TWM357615U - Two optical elements f-θ lens of MEMS laser scanning - Google Patents
Two optical elements f-θ lens of MEMS laser scanning Download PDFInfo
- Publication number
- TWM357615U TWM357615U TW97217797U TW97217797U TWM357615U TW M357615 U TWM357615 U TW M357615U TW 97217797 U TW97217797 U TW 97217797U TW 97217797 U TW97217797 U TW 97217797U TW M357615 U TWM357615 U TW M357615U
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- optical surface
- light
- mirror
- scanning
- Prior art date
Links
Landscapes
- Facsimile Scanning Arrangements (AREA)
- Lenses (AREA)
Abstract
Description
M357615 八、新型說明: • 【新型所屬之技術領域】 本創作係有關-種微機電雷射掃描裝置之二片式f(9鏡片,特別 指,用以修正呈簡雜運動之微機電反射鏡而產生隨時間成正弦 關係之角度k化:t,以達成雷雜目轉置所要求之、雜掃描效果之二 片式f β鏡片。 鲁【先前技術】 目刖雷射光束印表機LBP(Laser Beam print)所用之雷射掃描裝置 LSU(Laser Scanning Unit) ’係利用一高速旋轉之多面鏡 mirror) 以操控运射光束之知指動作(laser beam scanning),如美國專利 US7079171、US6377293、US6295116,或如台灣專利謂966 所述。 其原理如下簡述:利用-枓體雷射發出雷射光束(1而beam),先經 由一準直鏡(collimator),再經由一光圈(ape加re)而形成平行光束,而 平行光束再經過一柱面鏡(cylindrical丨如5)後,能在副掃瞄方向(sub • Scanning direction)之Υ軸上之寬度能沿著主掃描方向(main scanning ! directlon)之X軸之平行方向平行聚焦而形成一線狀成像(line image), 再才又射至一尚速旋轉之多面鏡上,而多面鏡上均勻連續設置有多面反 射鏡,其恰位於或接近於上述線狀成像(lineimage)之焦點位置。藉由 多面鏡控制雷射光束之投射方向,當連續之複數反射鏡在高逮旋轉時 可將射至一反射鏡上之雷射光束延著主掃描方向(χ轴)之平行方向以 同一轉角速度(angular velocity)偏斜反射至一 f(9線性掃描鏡片上,而 ίθ線性掃描鏡片係設置於多面鏡旁侧,可為單件式鏡片結構 (single-dement scanning lens)或為二件式鏡片結構。此μ線性掃描鏡 M357615 月之功能在於使經由多面鏡上之反射鏡反射而射鏡片之雷射光 束能聚焦成-橢圓型光點並投射在一光接收面(ph〇t〇recept〇r d_,即 "成像面)上,並達成線性掃描(scanning linearity)之要求。然而,習用之 、 雷射掃目苗裝置LSU在使用上會有下列問題: (1) 、旋轉式多面鏡之製作難度高且價格不低,相對增加LSU之 製作成本。 (2) 、多面鏡須具高速旋轉(如40000轉/分;)功能,精密度要求又 鲁高,以致一般多面鏡上反射面之鏡面γ軸寬度極薄,使習用LSU中 均需增設一柱面鏡(cylindrical iens)以使雷射光束經過柱面鏡能聚焦 成一線(Y軸上成一點)而再投射在多面鏡之反射鏡上,以致增加構 成本及組裝作業流程。 (3) 、習用多面鏡須高速旋轉(如4〇〇〇〇轉/分),致旋轉噪音相對提 高,且多面鏡從啟動至工作轉賴耗費較長時間,增加開機後之 時間。 (4) 餐用LSU之組裝結構巾’投射至多面鏡反射鏡之雷射光束 φ :心軸並非正對多面鏡之中心轉軸’以致在設計相配合之印鏡片 日守舄同日才考慮多面鏡之離軸偏差(〇ff axis deviati〇n)問題,相對增加 鏡片之設計及製作上麻煩。 '各j年以來’為了改善習用LSU組裝結構之問題,目前市面上開 發出一種擺動式(osciUat〇ry)的微機電反射鏡(]^]5]^8,用以取 代習用之多面鏡來操控雷射光束掃描。微機電反射鏡為轉矩振蓋器 (to職⑽UlatOTS)’其表層上附有反光層,可藉由振舰動反光層, =線反射而掃描’未來將可應用於影像系統^、掃 榣益(scanner)或雷射印表機(laser printer)之雷射掃描裝置扣似 M357615 scanning unit,簡稱 LSU),其掃描效率(Scanning efflciency)將可高於 傳統的旋轉多面鏡。如美國專利US6,844,951、uS6,956,597,係產生 至少一驅動訊號,其驅動頻率趨近複數微機電反射鏡之共振頻率,並 以一驅動訊號驅動微機電反射鏡以產生一掃瞄路徑、US7,〇64,876、 US7,184,187、US7,190,499、US2006/0113393 ;或如台灣專利 TW M253133 ’其係於一 LSU模組結構中準直鏡及印鏡片之間,利用一 微機電反射鏡取代龍旋轉式多面鏡,藉以控制雷射光束之投射方 向’或如日本專利JP 2006-201350等。此微機電反射鏡具有元件小, 轉動速度快’製造成本低的優點。然而由於微機電反射鏡,在接收一 =壓驅動後,將作—簡諧魏,且此簡料師麵⑽&慮㈣之方 式=夺間與角速度呈正關係,而投射於微機電反射鏡,其經反射後 之反射角度Θ與時間t的關係為: 〇{t) = Qs -sm(2n f-t) 射鏡掃描頻率、雷射先么微機電反 弦函所對應的反㈣度係與時間成正 sin(2;r在相同日7間間隔〜時,反射角度變化為: 而與時間呈非線性關係,亦即當此反 動所產生的光 時,角度變化量=^反射鏡之擺動肖度位於正弦波之波峰及波谷 動之運動方式不同遞減,與習知之多面鏡成等角速度轉 射掃聪褒置(Lsu)上右吏用習知之f6>鏡片於具有微機電反射鏡之雷 量,造成投射在成像面電反射鏡所產生之角度變化 上之田射先速將產生非等速率掃描現象而產生 M357615 位於成像面上之成像偏差。 描裝置,簡稱為微機電带:此壯對於微機電反射鏡所構成的雷射掃 線經由微機電反射鏡,其特性為雷射光 因此發展可嫩掃描光線, 使可在目標物上正確錄,如婦描光線’ 曲面("Dolvnomial、. ’ 揭銘 9 方向修正,尚難達精度要求.m μαW哪”入调_形,僅由主掃描 在主掃描方向進行角度變化旦 Λ 光束截面並非理想的極小 再又又匕里,但由於雷射 方_ ’而其截面為扁狀橢圓形, 修正掃描賴⑽㈣,蝴幽_織同時 【新型内容】 :創:之目的在於提供—種微機電雷射掃描裝置之 凸型制由微觀反職财.係由^—鏡片為3 凸型之制所構成,第二刻為雙时 ㈣鏡片為雙 射鏡所反射之掃描姐於目標物上正 ^將微機電反 要求之線性掃描效果。 而達成雷射掃瞄裝置所 2創,另一目的在於提供-種微機電雷射掃描掌置之-η Μ鏡片’係用以縮小投射在目標物上光點(spot)之面/ ^一片式 解析度之效果。 )之面積’而達成提高 本創作之再-目的在於提供一種微機電雷射 Μ鏡片,可畸變修正因掃描光線偏離光輛,而之一片式 副掃描方向之偏移增加,使成像於感光鼓 成=方向及 題,並使每—成像総大小得以均勻化,圓形j (resolution quality)之功效。 楗升角午像品夤 因此,本創作微機電雷射掃描裝置之二片式印鏡片’適用於至 M357615 二=:發射雷射光束之光源以共振左右擺動將光源發射之雷射 Ζϊ: ί掃描光線之微機電反射鏡,以在目標物上成像;對於雷 来靜屮^ ’此目標物常為感光鼓(dmm) ’即’待成像之光點經由 it 束,經由微機電反射鏡左右掃描,微機電反射鏡反射 掃描光線,掃描光線經由本創作之二片式%鏡片修正 可ΐ岸碳鼓上形成光點(啊)’由於感光鼓塗有光敏劑, -饮應反叔使其聚集於紙上,如此可將資料列印出。 1鏡片2=2式Γ鏡片包含由微機電反射鏡依序起算之一第一 ,'及弟「鏡片,其中第—鏡片具有_第—光學面及 ’弟1面與第二光學面,在靖描 2 球面所構成,係主要將呈簡諧運動之微機電反祕有非 速率掃描,使,修正為等 -第三光學面;===!掃描。第二編有 方向至少有一個光學面為非球:要在:掃描 差,並將第一鏡片之掃描光線修正聚光m感上先鼓上形成成像偏 【實施方式】 請麥照圖卜為本創作微機電 光學路徑之示意圖。本創作 _^^置之二片式%鏡片之 含-具有一第一光學雷射掃插裝置之二片式作鏡片包 與-具有-第三光學面132 —光學面131b之第-鏡片13卜 係適用於微機電雷射掃胳壯罢^予囟132b之弟二鏡片132, ^衣置。圖中,微機㈣射掃描裝置主要包含 M357615 一雷射光源11、一微機電反射鏡1〇、一柱面鏡16、二光電感測器i4a、 14b,及一用以感光之目標物。在圖中’目標物係以用感光鼓(dmm)15 來實施。雷射光源11所產生之光束111通過柱面鏡16後,投射到微 機電反射鏡10上。而微機電反射鏡10以共振左右擺動之方式,將光 束 111 反射成掃瞄光線 113a ' 113b、114a、114b、115a、115b。其中 掃瞒光線113a、113b、114a、114b、115a、115b在X方向之投影稱 之為副掃描方向(sub scanning direction),在γ方向之投影稱之為主掃 _描方向(main scanning direction) ’而微機電反射鏡1〇掃描角度為知。 請爹照圖1及圖2,其中圖2為—微機電反射鏡掃描角度θ 機電反射鏡1G呈—簡諧運動,其運動角度隨 "、中々波峰a-a及波谷b-b,,宜擺動角_日日曰5丨 “,,而此角速___ '=+度^小於波段妯及 生戚傢偏差因此,光電感測器⑷、 座 最大掃描角度墙之内,Ω “置於械機電反射鏡ι〇 被微機電反射鏡10黯^ ^ Ρ ’祕光束_ 2之波峰處開始 電感測器】如_==== 1之掃描光線ma;當光 到+ΘΡ角度,此時相當於圖1、^ ’表不微機電反射鏡10係擺動 掃描角度變化如圖二a :之Τ描光線114a ;當微機電反射鏡10 時雷射光助魏轉秘== 目f丨於雜树收位置;此 出雷射光幻H微機朗轉射光源η發 由雷ΐ先源11 _動而開始發出^射先時,如於破段a,-b,時 #翏照圖1及圓3 +束⑴,如此完成—個週期。 4圖3麵過第—鏡収第二制之掃梅 10 M357615 光路徑圖。針,地為有效掃描角度,當微機電反射鏡ω 之㈣角度進入逃時’雷射光源η開始發出雷射光束ln,經由微 機電反射鏡10反射為掃猫光線,當掃瞒光線通過第―鏡片131 第-鏡片13丨之第-光學面131a與第二光學面⑽折 之距離與時間成非線性_之掃描光_換成』 = 性=之掃描光線。當掃描光線通過第,i3i與第二 鏡片132後,稭由弟一光學面131a、第二光學面咖 /、T dl馮微機電反射鏡10至第一 t 2為第一光學面131a至第二光學面腿之間 =3 a至㈣光學面⑽之間距、d5為第 15之間距鳴為第—光學面仙之曲率丰何Γ 至感先政 光學面131b之曲率半徑、馬為第三光學面咖之 四光學面132b之曲率半徑。 半彳工R4為弟 隨投上後,光點面 過第一鏡請及第二鏡沿光轴方向透 率是零,因此成像於感光鼓15上之光點% ^ ^向所產生之偏移 H3b及113c透過第—鏡片丨 … '圓形。當掃描光線 時,因入射於第一鏡片131 鏡片132後而投射在感光鼓15 零一心 Γ=:;==^^^ M357615 ra所形成的光點為大;此情形在副掃描方向也 以赤德於/田光線llla之掃描光線所形成的光點,也將較大;所 光雖在主saG# sbG為賴蚊職1G騎社掃晦光線的 t= Γ _ ____方向)之長度、Ga與Gb ^田光線之喊光束(Gaussian Beams)於光強度為i3 5%處在Y方M357615 VIII. New description: • [New technical field] This is a two-piece f (9 lens) for micro-electromechanical laser scanning device, especially for correcting micro-electromechanical mirrors with simple motion. And the angle of the sinusoidal relationship with time is k: t, to achieve the two-piece f β lens required for the scanning effect of the ray misalignment. Lu [Prior Art] Sighting laser beam printer LBP (Laser Beam print) laser scanning device LSU (Laser Scanning Unit) 'Using a high-speed rotating polygon mirror to control the laser beam scanning of the beam, such as US 7091717, US6377293, US6295116, or as described in Taiwan Patent 966. The principle is as follows: a laser beam (1 and beam) is emitted by using a --body laser, first through a collimator, and then through a diaphragm (ape plus re) to form a parallel beam, and the parallel beam After a cylindrical mirror (such as 5), the width of the axis in the sub-scanning direction can be parallel to the parallel direction of the X-axis of the main scanning! Focusing to form a line image, and then shooting onto a multi-mirror rotating at a speed, while the polygon mirror is uniformly and continuously provided with a polygon mirror, which is located at or near the above line image (lineimage) The focus position. The polygon mirror controls the projection direction of the laser beam, and when the continuous plurality of mirrors rotates at a high speed, the laser beam incident on a mirror can be extended by the same direction in the parallel direction of the main scanning direction (χ axis). The angular velocity is deflected to an f (9 linear scanning lens, and the ίθ linear scanning lens is placed beside the polygon mirror, which can be a single-dement scanning lens or a two-piece Lens structure. The function of this μ linear scanning mirror M357615 is to enable the laser beam reflected by the mirror on the polygon mirror to be focused into an elliptical spot and projected onto a light receiving surface (ph〇t〇recept 〇r d_, ie "imaging surface, and meet the requirements of linear scanning. However, the conventional, laser-sweeping device LSU has the following problems in use: (1), rotary multi-faceted The production of the mirror is difficult and the price is not low, which increases the production cost of the LSU. (2) The polygon mirror must have a high-speed rotation (such as 40,000 rpm) function, and the precision requirements are high, so that the general polygon mirror reflects Mirror surface γ The extremely thin width requires a cylindrical mirror to be added to the conventional LSU so that the laser beam can be focused into a line (a point on the Y-axis) through the cylindrical mirror and then projected onto the mirror of the polygon mirror. As a result, the composition and assembly process are increased. (3) The conventional polygon mirror must be rotated at a high speed (such as 4 rpm), resulting in a relatively high rotational noise, and the polygon mirror takes a long time from start to work. , increase the time after booting. (4) The assembled structural towel of the LSU for the meal 'projected to the polygon beam of the polygon mirror φ: the mandrel is not facing the center axis of the polygon mirror' so that the design fits the lens date On the same day, Shouyi considered the off-axis deviation of the polygon mirror (〇ff axis deviati〇n), which made it relatively difficult to design and manufacture the lens. 'Every j years ago' in order to improve the LSU assembly structure, the current market development A oscillating (osciUat〇ry) microelectromechanical mirror (]^]5]^8 is used to replace the conventional polygon mirror to control the laser beam scanning. The microelectromechanical mirror is a torque vibrator. (10)UlatOTS) 'There is a counter on its surface Layer, which can be scanned by vibrating ship reflective layer, = line reflection. 'The future laser scanning device that can be applied to imaging system ^, sweeper or laser printer is similar to M357615 Scanning unit (LSU), the scanning efficiency (Scanning efflciency) will be higher than that of the traditional rotating polygon mirror. For example, US Pat. No. 6,844,951, uS6,956,597, which generates at least one driving signal, whose driving frequency approaches the complex micro-electromechanical Resonating frequency of the mirror, and driving the microelectromechanical mirror with a driving signal to generate a scanning path, US 7, 〇 64, 876, US 7, 184, 187, US 7,190, 499, US 2006/0113393; or as Taiwan patent TW M253133 ' Between the collimating mirror and the printing lens in the LSU module structure, a micro-electromechanical mirror is used instead of the dragon rotating polygon mirror to control the projection direction of the laser beam or as Japanese patent JP 2006-201350. This microelectromechanical mirror has the advantages of small components, fast rotation speed, and low manufacturing cost. However, due to the microelectromechanical mirror, after receiving a = pressure drive, it will be made to be a simple harmonic, and this method of the face (10) & (4) is proportional to the angular velocity and projected to the microelectromechanical mirror. The relationship between the reflected angle Θ and the time t after reflection is: 〇{t) = Qs -sm(2n ft) The scanning frequency of the mirror, the inverse (four) degree system and time corresponding to the MEMS micro-electromechanical inverse string function When the positive sin (2; r on the same day 7 interval ~, the angle of reflection changes: and has a nonlinear relationship with time, that is, when the light generated by this reaction, the amount of change in angle = ^ the oscillation of the mirror The movements of the sinusoidal wave peaks and troughs move differently, and the multi-faceted mirrors of the conventional sinusoidal angles are converted into an equal angular velocity. The Sweeping device (Lsu) is used on the right side and the f6 is used in the lens, and the lens has a ray amount with a microelectromechanical mirror. The first velocity of the field caused by the angle change caused by the imaging surface mirror will produce a non-equal rate scanning phenomenon to produce the imaging deviation of the M357615 on the imaging surface. The device is referred to as the microelectromechanical band: Laser sweep composed of electromechanical mirror The line passes through the microelectromechanical mirror, and its characteristic is laser light, so it can develop the scanning light, so that it can be recorded correctly on the target, such as the surface of the woman's light ("Dolvnomial, . ' 揭铭9 direction correction, still difficult Accuracy requires .m μαW, which is “into the _ shape, only the main scanning is in the main scanning direction for angle change. The beam cross section is not ideally small and then 匕, but the section is flat due to the laser _ ' Oval, modified scan Lai (10) (four), butterfly _ woven at the same time [new content]: Innovative: the purpose is to provide a kind of micro-electromechanical laser scanning device convex system by micro-inverse financial. Department by ^ lens for 3 convex The second type is a double-time (four) lens which is reflected by the double-lens mirror and the scanning effect of the micro-electromechanical anti-requirement on the target object. The laser scanning device 2 is achieved. Another object is to provide a - Μ Μ lens for MEMS laser scanning to reduce the effect of the surface of the spot on the target / ^ one-piece resolution. Reaching the goal of improving this creation - the purpose is to mention For a micro-electromechanical laser lens, the distortion correction is caused by the deviation of the scanning light from the light, and the offset of one of the sub-scanning directions is increased, so that the image is formed in the photosensitive drum as the direction and the problem, and the size of each image is obtained. Homogenization, the effect of circular quality (resolution quality). As a result, the two-piece printing lens of the MEMS laser scanning device is suitable for the M357615. A laser that emits light from the source by oscillating left and right: ί scanning the microelectromechanical mirror for imaging on the target; for Rayleigh static ^ 'This target is often the photosensitive drum (dmm) 'ie' to be imaged The light spot is scanned by the IG micro-electromechanical mirror, and the micro-electromechanical mirror reflects the scanning light. The scanning light is corrected by the two-piece % lens of the creation to form a light spot on the bank drum (ah). The drum is coated with a photosensitizer, and the drink should be concentrated on the paper so that the data can be printed out. 1 lens 2 = 2 type Γ lens contains one of the first, starting from the microelectromechanical mirror, 'and brother' lens, where the first lens has _ first optical surface and 'dipole 1 and second optical surface, in The structure of Jing 2 is composed of a spherical surface, which is mainly a non-rate scanning of the micro-electromechanical anti-mystery of the simple harmonic motion, so that it is corrected to the equal-third optical surface; ===! scanning. The second series has at least one optical direction. The surface is aspheric: it is necessary to: scan poorly, and correct the scanning light of the first lens to condense the sense of light on the drum first to form an imaging bias [embodiment] Please take a picture of the micro-electromechanical optical path. The two-piece % lens of the present invention is provided with a two-piece lens package having a first optical laser scanning device and a first lens 13 having a third optical surface 132 and an optical surface 131b. The system is suitable for the micro-electromechanical laser sweeping and smashing ^ 囟 132b brother's second lens 132, ^ clothing. In the figure, the microcomputer (four) radiation scanning device mainly includes M357615 a laser light source 11, a microelectromechanical mirror 1〇 , a cylindrical mirror 16, two optical detectors i4a, 14b, and a target for sensitization. The target system is implemented by a photosensitive drum (dmm) 15. The light beam 111 generated by the laser light source 11 passes through the cylindrical mirror 16 and is projected onto the microelectromechanical mirror 10. The microelectromechanical mirror 10 swings left and right with resonance. In a manner, the light beam 111 is reflected into the scanning light rays 113a' 113b, 114a, 114b, 115a, 115b. The projection of the broom light rays 113a, 113b, 114a, 114b, 115a, 115b in the X direction is referred to as the sub-scanning direction (sub Scanning direction), the projection in the γ direction is called the main scanning direction and the scanning angle of the microelectromechanical mirror 1 is known. Please refer to Figure 1 and Figure 2, where Figure 2 is -micro Electromechanical mirror scanning angle θ Electromechanical mirror 1G is a simple harmonic motion, and its motion angle is along with ", the middle peak aa and the trough bb, and the swing angle _ 曰 曰 5丨 ", and the angular velocity ___ ' =+ degrees^ is less than the band 妯 and the 戚 偏差 deviation, therefore, the photo-electrical sensor (4), the maximum scanning angle inside the wall, Ω " placed in the mechanical and electrical mirror ι 〇 by the microelectromechanical mirror 10 黯 ^ ^ Ρ ' The peak of the beam _ 2 begins the inductance detector] such as _==== 1 scanning light ma; When the light reaches the +ΘΡ angle, it is equivalent to the change of the scanning angle of the microelectromechanical mirror 10 in Fig. 1, ^', as shown in Fig. 2a: the scanning light 114a; when the microelectromechanical mirror 10 is the laser Transfer secret == 目 f 丨 杂 杂 杂 杂 杂 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; , when #翏照图1 and circle 3 + bundle (1), so complete - cycle. 4 Figure 3 over the first - mirror to receive the second system of sweeping plum 10 M357615 light path map. The needle and the ground are effective scanning angles. When the (4) angle of the microelectromechanical mirror ω enters the escape, the laser source η starts to emit the laser beam ln, which is reflected by the microelectromechanical mirror 10 to sweep the cat light, and when the breeze light passes through ―Lens 131 The distance between the first optical surface 131a of the first lens 13a and the second optical surface (10) is non-linear with time _ the scanning light _ replaced by 』 = sex = scanning light. After the scanning light passes through the first, i3i and second lenses 132, the straw-optical surface 131a, the second optical surface/the T dl von microelectromechanical mirror 10, and the first t 2 are the first optical surfaces 131a to Between the two optical faces = 3 a to (4) the distance between the optical faces (10), and d5 is the 15th interval. The curvature is the first. The curvature radius of the optical surface 131b is the third. The radius of curvature of the optical surface 132b of the optical coffee. After the semi-finished R4 is cast, the transmittance of the first mirror and the second mirror along the optical axis is zero, so the light spot % ^ ^ imaged on the photosensitive drum 15 is generated. Move H3b and 113c through the first lens 丨... 'circular. When the light is scanned, it is incident on the photosensitive lens drum 15 after being incident on the lens 132 of the first lens 131. The light spot formed by the M357615 ra is large; this case is also in the sub-scanning direction. The light spot formed by the scanning light of the red light / tianla llla will also be larger; although the light is in the main saG# sbG is the t= Γ _ ____ direction of the broom light of the 1G riding machine Length, Ga, and Gb ^Gaussian Beams are at the light intensity of i3 5% at the Y side.
i徑=向之光束半徑’如圖5所示’圖5 _示γ方向的光束 縱上所14 ’本創作之二#式ω鏡片可將微機電反射鏡⑺反射之 知描光線,將高斯光束之射絲線進行畸變(distQrti⑽修正,及將時 間-角速度之義轉成日销_轉之_、。在主掃描方 ^掃描光線在X方向與γ方向之光束半徑經㈣鏡片的各角度! 疋的放大率,於成像面上產生絲,以提供符合需求的解析度。 、…為達成上述功效’本創作二片式扭鏡片在第—鏡片131的第一 光學面nia或第二光學面既及第二鏡片m的第三光學面咖 或第四光學面⑽’在主掃描方向或副掃描方向,可使用球面曲面或 麵面曲面糾’若使用非球面曲面設計,其非球面曲面係以下列曲 面方程式: 橫像曲面方程式(Anamorphic equation) 7- (Cx)X2+(Cy)Y2 i+^1-(1 + ^)(Cx)2 + 功1 - 戽)χ2 + (1+本)’叶 +i path = the beam radius to the 'as shown in Figure 5' Figure 5 _ shows the γ direction of the beam longitudinally 14 'This creation of the second type ω lens can reflect the microelectromechanical mirror (7) to the light, Gauss The beam of the beam is distorted (distQrti (10) correction, and the time-angular velocity is converted into a daily pin _ turn _,. In the main scanning side ^ scan the beam radius in the X direction and γ direction through (four) the angle of the lens! The magnification of 疋 produces silk on the imaging surface to provide a resolution that meets the requirements. ... In order to achieve the above-mentioned effect, the two-piece twisted lens of the present invention is on the first optical surface nia or the second optical surface of the first lens 131. The third optical face or the fourth optical face (10)' of the second lens m can be corrected in the main scanning direction or the sub-scanning direction by using a spherical surface or a surface curved surface. If an aspheric surface is used, the aspheric surface is used. Use the following surface equation: Anamorphic equation 7- (Cx)X2+(Cy)Y2 i+^1-(1 + ^)(Cx)2 + Work 1 - 戽)χ2 + (1+本)' Leaf +
Br [(1 -Bf)X2+(\ + Bp )Y2 ] + CR [(1 - cp )X2 +(\ + CP )Y2 ]4 +Br [(1 -Bf)X2+(\ + Bp )Y2 ] + CR [(1 - cp )X2 +(\ + CP )Y2 ]4 +
Dja-D,)^2+(1 + 1),)^]5 (2) 其中,Z為鏡片上任一點以光軸方向至〇點切平面的距離(SAG); 12 M357615 與分別為X方向及Y方向之曲率(curvature) ; A與A分別為χ 方向及Y方向之圓錐係數(Conic coefficient) ; A、A、G與分別為 旋轉對稱(rotationally symmetric portion)之四次、六次、八次與十次冪 之圓錐變形係數(deformation from the conic);戽、戽、<^與凡分別非 方疋轉對稱(non-rotationally symmetric components)之分別為四次、六 次、八次、十次冪之圓錐變形係數(deformati〇n from細conic);當 ,(4且—^,=0則簡化為單一非球面。 田 2 .環像曲面方程式(Toric equation) Z = Zv + —iCxy)x2 \ + ^-(Cxy)2X2Dja-D,)^2+(1 + 1),)^]5 (2) where Z is the distance from the optical axis direction to the tangent plane (SAG) at any point on the lens; 12 M357615 and X direction respectively Curvature in the Y direction; A and A are the Conic coefficients in the χ direction and the Y direction, respectively; A, A, G and the four times, six times, eight of the rotationally symmetric portions, respectively. Deformation from the conic; 戽, 戽, <^ and respectively, respectively, non-rotationally symmetric components are four, six, eight, Deformi〇n from fine conic; when, (4 and -^, = 0 is reduced to a single aspheric surface. Field 2. Toric equation Z = Zv + — iCxy )x2 \ + ^-(Cxy)2X2
Cxy = —~—- (1 / Cx) — ZyCxy = —~—- (1 / Cx) — Zy
Zy - (Cy)Y2 1 + -yjl- (1 + Ky){Cy)2 Y2 + 54Γ4+5676 +5878+510710 (3) 匚其中’Z為鏡片上任一點以光轴方向至〇點切平面的距離(sag);Zy - (Cy)Y2 1 + -yjl- (1 + Ky){Cy)2 Y2 + 54Γ4+5676 +5878+510710 (3) where 'Z is the point on the lens from the optical axis to the tangent plane Distance (sag);
f分別Y方向與X方向之曲率(curvature) ; &為γ方向之圓錐 係數(Conie eoeffident) H、&與^為四次、六次、人次、十次 〇rder coefficients) deformation from the conic) ; # 一今^則簡化騎-球面。 ▲為能使掃描光線在目標物上之成像面上維持等掃描速度,舉例而 ,^兩姉同的時間間_,維持兩個光點_距 ma轉描光線⑽之間,藉由第一鏡 二======相__ 兩個光點的麟相等。更H ^ s 15上减的 Η)反射後,其高斯光束# 〇; 】n經由微機電反射鏡 二舁Gb較大,如果此掃描光線經過微 M357615 機電反射鏡10與感光鼓15之距離後’高斯光束半徑與將更 大’不符合貫用解析度要求·’本創作之二片式扭鏡片進一步可將微 機電反射鏡10反射的掃描光線113a至掃描光線113b之間形成Ga與 Gb較小的南斯光束’進行聚焦於成像的感光鼓15上產生較小的光 點;再者,本創作之二片式ίθ鏡片更可將成像在感光鼓15上的光點 大小均勻化(限制於一符合解析度要求的範圍内),以獲得最佳的解 析效果。 本創作之二片式扭鏡片包含,由微機電反射鏡1〇依序起算,為 :第-鏡片131及第二鏡片132’第—鏡片131為—雙凸形之鏡片及 第了鏡片132為-雙凸形之鏡片所構成,其中第一鏡片⑶具有第一 光學面131a及第二光學面131b,係將微機電反射鏡1〇反射之角度盥 時間非線性關係之掃描光線光點轉換成距離與時間為線性關係之掃 為光線光點,其中第二鏡片132為—新月形且凹面在微機電反射鏡側 之見片,、有第—光學面132a及第四光學面132b,係將第-鏡片131 之掃描光雜正聚光於目·上;藉域二以历剝將微機電反 ^鏡K)反射之掃描光線於感光鼓15上成像;其中,第一光學面⑶心 第二光學面131b、第三光學面咖及第四光學面132b在主掃描方向 至乂有―個為非球面所構成之光學面、第—光學面〗仙、第二光學面 第二光學面132a及第四光學面132b在副掃描方向可至少有-興二、_衣面所構成之光學面或在副掃描方向均使用球面所構成之光 IT,f進一步’在第—鏡片131及第二鏡片132構成上,在光學效 條件.創作之—片式扭鏡片,在主掃描方向進一步滿足式(4)〜式(5) /(, )Υ <0.6 (4) 14 M357615f Curvature in the Y direction and the X direction respectively; & Conie eoeffident in the γ direction H, & and ^ is four, six, ten, ten times rder coefficients) from the conic ); #一今^Simplify riding-spherical. ▲ In order to enable the scanning light to maintain the scanning speed on the imaging surface of the target object, for example, two different time periods _, maintaining two light points _ from the ma-transforming light (10), by the first Mirror two ====== phase __ The two points of the light are equal. After the reflection of H ^ s 15 is reduced, its Gaussian beam # 〇; n n is larger via the microelectromechanical mirror 舁 Gb, if the scanning light passes the distance of the micro M357615 electromechanical mirror 10 and the photosensitive drum 15 'Gaussian beam radius and will be larger' does not meet the requirements of the resolution. The two-piece twisted lens of the present invention can further form Ga and Gb between the scanning light 113a and the scanning light 113b reflected by the microelectromechanical mirror 10. The small Nantes beam 'produces a smaller spot on the photosensitive drum 15 that focuses on imaging; further, the two-piece ίθ lens of the present invention can evenly equalize the size of the spot imaged on the photosensitive drum 15 (restricted In the range of meeting the resolution requirements, to get the best analytical results. The two-piece twisted lens of the present invention comprises: a micro-electromechanical mirror 1 〇 sequentially, wherein: the first lens 131 and the second lens 132 ′ - the lens 131 is a double convex lens and the first lens 132 is a double convex lens, wherein the first lens (3) has a first optical surface 131a and a second optical surface 131b, which converts the scanning light point of the angle 盥 time-linear relationship of the microelectromechanical mirror 1〇 into The distance between the distance and the time is a ray spot, wherein the second lens 132 is a crescent-shaped and concave surface on the microelectromechanical mirror side, and has a first optical surface 132a and a fourth optical surface 132b. The scanning light of the first lens 131 is condensed on the target; the scanning light reflected by the microelectromechanical mirror K) is imaged on the photosensitive drum 15; wherein, the first optical surface (3) The second optical surface 131b, the third optical surface, and the fourth optical surface 132b have an optical surface formed by a non-spherical surface in the main scanning direction, a first optical surface, and a second optical surface. 132a and the fourth optical surface 132b may have at least two in the sub-scanning direction. The optical surface formed by the surface or the light IT formed by the spherical surface in the sub-scanning direction is further formed on the first lens 131 and the second lens 132, and the optical effect condition is created by the sheet twist lens. The main scanning direction further satisfies the formula (4) to (5) / (, ) Υ <0.6 (4) 14 M357615
-0·4 < Al)Y < -0.02 (5) 或,在主掃描方向滿足式(6) 0.1 < <1.2 ⑹ 且在副掃描方向滿足式(7) 0.086 < (α)+(α-0·4 < Al)Y < -0.02 (5) Or, satisfying the formula (6) 0.1 <<1.2 (6) in the main scanning direction and satisfying the equation (7) 0.086 < (α) in the sub-scanning direction +(α
)fsX <1.0 ⑺ 其中’ f⑴γ為第一鏡片131在主掃描方向之焦距、f(2)YS第二鏡 片132在主掃描方向之焦距、山為0=〇。第一鏡片i3l目標物側光學面 至第二鏡片132微機電反射鏡1〇侧光學面之距離、山為炉〇。第二鏡 片132尽度、屯為θ=〇。第二鏡片132目標物側光學面至目標物之距離, sx為一片式历鏡片在副掃描方向之複合焦距(c〇mbinati〇n focaj length)、fsY為二片式历鏡片在主掃描方向之複合焦距、第ι光學 面在副掃描方向的曲率半徑;Riy為第丨光學面在主掃描方向的曲率半 徑;如與如為第一鏡片131與第二鏡片132之折射率_action index) ° 再者,本創作之二片式历鏡片所形成的光點均一性,可以掃描 光線在感光鼓15上之光束大小的最大值與最小值的比值 滿足式(8): <fsX <1.0 (7) where ' f(1) γ is the focal length of the first lens 131 in the main scanning direction, the focal length of the f(2) YS second lens 132 in the main scanning direction, and the mountain is 0 = 〇. The distance from the target side optical surface of the first lens i3l to the optical surface of the second lens 132 microelectromechanical mirror 1 is the furnace. The second lens 132 has the fullness and 屯 is θ = 〇. The second lens 132 is the distance from the object side optical surface to the target object, sx is the composite focal length of the one-dimensional lens in the sub-scanning direction (c〇mbinati〇n focaj length), and fsY is the two-piece calendar lens in the main scanning direction. The composite focal length, the radius of curvature of the first optical surface in the sub-scanning direction; Riy is the radius of curvature of the second optical surface in the main scanning direction; and the refractive index _action index of the first lens 131 and the second lens 132, for example, Furthermore, the spot uniformity formed by the two-piece lens of the present invention satisfies the ratio of the maximum value and the minimum value of the beam size of the scanning light on the photosensitive drum 15 to satisfy the formula (8): <
_ min^ -Sa) max(VD ⑻ 更進-步’本創作之二片式扭鏡片卿成的解析度 點 反機敝械請絲轉描麵光鼓= 知大__與η_為微機電反鋪⑽反射面上掃料線的光先 15 M357615 =描麵級15上魅最傾的比值為表 示’即可滿足式(9)及 (9) (10) ς中&與Sb為感光豉15上掃猫光線形成的任 向及X方向之長度、S為感級15 慨‘站Y方 為微機電反射鏡ω反射面上掃目點麵大絲之比值、^ 久耵囬上鉀目田先線的光點與减弁 值;SaG與SbQ為微機f反機⑴反射面f f 15上先點之比 方向及副掃财向之長度。 4線的光點在主掃描 .為使本創似加明顧實,_舉較 將本創作之結構及其技補徵詳述如^ 下_不 枕實ΐ例’乃是針對本創作微機電#射掃描裝 置之-以ίθ鏡>|之主要構成元件而作說明,因此本創作以 電苗射純衣置而s,除了本創作所揭示之二片式a鏡片外,盆他 結構乃屬-般通知之技術,因此__般在此倾巾縣此項技藝之人士 瞭解’本創作所揭示微機電雷射掃描裝置之二片式w鏡片之構成元 件並不關独下賴示之實施例結構,也就是該微麵雷射掃描裝 置之二以㊉鏡片之各構成元件是可以進行許多改變、修改、甚至 等效變更的’例如:第-鏡片m及第二制132之曲料徑設計或 面型設計、材質選用、間距調整等並不限制。 16 M357615 <第一實施例> .★本貫施例之二片式历鏡片之第一鏡片131及—第二鏡片132,其 中第-鏡片ma為雙凸形之鏡片、第二鏡片m為新月形且凹面在 '微機電反射鏡側之鏡片所構成,在第-鏡片131第-光學面131a、第 一光學面131b、第二鏡片132第三光學面132a與第四光學面mb 均係為非球面’制式(2)為非球面公式設計。其光學躲與非球面參 數如表一及表二。 表一、第一實施例之fB光學特性_ min^ -Sa) max(VD (8) More Steps - Steps] The two-piece twist lens of this creation is the resolution point of the machine, the machine is turned, the surface is rotated, the drum is light = __ and η_ is micro Electromechanical back-pull (10) The light of the sweeping line on the reflective surface is 15 M357615 = The ratio of the most tilting of the charm on the drawing level 15 means 'that can satisfy the equations (9) and (9) (10) ς中& and Sb On the photosensitive cymbal 15, the direction of the light formed by the cat is swept, and the length of the X direction, S is the level of the sense 15. The square Y is the ratio of the sweeping point of the micro-electromechanical mirror ω reflecting surface, ^ long time back The spot and minus value of the potassium target line; SaG and SbQ are the ratio of the first point of the micro-machine f (1) reflection surface ff 15 and the length of the secondary sweep. The 4-line spot is in the main scan. Make this creation seem to be clear and lucid, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ >|The main constituent elements are described. Therefore, this creation is based on the electric seedlings. In addition to the two-piece a lens disclosed in this creation, the potted structure is a general notification technique, so _ _like in this dumping county Those skilled in the art understand that the constituent elements of the two-piece w-lens of the microelectromechanical laser scanning device disclosed in the present application are not related to the structure of the embodiment, that is, the micro-surface laser scanning device is equipped with ten lenses. Each of the constituent elements is capable of undergoing many changes, modifications, and even equivalent changes. For example, the curved diameter design or surface design, material selection, and pitch adjustment of the first-lens m and the second-made 132 are not limited. M357615 <First Embodiment> The first lens 131 and the second lens 132 of the two-piece lens of the present embodiment, wherein the first lens o is a biconvex lens and the second lens m is The crescent-shaped and concave surface is formed on the lens of the microelectromechanical mirror side, and the first optical surface 131a, the first optical surface 131b, the second optical lens 132, the third optical surface 132a and the fourth optical surface mb are both formed. The system is aspherical. The formula (2) is an aspheric formula. The optical and aspheric parameters are shown in Table 1 and Table 2. Table 1. Optical characteristics of fB in the first embodiment
光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) nd折射率 (thickness) (refraction index) MEMS反射面R 〇〇 15.00 1 lens 1 1.533 Rl(Anamort)hic) Rlx* •59.36 8.00 Rly* 412.45 R2fAnamorohic') R2x* -13.83 15.00 R2y* -191.01 lens 2 1.533 R3 iAnamorohic) R3x* 44.64 8.00 R3y* -67.42 R4rAnamor〇hic') R4x* 79.17 35.90 R4y* -140.15 威异‘鼓 Cdrum'iRi 〇〇 0.00 *表示非球面 17 Μ357615 表二、第一實施例之光學面非球面參數 _橫像曲面方程式係數(Anamorphic equation coefficent)_ 光學面(optica丨Ky圓錐係數 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 surface) (Conic Order Order Order Order _Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR)Optical surface curvature radius (mm) (optical surface) (curvature) d thickness (mm) nd refractive index (refraction index) MEMS reflective surface R 〇〇15.00 1 lens 1 1.533 Rl (Anamort) hic) Rlx* • 59.36 8.00 Rly* 412.45 R2fAnamorohic') R2x* -13.83 15.00 R2y* -191.01 lens 2 1.533 R3 iAnamorohic) R3x* 44.64 8.00 R3y* -67.42 R4rAnamor〇hic') R4x* 79.17 35.90 R4y* -140.15 威异'鼓Cdrum'iRi 〇〇0.00 * indicates aspheric surface 17 Μ 357615 Table 2. Optical surface aspheric parameters of the first embodiment _ Anamorphic equation coefficent _ Optical surface (optica 丨 Ky cone coefficient 4th power coefficient 6th power coefficient 8th power factor 10th power factor surface) (Conic Order Order Order Order _Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR)
Rl* -9.999866 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 R2* 2.0503E 十 01 -9.9853E-08 -4.9315E-10 O.OOOOE+OO 0.0000E+00 R3* -1.0279E+00 -9.5331E-08 7.4517E-11 0.0000E+00 0.0000E+00 R4* 4.2555E+00 -3.8792E-06 6.3532E-10 0.0000E+00 0.0000E+00Rl* -9.999866 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇R2* 2.0503E 十01 -9.9853E-08 -4.9315E -10 O.OOOOE+OO 0.0000E+00 R3* -1.0279E+00 -9.5331E-08 7.4517E-11 0.0000E+00 0.0000E+00 R4* 4.2555E+00 -3.8792E-06 6.3532E-10 0.0000E+00 0.0000E+00
Kx圓錐係數 她次幂係數 6th次幂係數 8th次冪係數 10th次冪係數 (Conic Order Order Order OrderKx conic coefficient her power factor 6th power factor 8th power factor 10th power factor (Conic Order Order Order Order
Coefficent) Coe伍cient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) R1R2R3R4 -37.712682 0.757670 -1.043425 〇.〇〇〇〇〇〇 〇.〇〇〇〇〇〇 -9.6614E-01 2.805 IE-01 O.OOOOE+OO O.OOOOE+OO 0.0000E+00 6.0316E+00 3.1716E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00Coefficent) Coe cient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) R1R2R3R4 -37.712682 0.757670 -1.043425 〇.〇〇〇〇〇〇〇.〇〇〇〇〇〇-9.6614E-01 2.805 IE- 01 O.OOOOE+OO O.OOOOE+OO 0.0000E+00 6.0316E+00 3.1716E+00 0.0000E+00 O.OOOOE+OO 0.0000E+00
2.5689E+01 -1.4215E+00 -1.2072E-01 O.OOOOE+OO 經由此所構成的二片式扭鏡片之光學面,f⑴y= 248.747、f(2)Y: 256·151、fsX=283(H、fsY=3349.652 (mm)可將掃描光線轉換成距离 與時間為線性之娜祕光點,並將微機電反射鏡1G上光·奪 Sa0=14.19_、Sb〇: 3109.99㈣掃描成為掃描光線,在感光鼓15」 進行聚焦,形成較小的光點6,並滿足式(4)〜式⑽之條件,如表三 感上以中心轴z轴在γ方向距離中心軸Y距離㈣的# 之痛光束直徑_,如表四;且本實施例之光點分布圖如圖7所先示 18 M357615 表三、第一貫施例滿足條件表2.5689E+01 -1.4215E+00 -1.2072E-01 O.OOOOE+OO The optical surface of the two-piece twisted lens thus formed, f(1)y=248.747, f(2)Y: 256·151, fsX=283 (H, fsY=3349.652 (mm) can convert the scanning light into a linear point of distance and time, and scan the microelectromechanical mirror 1G glazing Sa0=14.19_, Sb〇: 3109.99 (four) scanning The light is focused on the photosensitive drum 15" to form a small spot 6 and satisfies the conditions of the formulas (4) to (10), as shown in Table 3, with the central axis z-axis being at a distance γ from the central axis Y in the γ direction (four) #痛束梁直径_, as shown in Table 4; and the light spot distribution map of this embodiment is shown in Figure 7. 18 M357615 Table 3, the first embodiment meets the condition table
+d/wY f{2)Y主掃描方向 副掃描方向( ιηϊηί^ δ+d/wY f{2)Y main scanning direction Sub-scanning direction ( ιηϊηί^ δ
Vmu 金Rl 爾成) 111¾¾)Vmu Gold Rl ercheng) 1113⁄43⁄4)
^ K)fsx^ K)fsx
}bO ' ^aO 0.2368 -0.1401 0.4105 0.3319 0.4261 0.0732 0.0312 表四、第一實 施例感光鼓上光點高斯光束紐的最大值 Y -107.464 .96.〇75^ΠΤ—---- -48.240 -36.152 -24.085 〇.〇〇〇 1-27Ε-02 1.10Ε-02 9.01Ε-03 8.76Ε-03}bO ' ^aO 0.2368 -0.1401 0.4105 0.3319 0.4261 0.0732 0.0312 Table 4, the maximum value of the Gaussian beam on the photosensitive drum of the first embodiment Y -107.464 .96.〇75^ΠΤ—-----48.240 -36.152 -24.085 〇.〇〇〇1-27Ε-02 1.10Ε-02 9.01Ε-03 8.76Ε-03
MaxaGUGb) 1.95E.G2 1.38E.G2 Ζ4(Η ·60.337 ---~~-^〇2L61E-02 1.41Ε-02MaxaGUGb) 1.95E.G2 1.38E.G2 Ζ4(Η ·60.337 ---~~-^〇2L61E-02 1.41Ε-02
<第二實施例> 本實施例之二片式拘鏡片之第—鏡片i3i及—第二鏡片❿立 中弟一鏡片131a為雙凸形立 ’、 微機電反射鏡側之鏡% _形且凹面在 第二光學面㈣、第弟一鏡片131第Τ光學面咖與 均係為非球面,使用式⑵ 1光¥面132a與弟四光學面132b 數如表五及表六()轉杨椒計。其光學触與非球面參 19 M357615 表五、第二實施例之历光學特性 光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index) MEMS反射面R 〇〇 41.10 1 lens 1 1.533 RH Anamorphic) Rlx* -58.93 11.06 Rly* 500.00 R2f Anamorphic) R2x* -14.25 22.54 R2y* -131.98 lens 2 1.533 RBiAnamorDhic) R3x* 41.95 11.34 R3y* -68.38 R4(AnamorDhie) R4x* 44.94 59.54 R4y* -193.19 感糸鼓Cdrum)R5 〇〇 0.00 *表示非球面 表六、第二實施例之光學面非球面參數 光學面(optical surface) RJ* R2* R3* ___R4* 橫像曲面方程式係數(Anamorphic equation coefficent)<Second Embodiment> The first lens of the two-piece lens of the present embodiment, the lens i3i, and the second lens, the lens of the second lens, are a double convex shape, and the mirror of the microelectromechanical mirror side is _ The shape and the concave surface are the aspherical surface of the second optical surface (four), the second lens 131, and the second optical surface, and the optical surface of the optical plane 132b and the optical surface 132b of the fourth embodiment are as shown in Table 5 and Table 6 (). Turn the pepper to count. Optical contact with aspherical surface finger 19 M357615 Table 5, optical properties of the second embodiment, optical surface curvature radius (mm) (optical surface) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index) MEMS Reflective surface R 〇〇41.10 1 lens 1 1.533 RH Anamorphic) Rlx* -58.93 11.06 Rly* 500.00 R2f Anamorphic) R2x* -14.25 22.54 R2y* -131.98 lens 2 1.533 RBiAnamorDhic) R3x* 41.95 11.34 R3y* -68.38 R4(AnamorDhie) R4x* 44.94 59.54 R4y* -193.19 糸 C Cdrum) R5 〇〇0.00 * indicates aspheric surface table 6. Optical surface aspherical parameter optical surface of the second embodiment RJ* R2* R3* ___R4* Anamorphic equation coefficent
Ky圓錐係數 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) -1.0000E+01 4.1220E+00 -6.5523E-01 -2.1519E+01 -1.5664E-07 1.7671E-07 -5.4141E-07 -7.5590E-07 -2.461 IE-08 -1.0738E-10 -1.1074E-10 2.4110E-11Ky Cone Coefficient 4th Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient (Conic Order Order Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) -1.0000E+01 4.1220E +00 -6.5523E-01 -2.1519E+01 -1.5664E-07 1.7671E-07 -5.4141E-07 -7.5590E-07 -2.461 IE-08 -1.0738E-10 -1.1074E-10 2.4110E-11
0.0000E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.0000E+00 0.0000E+00 0.0000E+00 oooonF.+oo0.0000E+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0.0000E+00 0.0000E+00 0.0000E+00 oooonF.+oo
Kx圓錐係數 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 (Conic Order Order Order OrderKx Cone Coefficient 4th Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient (Conic Order Order Order Order
12 3 4 R R R R .Coefficent) Coefficient (AP) CoefflcienUBP) Coefficient (CP) Coefficient (DP) 9.0863E+00 -2.0046E-01 -1.0375E+00 0.0000E+00 0.0000E+00 -7.3631E-01 -2.3614E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9824E+00 -7.5108E-01 0.0000E+00 O.OOOOE+OO 0.0000E+00 _ _ 3.7629E+00 _ -5.0883E-Q1 _ 2.5704E-01 0.0000E+00 0 00〇nF+nn 經由此所構成的二片式ίθ鏡片,f⑴γ= 199·25〇、f(2)Y= -207.231、 fsX〜29.556、fsY=1482.761 (mm)可將掃描光線轉換成距離與時間為線性 之掃描光線光點’並將微機電反射鏡10上光點SaQ=1419aim)、sbQ= 20 M357615 3109.99(μηι)掃描成為掃描光線,在感光鼓15上進行聚焦,形成較小 的光點8,並滿足(4)〜式(1〇)之條件,如表七;感光鼓15上以中心軸 Ζ轴在Υ方向距離中心軸γ距離(mm)的光點之高斯光束直徑(叫^), 如表八;且本實施例之光點分布圖如圖8所示。 表七、弟一貫施例滿足條件表 d·^ ^ d4 -}- d5 d5 /(1)r 0.4689 f(2)Y 主掃描方向 副掃描方向 占_ ―队 η — ν R,, KRix Rjf- -0.2873 0.1528 0.1101 5¾) 0.4150 0.0579 - ------ 0.023812 3 4 RRRR .Coefficent) Coefficient (AP) CoefflcienUBP) Coefficient (CP) Coefficient (DP) 9.0863E+00 -2.0046E-01 -1.0375E+00 0.0000E+00 0.0000E+00 -7.3631E-01 -2.3614 E+00 0.0000E+00 0.0000E+00 0.0000E+00 9.9824E+00 -7.5108E-01 0.0000E+00 O.OOOOE+OO 0.0000E+00 _ _ 3.7629E+00 _ -5.0883E-Q1 _ 2.5704E-01 0.0000E+00 0 00〇nF+nn The two-piece ίθ lens thus constructed, f(1)γ= 199·25〇, f(2)Y= -207.231, fsX~29.556, fsY=1482.761 (mm The scanning light can be converted into a scanning light spot whose distance is linear with time 'and the spot of the microelectromechanical mirror 10 is SaQ=1419aim), sbQ=20 M357615 3109.99 (μηι) is scanned into the scanning light, and the photosensitive drum 15 is scanned. Focusing on, forming a smaller spot 8 and satisfying the condition of (4)~(1〇), as shown in Table 7; the distance from the central axis γ in the x-axis of the photosensitive drum 15 in the x-axis The Gaussian beam diameter (called ^) of the light spot is as shown in Table 8; and the light spot distribution map of this embodiment is as shown in FIG. Table VII, the brother consistently meet the condition table d·^ ^ d4 -}- d5 d5 / (1) r 0.4689 f (2) Y main scanning direction sub-scanning direction _ _ team η — ν R,, KRix Rjf- -0.2873 0.1528 0.1101 53⁄4) 0.4150 0.0579 - ------ 0.0238
表八、第二實施规光鼓上光點高斯絲直徑的最大值Table VIII, the maximum value of the Gaussian diameter of the light spot on the second drum
' -107.460 -95.920 -84.089 Max(2Ga,2Gb) 5.12E-03 8.48E-03 7.56E-03 -72.091 .60022 :7.949—.35.9〇5—^23.903 7-S7E-03 5.86E-03 5.06E-03 4.03E-03 2.40E-03 <第三實施例> 本實施例之二以fB鏡片之第—鏡片131及—第 中第一鏡片ma為雙凸形之鏡片、第二鏡片132為新月形且_ 微機電反射鏡側之鏡片所構成,在第一鏡片131第—光學面咖盘 弟二鏡片!32第四光學面⑽均係為非球 二 式設計;第-鏡請第二光學面⑽與第二鏡片 21 M357615 ;:=^rr(2)為編公齡蝴特性與非'-107.460 -95.920 -84.089 Max(2Ga,2Gb) 5.12E-03 8.48E-03 7.56E-03 -72.091 .60022 :7.949—.35.9〇5—^23.903 7-S7E-03 5.86E-03 5.06E -03 4.03E-03 2.40E-03 <Third Embodiment> In the second embodiment, the first lens of the fB lens and the first lens ma of the first lens ma are biconvex lenses and the second lens 132. For the crescent-shaped and _ micro-electromechanical mirror side of the lens, in the first lens 131 - optical face coffeepan two lenses! The fourth optical surface (10) is an aspherical two-type design; the second optical surface (10) and the second lens 21 M357615;:=^rr(2) are the characteristics of the male-aged butterfly.
表九、第三實施例之扭光學特性 光學面 曲率半徑(mm) (optical surface) (curvature^ MEMS及鼾兩R 〇〇 lens 1 RliY Toroid) Rlx -36.01 Rly* 358.67 R2fAnamorphic.) R2x* -11.95 R2y* -181.18 lens 2 R3(Anamorphic) R3x* 49.11 R3y* -88.10 R4 (Ύ Toroid) R4x 68.27 R4y* -91.94 感光鼓(drum^RS 〇〇 *表示非球面 度(mm) iijH^cness) 35.00 8.00 15.00 8.00 37.94 ____ 0.00 nd折射率 (refraction index) 1 1.533 1.533 φ 表十、第三實施例之光學面非球面參數 光學面(optics surface) 壞像曲甶万程式係動T〇r;c ef)丨丨afi〇n Ky圓錐係數 (Conic Coefficent) 4th次幂你數 6th次冪係數 Order Order Coefficient (B4) Coefficient CRfi'» 8th次冪係數 Order Coefficient (B8) 10th次冪係數 Order Coefficient Rl* -3.8493E+02 -9.3615E-07 -1.7154E-10 O.OOOOE+OO 0.0000E+00 R4* -9.1937E+01 -1.1043E-07 3.7377E-11 O.OOOOE 十 00 0.0000E+00 橫像曲面方程式係數(Anamorohic eauation coefficent) 光學面(optical Ky圓錐係數 4rii次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 surface) (Conic Order Order Order Order Coefficent) Coefficient (AR) Coefficient iBR) Coefficient (CR) Coefficient (DR) R2* -6.1828E+00 -3.3262E-08 -1.4185E-10 O.OOOOE+OO 0.0000E+00 R3* -2.0464E+00 5.4912E-08 1.2009E-10 O.OOOOE+OO 0.0000E+00 Kx圓錐係數 4th次幂係數 6th次冪係數 8th次冪係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) R2* -6.3742E-01 1.3726E+00 0.0000E+00 0.0000E+00 0.0000E+00 R3* 1.0000E+0J 9.2103E-01 0.0000E+00 O.OOOOE+OO O.OOOOE 十 00 22 M357615 經由此所;t冓成的二片式扭鏡片,f⑴γ= 29.477、f(2)Y=_197.425、 fsX=27崩、fs产挪.仍(mm)可將掃描 性之掃描光線絲,並將微機電反射鏡1G上光點SaG=1419(㈣、. 3109.99〇πηΜ帚描成為掃描光線,在感光鼓15上進行聚焦,形成較小 的光點ίο,並滿足(4)〜式⑽之條件,如表十―;感光鼓15上以中心 軸Z軸在Y額距射叫γ距離(mm)的光狀冑斯光束直徑 (μιη),如表十二;本實施例之光點分布圖如圖9所示。 表Η—、第三實^條件爭 + + d5 /〇 )yTable IX, Twisted Optical Characteristics of the Third Embodiment Optical Surface Curvature Radius (mm) (curvature^ MEMS and RR R〇〇lens 1 RliY Toroid) Rlx -36.01 Rly* 358.67 R2fAnamorphic.) R2x* -11.95 R2y* -181.18 lens 2 R3(Anamorphic) R3x* 49.11 R3y* -88.10 R4 (Ύ Toroid) R4x 68.27 R4y* -91.94 Drum (drum^RS 〇〇* indicates asphericity (mm) iijH^cness) 35.00 8.00 15.00 8.00 37.94 ____ 0.00 nd refractive index (refraction index) 1 1.533 1.533 φ Table 10, optical surface aspherical parameters of the third embodiment optical surface (optics surface) bad image 甶 甶 程式 program T〇r; c ef)丨丨afi〇n Ky Conic Coefficient (Conic Coefficent) 4th Power You 6th Power Factor Order Order Coefficient (B4) Coefficient CRfi'» 8th Power Coefficient Order Coefficient (B8) 10th Power Coefficient Order Coefficient Rl* -3.8493 E+02 -9.3615E-07 -1.7154E-10 O.OOOOE+OO 0.0000E+00 R4* -9.1937E+01 -1.1043E-07 3.7377E-11 O.OOOOE 00 0.0000E+00 Horizontal image surface Anamorohic eauation coefficent optical surface (optical Ky cone system) Number 4rii Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient surface) (Conic Order Order Order Coefficent) Coefficient (AR) Coefficient iBR) Coefficient (CR) Coefficient (DR) R2* -6.1828E+00 - 3.3262E-08 -1.4185E-10 O.OOOOE+OO 0.0000E+00 R3* -2.0464E+00 5.4912E-08 1.2009E-10 O.OOOOE+OO 0.0000E+00 Kx Cone coefficient 4th power factor 6th Power factor 8th power factor 10th power factor (Conic Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) R2* -6.3742E-01 1.3726E+00 0.0000E+00 0.0000E+00 0.0000E+00 R3* 1.0000E+0J 9.2103E-01 0.0000E+00 O.OOOOE+OO O.OOOOE 00 22 M357615 By this; t冓 into a two-piece twist lens, f(1)γ= 29.477, f(2)Y=_197.425, fsX=27 collapse, fs production shift. Still (mm) can scan the scanning light, and the microelectromechanical mirror 1G light spot SaG=1419 ((4), 3109.99〇πη scanning into scanning light, focusing on the photosensitive drum 15, forming a smaller spot ίο, and satisfying the conditions of (4)~(10), as shown in Table 10-; The photoacoustic drum 15 is photographed with a gamma distance (mm) at a Y-axis distance on the central axis Z-axis, as shown in Table 12; the light spot distribution map of this embodiment is as shown in FIG. Table Η—, third real ^ conditional competition + + d5 /〇 )y
Ja)y 主掃描方向 副掃描方向 δ m;Ja)y main scanning direction sub-scanning direction δ m;
Vmir 1111¾¾¾ b0 °g〇, 0.2655 -0.1922 1.0546 0.2138 0.4240 0.0711 0.0301 表十二、第三實 施例感光鼓上光點高斯光束直徑的最大值 Y -107.460 -96.198~~^84420~-72.403~~-60.285~~^48 145~^36030~τΓοτη"Vmir 11113⁄43⁄4⁄4 b0 °g〇, 0.2655 -0.1922 1.0546 0.2138 0.4240 0.0711 0.0301 Table 12, the maximum value of the Gaussian beam diameter on the photosensitive drum of the third embodiment Y -107.460 -96.198~~^84420~-72.403~~-60.285 ~~^48 145~^36030~τΓοτη"
Max(2Ga, 2Gb) 7.29E-02 5 56F ω λ . 23-970 〇·〇〇〇 --3.76Ε-02 3.05Ε-02 2.51Ε-02 1.87Ε-02 1.29Ε-02 U6E_〇2 <弟四貫施例> 外本貫施例之二片式扭鏡片之第一鏡片131及-第二鏡片132,其 中第-鏡片131a為雙凸形之鏡片、第二鏡片132 祕 微機電反射鏡侧之削所構成,在第—鏡片131第—光學面13 = 23 M357615 弟二光學面131b、第二鏡片132第三光學面132a與第四光學面132b 均係為非球面,使用式(2)為非球面公式設計。其光學特性與非 a 數如表十三絲十四。 ’面參 表十三、第四實施例之扭光學特性Max(2Ga, 2Gb) 7.29E-02 5 56F ω λ . 23-970 〇·〇〇〇--3.76Ε-02 3.05Ε-02 2.51Ε-02 1.87Ε-02 1.29Ε-02 U6E_〇2 < The fourth lens 131 and the second lens 132 of the two-piece twist lens of the present embodiment, wherein the first lens 131a is a biconvex lens, and the second lens 132 is a micro-electromechanical device. The mirror side is formed by the cutting, and the first optical surface 13b of the first lens 131 = 23 M357615, the second optical surface 131b, and the second optical surface 132a and the fourth optical surface 132b of the second lens 132 are aspherical. (2) Designed for an aspheric formula. Its optical characteristics and non-a number are shown in Table 13. Torsional optical characteristics of the thirteenth and fourth embodiments
光學面 曲率半徑(mm) (optical surface) (curvature) d厚度(mm) nd折射率 (thickness) (refraction index1) MEMS反射a r 〇〇 9.47 1 lens 1 1.533 RUAnamomhic、 Rlx* -61.11 9.47 Rly* 1000.00 R2iAnamorphic') R2x* -13.73 15.00 R2y* -111.48 lens 2 1.533 R3 TAnamorphic) R3x* 43.15 8.00 R3y* -72.64 R4fAnamorohic) R4x* 54.97 39.56 R4y* -186.13 感先鼓Cdrum)R5 〇〇 0.00 *表示非球面 24 M357615 表十四、第四實施例之光學面非球面參數 豐逢曲面方程式係數(Anamornhic equation coefflceni) 光學面(optical Ky圓錐係數 surface) (Conic Coefficent) 4th次幂係數 6th次冪係數 8th次冪係數 10th次冪係數 Order Order Order Order Coefficient (A豕)Coefficient noefficient CCR) Coefficient (DR) Rl* R2* R3* R4* -10.00000C 3.8144E+00 -5.4525E-0I -1.7S19E+01 1 〇.〇〇〇〇〇〇 1 1.8217E-07 -1.3836E-07 -2.282 IE-07 〇.〇〇〇〇〇〇 -1.3336E-10 -1.0391E-10 3.4574R-11 〇.〇〇〇〇〇〇 0.0000E+00 0.0000E+00 nooooF+oo 〇.〇〇〇〇〇〇 0.0000E+00 0.0000E+00 0.0000E+00 Rl* R2* R3* R4* Kx圓錐係數 (Conic Coefficent) 4th次幂係數 6th次冪係數 Order Order Coefficient (API Coeffi^Vnt (pp) 8th次冪係數 10th次冪係數 Order Order Coefficient Coefficient ίΌΡΙ 1.406035 -6.7830E-01 1.0000E+01 -3.8113E+00 -0.112245 -2.3380E+00 -7.2372E-03 -5.0027E-01 -1.041759 0.0000E+00 0.0000E+00 1.8215E-01 〇.〇〇〇〇〇〇 0.0000E+00 O.OOOOE+OO 0.0000E+00 〇.〇〇〇〇〇〇 0.0000E+00 O.OOOOE+OO 0.0000E+00 經由此所構成的二片式历鏡片,f(i)Y= 19〇 79〇、_231 568、 fsX=28.33、fsY=834.13 (mm)可將掃描光線轉換成距離與時間為線性之 掃描光線光點,並將職電反賴1G上絲Sa『1419(_、. 31〇9."(μιη)掃描成為掃描光線’在感光鼓ls上進行聚焦,形成較小 的光點12,並滿·〜式⑽之條件,如表十五;感光鼓15上以中心 轴Z軸在Y方向距射心軸γ距離(酿)的光點之高斯光束餘 (_,如表十六;且本實施例之光點分布圖如圖1()所示。 - 25 M357615 表十五、第四實施例滿足條件表Optical surface curvature radius (mm) (optical surface) (curvature) d thickness (mm) nd refractive index (thickness) (refraction index1) MEMS reflection ar 〇〇 9.47 1 lens 1 1.533 RUAnamomhic, Rlx* -61.11 9.47 Rly* 1000.00 R2iAnamorphic ') R2x* -13.73 15.00 R2y* -111.48 lens 2 1.533 R3 TAnamorphic) R3x* 43.15 8.00 R3y* -72.64 R4fAnamorohic) R4x* 54.97 39.56 R4y* -186.13 Sense drum Cdrum)R5 〇〇0.00 * indicates aspheric 24 M357615 Table 14 and the fourth embodiment of the optical surface aspherical parameter Anamornhic equation coefflceni optical surface (optical Ky cone coefficient surface) (Conic Coefficent) 4th power coefficient 6th power coefficient 8th power factor 10th Power Order Order Order Order Coefficient (A豕)Coefficient noefficient CCR) Coefficient (DR) Rl* R2* R3* R4* -10.00000C 3.8144E+00 -5.4525E-0I -1.7S19E+01 1 〇.〇〇 〇〇〇〇1 1.8217E-07 -1.3836E-07 -2.282 IE-07 〇.〇〇〇〇〇〇-1.3336E-10 -1.0391E-10 3.4574R-11 〇.〇〇〇〇〇〇0.0000 E+00 0.0000E+00 no oooF+oo 〇.〇〇〇〇〇〇0.0000E+00 0.0000E+00 0.0000E+00 Rl* R2* R3* R4* Kx Conic Coefficent 4th Power Coefficient 6th Power Coefficient Order Order Coefficient ( API Coeffi^Vnt (pp) 8th power coefficient 10th power coefficient Order Order Coefficient Coefficient ΌΡΙ 1.406035 -6.7830E-01 1.0000E+01 -3.8113E+00 -0.112245 -2.3380E+00 -7.2372E-03 -5.0027E -01 -1.041759 0.0000E+00 0.0000E+00 1.8215E-01 〇.〇〇〇〇〇〇0.0000E+00 O.OOOOE+OO 0.0000E+00 〇.〇〇〇〇〇〇0.0000E+00 O .OOOOE+OO 0.0000E+00 The two-piece calendar lens thus constructed, f(i)Y=19〇79〇, _231 568, fsX=28.33, fsY=834.13 (mm) converts the scanning light into a distance Scanning the light spot with time is linear, and focusing on the 1G on the wire Sa『1419(_,.31〇9."(μιη) scanning into the scanning light' on the photosensitive drum ls, forming a comparison The small spot 12, and the condition of the full-type (10), as shown in Table 15; the Gaussian beam of the spot on the photosensitive drum 15 with the central axis Z-axis in the Y direction from the axis of the y-axis (yield) (_ As shown in Table 16 Light spot of the present embodiment and the embodiment shown in Figure 1. Distribution (). - 25 M357615 Table 15, the fourth embodiment satisfies the condition table
+ + d5 d5 fmr J{2)Y主掃描方向 副掃描方向( 々ι),ν 1 J(^)y-i+ -—)Λ, δ+ + d5 d5 fmr J{2) Y main scanning direction Sub-scanning direction ( 々ι), ν 1 J(^) y-i+ -—)Λ, δ
minA R】x ^3jc及4」 ):¾ 0.3279 -0.1708 0.4105 0.1977 0.4325 0.0705 0.0305 表十六、第四實施规光鼓上光點高斯光束直徑的最大值 Y -107.460 -96.194 -84.415 Max(2Ga,2Gb) 9.49E-03 7.14E-03 7.16E-03 -72.368 -60.215 -48.060 -35.956 -23.920 0.000 8.30E-03 7.79E-03 7.18E-03 5.82E-03 7.87E-03 1.22E-02 <第五實施例>minA R]x ^3jc and 4" ):3⁄4 0.3279 -0.1708 0.4105 0.1977 0.4325 0.0705 0.0305 Table 16. The maximum value of the Gaussian beam diameter on the drum of the fourth embodiment Y -107.460 -96.194 -84.415 Max(2Ga, 2Gb) 9.49E-03 7.14E-03 7.16E-03 -72.368 -60.215 -48.060 -35.956 -23.920 0.000 8.30E-03 7.79E-03 7.18E-03 5.82E-03 7.87E-03 1.22E-02 < Fifth embodiment >
一本貫施例之二片式扭鏡片之第一鏡片131及一第二鏡片132,其 &苐鏡片131a為雙凸形之鏡片、第二鏡片132為新月形且凹面在 4機電反射鏡側之鏡片所構成,在第一鏡片⑶第一光學面⑶&與 立第了光學面131b、第二鏡片132第三光學面132a與第四光學面13沘 26 M357615 表十七、第五實施例之;TO光學特性 光學面 (optical surface) 曲率半徑(mm) (curvature) d厚度(mm) (thickness) nd折射率 (refraction index) MEMS反射面R lens 1 OO 15.45 1 1.533 RlfAnamorphic) Rlx Rly* 34.72 158.19 9.96 R2fAnamorphic) R2x* R2y* lens 2 -18.95 -96.96 10.00 1.533 R3 fAnamorphic) R3x* R3y* 44.05 -271.41 12.00 R4 TAnamorphic) R4x* -88.76 23.38 R4y* -518.31 _感糸敍idrunORS OO 0.00 6表示非球面 表十八、第五實施例之光學面非球面參數 橫像曲面方程式係數(Anamorphic equation coefficen1 光學面(optical Ky圓錐係數 4tii次冪係數 6th次冪係數 8th次冪係數 surface) (Conic Order Order Order *· * *·**·*. R1SR3Rr,2r3r4 10th次冪係數 Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) 3.2139E+00 2.7416E-06 -4.5I15E-10 0.0000E+00 0.0000E+00 4.0120E+00 -6.4991E-08 5.5193E-09 O.OOOOE+OO 0.0000E+00 1.0000E+01 -2.3351E-05 1.5929E-09 O.OOOOE+OO O.OOOOE+OO 1.0000E+01 63319E-07 4.3735E-10 0.0000E+00 0.0000E+00A first lens 131 and a second lens 132 of a two-piece twist lens according to the embodiment, the & lens 131a is a biconvex lens, the second lens 132 is crescent shaped and the concave surface is at 4 electromechanical reflection Mirror side lens, in the first lens (3) first optical surface (3) & and the first optical surface 131b, second lens 132 third optical surface 132a and fourth optical surface 13 沘 26 M357615 Table seventeen, fifth Example; TO optical characteristics optical surface radius of curvature (mm) (curvature) d thickness (mm) (thickness) nd refractive index (refraction index) MEMS reflective surface R lens 1 OO 15.45 1 1.533 RlfAnamorphic) Rlx Rly * 34.72 158.19 9.96 R2fAnamorphic) R2x* R2y* lens 2 -18.95 -96.96 10.00 1.533 R3 fAnamorphic) R3x* R3y* 44.05 -271.41 12.00 R4 TAnamorphic) R4x* -88.76 23.38 R4y* -518.31 _感糸叙idrunORS OO 0.00 6 Aspheric surface table 18, the fifth embodiment of the optical surface aspherical parameter transverse image surface equation coefficient (Anamorphic equation coefficen1 optical surface (optical Ky cone coefficient 4tii power factor 6th power coefficient 8th power factor surface) (Conic Order Order Order *· * *·**·*. R1SR3Rr, 2r3r4 10th power coefficient Order Coefficent) Coefficient (AR) Coefficient (BR) Coefficient (CR) Coefficient (DR) 3.2139E+00 2.7416E-06 - 4.5I15E-10 0.0000E+00 0.0000E+00 4.0120E+00 -6.4991E-08 5.5193E-09 O.OOOOE+OO 0.0000E+00 1.0000E+01 -2.3351E-05 1.5929E-09 O.OOOOE +OO O.OOOOE+OO 1.0000E+01 63319E-07 4.3735E-10 0.0000E+00 0.0000E+00
Κχ圓錐係數 4th次冪係數 6th次冪係數 Μ次冪係數 10th次冪係數 (Conic Order Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) -1.4366E+01 2.7499E-01 O.OOOOE+OO O.OOOOE+OO 0.0000E+00 1.8682E+00 -5.6172E+00 0.0000E+00 0-0000E+00 0.0000E+00 5.4516E+00 -6.7539E-0I 0.0000E+00 0.0000E+00 0.0000E+00 -7.8410E+00 2.7309E-01 2.2993E-02 O.OOOOE+OO O.OOOOE+OO 經由此所構成的二片式fe鏡片,fWY=115.57、f(2)Y= -1099.047、 fsx=21.265、fsY=128.663 (mm)可將掃描光線轉換成距離與時間為線性 27 M357615 之掃描规総,並將反魏ω • 3:99(㈣掃描成為掃描光線,在感光鼓15 的光點12,並滿足(4)〜式⑽之條件,如表十九;感光t r, η “ t 中軸距離(mm)的光點之高斯光走詩 m α -,林實施例之光點分布圖如圖η所示。、 表十九、第五實施例滿足條件表Κχ cone coefficient 4th power coefficient 6th power coefficient Μ power factor 10th power coefficient (Conic Order Order Order Coefficent) Coefficient (AP) Coefficient (BP) Coefficient (CP) Coefficient (DP) -1.4366E+01 2.7499E -01 O.OOOOE+OO O.OOOOE+OO 0.0000E+00 1.8682E+00 -5.6172E+00 0.0000E+00 0-0000E+00 0.0000E+00 5.4516E+00 -6.7539E-0I 0.0000E+ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ) Y= -1099.047, fsx=21.265, fsY=128.663 (mm) converts the scanning light into a scanning rule with a distance and time of 27 M357615, and scans the anti-Wei ω • 3:99 ((4) scanning light, At the light spot 12 of the photosensitive drum 15, and satisfying the conditions of (4) to (10), as shown in Table 19; photosensitive tr, η "t center distance (mm) of the light point of the Gaussian light poetry m α -, Lin implementation The light spot distribution map of the example is shown in Figure η. Table 19 and the fifth embodiment satisfy the condition table.
.f^LZi) +(^2-1) 0.3927 -0.0212 ,(2)r 主掃描方向/iT fx> 副掃描方向—ί!1) 5=min(V^ k:¾¾ +.f^LZi) +(^2-1) 0.3927 -0.0212 ,(2)r main scanning direction /iT fx> sub-scanning direction - ί!1) 5=min(V^ k:3⁄43⁄4 +
V 111¾¾ ~^Γ ' 0.5312 0.8038 0.4633 0.0993 0.0483 表二十 、第五實齡域紐上光點高斯光束直徑的最大值 γ -107.460 -96.156 -84.406—^72 426—-----V 1113⁄43⁄4 ~^Γ ' 0.5312 0.8038 0.4633 0.0993 0.0483 Table 20, the maximum value of the Gaussian beam diameter on the fifth real age field γ -107.460 -96.156 -84.406-^72 426------
Max(2Ga, 2Gb) 2 91F m i λλ 60·346 .48.240 -36.147 .24.079 0.000 2.91E-02 1.66E-02 1.73E-02 1.08E-02 1 snp m , ™ 二----」.50E-02 1.92E-02 1.77E-02 1.14E-02 7.79E-03 藉由上述之實關說明,本創作至少可達下列功效: 带(1)藉由本創作之二片式历鏡片之設置,可將呈簡諧運動之微機 =反射鏡在成像面上光關距由原來隨時間增加而遞減或遞增的非 =速率,描現象’修正鱗速伟描,使雷射絲於成像面之投射作 等速率掃“’使成像於目標物上形成之兩相鄰光點間距相等。 28 M357615 向及副掃插方本式_之^置,可畸變修正㈣帚描方 小。 t焦於成像的目標物上之光點得以縮 向及2掃=^=㈣㈣置,可娜地掃描方 以上所、成魏士、使成像在目標物上的光點大小均勻化。 但都將 的,而非細㈣娜㈣是說明性 落入本創作甚至等效變更 【圖式簡單說明】 本創作二片式扭鏡片之光學路徑之示意圖; 為-微機電反射鏡掃描角度θ與時m 圖3為通過第一鏡片及第二鏡片之 ’、Θ, 圖; 知田先線之光學路徑圖及符號說明Max(2Ga, 2Gb) 2 91F mi λλ 60·346 .48.240 -36.147 .24.079 0.000 2.91E-02 1.66E-02 1.73E-02 1.08E-02 1 snp m , TM II-----.50E- 02 1.92E-02 1.77E-02 1.14E-02 7.79E-03 With the above description, this creation can at least achieve the following functions: (1) With the setting of the two-piece lens of this creation, The computer will be a simple harmonic motion = the optical distance of the mirror on the imaging surface is reduced or increased by the non-= rate which increases with time. The phenomenon is described as 'correcting the speed of the scale and making the projection of the laser on the imaging surface. The equal-rate sweep "' makes the distance between two adjacent spots formed on the target object equal. 28 M357615 and the sub-sweeping method, the distortion can be corrected (4) the scanning square is small. The spot on the target is retracted and 2 sweeps =^=(4)(4), and the surface of the target is scanned and the size of the spot on the target is uniformed. Fine (four) Na (four) is a descriptive fall into the creation of even the equivalent change [simple description of the schema] The schematic diagram of the optical path of the two-piece twisted lens of the creation; Mirror scanning angle θ when m 3 is the first and the second lens of the lens', Θ, FIG; known in the optical field and the first line of FIG path SIGNS LIST
圖4 補麵級域,先叫鶴絲錄之不同而變 圖5為光束之高斯分佈與光強度之關係圖; 圖6為本創作通過第一鏡片及第二鏡片 路徑圖; 兄乃之知描光線之實施例之光學 圖7為第一實施例之光點示意圖; 圖8為第二實施例之光點示意圖; 圖9為第三實施例之光點示意圖; 圖丨〇為第四實施例之光點示意圖;以及 29 M357615 圖11為第五實施例之光點示意圖。 【主要元件符號說明】 ' 10 :微機電反射鏡; II :雷射光源; III :光束; 113a、113b、113c、114a、114b、115a、115b :掃瞄光線; • 131 :第一鏡片; 132 :第二鏡片; 14a、14b :光電感測器、 15 ··感光鼓; 16 :柱面鏡; 2、2a、2b、2c :光點;以及 3·有效掃描視窗。Fig. 4 The complementary surface domain, first called the crane screen, the difference is shown in Fig. 5 is the relationship between the Gaussian distribution of the beam and the light intensity; Figure 6 is the path of the first lens and the second lens through the creation; FIG. 8 is a schematic diagram of a light spot of a second embodiment; FIG. 9 is a schematic view of a light spot of a third embodiment; FIG. Example of a light spot; and 29 M357615 FIG. 11 is a schematic view of a light spot of the fifth embodiment. [Description of main component symbols] ' 10 : Microelectromechanical mirror; II : Laser light source; III : Light beam; 113a, 113b, 113c, 114a, 114b, 115a, 115b: Scanning light; 131: First lens; 132 : second lens; 14a, 14b: photodetector, 15 · photoreceptor drum; 16: cylindrical mirror; 2, 2a, 2b, 2c: light spot; and 3 · effective scanning window.
3030
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97217797U TWM357615U (en) | 2008-10-03 | 2008-10-03 | Two optical elements f-θ lens of MEMS laser scanning |
JP2009000637U JP3149995U (en) | 2008-08-05 | 2009-02-10 | Two-piece fθ lens for microelectromechanical system laser beam scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97217797U TWM357615U (en) | 2008-10-03 | 2008-10-03 | Two optical elements f-θ lens of MEMS laser scanning |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM357615U true TWM357615U (en) | 2009-05-21 |
Family
ID=44379930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97217797U TWM357615U (en) | 2008-08-05 | 2008-10-03 | Two optical elements f-θ lens of MEMS laser scanning |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM357615U (en) |
-
2008
- 2008-10-03 TW TW97217797U patent/TWM357615U/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7679803B2 (en) | Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit | |
US7619801B1 (en) | Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit | |
TW201015113A (en) | Two optical elements fθ lens of MEMS laser scanning unit 9 | |
TWI377433B (en) | Two f-θ lens used for micro-electro mechanical system(mems) laser scanning unit | |
TWM357615U (en) | Two optical elements f-θ lens of MEMS laser scanning | |
TW201007209A (en) | Two optical elements fθ lens of MEMS laser scanning unit 7 | |
TWI359747B (en) | Single f-θ lens used for micro-electro mechanical | |
TWI343327B (en) | Two optical elements fθlens of mems laser scanning unit 5 | |
TWI343329B (en) | Two optical elements fθ lens of mems laser scanning unit 6 | |
TWM345250U (en) | Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit | |
TWI343328B (en) | Two optical elements fθlens of mems laser scanning unit 2 | |
CN201293869Y (en) | Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus | |
TWM346804U (en) | Two optical elements f θ lens of MEMS laser scanning | |
TWM345249U (en) | Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit | |
TWM357614U (en) | Two optical elements f-θ lens of MEMS laser scanning | |
CN201293873Y (en) | Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus | |
JP3150839U (en) | Two-piece fθ lens for microelectromechanical system laser beam detector | |
TWM348012U (en) | Two optical elements fθ lens of MEMS laser scanning unit 7 | |
TW201100863A (en) | Two optical elements f θ lens of short focal distance for laser scanning unit | |
CN201293871Y (en) | Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus | |
TW201013222A (en) | Two optical elements fθ lens of MEMS laser scanning unit 8 | |
CN201293870Y (en) | Two-slice type fTheta lens for micro-electromechanical laser scanning apparatus | |
CN101650476B (en) | Two-element ftheta lens for MEMS laser scanning unit | |
JP3149995U (en) | Two-piece fθ lens for microelectromechanical system laser beam scanner | |
TWM348011U (en) | Two optical elements fθ lens of MEMS laser scanning unit 3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4K | Annulment or lapse of a utility model due to non-payment of fees |