TWM345250U - Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit - Google Patents

Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit Download PDF

Info

Publication number
TWM345250U
TWM345250U TW97205197U TW97205197U TWM345250U TW M345250 U TWM345250 U TW M345250U TW 97205197 U TW97205197 U TW 97205197U TW 97205197 U TW97205197 U TW 97205197U TW M345250 U TWM345250 U TW M345250U
Authority
TW
Taiwan
Prior art keywords
lens
scanning
spot
light
monolithic
Prior art date
Application number
TW97205197U
Other languages
Chinese (zh)
Inventor
Bo-Yuan Shih
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW97205197U priority Critical patent/TWM345250U/en
Publication of TWM345250U publication Critical patent/TWM345250U/en
Priority to JP2009000266U priority patent/JP3149596U/en

Links

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit, is a shape of meniscus type, and is formed by the lens in which the concaved surface faces towards to the side of the MEMS reflecting mirror. The single f-θ lens has a first optical surface and a second optical surface, and converts the mapped spots by scanning light at nonlinear relationship between the angle and the time of the MEMS reflecting mirror into the mapped spots by scanning light at the linear relationship between the rotating angle and the distance of the MEMS reflecting mirror. Meanwhile, focuses the scanning light on the target by calibrating itself, the purpose of the linear scanning effect and the high resolution scanning can be achieved while the specified optical condition of the single f-θ lens is satisfied.

Description

M345250 八、新型説明: 【新型所屬之技術領域】 本創作係有關一種微機電雷射掃描裝置之單片式 ίθ鏡片,特別指一種對呈簡諧性運動之微機電反射鏡 所產生隨時間成正弦關係之角度變化量進行修正之單片 式ίθ鏡片’以達成雷射掃瞄裝置所要求之線性掃描效 果之單片式ίθ鏡片。 【先前技術】 目前雷射光束印表機LBP(Laser Beam Print)所用 之雷射掃描裝置LSU(Laser Scanning Unit),係利用一 高速旋轉之多面鏡(polygon mirror)以操控雷射光束之 掃描動作(laser beam scanning),如美國專利 US7079171、[S6377293、US6295116,或如台灣專利 1198966所述。其原理如下簡述:利用一半導體雷射發 出雷射光束(laser beam),先經由一準直鏡 (collimator),再經由一光圈(aperture)而形成平行光 束,而平行光束再經過一柱面鏡(cylindrical lens) 後,能在副掃瞄方向(sub scanning direction)之Y軸 上之寬度能沿著主掃描方向(main scanning direction) 之X軸之平行方向平行聚焦而形成一線狀(line image),再投射至一高速旋轉之多面鏡上。多面鏡上均 勻連續設置有多面反射鏡,其大致位於或接近於上述線 狀成像(1 i ne i mage )之焦點位置。此多面鏡可用以控制 M345250 雷射光束之投射方向,當連續之複數反射鏡在高、a 時可將射至-反射鏡上之雷射光束延著主掃插 之平行方向以同一轉角速度(angular VelQeity) 射至一 ίθ線性掃描鏡片上。ίθ線性掃描鏡片係;^ 於多面鏡旁侧,可為單件式鏡片結構(single scanning lens)或為二件式鏡片結構。此f a men ^ · 此線性掃描 鏡片之功能在於使經由多面鏡上之反射鏡反射而射入 鏡片之雷射光束能聚焦成一橢圓型光點並投射在一 鲁光揍收面(Photoreceptor drum,即成像面)上,並達成 線性掃描(scanning linearity)之要求。然而,習用之 雷射掃猫裝置LSU在使用上會有下列問題: (1) 、旋轉式多面鏡之製作難度高且價格不低,相對 增加LSU之製作成本。 (2) 、多面鏡須具咼速旋轉(如40000轉/分)功能, 精密度要求又高,以致一般多面鏡上反射面之鏡面γ轴 鲁寬度極薄,使習用LSU中均需增設一柱面鏡。 (cylindrical lens)以使雷射光束經過柱面鏡能聚焦成 一線(Y軸上成一點)而再投射在多面鏡之反射鏡上,以 致增加構件及組裝作業流程。 (3) 、習用多面鏡須高速旋轉(如4〇〇〇〇轉/分),致 旋轉噪音相對提高,且多面鏡從啟動至工作轉速須耗費 較長時間,增加開機後之等待時間。 (4) 、習用LSU之組裝結構中,投射至多面鏡反射鏡 之雷射光束中心軸並非正對多面鏡之中心轉軸,以致在 6 M345250 設計相配合之f0鏡片時,需同時考慮多面鏡之離軸偏 差(deviation)問題,相對增加f (9鏡片之設計及製作上 麻煩。 近年以來,為了改善習用LSU組裝結構之問題,目 前市面上開發出一種擺動式(osci 1 latory)的微機電反 射鏡(MEMS mirror),用以取代習用之多面鏡來操控雷射 光束掃描。微機電反射鏡為轉矩振盪器(torsion oscillators)表層上附有反光層,可藉由振盪擺動反光 ® 層,將光線反射而掃描,未來將可應用於影像系統 (imaging system )、掃描器(scanner)或雷射印表機 (laser printer)之雷射掃描裝置(laser scanning • unit,簡稱 LSU),其掃描效率(Scanning efficiency) - 將可高於傳統的旋轉多面鏡。如美國專利US6, 844, 95卜 US6, 956, 597 ’係產生至少一驅動訊號,其驅動頻率趨近 複數微機電反射鏡之共振頻率,並以一驅動訊號驅動微 機電反射鏡以產生一掃瞄路徑、US7, 064, 876、 籲 US7,184,187 、US7,190,499 、US2006/0033021 、M345250 VIII. New Description: [New Technology Field] This is a monolithic ίθ lens for a microelectromechanical laser scanning device, especially for a microelectromechanical mirror that exhibits harmonic motion. A one-piece ίθ lens that corrects the angular variation of the sinusoidal relationship to achieve the linear scanning effect required by the laser scanning device. [Prior Art] At present, the laser scanning device LSU (Laser Scanning Unit) used in the laser beam printer LBP (Laser Beam Print) uses a high-speed rotating polygon mirror to manipulate the scanning action of the laser beam. (Laser beam scanning), as described in U.S. Patent No. 7,707,171, [S6377293, US 6,295,116, or as described in Taiwan Patent No. 1198966. The principle is as follows: a laser beam is emitted by a semiconductor laser, and a parallel beam is formed through a collimator and an aperture, and the parallel beam passes through a cylinder. After the cylindrical lens, the width on the Y-axis of the sub-scanning direction can be parallelly focused along the parallel direction of the X-axis of the main scanning direction to form a line (line image). ), and then projected onto a high-speed rotating polygon mirror. The polygon mirror is uniformly and continuously provided with a polygon mirror which is located substantially at or close to the focus position of the above-mentioned line imaging (1 i ne i mage ). The polygon mirror can be used to control the projection direction of the M345250 laser beam. When the continuous plurality of mirrors are high and a, the laser beam incident on the mirror can be extended at the same angular velocity in the parallel direction of the main sweep ( Angular VelQeity) onto a ίθ linear scanning lens. ί θ linear scanning lens system; ^ beside the polygon mirror, can be a single scanning lens or a two-piece lens structure. The function of the linear scanning lens is that the laser beam that is reflected by the mirror on the polygon mirror and incident on the lens can be focused into an elliptical spot and projected onto a photoreceptor drum. On the imaging surface), and meet the requirements of scanning linearity. However, the conventional laser sweeping device LSU has the following problems in use: (1) The rotary polygon mirror is difficult to manufacture and the price is not low, and the production cost of the LSU is relatively increased. (2) The polygon mirror must have the function of idle rotation (such as 40,000 rpm), and the precision requirement is high, so that the mirror surface γ-axis Lu width of the reflective surface on the general polygon mirror is extremely thin, so that one of the conventional LSUs needs to be added. Cylindrical mirror. The cylindrical lens is used to focus the laser beam through a cylindrical mirror into a line (a point on the Y-axis) and then project on the mirror of the polygon mirror, thereby increasing the component and assembly process. (3) The conventional polygon mirror must be rotated at a high speed (such as 4 rpm), resulting in a relatively high rotational noise, and it takes a long time for the polygon mirror to start from the start to the working speed, increasing the waiting time after power on. (4) In the assembly structure of the conventional LSU, the center axis of the laser beam projected onto the polygon mirror is not the center axis of the polygon mirror, so that when the 6 M345250 is designed with the f0 lens, it is necessary to consider the polygon mirror. Off-axis deviation (deviation) problem, relative increase f (9 lenses are troublesome in design and manufacture. In recent years, in order to improve the conventional LSU assembly structure, an osci 1 latory MEMS reflection has been developed on the market. MEMS mirror, which replaces the conventional polygon mirror to control laser beam scanning. The microelectromechanical mirror has a reflective layer on the surface of the torsion oscillators, which can be oscillated by the oscillating reflection layer. The light is reflected and scanned, and in the future it can be applied to an imaging system, a scanner or a laser printer (laser scanning unit, LSU). (Scanning efficiency) - will be higher than the traditional rotating polygon mirror. For example, US Patent No. 6,844, 95, US 6, 956, 597 ' generates at least one driving signal, The driving frequency approaches the resonant frequency of the complex MEMS mirror and drives the MEMS mirror with a drive signal to generate a scan path, US 7,064,876, US 7,184,187, US 7,190,499, US2006/0033021,

US2007/0008401、US2006/0279826 ;或如台灣專利 TW M253133,其係於一 LSU模組結構中準直鏡及f0鏡片之 間,利用一微機電反射鏡取代習用旋轉式多面鏡,藉以 控制雷射光束之投射方向;或如日本專利 jp 2006-201350等。此微機電反射鏡具有元件小,轉動速 度快,製造成本低的優點。然而由於微機電反射鏡在接 收一電壓驅動後,將作一簡諧運動,且此簡諧運動之方 式為時間與角速度呈正弦關係,而投射於微機電反射 M345250 鏡,其經反射後之反射角度θ與時間七的關係為: θ(ί) = θΞ ^ιη(2π·/·ί) (1) 其中:f為微機電反射鏡的掃插頻率;Α為命 “ 經微機電反射鏡後、,單邊最大的掃描角度。、田射光束 因此,在相同的時間間隔下~,所對應的反 的變化量並不相同且為遞減,係一與時間成正彳、=度 (Sinusoidal)的關係,即在相同時間間隔時,弦函數 度變化為:續,)=^.钟1(2[/.〇-如&厂⑼, 、反射角 〃呀間為非狳 關係;當此反射的光線以不同角度投射在目姆4 深性 物時,阳 受不同角度之關係,相同時間間隔產生的光點距丁、因 相同。 ”、離為不 由於微機電反射鏡位於正弦波之波峰及 變化量將隨時間遞增或遞減,與習知之多面 °、之角度 度轉動之運動方式不同,若使用習知之=成等角速 微機電反射鏡之雷射掃瞄裝置(LSU)上,將無戈片於具有 電反射鏡其擺動隨時間成正弦關係所產生、’修正微機 量,造成投射在成像面上之雷射光速將產生度變化 描現象,而造成成像面上之成像偏差。因此,等逮率掃 電反射鏡所構成的雷射掃描裝置,簡稱為微對於微機 描裝置(MEMS LSU),其特性為雷射光線2由/電雷射掃 鏡掃描後,形成等時間不同角度的掃插光線微機電反射 可使用於微機電雷射掃描裝置的f0鏡片以灰因此發展 線,使可在目標物上正確成像,將為迫 修正掃插光 刀所需。 8 M345250 【新型内容】 本創作之目的在於提供一種微機電雷射掃描裝置之 單片式f0鏡片,其由一新月形且凹面在微機電反射鏡 侧之單一鏡片構成,可將微機電反射鏡所反射之掃描光 線於目標物上正確成像,而達成雷射掃瞄裝置所要求之 線性掃插效果。 本創作之另一目的在於提供一種微機電雷射掃插裝 置之單片式f0鏡片,係用以縮小投射在目標物上光點 (spot)之面積,而達成提高解析度之效果。 本創作之再一目的在於提供一種微機電雷設掃描裝 置之單片式ίθ鏡片,可畸變修正因掃描光線偏離光 轴,而造成於主掃描方向及副掃描方向之偏移增加,使 成像於感光鼓之光點變形成類橢圓形之問題,並使每— 成像光點大小得以均勻化,而達成提升解像品質之功效。 口此’本創作微機電雷射掃描裝置之單片式f β於 片,適用於至少包含一將發射雷射光束之光源、以共= 2擺動將光源發射之雷射光束反射成為掃描光線:微 機電反射鏡,以在目標物上成像;對於雷射印表機而言, 此目標物常為感光鼓(drum),即,待成像之 ° 雷射光束,經由微機電反射鏡左右择描:微機電 =射,反射隸光束形成雜光線,料崎經由本創 Μ㈣修正角度與位置後,於感光鼓上形 咖)’由於感光鼓塗有光敏劑,可感應碳粉之 於紙上,如此可將資料列印出。 9 M345250 -本作之單片式f<9鏡片包含―第—光學面及一第 7氺:pq ’係將呈簡諧運動之微機電反射鏡,在成像面 j”、f距由原來隨時間增加而遞減或遞增的非等速率 二!修正料速率掃描,使雷射光束於成像面之 ^'速率掃描’並對掃瞄光線於主掃描方向及副掃 描方向因偏移光軸而造成於感紐上所形成之成像偏差 作均勻化,㈣掃描光祕正聚光於目標物上。 【實施方式】 參考圖1所示’為本創作微機電雷射掃描裝置之單 片式f0鏡片之光學路徑之示意圖。本創作微機電雷射 掃描裝置之單片式f<9鏡片13包含一具有一第一光學面 及一第二光學面,係適用於微機電雷射掃瞄裝置。圖中, 微機電雷射掃描裝置主要包含一雷射光源11、一微機電 反射鏡10、一柱面鏡16、二光電感測器i4a、14b,及 鲁一用以感光之目標物。在圖中,目標物係以用感光鼓 (drum) 15來實施。雷射光源11所產生之光束hi通過 柱面鏡16後’投射到微機電反射鏡1〇上。而微機電反 射鏡10以共振左右擺動之方式,將光束111於不同時間 點反射成掃瞄光線 113a、113b、114a、114b、115a、115b。 其中掃瞄光線 113a、113b、114a、114b、115a、115b 在 X方向之投影稱之為副掃描方向(sub scanning direction),在Y方向之投影稱之為主掃描方向(main scanning direction),而微機電反射鏡1〇掃描角度為 M345250 0c。由於微機電反射鏡10呈一簡諧運動,其運動角度 隨時間呈一正弦變化,如圖2所示,因此掃瞄光線之射 出角度與時間為非線性關係。如圖示中的波峰a-a’及 波谷b-b’ ,其擺動角度明顯小於波段a-b及a’ -b’ , 而此角速度不均等的現象容易造成掃描光線在感光鼓15 上產生成像偏差。因此,光電感測器14a、14b係設置 於微機電反射鏡10最大掃描角度±0c之内,其夾角為 土θρ,雷射光束111被微機電反射鏡10由圖2之波峰開 • 始反射,此時相當於圖1之掃描光線115a ;當光電感測 器14a偵測到掃描光束的時候,表示微機電反射鏡10係 擺動到+ 0P角度,此時相當於圖1之掃描光線114a;當 •微機電反射鏡10掃描角度變化圖2的a點時,此時相當 ,於掃描光線113a位置;此時雷射光源11被控制開始發 出雷射光束111,而掃描至圖2的b點時,此時相當於 掃描光線113b位置為止(相當±0 η角度内由雷射光源11 發出雷射光束111);在微機電反射鏡10反振時,也於 # 波段a’ -b’時由雷射光源11被控制開始發出雷射光束 111 ;如此完成一個週期。 參考圖3所示,為通過f0鏡片之掃描光線之光學 路徑圖。其中,±0 n為有效掃描角度,如第1圖所示。 當微機電反射鏡10之轉動角度進入±0η時,雷射光源 11開始發出待掃描的雷射光束111,經由微機電反射鏡 10反射成掃瞄光線,掃瞄光線得以通過f <9鏡片13而 受ίθ鏡片13之第一光學面與第二光學面折射,將微機 電反射鏡10所反射之距離與時間成非線性關係之掃描 11 M345250 =果成將= 加焦於感光鼓 dr:最遠成光心 2=機電反射鏡1G至第—光學面之間距、d2為第一 ιΓ之ϋ 面Hd3為第二光學面至感光鼓US2007/0008401, US2006/0279826; or Taiwan patent TW M253133, which is connected between the collimating mirror and the f0 lens in an LSU module structure, and replaces the conventional rotary polygon mirror with a microelectromechanical mirror to control the laser The direction in which the beam is projected; or as in the Japanese patent jp 2006-201350. The microelectromechanical mirror has the advantages of small components, fast rotation speed, and low manufacturing cost. However, since the microelectromechanical mirror receives a voltage drive, it will make a simple harmonic motion, and the simple harmonic motion is a sinusoidal relationship between time and angular velocity, and is projected on the microelectromechanical reflection M345250 mirror, and its reflected reflection The relationship between the angle θ and the time VII is: θ(ί) = θΞ ^ιη(2π·/·ί) (1) where: f is the sweep frequency of the MEMS mirror; Α is the life ” after the microelectromechanical mirror , the maximum scanning angle of one side, the beam of the field, therefore, at the same time interval ~, the corresponding amount of change in the opposite is not the same and is decreasing, one is positive with time, = degree (Sinusoidal) Relationship, that is, at the same time interval, the chord function changes to: Continuation,) = ^. Clock 1 (2 [/. 〇 - such as & factory (9), , the reflection angle is a non-狳 relationship; when this reflection When the light is projected at different angles in the Mim 4 deep object, the yang is subject to different angles, and the light spots generated by the same time interval are the same as the Ding. The separation is not due to the sinusoidal wave peak of the MEMS mirror. And the amount of change will increase or decrease with time, with the familiar facet ° The angle of rotation is different in motion. If you use the conventional laser scanning device (LSU) that is an isometric MEMS mirror, the oscillating relationship will be sinusoidal with time. Produced, 'correcting the amount of micro-computers, causing the laser light velocity projected on the imaging surface to produce a degree-variation phenomenon, resulting in imaging deviation on the imaging surface. Therefore, the laser scanning device composed of the sweeping mirror Referred to as micro-micro-scanning device (MEMS LSU), its characteristic is that laser light 2 is scanned by /electric laser scanning mirror, and the micro-electromechanical reflection of sweeping light at different angles can be used for micro-electromechanical laser scanning. The f0 lens of the device is developed in gray, so that it can be correctly imaged on the target, which will be required for the correction of the optical knife. 8 M345250 [New content] The purpose of this creation is to provide a single microelectromechanical laser scanning device. The chip f0 lens is composed of a single lens which is crescent-shaped and concave on the side of the microelectromechanical mirror, and can correctly image the scanning light reflected by the microelectromechanical mirror on the target object, and The linear sweeping effect required by the laser scanning device. Another object of the present invention is to provide a monolithic f0 lens for a microelectromechanical laser scanning device, which is used to reduce the spot projected on the target (spot) The object is to achieve an effect of improving the resolution. A further object of the present invention is to provide a monolithic ί θ lens of a micro-electromechanical lightning scanning device, which can be corrected in the main scanning direction due to the deviation of the scanning light from the optical axis. And the offset of the sub-scanning direction is increased, so that the spot formed on the photosensitive drum is deformed into an elliptical shape, and the size of each imaging spot is made uniform, thereby achieving the effect of improving the resolution quality. A monolithic fβ-film for creating a microelectromechanical laser scanning device is suitable for reflecting at least one light source that emits a laser beam, and reflecting the laser beam emitted by the light source into a scanning light with a total of 2 oscillations: a microelectromechanical mirror To image on the target; for a laser printer, this target is often a drum, that is, the laser beam to be imaged, selected by a microelectromechanical mirror: micro Electromechanical=shooting, reflecting the beam to form the stray light, and the material is shaped on the photosensitive drum after correcting the angle and position through the Μ(4). 'Because the photosensitive drum is coated with a photosensitizer, it can sense the toner on the paper, so The information is printed out. 9 M345250 - This monolithic f<9 lens contains a ―first-optical surface and a 7th 氺:pq' system will be a simple harmonic motion of the microelectromechanical mirror, on the imaging surface j”, f distance from the original The non-equal rate of increasing or decreasing or increasing the time; correcting the material rate scanning, causing the laser beam to scan at the image plane of the imaging surface and causing the scanning light to be shifted in the main scanning direction and the sub-scanning direction due to the offset optical axis The imaging deviation formed on the sensory beam is uniformized, and (4) the scanning light secret is concentrated on the target object. [Embodiment] Referring to the single-chip f0 lens of the present microelectromechanical laser scanning device shown in FIG. Schematic diagram of the optical path of the present invention. The monolithic f<9 lens 13 of the present microelectromechanical laser scanning device comprises a first optical surface and a second optical surface, which are suitable for a microelectromechanical laser scanning device. The MEMS laser scanning device mainly comprises a laser light source 11, a microelectromechanical mirror 10, a cylindrical mirror 16, two photodetectors i4a, 14b, and a target for sensitization. In the middle, the target system is implemented by a photosensitive drum 15. The light beam hi generated by the light source 11 passes through the cylindrical mirror 16 and is projected onto the microelectromechanical mirror 1 。. The microelectromechanical mirror 10 reflects the light beam 111 at different points in time to form a scanning light. 113a, 113b, 114a, 114b, 115a, 115b. The projection of the scanning rays 113a, 113b, 114a, 114b, 115a, 115b in the X direction is referred to as a sub scanning direction, and the projection in the Y direction is called The main scanning direction is the main scanning direction, and the scanning angle of the microelectromechanical mirror 1 is M345250 0c. Since the microelectromechanical mirror 10 exhibits a simple harmonic motion, its moving angle changes sinusoidally with time, as shown in Fig. 2. Therefore, the angle of incidence of the scanning light is nonlinear with time. As shown in the figure, the peak a-a' and the trough b-b' have a swing angle significantly smaller than the bands ab and a'-b', and the angular velocity The unequal phenomenon easily causes the scanning light to cause imaging deviation on the photosensitive drum 15. Therefore, the photodetectors 14a, 14b are disposed within the maximum scanning angle ±0c of the microelectromechanical mirror 10, and the angle is soil θρ, laser The beam 111 is reflected by the microelectromechanical mirror 10 from the peak of Fig. 2, which is equivalent to the scanning ray 115a of Fig. 1; when the photodetector 14a detects the scanning beam, it indicates the MEMS mirror 10 Swinging to +0P angle, this is equivalent to the scanning light 114a of Fig. 1; when the scanning angle of the microelectromechanical mirror 10 changes a point of Fig. 2, this time is equivalent to the position of the scanning light 113a; at this time, the laser light source 11 It is controlled to start emitting the laser beam 111, and when scanning to the point b of Fig. 2, this time corresponds to the position of the scanning light 113b (the laser beam 111 is emitted by the laser source 11 within a range of ±0 η); When the mirror 10 is oscillated, it is also controlled by the laser light source 11 to start emitting the laser beam 111 at the # band a'-b'; thus completing one cycle. Referring to Figure 3, there is an optical path diagram for scanning light through the f0 lens. Among them, ±0 n is the effective scanning angle, as shown in Figure 1. When the rotation angle of the microelectromechanical mirror 10 enters ±0η, the laser light source 11 starts to emit the laser beam 111 to be scanned, and is reflected by the microelectromechanical mirror 10 into the scanning light, and the scanning light passes through the f <9 lens 13 is rotated by the first optical surface and the second optical surface of the ίθ lens 13, and the distance reflected by the microelectromechanical mirror 10 is nonlinearly related to the time of the scan. 11 M345250 = fruit will be = focus on the photosensitive drum dr: The farthest into the optical center 2 = the distance between the electromechanical mirror 1G to the first optical surface, the d2 is the first ιΓ, the surface Hd3 is the second optical surface to the photosensitive drum

多考圖4所為掃描光線投射在感光鼓上後,光 沿妹方向透過ίΘ鏡片13後投射在感光鼓15 時,由於入射於f 0鏡#13之角度為零,因此於主掃描 方向之偏移枝零,因此成像於感光鼓上15之光點2a 為一類圓形。當掃描光線113b及113c透過鏡片13, 投射在感光鼓15時,由於入射於f0鏡片13與光軸所 形成之角度不為零,因此於主掃描方向之偏移率不為 零,而造成於主掃描方向之投影長度較掃描光線111&所 形成的光點為大;此情形在副掃描方向也相同,偏離掃 描光線Ilia之掃描光線所形成的光點,也將較大;所以 成像於感光鼓15上之光點2b、2c為一類橢圓形,且2b、 2c之面積大於2a。其中,SaO與SbO為微機電反射鏡1〇 反射面上掃站光線的光點在主掃描方向(γ方向)及副掃 描方向(X方向)之長度、Sa與Sb為感光鼓15上掃瞄光 線形成的任一個光點在γ方向及χ方向之長度。本創作 12 M345250 之早片式f 0鏡片可在主掃描方向將光點大小經由f θ 鏡片13的畸變(distortion)修正,使光點大小控制在有 限的範圍同時,可在副掃描方向將光點大小經由ίθ鏡 片13的畸變(distortion)修正,使光點大小控制在有限 的範圍,且使各光點大小分佈(最大光點與最小光點比 值),並控制在適當範圍,以提供符合的解析度。 為達成上述功效,本創作單片式f0鏡片在第一光 學面或第二光學面,可使用球面曲面或非球面曲面為設 計,若使用非球面曲面為設計,其非球面係以下列方程 式為設計: :橫像曲面方程式(Anamorphic equation) z (Cx)X2+(Cy)Y2 1 + V1 - (1 + Kx){Cxf X2 - (1 + Ky)(Cy)2 Y2 + 4 [(1-為+ (i+ 4 )r2 A[(i—a)x2 + (l + 5P)r2 f+c J(i - cP)z2 + (l+cP)r214 + DR[(l-DP)X2+(l^DP)Y2] (2) 其中’ Z為鏡片上任一點以光轴方向至0點切平面 的距離(SAG) ; Q與&分別為X方向及Y方向之曲率 (curvature) ; &與心分別為X方向及Y方向之圓錐係數 (Conic coefficient);戽、A、G與A分別為旋轉對稱 (rotational ly symmetric port ion)之四次、六次、八 次與十次冪之圓錐變形係數(deformation from the conic);戽、柝、與A分別非旋轉對稱 (non-rotationally symmetric components)之分別為四 13 M345250 次、六次、八次、十次冪之圓錐變形係數(deformati〇n from the conic);當 且戽則 簡化為單一非球面。 2:環像曲面方程式(Toric equation) z = zv+——^y)x2 1+ ^1-((¾^)2 x2In the multi-test 4, after the scanning light is projected on the photosensitive drum, the light is incident on the photosensitive drum 15 after passing through the lens 13 in the direction of the sister. Since the angle incident on the f 0 mirror #13 is zero, the deviation in the main scanning direction is The shifting is zero, so that the spot 2a imaged on the photosensitive drum 15 is a circular shape. When the scanning light rays 113b and 113c are transmitted through the lens 13 and projected on the photosensitive drum 15, since the angle formed by the incident lens 15 and the optical axis is not zero, the offset rate in the main scanning direction is not zero, resulting in The projection length of the main scanning direction is larger than the light spot formed by the scanning light 111& the same is true in the sub-scanning direction, and the light spot formed by the scanning light deviating from the scanning light Ilia will also be larger; The spots 2b, 2c on the drum 15 are of a type of ellipse, and the areas of 2b, 2c are larger than 2a. Wherein, SaO and SbO are the lengths of the spot of the scanning light on the reflecting surface of the microelectromechanical mirror 1 in the main scanning direction (γ direction) and the sub scanning direction (X direction), and Sa and Sb are scanned on the photosensitive drum 15 The length of any one of the light spots formed in the γ direction and the χ direction. The 12 M345250 early film f 0 lens can correct the spot size through the distortion of the f θ lens 13 in the main scanning direction, so that the spot size is controlled within a limited range, and the light can be lighted in the sub-scanning direction. The dot size is corrected by the distortion of the ίθ lens 13, so that the spot size is controlled within a limited range, and the spot size distribution (the maximum spot to the minimum spot ratio) is controlled and controlled to an appropriate range to provide a match. Resolution. In order to achieve the above effects, the monolithic f0 lens is designed on the first optical surface or the second optical surface, and can be designed using a spherical surface or an aspheric surface. If an aspheric surface is used as the design, the aspheric surface is expressed by the following equation. Design: : Anamorphic equation z (Cx)X2+(Cy)Y2 1 + V1 - (1 + Kx){Cxf X2 - (1 + Ky)(Cy)2 Y2 + 4 [(1- for + (i+ 4 )r2 A[(i-a)x2 + (l + 5P)r2 f+c J(i - cP)z2 + (l+cP)r214 + DR[(l-DP)X2+(l^ DP)Y2] (2) where 'Z is the distance from the optical axis direction to the 0-point tangent plane at any point on the lens (SAG); Q and & respectively are the curvature of the X direction and the Y direction (curvature); & They are the Conic coefficient in the X direction and the Y direction respectively; 戽, A, G, and A are the conical deformation coefficients of the fourth, sixth, eighth, and tenth powers of the rotationally symmetric port ion, respectively. (deformation from the conic); 戽, 柝, and A, respectively, non-rotationally symmetric components are respectively four 13 M345250 times, six times, eight times, ten powers of cone deformation coefficient (deformati〇n from The co Nic); and 戽 is reduced to a single aspheric surface. 2: Toric equation z = zv+——^y)x2 1+ ^1-((3⁄4^)2 x2

Cxy =-i-- (1 / Cx) — ZyCxy =-i-- (1 / Cx) — Zy

Zy = (Cy)Y2 1 ++Ky)(Cy)2Y2 +baya + b6y6 + 58r8 + b10y10 (3) 其中,Z為鏡片上任一點以光軸方向至〇點切平面 的距離(SAG) ; G與Q分別Y方向與X方向之曲率 (curvature); 心為Y方向之圓錐係數(Conic coefficient);万4、万6、尽與A為四次、六次、八次、 十次冪之係數(4th〜10th order coefficients) deformation from the conic);當 且 則簡化為單一球面。 為能使掃描光線在目標物上成像的掃描速度為等速 率,即在兩個相同的時間間隔,兩個光點的距離相等; 本創作之單片式f Θ鏡片可將掃描光線113a至掃插光線 113b之間,進行掃描光線出射角之修正,使相同的時間 間隔的兩掃描光線,經出射角度修正後,於成像的感光 鼓15上形成的兩個光點的距離相等。更進一步,當雷射 光束111經由微機電反射鏡10反射後,其光點較大,如 M345250 果此掃描光線經過微機電反射鏡10與感光鼓15之距離 後,光點將更大,不符合實用解析度要求;本創作之單 片式ίθ鏡片進一步可將微機電反射鏡10反射的掃描光 線113a至掃描光線113b之間進行聚焦於成像的感光鼓 15上,形成較小的光點;再者,本創作之單片式f0鏡 片更可將成像在感光鼓15上的光點大小均勻化(限制於 一符合解析度要求的範圍内),以得最佳的解析度。Zy = (Cy)Y2 1 ++Ky)(Cy)2Y2 +baya + b6y6 + 58r8 + b10y10 (3) where Z is the distance from the optical axis direction to the tangent plane (SAG) of any point on the lens; G and Q is the curvature of the Y direction and the X direction respectively; the heart is the Conic coefficient of the Y direction; the 10,000, 10,000, and A are the coefficients of the fourth, sixth, eighth, and tenth powers ( 4th~10th order coefficients) deformation from the conic); and then simplified to a single sphere. In order to enable the scanning light to image on the target at an equal rate, that is, at the same time interval, the distance between the two spots is equal; the monolithic f Θ lens of the present invention can scan the light 113a to the scanning Between the inserted light beams 113b, the scanning light exit angle is corrected so that the two scanning rays of the same time interval are corrected by the exit angle, and the distances of the two light spots formed on the imaged photosensitive drum 15 are equal. Further, when the laser beam 111 is reflected by the microelectromechanical mirror 10, its spot is large. For example, if the scanning light passes through the distance between the microelectromechanical mirror 10 and the photosensitive drum 15, the spot will be larger, which is not in conformity. Practical resolution requirements; the monolithic ίθ lens of the present invention can further focus the scanning light 113a to the scanning light 113b reflected by the microelectromechanical mirror 10 to focus on the imaged photosensitive drum 15 to form a smaller spot; The monolithic f0 lens of the present invention can evenly equalize the size of the spot image formed on the photosensitive drum 15 (limited to a range that meets the resolution requirement) for the best resolution.

本創作之單片式f<9鏡片為新月形且凹面在微機電 反射鏡侧之鏡片所構成,具有第一光學面及第二光學 面’係將微機電反射鏡10反射之角度與時間非線性關係 之掃描光線光點轉換成距離與時間為線性關係之掃描光 線光點,並將掃描光線修正聚光於目標物上;藉由該單 片式ίθ鏡片13將微機電反射鏡1〇反射之掃描光線於 感光鼓15上成像;其中,第-光學面與第二光學面在主 掃描方向至少有-個為非球面所構成之光學面;第一光 學面與第二光學面在副掃財向至 構成之光學面。更進-步’在單片式Μ鏡片13構成上 在光學效果上,本創作之單片式以鏡片,在主掃成描方 向進一步滿足式(4)條件: (4) 或,在主掃描方向滿足式(5) 0.05 <The monolithic f<9 lens of the present invention is formed by a crescent-shaped lens having a concave surface on the side of the microelectromechanical mirror, and has a first optical surface and a second optical surface' which reflects the angle and time of the microelectromechanical mirror 10. The scanning light ray spot of the nonlinear relationship is converted into a scanning ray spot whose distance is linear with time, and the scanning ray correction is condensed on the target; the microelectromechanical mirror 1 is 藉 by the monolithic ί θ lens 13 The reflected scanning light is imaged on the photosensitive drum 15; wherein the first optical surface and the second optical surface have at least one optical surface formed by aspherical surfaces in the main scanning direction; the first optical surface and the second optical surface are in the pair Sweeping money to the optical surface of the composition. Further advancement - in the optical effect of the monolithic Μ lens 13, the monolithic lens of the present invention further satisfies the condition of the formula (4) in the main scanning direction: (4) or, in the main scan Direction satisfies the formula (5) 0.05 <

知厂1) JY <0.5Know factory 1) JY <0.5

15 M345250 且在副掃描方向滿足式(6) 〇,1<Ιΐ~^|<1〇·° (6) 其中’ fY為f<9鏡片13在主掃描方向之焦距、dg 為θ=0 f (9鏡片丨3目標物侧光學面至目標物之距離, fs為單片式f 0鏡片13之焦距、Rix第i光學面在X方 向的曲率半徑;以為ίθ鏡片13之折射率(refraction • index) ° 再者’本創作之單片式f 0鏡片所形成的光點均 一性,可以最大光點與最小光點大小的比值5表示,即 滿足式(7): 0.2 < ^ = m^(Sb-Sa) (/) 更進一步,本創作之單片式ίθ鏡片所形成的解析 度,可使用max為微機電反射鏡1〇反射面上掃瞄光線 的光點經掃描在感光鼓15上最大光點的比值(Rati〇〇f φ scanning 1 ight of maximum spot)與 77 min 為微機電 反射鏡10反射面上掃瞄光線的光點經掃描在目標物上 乘小光點的比值(Ratio 〇f scanning light 〇f minimum spot)為表示,即可滿足式(9)及(1〇), max(^-5J ^max - ςτχ <〇-25 \^b0 * ^a〇) (9) n min(Sb^Sa) ^7min Q< 〇·1 b0 %^a〇) (10) 16 M345250 其中,Sa與Sb為感光鼓上掃瞄光線形成的任— 光點在主掃描方向及副掃描方向之長度、3為感光固 上最小光點與最大光點之比值;SaQ肖Sb()為微機s 射鏡10反射面上掃瞄光線的光點在主掃描方向及副浐 描方向之長度。 ▼ 為使本創作更加明確詳實,_舉較佳實 合下列圖示’將本創作之結構及其技術特徵詳述如後广 本創作以下所揭示之實施例,乃是針對本 電雷射掃描裝置之單片& μ鏡片之主要構 城機 說明,因此本創作以下所揭示之實施例雖是應用二 機電雷射掃描裝置中,但就—般具有微機電雷射掃= 置而言,除了本創作所揭示之單片式鏡:裝 結構乃屬〆般通知之技術,因此—般在 2他 ,藝之人士瞭解,本創作所揭示微機電雷射 之=片式μ鏡片之構成元件並不限制於以下:置 實施例結構,也就是該微機電雷射掃描裴不之 鏡片之各構成元件是可以進行許多改變、修:μ 效變更的,例如:曲率半徑設計或面型又至等 間距調整等並不限制。 °〇十材貝選用、 <第一實施例> =(,球面公式設計;4_=非球面, 使用式⑵為非球 i弟;二學面為非球面, 式十其先學特性與非球面參數 17 M345250 如表一及表二。 表一、第一實施例之f0光學特性15 M345250 and satisfy the formula (6) in the sub-scanning direction, 1<Ιΐ~^|<1〇·° (6) where 'fY is f<9 the focal length of the lens 13 in the main scanning direction, dg is θ=0 f (9 lens 丨 3 distance from the target side optical surface to the target, fs is the focal length of the monolithic f 0 lens 13 , and the radius of curvature of the Rix ith optical surface in the X direction; that is, the refractive index of the lens 13 (refraction) • index) ° In addition, the uniformity of the spot formed by the monolithic f 0 lens of this creation can be expressed as the ratio of the maximum spot to the minimum spot size of 5, that is, satisfying the formula (7): 0.2 < ^ = M^(Sb-Sa) (/) Further, the resolution of the monolithic ίθ lens of this creation can be obtained by scanning the light spot of the scanning light on the reflecting surface of the microelectromechanical mirror 1 The ratio of the maximum spot on the drum 15 (Rati〇〇f φ scanning 1 ight of maximum spot) and 77 min are the ratio of the spot of the scanning light on the reflecting surface of the microelectromechanical mirror 10 by the small spot on the target. (Ratio scanningf scanning light 〇f minimum spot) is expressed, which satisfies equations (9) and (1〇), max(^-5J ^max - ςτχ <;〇-25 \^b0 * ^a〇) (9) n min(Sb^Sa) ^7min Q< 〇·1 b0 %^a〇) (10) 16 M345250 where Sa and Sb are the photosensitive drum The direction of the light beam is the length of the light spot in the main scanning direction and the sub-scanning direction, 3 is the ratio of the minimum spot to the maximum spot on the photosensitive solid; SaQ Xiao Sb() is the scanning surface of the mirror of the microcomputer s mirror 10. The length of the light spot in the main scanning direction and the sub-scanning direction. ▼ In order to make this creation more clear and detailed, the following illustrations are used to describe the structure and technical features of the creation. The following examples are disclosed in the following. The main embodiment of the monolithic & μ lens of the device is described. Therefore, the embodiment disclosed below is applied to a two-electromechanical laser scanning device, but generally has a microelectromechanical laser scanning device. In addition to the monolithic mirror disclosed in this creation: the structure is a technique of notification, so in general, the artist knows that the MEMS components of the microelectromechanical laser are disclosed in this creation. It is not limited to the following: the structure of the embodiment, that is, the constituent elements of the lens of the microelectromechanical laser scanning, can be changed, modified, or modified, for example, the radius of curvature design or the surface shape is Equal spacing adjustments are not limited. °〇十材贝选, <First Embodiment> =(, spherical formula design; 4_= aspherical surface, using equation (2) is a non-spherical i brother; the second school surface is aspherical, the tenth is the first learning characteristic and The aspherical parameter 17 M345250 is as shown in Table 1 and Table 2. Table 1. Optical characteristics of f0 of the first embodiment

fs=206.0 光學面 曲率半徑(mm) d厚度(mm) nd折射率 (optical surface) (curvature) (thickness) (refraction index: MEMS反射面R(] 〇.〇〇〇〇〇〇 35.00 1 lens 1 R1 (Ύ Toroid、 1.533 Rlx* •23.736584 8.00 Rly* -53.745472 R2fAnamorphic>> R2x* -11.483665 202.54 R2y* -45.703682 感先鼓idrum^RS 〇.〇〇〇〇〇〇 *表示非球面 表二、第一實施例之光學面非球面參數 光學面(optical surface) 環像曲面方程式係數Toric equation Coefficient Ky圓錐係數 (Conic Coefficent) 4th次冪係數 Order 6th次冪係數 8th次冪係數 Order Order Coefficient 10th次冪係數 Order Coefficient Coefficient (B4) Coefficient (B6) (B8) fB10) Rl* -2.209983 1.730E-06 -4.047E-10 -8.574E-14 0.000E+00Fs=206.0 optical surface curvature radius (mm) d thickness (mm) nd refractive index (optical surface) (curvature) (thickness) (refraction index: MEMS reflective surface R(] 〇.〇〇〇〇〇〇35.00 1 lens 1 R1 (Ύ Toroid, 1.533 Rlx* • 23.736584 8.00 Rly* -53.745472 R2fAnamorphic>> R2x* -11.483665 202.54 R2y* -45.703682 Sense drum idrum^RS 〇.〇〇〇〇〇〇* indicates aspherical table II, Optical surface aspherical parameter optical surface of one embodiment Toric equation Coefficient Ky conic coefficient (Conic Coefficent) 4th power coefficient Order 6th power coefficient 8th power coefficient Order Order Coefficient 10th power factor Order Coefficient Coefficient (B4) Coefficient (B6) (B8) fB10) Rl* -2.209983 1.730E-06 -4.047E-10 -8.574E-14 0.000E+00

Ky圓錐係數 (Conic Coefficent) _0.000001 Kx圓錐係數 (Conic Coefficent) -0.609455 R2* 橫像曲面方程式4系數(Anamorphic equation coefficent)_ 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數Ky Coefficient (Conic Coefficent) _0.000001 Kx Coefficient Coefficient (0.6655) R2* Anamorphic equation coefficent _ 4th power coefficient 6th power coefficient 8th power coefficient 10th power coefficient

Order Order Order Coefficient Order CoefficientOrder Order Order Coefficient Order Coefficient

Coefficient (AR) Coefficient (CR) (DR)Coefficient (AR) Coefficient (CR) (DR)

9.880E-07 -2.494E-11_O.OOOE+OQ_O.OOOE+QO 4th次幂係數 6th次冪係數~8th次冪係數 10th次冪係數 Order Order Order Coefficient Order Coefficient9.880E-07 -2.494E-11_O.OOOE+OQ_O.OOOE+QO 4th power factor 6th power coefficient ~8th power factor 10th power factor Order Order Order Coefficient Order Coefficient

Coefficient (AP) Coefficient (BP) (CP) (DP) -4.660E-01 6.554E-01_0.000E+00 0.000E+00 經由此所構成的單片式f0鏡片13之光學面其光路 圖如圖5。fX=34.432、fY=431.228可將掃描光線轉換成 距離與時間為線性之掃描光線光點,並將微機電反射鏡 10上光點SaO= 13· 616、SbO= 3747· 202掃描成為掃描 光線,在感光鼓15上進行聚焦,形成較小的光點,並滿 18 M345250 足式(4)〜式(10)之條^牛, 至知描視窗3之右侧分估 ) 描視窗3最右側),如圖6a(中心 為對稱相同。 Q 6,另料視窗3之左侧與古侧 軸 光點大小自6^(掃 表三、第一實施例滿足條件表 % 主掃描方向Coefficient (AP) Coefficient (BP) (CP) (DP) -4.660E-01 6.554E-01_0.000E+00 0.000E+00 The optical path of the optical surface of the monolithic f0 lens 13 thus constructed is as shown in the figure. 5. fX=34.432, fY=431.228 can convert the scanning light into a scanning light spot whose distance is linear with time, and scan the spot on the microelectromechanical mirror 10 by SaO=13·616 and SbO=3747·202 into scanning light. Focusing on the photosensitive drum 15 to form a smaller spot, and full 18 M345250 foot type (4) ~ type (10) strip ^ cow, to the right side of the description window 3 is estimated) ), as shown in Figure 6a (the center is symmetrically the same. Q 6, the left side of the window 3 and the ancient side axis spot size from 6^ (sweep table 3, the first embodiment satisfies the condition table % main scanning direction)

JY 副掃描方向|(士士乂 max(V\)^^^Lsb.sa) ^Sb〇 -Sa0) S^b〇;Sa〇) 0.470 0. 255 9. 260 〇. 8150 〇.0873 〇.0605 M345250 <第二實施例> 本實施例之單片式ίθ鏡片13為新月形且凹面在微 機電反射鏡侧之鏡片所構成,在第一光學面為非球面, 使用式(3)為非球面公式設計;在第二光學面為非球面, 使用式(2)為非球面公式設計。其光學特性與非球面參數 如表四及表五。 表四、第二實施例之ίθ光學特性 fs=206.0 '----- 光學面 曲率半徑(mm) d厚度(mm) nd折射率 (optical surface) (curvature) (thickness) (refraction index、 MEMS反射面Rf] 〇.〇〇〇〇〇〇 35.00 1 lens 1 R1 iY Toroid) 1.533 Rlx* -23.727889 8.00 Rly* -54.746066 R2fAnamorphic>) R2x* -11.477359 171.82 R2y* •45.969165 盧光鼓(^drum)R3 *主二冰卞丄— 〇.〇〇〇〇〇〇 *表示非球面JY sub-scanning direction|(士士乂max(V\)^^^Lsb.sa) ^Sb〇-Sa0) S^b〇;Sa〇) 0.470 0. 255 9. 260 〇. 8150 〇.0873 〇. 0605 M345250 <Second Embodiment> The monolithic ίθ lens 13 of the present embodiment is a crescent-shaped lens having a concave surface on the side of the microelectromechanical mirror, and is aspherical on the first optical surface, using the formula (3) ) is designed for an aspherical formula; aspherical on the second optical surface, and aspherical formula using equation (2). Its optical properties and aspheric parameters are shown in Tables 4 and 5. Table 4, θθ optical characteristics of the second embodiment fs=206.0 '----- optical surface curvature radius (mm) d thickness (mm) nd refractive index (flexual) (curvature) (thickness) (refraction index, MEMS Reflective surface Rf] 〇.〇〇〇〇〇〇35.00 1 lens 1 R1 iY Toroid) 1.533 Rlx* -23.727889 8.00 Rly* -54.746066 R2fAnamorphic>) R2x* -11.477359 171.82 R2y* •45.969165 Luguang drum (^drum)R3 *Main two hail - 〇.〇〇〇〇〇〇* indicates aspheric

表五、第二實施例之光學面非球面參數 光學面(optical surface) 環像曲面方程式係數Toric equation Coefficient Ky圓錐係數 (Conic Coefficent) 4th次冪係數 Order 6th次冪係數 8th次幂係數 Order Order Coefficient 10th次冪係數 Order Coefficient Coefficient (B4) Coefficient (B6) (B8) (B10) Rl* -2.408220 -1.608E-06 -2.795E-10 -6.485E-14 0.000E+00 橫像曲面方程式係數(Anamorphic equation coefficent)_ 4th次幂係數 6th次冪係數 8th次冪係數 10th次冪係數 Order Order Order Coefficient Order Coefficient Coefficient (AR) Coefficient (CR) (DR)Table 5, optical surface aspherical parameters of the second embodiment optical surface (ring surface equation coefficient Toric equation Coefficient Ky conic coefficient (Conic Coefficent) 4th power coefficient Order 6th power coefficient 8th power coefficient Order Order Coefficient 10th power coefficient Order Coefficient Coefficient (B4) Coefficient (B6) (B8) (B10) Rl* -2.408220 -1.608E-06 -2.795E-10 -6.485E-14 0.000E+00 Lateral surface equation coefficient (Anamorphic Equation coefficent)_ 4th power coefficient 6th power coefficient 8th power coefficient 10th power coefficient Order Order Order Coefficient Order Coefficient Coefficient (AR) Coefficient (CR) (DR)

Ky圓錐係數 (Conic Coefficent) R2* _0.004530Kx圓錐係數 (Conic Coefficent) 5.666E-07 -6.490E-11_0.000E+004th次冪係數 6Λ次冪係數~8th次冪係數 Order Order Order Coefficient Coefficient (AP) Coefficient (BP) (CP) _0.000E+0Q l(Hh次冪係數 Order Coefficient (DP) -0.617309 -2.637E-01 1.105E-01 0.000E+00_0.000E+00 20 M345250 經由此所構成的單片式f0鏡片13之光學面其光路 圖如圖7。fX= 34. 406、fY= 413. 661可將掃描光線轉換 成距離與時間為線性之掃描光線光點,並將微機電反射 鏡10上光點Sa0= 13. 64、Sb0= 3720. 126掃描成為掃描 光線,在感光鼓15上進行聚焦,形成較小的光點,並滿 足(4)〜式(10)之條件,如表三;光點大小自中心軸7至 掃描視窗3之右侧分佈為:光點8a(中心軸)、8b〜8 j(掃 描視窗3最右侧),如圖8 ;另掃描視窗3之左侧與右侧 # 為對稱相同。 表六、第二實施例滿足條件表 0. 415 0. 265 9. 267 0.6962 0.0874 0.0609 ^3 Λ 主掃描方向-1)Ky Coefficent R2* _0.004530Kx Conic Coefficent 5.666E-07 -6.490E-11_0.000E+004th Power Coefficient 6Λ Power Coefficient ~8th Power Coefficient Order Order Order Coefficient Coefficient (AP Coefficient (BP) (CP) _0.000E+0Q l (Hh power factor Order Coefficient (DP) -0.617309 -2.637E-01 1.105E-01 0.000E+00_0.000E+00 20 M345250 The optical path of the optical surface of the monolithic f0 lens 13 is shown in Fig. 7. fX= 34. 406, fY= 413. 661 converts the scanning light into a scanning light spot whose distance is linear with time, and the microelectromechanical mirror 10 glazing point Sa0= 13. 64, Sb0=3720. 126 scanning becomes scanning light, focusing on the photosensitive drum 15, forming a smaller spot, and satisfying the conditions of (4)~(10), as shown in the table 3. The spot size is distributed from the central axis 7 to the right side of the scanning window 3: light spot 8a (center axis), 8b~8 j (scan window 3 right side), as shown in Fig. 8; The side and the right side # are the same as the symmetry. Table 6. The second embodiment satisfies the condition table 0. 415 0. 265 9. 267 0.6962 0.0874 0.0609 ^3 Λ Main Direction described -1)

JY 副掃描方向-----)fsJY sub-scanning direction-----)fs

Klx Κ2χKlx Κ2χ

s=min(SrSa) max〇V5J =max(VK) 響7max_⑸。·义。) = min〇V&)s=min(SrSa) max〇V5J =max(VK) 7max_(5). · Meaning. ) = min〇V&)

Vmin ~' /c c 、 \^bO ' ^a〇) 21 M345250 <第三實施例> 本實施例之單片式鏡片13為新月形且 機電反射鏡側之鏡片所構成,在第一光學面為非 為非球面公式設計;在第二光學面為非球面, = 1 = 為非球面公式設計。其光學特性與非球面參數 表七、第三實施例之f0光學特性Vmin ~' /cc , \^bO ' ^a〇) 21 M345250 <Third Embodiment> The one-piece lens 13 of the present embodiment is composed of a crescent-shaped lens on the electromechanical mirror side, at the first The optical surface is a non-spherical formula design; the second optical surface is aspherical, = 1 = is an aspheric formula. Optical characteristics and aspherical parameters Table VII, f0 optical characteristics of the third embodiment

£1 (Y Toroifl) Rlx* Rly* R2(AnamorphiV) R2x* R2y* 盧光鼓(ώτιττΛΐη 1.533 23.541873 -55.680207 -11.458304 -46.094282 〇.〇〇〇〇〇〇 8.00 171.04 *表示非球面 表八、第三實施例之光學面非球面參數 光學面(optical surface) 環像曲面方程式係數Toric equation Coefficient Ky圓錐係數 (Conic CoefFicent) 4Λ次幂係數 6di次冪係數 8th次冪係數 Order Order Order Coefficient Coefficient (B4) Coefficient (B6) (B8) 10Λ次冪係數 Order Coefficient (B10) _ Rl* -2.973693 -1.538E-06 0.000E+00 0.000E+00 0.000E+00 橫像曲面方程式係數(Anamorphic equation coefficent) Ky圓錐係數 (Conic Coefficent) 4th次幂係數 6Λ次冪係數 8th次幂係數 Order Order Order Coefficient 10th次幂係數 Order Coefficient Coefficient (AR) Coefficient (CR) (DR) R2* -0.136363 2.049E-07 0.000E+00 0.000E+00 0.000E+00 圓雜在势 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 Kx 11^ 乐· . Order Order Order Coefficient Order Coefficient (Come Coefficent) c〇effident (Ap) c〇efflcient (BP) (CP) (DP) -0.607418 3.101E-01 0.000E+00 0.000E+00_0.000E+00 22 M345250 經由此所構成的單片式ίθ鏡片13之光學面其光路 圖如圖 9。f(l)Y= 4831.254、f(2)Y= -559.613 可將掃 描光線轉換成距離與時間為線性之掃描光線光點,並將 微機電反射鏡10上光點8&0= 14.488、81)0= 2800.64掃 描成為掃描光線,在感光鼓15上進行聚焦,形成較小的 光點’並滿足(4)〜式(10)之條件’如表三;光點大小自 中心軸9至掃描視窗3之右側分佈為:光點10a(中心 軸)、10b〜10 j(掃描視窗3最右侧),如圖10 ;另掃描視 _ 窗3之左侧與右侧為對稱相同。 表九、第三實施例滿足條件表 0.434 0. 279 9. 228 0.6982 0.0904 0.0631 ^3 Λ 主掃描方向-1)£1 (Y Toroifl) Rlx* Rly* R2(AnamorphiV) R2x* R2y* Lu Guang Drum (ώτιττΛΐη 1.533 23.541873 -55.680207 -11.458304 -46.094282 〇.〇〇〇〇〇〇8.00 171.04 * indicates aspherical table VIII, third The optical surface aspherical parameter optical surface of the embodiment is a ring image equation coefficient Toric equation Coefficient Ky cone coefficient (Conic CoefFicent) 4Λ power coefficient 6di power coefficient 8th power coefficient Order Order Order Coefficient Coefficient (B4) Coefficient (B6) (B8) 10Λ power factor Order Coefficient (B10) _ Rl* -2.973693 -1.538E-06 0.000E+00 0.000E+00 0.000E+00 Anamorphic equation coefficent Ky conic coefficient (Conic Coefficent) 4th power coefficient 6Λ power factor 8th power coefficient Order Order Order Coefficient 10th power coefficient Order Coefficient Coefficient (AR) Coefficient (CR) (DR) R2* -0.136363 2.049E-07 0.000E+00 0.000 E+00 0.000E+00 Round Miscellaneous Potential 4th Power Coefficient 6th Power Coefficient 8th Power Coefficient 10th Power Coefficient Kx 11^ Le· . Order Order Order Coefficient Orde r Coefficient (Come Coefficent) c〇effident (Ap) c〇efflcient (BP) (CP) (DP) -0.607418 3.101E-01 0.000E+00 0.000E+00_0.000E+00 22 M345250 The optical path of the optical surface of the slice ίθ lens 13 is shown in Fig. 9. f(l)Y= 4831.254, f(2)Y= -559.613 can convert the scanning light into a scanning light spot whose distance is linear with time, and On the microelectromechanical mirror 10, the light spot 8 & 0 = 14.488, 81) 0 = 2800.64 scans into scanning light, and focuses on the photosensitive drum 15 to form a smaller spot 'and satisfies (4) to (10). The condition is as shown in Table 3; the spot size is distributed from the central axis 9 to the right side of the scanning window 3: the light spot 10a (center axis), 10b~10 j (the rightmost side of the scanning window 3), as shown in Fig. 10; _ The left side of the window 3 is the same as the symmetry on the right side. Table IX, the third embodiment satisfies the condition table 0.434 0. 279 9. 228 0.6982 0.0904 0.0631 ^3 Λ Main scanning direction -1)

JY 副掃描方向---—)/5 ^Ιλ: ^2jc min〇V&) max(^ -Sa)JY sub-scanning direction----)/5 ^Ιλ: ^2jc min〇V&) max(^ -Sa)

二 max〇V&) V max ~ c x y^bO 9 ^a〇) =min(V&) 23 M345250 <第四實施例> 本實施例之單片式f0鏡片13為新月形且凹面在微 機電反射鏡侧之鏡片所構成,在第一光學面為非球面, 使用式(3)為非球面公式設計;在第二光學面為非球面, 使用式(2)為非球面公式設計。其光學特性與非球面參數 如表十及表十一。 表十、第四實施例之f0光學特性 fs=198.0 光學面 曲率半徑(mm) d厚度(mm) nd折射率 (optical surfac (curvature) (thickness) (refraction index) MEMS反射a 〇.〇〇〇〇〇〇 35.00 1 lens 1 R1 (Ύ Toroid) 1.533 Rlx* -24.990718 8.00 Rly* -39.175002 R2fAnamorphic) R2x* -11.478512 153.43 R2y* -38.860737 感光鼓idrum 〇.〇〇〇〇〇〇 *表示非球面Two max〇V&) V max ~ cxy^bO 9 ^a〇) =min(V&) 23 M345250 <Fourth Embodiment> The monolithic f0 lens 13 of the present embodiment is crescent-shaped and concave The lens on the side of the microelectromechanical mirror is composed of aspherical surface on the first optical surface, aspherical formula using equation (3), aspherical surface on the second optical surface, and aspherical formula using equation (2). Its optical properties and aspheric parameters are shown in Tables 10 and 11. Table 10, f0 optical characteristics of the fourth embodiment fs=198.0 Optical surface curvature radius (mm) d thickness (mm) nd refractive index (optical surfac (curvature) (thickness) (refraction index) MEMS reflection a 〇.〇〇〇 〇〇〇35.00 1 lens 1 R1 (Ύ Toroid) 1.533 Rlx* -24.990718 8.00 Rly* -39.175002 R2fAnamorphic) R2x* -11.478512 153.43 R2y* -38.860737 Drum idrum 〇.〇〇〇〇〇〇* indicates aspherical surface

24 M345250 表十一、第四實施例之光學面非球面參數 光學面 環像曲面方程式係數Toric equation Coefficient (optical surface) Ky圓錐係數 4th次冪係數 (Conic Coefficent) Order Coefficient 6th次冪係數 Order Coefficient 8th次冪係數 Order Coefficient HHh次冪係數 Order Coefficient Rl* 0.163632 1.619E-07 1.036E-10 0.000E+00 0.000E+00 橫像曲面方程式係數(Anamorphic equation coefficent) Ky圓錐係數 4th次冪係數 6th次冪係數 8th次冪係數 10th次冪係數 (Conic Coefficent) Order Coefficient Order Coefficient Order Coefficient Order Coefficient R2* -0.076067 3.896E-07 4.789E-11 0.000E+00 0.000E+00 Kx圓錐係數 4th次冪係數 (Conic Coefficent) Order Coefficient 6th次冪係數 Order Coefficient 8tii次冪係數 Order Coefficient 10th次冪係數 Order Coefficient -0.618399 -5.831E-01 0.000E+00 0.000E+00 0.000E+00 經由此所構成的單片式f0鏡片13之光學面其光路 圖如圖11。fX= 33.431、fY=938.65可將掃描光線轉換 成距離與時間為線性之掃描光線光點,並將微機電反射 鏡10上光點SaO= 11.288、SbO= 3517.812掃描成為掃 描光線,在感光鼓15上進行聚焦,形成較小的光點,並 滿足(4)〜式(10)之條件,如表三;光點大小自中心軸11 至掃描視窗3之右侧分佈為:光點12a(中心軸)、 φ 12b〜12j(掃描視窗3最右侧),如圖12 ;另掃描視窗3 之左侧與右侧為對稱相同。 25 M345250 表十二、第四實施例滿足條件表 0. 163 0. 112 9. 327 0.6150 0.0942 0.0579 d3 Λ 主掃描方向-1)24 M345250 Table 11. Eleventh, fourth embodiment, optical surface aspherical parameter, optical surface ring image, surface equation coefficient, Toric equation Coefficient (optical surface), Ky cone coefficient, 4th power coefficient (Conic Coefficent), Order Coefficient, 6th power factor, Order Coefficient, 8th Power Coefficient Order Coefficient HHh Power Coefficient Order Coefficient Rl* 0.163632 1.619E-07 1.036E-10 0.000E+00 0.000E+00 Anamorphic equation coefficent Ky cone coefficient 4th power coefficient 6th power Coefficient 8th power coefficient 10th power coefficient (Conic Coefficent) Order Coefficient Order Coefficient Order Coefficient Order Coefficient R2* -0.076067 3.896E-07 4.789E-11 0.000E+00 0.000E+00 Kx conic coefficient 4th power factor (Conic Coefficent) Order Coefficient 6th Power Coefficient Order Coefficient 8tii Power Coefficient Order Coefficient 10th Power Coefficient Order Coefficient -0.618399 -5.831E-01 0.000E+00 0.000E+00 0.000E+00 The monolithic f0 formed by this The optical path of the optical surface of the lens 13 is shown in Fig. 11. fX=33.431, fY=938.65 can convert the scanning light into a scanning light spot whose distance is linear with time, and scan the spot on the microelectromechanical mirror 10 SaO=11288, SbO=3517.812 into scanning light, in the photosensitive drum 15 Focusing on, forming a smaller spot, and satisfying the conditions of (4)~(10), as shown in Table 3; the spot size is distributed from the central axis 11 to the right side of the scanning window 3: spot 12a (center Axis), φ 12b~12j (the rightmost side of the scanning window 3), as shown in Fig. 12; the left and right sides of the scanning window 3 are the same symmetry. 25 M345250 Table 12, the fourth embodiment meets the condition table 0. 163 0. 112 9. 327 0.6150 0.0942 0.0579 d3 Λ Main scanning direction -1)

副掃描方向 δSub-scanning direction δ

minU) max(Sb -Sa) 二 maxQVi) (^bO * ^aO ) minU) 藉由上述之實施例說明,本創作至少可達下列功效: (1) 藉由本創作之單片式f(9鏡片之設置,可將呈簡諧 運動之微機電反射鏡在成像面上光點間距由原來隨 時間增加而遞減或遞增的非等速率掃描現象,修正 為等速率掃描,使雷射光束於成像面之投射作等速 率掃描,使成像於目標物上形成之兩相鄰光點間距 相等。 (2) 藉由本創作之單片式鏡片之設置,可畸變修正 於主掃描方向及副掃描方向掃描光線,使聚焦於成 像的目標物上之光點得以縮小。 (3) 藉由本創作之單片式鏡片之設置,可畸變修正 於主掃描方向及副掃描方向掃描光線,使成像在目 標物上的光點大小均勻化。 26 M345250 以上所述僅為摘作的較佳實施例 僅是說明性的,而非限制性的;本專業技術人員^吕 在本創作權财求所限定的精神和範_可對 畔 護範圍内。 炎更仁都將洛入本創作的保 【圖式簡單說明】 # 目1為本創作單片式“鏡片之光學路徑之示意圖; 圖2為一微機電反射鏡掃描角度0與時間t之關 ®· ffi 3為通過第—鏡片及第二鏡片之掃描光線之光學路 徑圖及符號說明圖; 圖4為掃描光線投射在感光鼓上後,光點面積隨投射 位置之不同而變化之示意圖; _ 圖5為第一實施例之光路圖; 圖6為第一實施例之光點示意圖; 圖7為第二實施例之光路圖; 圖8為第二實施例之光點示意圖; 圖9為第三實施例之光路圖; 圖10為第三實施例之光點示意圖; 圖11為第四實施例之光路圖;以及 圖12為第四實施例之光點示意圖。 27 M345250 【圖式之主要元件代表符號說明】 10 ·感光鼓; 11 :雷射光源; ill :雷射光束; 113a、113b、113c、114a、114b、115a、115b :掃瞄 光線; 13 : f0鏡片; 14a、14b :光電感測器; 鲁15 :感光鼓; 16 :柱面鏡; 2、2a、2b、2c :光點; 3 ·有效掃描視窗; 5、 7、9、11 :中心軸; 6、 8、10、12 : 0· lmm 之解析圓(Geometrical Spot); 6a、6b、6c、6d、6e、6f、6g、6h :光點; 8a、8b、8c、8d、8e、8f、8g、8h、8i、8j ··光點; 10a、10b、10c、lOd、lOe、lOf、lOg、lOh、lOi、10 j : Φ 光點;以及 12a、12b、12c、12d、12e、12f、12g、12h、12i、12j : 光點。 28minU) max(Sb -Sa) two maxQVi) (^bO * ^aO ) minU) By the above embodiment, the creation can at least achieve the following effects: (1) The monolithic f (9 lens) by the present creation The setting can adjust the non-equal rate scanning phenomenon of the microelectromechanical mirror in the simple harmonic motion on the imaging surface from the non-equal rate scanning phenomenon which is decreased or increased with time, and is corrected to the equal-rate scanning, so that the laser beam is on the imaging surface. The projection is equal-rate scanning, so that the distance between two adjacent spots formed on the target is equal. (2) By the setting of the monolithic lens of the present invention, the distortion can be corrected in the main scanning direction and the sub-scanning direction to scan the light. The light spot on the target focused on the image is reduced. (3) By the setting of the monolithic lens of the present invention, the distortion can be corrected in the main scanning direction and the sub-scanning direction to scan the light, so that the image is imaged on the object. The size of the spot is uniform. 26 M345250 The above-described preferred embodiments are merely illustrative and not limiting; the technical and technical personnel defined by the skilled person in the present invention Can be within the scope of protection Yan Gengren will be in the creation of this creation [simplified description of the schema] #目1 is the creation of a single-piece "photograph of the optical path of the lens; Figure 2 is a microelectromechanical mirror scanning angle 0 and time t Off®·ffi 3 is an optical path diagram and symbol illustration of the scanning light passing through the first lens and the second lens; FIG. 4 is a schematic diagram showing the change of the spot area with the projection position after the scanning light is projected on the photosensitive drum. Figure 5 is a light path diagram of the first embodiment; Figure 6 is a light path diagram of the first embodiment; Figure 7 is a light path diagram of the second embodiment; Figure 8 is a light spot diagram of the second embodiment; FIG. 10 is a light path diagram of the third embodiment; FIG. 11 is a light path diagram of the fourth embodiment; and FIG. 12 is a light spot diagram of the fourth embodiment. 27 M345250 The main components represent the symbol description] 10 · Photosensitive drum; 11: Laser light source; ill: Laser beam; 113a, 113b, 113c, 114a, 114b, 115a, 115b: Scanning light; 13: f0 lens; 14a, 14b : Photoelectric detector; Lu 15: Photoconductor drum; 16: Cylindrical 2, 2a, 2b, 2c: light spot; 3 · effective scanning window; 5, 7, 9, 11: central axis; 6, 8, 10, 12: 0·lmm analytical circle (Geometrical Spot); 6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h: spot; 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i, 8j · · spot; 10a, 10b, 10c, lOd, lOe , lOf, lOg, lOh, lOi, 10 j : Φ light spot; and 12a, 12b, 12c, 12d, 12e, 12f, 12g, 12h, 12i, 12j: light spot. 28

Claims (1)

M345250 九、申請專利範圍:M345250 IX. Patent application scope: I-種微機電雷射掃描裝置之單片式鏡片;其係適用於 微機電雷麟描裝置,雜機電f麟描裝置至少包含-用 以發射光权細、、—以共振左城祕統魏之光束反 射f為掃描絲之微機電反射鏡、及-用以就之目標物; 该單片式ίθ鏡片由-新月形且凹面在微機電反射鏡侧之鏡 =所構成,具有—第—光學面及—第二光學面,可將該微機 電反射鏡反射之角度與時間非線性關之掃描光線光點轉 換成距離與咖為線性關叙掃描光線光點,並可係掃描光 線修正聚光於-目標物上;藉由該單片式f θ鏡片將該微機 電反射鏡反射之掃描光線於該目標物上成像。 2.如申請專利範圍第i項所述之單片式μ鏡片在主掃 描方向進一步滿足下列條件: 〇 < ~ < 0.6 JY 其中,/4該單片式⑺鏡片在主掃描方向之焦距、必為 θ=ο°鏡片目標物側光學面至該目標物之距離。 3.如申請專利範圍第1項所述之單片式μ鏡片,進一步 滿足下列條件: 在主掃描方向滿足: <0.5 且在副知描方向滿足: 0.05 <知厂” Jy 0.1 <a monolithic lens of a micro-electromechanical laser scanning device; the system is suitable for a micro-electromechanical Lerin drawing device, and the hybrid electromechanical device includes at least - for emitting light weight, and - to resonate Wei's beam reflection f is a microelectromechanical mirror of the scanning wire, and is used for the object; the monolithic ίθ lens is composed of a crescent-shaped concave mirror on the side of the microelectromechanical mirror, with - The first optical surface and the second optical surface can convert the angle of the reflection of the microelectromechanical mirror with the time nonlinear non-linear scanning light spot into a distance and the color of the scanning light, and can scan the light The correction is concentrated on the target; the scanning light reflected by the microelectromechanical mirror is imaged on the target by the monolithic f θ lens. 2. The monolithic μ lens according to item i of the patent application further satisfies the following conditions in the main scanning direction: 〇 < ~ < 0.6 JY where /4 is the focal length of the monolithic (7) lens in the main scanning direction It must be θ=ο° the distance from the optical surface of the lens target to the target. 3. The monolithic μ lens described in claim 1 further satisfies the following conditions: satisfies in the main scanning direction: <0.5 and satisfies the direction of the sub-study: 0.05 < knows the factory" Jy 0.1 < <10.0 29 M345250 其^為該單片式ίθ鏡片在主掃描方向之焦距、 ^單片式ίθ鏡片之焦距丨光學面在乂方向的曲率 半徑;m為該單片式f0鏡片之折射率。 4·如申請專利範圍第i項所述之單片式鏡片, 大光點與最小光點大小的比值滿足: 02<S^^^S〇l max〇V\)<10.0 29 M345250 is the focal length of the monolithic ί θ lens in the main scanning direction, ^ the focal length of the monolithic ί θ lens 曲率 the radius of curvature of the optical surface in the 乂 direction; m is the refractive index of the monolithic f0 lens . 4. If the single-lens lens described in item i of the patent application scope, the ratio of the large spot to the minimum spot size satisfies: 02<S^^^S〇l max〇V\) ^中’ Sa與Sb為一感光鼓上掃瞄光線形成的任一個光點在主 掃描方向及副掃财向之長度、5為域級 與最大光點之比值。 ^ 5·如申請專利範圍第1項所述之單片鏡片,其中該目 標物上最大光點的比值與在該目標物上最小光點的比值分 別滿足^中' Sa and Sb are the lengths of any spot formed by the scanning light on the photosensitive drum in the main scanning direction and the secondary sweeping direction, and 5 is the ratio of the domain level to the maximum spot. The single lens according to claim 1, wherein the ratio of the maximum spot on the target to the minimum spot on the target is satisfied. 職 (〜Λ。) min(V^J (A〇 .D <0.25 <0.1 其中,Sa。與Sb。為該微機電反射鏡反射面上掃瞄光線的光點 在主掃描方向及副掃描方向之長度、Sa與Sb為一感光鼓上 掃瞄光線形成的任一個光點在主掃描方向及副掃描方向之 長度、77 max為該微機電反射鏡反射面上掃瞄光線的光點經 掃描在該目標物上最大光點的比值、^心為該微機電反射 鏡反射面上掃瞄光線的光點經掃描在該目標物上最小光點 的比值。Job (~Λ.) min(V^J (A〇.D <0.25 <0.1 where Sa. and Sb. The spot for scanning the light on the reflecting surface of the MEMS mirror in the main scanning direction and vice The length of the scanning direction, Sa and Sb are the lengths of any one of the light spots formed by the scanning light on the photosensitive drum in the main scanning direction and the sub-scanning direction, and 77 max is the spot of the scanning light on the reflecting surface of the microelectromechanical mirror. The ratio of the maximum spot on the target scanned, the ratio of the spot of the scanned light on the reflecting surface of the MEMS mirror scanned to the minimum spot on the target.
TW97205197U 2008-03-26 2008-03-26 Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit TWM345250U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97205197U TWM345250U (en) 2008-03-26 2008-03-26 Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
JP2009000266U JP3149596U (en) 2008-03-26 2009-01-22 Single-piece fθ lens for microelectromechanical system laser scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97205197U TWM345250U (en) 2008-03-26 2008-03-26 Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit

Publications (1)

Publication Number Publication Date
TWM345250U true TWM345250U (en) 2008-11-21

Family

ID=44337741

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97205197U TWM345250U (en) 2008-03-26 2008-03-26 Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit

Country Status (2)

Country Link
JP (1) JP3149596U (en)
TW (1) TWM345250U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045455B2 (en) 2013-08-02 2016-12-14 キヤノン株式会社 Optical scanning device and image forming apparatus using the same

Also Published As

Publication number Publication date
JP3149596U (en) 2009-04-02

Similar Documents

Publication Publication Date Title
US7679803B2 (en) Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
US7619801B1 (en) Two-element f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI377433B (en) Two f-θ lens used for micro-electro mechanical system(mems) laser scanning unit
US7817342B2 (en) Two-element F-theta lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWM345250U (en) Single f-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI359747B (en) Single f-θ lens used for micro-electro mechanical
US8031387B2 (en) Two-element fθ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI343329B (en) Two optical elements fθ lens of mems laser scanning unit 6
TWI343327B (en) Two optical elements fθlens of mems laser scanning unit 5
US7649664B1 (en) Two-element F-θ lens used for micro-electro mechanical system (MEMS) laser scanning unit
TWI343328B (en) Two optical elements fθlens of mems laser scanning unit 2
TW201100863A (en) Two optical elements f θ lens of short focal distance for laser scanning unit
JP3150871U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner
JP3149995U (en) Two-piece fθ lens for microelectromechanical system laser beam scanner
CN101650473B (en) Two-element ftheta lens for MEMS laser scanning unit
TWM357615U (en) Two optical elements f-θ lens of MEMS laser scanning
TWM345249U (en) Two f-θ lens used for micro-electro mechanical system(MEMS) laser scanning unit
TWM346804U (en) Two optical elements f θ lens of MEMS laser scanning
JP3150839U (en) Two-piece fθ lens for microelectromechanical system laser beam detector
CN101566726B (en) Two-chip type f Theta lens of microcomputer electric laser scanning device
TWM357614U (en) Two optical elements f-θ lens of MEMS laser scanning
TWM348012U (en) Two optical elements fθ lens of MEMS laser scanning unit 7
TWM349849U (en) Two optical elements fθ lens of MEMS laser scanning unit 4
TWM348010U (en) Two optical elements fθ lens of MEMS laser scanning unit 6
TWM348011U (en) Two optical elements fθ lens of MEMS laser scanning unit 3