如申請專利範圍第丨項或第2項所述之攝影透鏡,其 中’進一步滿足以下條件式: (5) -1.0^ f/R3 ^ 0.4 此處,0.85^ DL/f^ 0.93 ......(1) u 1 - 〇2+ υ 3+ u 4)/3 g 〇-0.58^ f4/f^0 ..···.(3) 0.35^ f3 /f^ 0.75 .···(4) Here, f: the overall focal length, (2) f3: the focal length of the third lens, 20 f4: the focal length of the fourth lens, DL: the apex of the object from the first lens The distance to the optical axis of the point, the image side top U 1 of the fourth lens: the Abbe number of the first lens, U 2 : the Abbe number of the second lens, 27 M360369 u 3 : the Abbe number of the third lens , U4. Abbe number of the 4th lens. The photographic lens according to the first aspect of the invention, wherein the image side surface of the first lens has a convex shape in the vicinity of the optical axis. 3. The photographic lens of claim 2 or 2, wherein ' further satisfies the following conditional formula: (5) -1.0^ f/R3 ^ 0.4 Here, 1515 20 f:整體的焦距, R3 ··第2透鏡的物體側的面的近轴曲率半徑。 4.如申請專利範圍第1項或第2項所述之攝影透鏡,其 中’進一步滿足以下條件式: 2.08^f/R1^3.3 ....·⑹ 此處, f :整體的焦距 R1 :第1透鏡的物體側的面的近軸曲率半徑。 5.如申請專利範圍第!項或第2項所述之攝影透鏡,其 中,進一步滿足以下條件式: 3.0mm^ DL^ 4.0mm ......⑺ 此處, DL:從第1透鏡的物體側面頂.點到第4透鏡的像側面頂 點的光軸上的距離。 6·如申請專利範圍第1項或第2項所述之攝影透鏡,其 中,進一步滿足以下條件式: 28 M360369 0.1^MIN(D)/f^ 1.0 ……(8) 此處,20 f: overall focal length, R3 · The paraxial radius of curvature of the object-side surface of the second lens. 4. The photographic lens according to claim 1 or 2, wherein 'the following conditional formula is further satisfied: 2.08^f/R1^3.3 (6) Here, f: the overall focal length R1: The paraxial radius of curvature of the surface on the object side of the first lens. 5. If you apply for a patent range! The photographic lens according to Item 2, wherein the following conditional expression is further satisfied: 3.0 mm^ DL^ 4.0 mm (7) Here, DL: from the side of the object of the first lens to the top. 4 The distance on the optical axis of the image side apex of the lens. 6. The photographic lens according to claim 1 or 2, wherein the following conditional formula is further satisfied: 28 M360369 0.1^MIN(D)/f^ 1.0 (8) Here, 1 ♦金遐的居、此, MIN(D):在第1透鏡至第4透鏡之中最小的中心厚度的 5值,而且’將式(8)中的f、min(d)的單位設為麵。 7. —種照相機模組,包括: 申請專利範圍第1 jg & _ « ^ 一 項所述之攝影透鏡;以及 攝衫7G件,其輸出與 久 應的攝影信號。 、V攝衫透鏡形成的光學像相對 ί0 8· 一種攝影設備,包括: 申請專利範圍第7 項所述之照相機模組。1 ♦ Gold 遐, this, MIN (D): 5 values of the smallest center thickness among the first lens to the 4th lens, and 'the unit of f and min(d) in the formula (8) is set. For the sake of it. 7. A camera module comprising: a photographic lens of the type 1 jg & _ « ^; and a 7G piece of the garment, the output of which is a long-lasting photographic signal. The optical image formed by the V-shirt lens is opposite to ί0 8. A photographic apparatus comprising: the camera module described in claim 7 of the patent application. 29 M360369 '•第97215722號,98年3月修正頁 -0.58^ f4/f^ 0 0.35S f3/f$ 0.75。 三、英文新型摘要: 四、指定代表圖:29 M360369 '•第97215722, March 1998 Amendment Page -0.58^ f4/f^ 0 0.35S f3/f$ 0.75. Third, the new English abstract: Fourth, the designated representative map: (一) 本案指定代表圖為:圖(1 )。 (二) 本代表圖之元件符號簡單說明: L3第3透鏡 Z1光軸 DL透鏡全厚度 L1第1透鏡 L2第2透鏡 L4第4透鏡 St孔徑光欄 CG光學部件 Simg成像面 E端緣位置 R1從物體側起第1個透鏡面的曲率半徑 R2從物體側起第2個透鏡面的曲率半徑 R3從物體側起第3個透鏡面的曲率半徑 R4從物體側起第4個透鏡面的曲率半徑 R5從物體側起第5個透鏡面的曲率半徑 R6從物體側起第6個透鏡面的曲率半徑 R7從物體側起第7個透鏡面的曲率半徑 R8從物體側起第8個透鏡面的曲率半徑 R9從物體側起第9個透鏡面的曲率半徑 M360369(1) The representative representative of the case is: Figure (1). (2) The symbol of the representative figure is simply described: L3 third lens Z1 optical axis DL lens full thickness L1 first lens L2 second lens L4 fourth lens St aperture diaphragm CG optical component Simg imaging surface E edge position R1 Curvature radius R2 of the first lens surface from the object side Curvature radius R3 of the second lens surface from the object side Curvature radius R4 of the third lens surface from the object side Curvature of the fourth lens surface from the object side Radius R5 The radius of curvature R6 of the fifth lens surface from the object side The radius of curvature R7 of the sixth lens surface from the object side The radius of curvature R7 of the seventh lens surface from the object side The eighth lens surface from the object side Curvature radius R9 The radius of curvature of the ninth lens surface from the object side M360369 R10從物體側起第10個透鏡面的曲率半捏 D0從物體側起第〇個和第丨個透鏡面的面間隔 D1從物體側起第1個和第2個透鏡面的面間隔 D2從物體側起第2個和第3個透鏡面的面間隔 D3從物體側起第3個和第4個透鏡面的面間隔 D4從物體側起第4個和第5個透鏡面的面間隔 D5從物體側起第5個和第6個透鏡面的面間隔 D6從物體側起第6個和第7個透鏡面的面間隔 D7從物體側起第7個和第8個透鏡面的面間隔 D8從物體側起第8個和第9個透鏡面的面間隔 D9從物體側起第9個和第1〇個透鏡面的面間隔 從物體側起第1〇個和第1H固透鏡面的面間隔R10, the curvature of the 10th lens surface from the object side, the half pinch D0, the surface interval D1 of the second and second lens faces from the object side, and the surface interval D2 of the first and second lens faces from the object side. The surface interval D3 of the second and third lens faces from the object side, the face interval D4 of the third and fourth lens faces from the object side, and the face interval D5 of the fourth and fifth lens faces from the object side The interplanar spacing D6 of the fifth and sixth lens faces from the object side, the interplanar spacing D7 of the sixth and seventh lens faces from the object side, the interplanar spacing of the seventh and eighth lens faces from the object side D8 The surface interval D9 of the eighth and ninth lens faces from the object side The surface interval of the ninth and the first one lens faces from the object side is from the object side, the first one and the first H lens surface Face spacing
TW97215722U 2007-09-10 2008-09-01 Photographic lens, camera module, and photographic equipment TWM360369U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007234395A JP5090832B2 (en) 2007-09-10 2007-09-10 Imaging lens, camera module, and imaging device

Publications (1)

Publication Number Publication Date
TWM360369U true TWM360369U (en) 2009-07-01

Family

ID=40605569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97215722U TWM360369U (en) 2007-09-10 2008-09-01 Photographic lens, camera module, and photographic equipment

Country Status (3)

Country Link
JP (1) JP5090832B2 (en)
CN (1) CN201392425Y (en)
TW (1) TWM360369U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8804024B2 (en) 2012-11-15 2014-08-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US8976467B2 (en) 2012-09-07 2015-03-10 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9217846B2 (en) 2013-11-29 2015-12-22 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9513534B2 (en) 2013-11-29 2016-12-06 Genius Electronic Optical Co., Ltd. Mobil device and optical imaging lens having four lens elements thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317480B2 (en) * 2008-01-15 2013-10-16 カンタツ株式会社 Imaging lens
JP5368171B2 (en) 2009-05-21 2013-12-18 パナソニック株式会社 Imaging lens and imaging apparatus using the same
WO2011027690A1 (en) * 2009-09-02 2011-03-10 コニカミノルタオプト株式会社 Single-focus optical system, image pickup device, and digital apparatus
WO2011052370A1 (en) * 2009-10-26 2011-05-05 コニカミノルタオプト株式会社 Imaging lens
KR20110048247A (en) 2009-11-02 2011-05-11 삼성전기주식회사 Optical system
JP5797007B2 (en) * 2010-05-17 2015-10-21 カンタツ株式会社 Imaging lens for solid-state imaging device
KR101157398B1 (en) 2010-06-30 2012-06-25 주식회사 코렌 Photographic lens optical system
JP4887507B1 (en) * 2011-01-31 2012-02-29 株式会社AAC Technologies Japan R&D Center Imaging lens
CN103135207B (en) 2012-11-15 2015-07-15 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
CN111147704B (en) * 2018-11-06 2022-08-23 江西欧迈斯微电子有限公司 Infrared lens, imaging module and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4879600B2 (en) * 2006-02-15 2012-02-22 富士フイルム株式会社 Imaging lens
JP4977869B2 (en) * 2006-08-21 2012-07-18 コニカミノルタアドバンストレイヤー株式会社 Imaging lens, imaging device, and portable terminal
JP2008185880A (en) * 2007-01-31 2008-08-14 Enplas Corp Imaging lens and imaging device equipped with the same
JP4924141B2 (en) * 2007-03-28 2012-04-25 コニカミノルタオプト株式会社 Imaging lens, imaging device, and portable terminal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8976467B2 (en) 2012-09-07 2015-03-10 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9541731B2 (en) 2012-09-07 2017-01-10 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US8804024B2 (en) 2012-11-15 2014-08-12 Genius Electronic Optical Co., Ltd. Mobile device and optical imaging lens thereof
US9217846B2 (en) 2013-11-29 2015-12-22 Genius Electronic Optical Co., Ltd. Imaging lens, and electronic apparatus including the same
US9513534B2 (en) 2013-11-29 2016-12-06 Genius Electronic Optical Co., Ltd. Mobil device and optical imaging lens having four lens elements thereof

Also Published As

Publication number Publication date
JP5090832B2 (en) 2012-12-05
JP2009069196A (en) 2009-04-02
CN201392425Y (en) 2010-01-27

Similar Documents

Publication Publication Date Title
TWM360369U (en) Photographic lens, camera module, and photographic equipment
TWI375049B (en)
JP4940740B2 (en) Imaging lens, imaging device provided with imaging lens, and portable terminal provided with imaging device
JP4466713B6 (en) Imaging lens and imaging device
TWI391701B (en) Imaging lens assembly
JP5535747B2 (en) IMAGING LENS, IMAGING DEVICE, AND PORTABLE TERMINAL DEVICE
JP5037963B2 (en) Imaging lens
TWM354079U (en) Photographic lens, camera module and photographing equipment
TWI322897B (en)
TWM364864U (en) Camera lens and camera device with a 3-set structure
TWM484110U (en) Imaging lens and imaging device having the same
TW201232092A (en) Image capturing lens assembly
TW201219882A (en) Optical imaging lens assembly
JPWO2011021271A1 (en) Imaging lens, imaging device, and portable terminal
TW201109712A (en) Imaging lens assembly
TWM464679U (en) Imaging lenses and imaging device including the same
WO2005119326A1 (en) Taking lens
TW201115180A (en) Photographing optical lens assembly
TWM354075U (en) Photographic lens, camera module and photographing equipment
TWM356116U (en) Photography lens and camera module and photography equipments
JP5022172B2 (en) Four-element compact imaging lens, camera module, and imaging device
TWM482070U (en) Imaging lens and imaging device having the same
TW201346321A (en) Image pickup lens
TW201527791A (en) Imaging lens and imaging unit
TWM356917U (en) Four-pieced miniature photographic lens, camera module and photographic device

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model