TWM352033U - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
TWM352033U
TWM352033U TW97211319U TW97211319U TWM352033U TW M352033 U TWM352033 U TW M352033U TW 97211319 U TW97211319 U TW 97211319U TW 97211319 U TW97211319 U TW 97211319U TW M352033 U TWM352033 U TW M352033U
Authority
TW
Taiwan
Prior art keywords
columnar structure
columnar
optical film
linear
height
Prior art date
Application number
TW97211319U
Other languages
Chinese (zh)
Inventor
Ting-Yuang Wu
Yi-Chung Shih
Original Assignee
Eternal Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eternal Chemical Co Ltd filed Critical Eternal Chemical Co Ltd
Priority to TW97211319U priority Critical patent/TWM352033U/en
Publication of TWM352033U publication Critical patent/TWM352033U/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

The present invention pertains to an optical film comprising a substrate and a microstructured layer on a surface of the substrate, wherein the microstructured layer comprises a plurality of bar-shaped structures and the bar-shaped structures comprise at least two members selected from the group consisting of a linear bar-shaped structure with its height varying along the length direction, a linear bar-shaped structure without its height varying along the length direction, a serpentine bar-shaped structure with its height varying along the length direction and a serpentine bar-shaped structure without its height varying along the length direction. The optical film of the present invention enhances the brightness and efficiently reduces optical interference.

Description

M352033 八、新型說明: 【新型所屬之技術領域】 本創作係關於一種光學膜,尤指一種應用於液晶顯示器 之聚光膜。 【先前技術】 液晶面板本身並不發光’因此作為亮度來源之背光模組 為LCD顯示功能的重要元件,且對提高液晶顯示器亮度而 言非常重要。目前’在背光模組中利用各式各樣之光學 膜,提供一種能提高LCD面板亮度以使光源做最有效率之 應用,而不需更動任何元件設計或消耗額外能源的做法, 已成為最經濟與簡便的解決方案。圖1為背光模組所含各 種光學膜之簡單示意圖。如圖丨所示,一般背光模組所含 光學膜係包含配置於導光板(light guide)(2)下方之反射膜 (1),及配置於導光板(2)上方之其它光學膜,其由下至上 依序為:擴散膜(3)、聚光膜(4)及(5)及保護性擴散膜(6)。 擴散膜主要功能為提供液晶顯示器均句之面光源。聚光 膜業界習稱為聚光膜(Brightness Enhancement Film)或稜鏡 片(prism film) ’聚光膜主要功能為藉由折射與内部全反射 將散亂的光線收集,並集中至約±35度的正視角(〇n_axis) 方向,以提高LCD的輝度。一般常用之聚光膜係利用規則 排列之線性稜鏡柱狀結構來達到聚光效果β 習知聚光膜如圖2所示(如PCT公開案W096/23649及美國 專利第5,626,800號),其包含一基材(21)及位於基材(21)上 方之複數個稜鏡結構(22),該等稜鏡結構彼此互相平行, 132315-971212.doc M352033 其中各稜鏡結構係由二個傾斜表面所構成,此二傾斜表面 於稜鏡頂部相交形成峰(23),且各自與相鄰棱鏡之另一傾 斜表面於稜鏡底部相交形成谷(24)。由於習知聚光膜為固 疋寬度之規則條狀結構’所以容易與來自顯示器中其它膜 片之反射或折射光線或該聚光膜本身之其它反射或折射光 線產生光學干涉現象,導致在外觀上出現彩紋或明 暗條紋(mura)。圖3為美國專利第6,354,7〇9號之聚光膜之 示思圖其中基材⑺上方具有複數個微細棱鏡結構⑻, 运些線性稜鏡結構彼此互相平行,且單一棱鏡結構於不同 之長度位置具有不同之峰高。然而,習知之聚光膜縱使在 峰距或峰高上做了改變’仍具有規則之聚光結構,即各 稜鏡間係互相平行(峰與峰之間或谷與谷之間互相平行), 且為規則性直線稜柱結構,因此無法有效改善明暗條紋現 象。美國專利第5,919,551號使用具有二個或二個以上頂峰 的柱狀結構’該頂峰呈高低不一狀態’這種線性棱鏡結構 為單-稜鏡結構上至少有兩頂峰,此方法之缺點為雕刻不 易同時控制雙峰,所以良率不高,成本增加。 已知可於聚光膜上配置保護性擴散膜(或稱為上擴散 ^以改善上述光學干涉現象,且防止聚光膜與面板或 '、他膜片在輸达時產生振動而引起互相損傷。惟此方法之 缺點為成本增加’且將使背光模組之結構變得複雜。 【新型内容】 ’ 可Γ監於此,本創作提供一種光學膜以改良上述缺點,其 可減少光學干涉現象。 132315-971212.doc M352033 本創作之目的乃提供一種光學膜,包含一基材及位於該 基材之一表面上之微結構層’其中該微結構層包含複數個 柱狀結構且該柱狀結構包含至少二種選自由峰高度沿延伸 方向變化之線性柱狀結構、峰兩度不沿延伸方向變化之線 性柱狀結構、峰尚度沿延伸方向變化之曲線柱狀結構及峰 高度不沿延伸方向變化之曲線柱狀結構所組成之群組之柱 .狀結構。 【實施方式】 在本文中’「多峰柱狀結構」係指由至少兩個柱狀結構 彼此重疊所形成之聯集結構,且任何兩相鄰柱狀結構間之 谷線之高度係為此二相鄰柱狀結才冓中高度較低者之高度之 30%至 95%。 早啤杈鏡柱狀結構」係指由單 隹丰文中 —— 一rnr j 狀結構所構成且僅具有單一之峰之結構 在本文中’「谷線」係指由相鄰兩柱狀結構之相鄰侧面 相接所形成之線。 在本文中,「柱狀結構之高声 r q又」係才日為該柱狀結構之峰 相對该柱狀結構底部之垂直距離。 在本文中,「谷線之高度I传於1 /、Μ 係扣忒合線相對其所相鄰之 兩柱狀、、告構底部之垂直距離。 「柱狀結構與錄狀 面相鄰之兩谷間之距離。 中且有通鏡柱狀結構料本創作所屬技術領域 甲具有通常知識者所熟知者, 共係由兩個傾斜表面所構 132315-971212.doc M352033 、泣SW貝斜表面可為曲面或平面,且該二傾斜表面於棱鏡 頂部相交形成峰,且可各自與相鄰柱狀結構之另一傾斜表 面於底部相交形成谷。 本幻作所使用之弧形柱狀結構係為本創作所屬技術領域 中/、有通常知識者所熟知者,其係由兩個傾斜平面所構 成,此二傾斜平面頂部相交處係純化形成一曲面,且此二 闕平面可各自與相鄰柱狀結構之另—傾斜表面於底部相 父形成谷。 在本文中,「弧形柱狀結構頂部曲面之最高處」係定義 為該弧形柱狀結構之峰’弧形柱狀結構之高度係 狀結構之峰相對其底部之垂直距離。 在本文中’「弧形柱狀結構二傾斜平面延伸相交之角 度」係定義為該弧形柱狀結構之頂角角度。 在本文中,「線性柱狀結構」係定義為柱狀結構的棱線 (ridge)呈直線延伸之柱狀結構。 在本文中,「曲線柱狀結構」係定義為柱狀結構的棱線 呈¥曲變化延伸之柱狀結構’該彎曲延伸稜線係形成適當 的表面曲率變化,該彎曲延伸稜線之表面曲率變化係以1 曲線柱狀結構高度為基準之G.2%J_1GG%,較佳係以該曲乂 線柱狀結構高度為基準之1 %至2〇0//〇。 本創作光學膜所❹之基材,可為任何本創作所屬技術 領域具有通常知識者所已知者’例如破璃或塑膠。上述塑 膠基材可由-或多個高分子樹脂層所構成。用以構成上述 高分子樹月旨層之樹脂之種類並無特殊限制,其例如作不限 132315-971212.doc M352033 於聚酯樹脂(polyester resin),如聚對苯二曱酸乙二酯 (polyethylene terephthalate,PET)或聚萘二甲酸乙二醋 (polyethylene naphthalate, PEN);聚丙稀酸酯樹脂 (polyacrylate resin),如聚甲基丙烯酸曱酯(polymethyl methacrylate, PMMA);聚烯烴樹脂(p〇ly〇iefin resin),如 聚乙烯(PE)或聚丙烯(PP);聚苯乙稀樹脂(polystyrene resin);聚環烯烴樹脂(p〇lyCyCl〇〇lefin resin);聚醯亞胺樹 月g (polyimide resin),聚碳酸 g旨樹脂(p〇iyCarb〇nate resin); 聚胺基曱酸酯樹脂(polyurethane resin);三醋酸纖維素 (triacetate cellulose,TAC);聚乳酸(p〇iylactic acid);或彼 等之混合物。較佳為聚對苯二甲酸乙二酯、聚曱基丙烯酸 甲酯、聚環烯烴樹脂、三醋酸纖維素、聚乳酸或其混合 物’更佳為聚對本二甲酸乙二酯。基材之厚度通常取決於 所欲得光學產品的需求,其較佳介於約5〇微米至約3〇〇微 米之間。 本創作光學膜之微結構層係用以提供光學膜所欲之光學 性質。本創作之微結構層可與基材一起以一體成形方式製 備,例如以壓印(emb〇ss)方式直接製得;或以任何習知方 式於基材上進行加X後製得,例如:以塗佈方式於基材上 直接形成-微結構層’或於基材上先塗佈_樹脂塗層再於 該塗層上雕刻所需之微結構層。上述微結構層之厚声並無 特殊限制,通常係介於約丨微米至約5〇微米之厚度:: 為5微米至30微米,最佳為15微米至乃微米。 本創作光學膜之微結構層可由任何折射率大於空氣折射 132315-971212.doc -10- M352033 率之樹脂所構成。一般而言,微結構層的折射率越高,聚 光效果越好。本創作光學膜具有至少1 ·50之折射率,較佳 具有1.50至1.70之折射率。用以形成該微結構層之樹脂為 本創作所屬技術領域中具有通常知識者所熟知者,其例如 但不限於丙烯酸酯樹脂、聚醯胺樹脂、環氧樹脂、I素樹 月曰、聚酿亞胺樹脂、聚胺基曱酸g旨樹脂、醇酸樹脂(alkyd resin)、聚酯樹脂及其混合物所構成的群組,較佳為丙稀 酸醋樹脂。可用以構成上述丙烯酸酯樹脂之單體例如但不 限於丙烯酸酯類單體。上述丙烯酸酯類單體之種類例如但 不限於丙烯酸酯、甲基丙稀酸醋' 胺基甲酸酯丙稀酸醋 (urethane acrylate)、聚酯丙稀酸酉旨(polyester acrylate)、環 氧丙烯酸酯(epoxy acrylate)或其混合,較佳為丙烯酸酯或 曱基丙稀酸酯。此外,上述丙稀酸酯類單體可具有一或多 個官能基,較佳具有多官能基。 適用於本創作之丙烯酸酯類單體之實例例如選自包括 (曱基)丙稀酸5曰、二丙,一醉-一(曱基)丙稀酸酉旨(tripropylene glycol di(meth)acrylate)、1,4- 丁 二醇二(曱基)丙烯酸酯 (1,4-butanediol di(meth)acrylate)、1,6-己二醇二(甲基)丙 稀酸酯(l,6-hexanediol di(meth)acrylate)、聚乙二醇二(甲 基)丙烯酸酯(polyethyleneglycol di(meth) acrylate)、烯丙 基化二(甲基)丙稀酸環己酉旨(allylated cyclohexyl di(meth)acrylate)、二(甲基)丙稀酸異氰脉酸酯 (isocyanurate di(meth)acrylate)、2-苯氧基乙基(曱基)丙稀 酸醋(2-phenoxyl ethyl (meth)acrylate)、乙氧基化三經甲基 132315-971212.doc M352033 丙烧三(曱基)丙烯酸 g 旨(ethoxylated trimethylol propane tri(meth) acrylate)、丙氧基化甘油三(曱基)丙烯酸酯 (propoxylated glycerol tri(meth)acrylate)、三經曱基丙烧三 (甲基)丙稀酸醋(trimethylol propane tri(meth)acrylate)、2-(對-異丙苯基-苯氧基)-乙基丙稀酸醋(cumyl phenoxyl ethyl acrylate,CPEA)及彼等之混合物所組成之群組。 市售丙稀酸S旨類單體之實例包括:由Sartomer公司生 產,商品名為 SR454®、SR494®、SR9020®、SR9021® 或 SR9041®者;由Eternal公司生產,商品名為624-100® ' EM210®或EM2108®者;及由UCB公司生產,商品名為M352033 VIII. New description: [New technical field] This creation is about an optical film, especially a concentrating film applied to liquid crystal displays. [Prior Art] The liquid crystal panel itself does not emit light. Therefore, the backlight module as a brightness source is an important component of the LCD display function, and is very important for improving the brightness of the liquid crystal display. At present, the use of a wide variety of optical films in the backlight module provides an application that can increase the brightness of the LCD panel to make the light source the most efficient, without the need to change any component design or consume additional energy. Economical and simple solution. Figure 1 is a simplified schematic diagram of various optical films contained in a backlight module. As shown in FIG. ,, the optical film included in the general backlight module includes a reflective film (1) disposed under the light guide (2), and other optical films disposed above the light guide plate (2). From bottom to top, the order is: diffusion film (3), concentrating film (4) and (5) and protective diffusion film (6). The main function of the diffusion film is to provide a surface light source for the liquid crystal display. The concentrating film industry is known as the Brightness Enhancement Film or the prism film. The main function of the concentrating film is to collect scattered light by refraction and internal total reflection, and concentrate it to about ±35 degrees. The positive viewing angle (〇n_axis) direction to increase the brightness of the LCD. A commonly used concentrating film utilizes a regularly arranged linear columnar structure to achieve a concentrating effect. A conventional concentrating film is shown in FIG. 2 (such as PCT Publication No. WO 96/23649 and U.S. Patent No. 5,626,800), which includes a a substrate (21) and a plurality of 稜鏡 structures (22) located above the substrate (21), the 稜鏡 structures being parallel to each other, 132315-971212.doc M352033 wherein each 稜鏡 structure is composed of two inclined surfaces The two inclined surfaces intersect at the top of the crucible to form a peak (23), and each intersects another inclined surface of the adjacent prism at the bottom of the crucible to form a valley (24). Since the conventional concentrating film is a regular strip structure of a solid width, it is easy to cause optical interference with reflected or refracted light from other films in the display or other reflected or refracted light of the condensing film itself, resulting in appearance. Colorful lines or light and dark stripes (mura). Figure 3 is a schematic view of a concentrating film of U.S. Patent No. 6,354,7-9, in which a plurality of fine prism structures (8) are arranged above a substrate (7), and the linear 稜鏡 structures are parallel to each other, and the single prism structure is different. The length positions have different peak heights. However, the conventional concentrating film changes the peak height or the peak height even though it still has a regular concentrating structure, that is, the enthalpies are parallel to each other (between peaks and peaks or valleys and valleys are parallel to each other), It is a regular linear prism structure, so it cannot effectively improve the light and dark stripes. U.S. Patent No. 5,919,551 uses a columnar structure having two or more peaks. The peak is in a state of high and low. This linear prism structure has at least two peaks on a single-twist structure. The disadvantage of this method is engraving. It is not easy to control the double peak at the same time, so the yield is not high and the cost is increased. It is known that a protective diffusion film (also referred to as an upper diffusion) can be disposed on the light-concentrating film to improve the above-mentioned optical interference phenomenon, and to prevent the light-collecting film from being bumped with the panel or the film when it is transmitted, causing mutual damage. However, the disadvantage of this method is that the cost is increased, and the structure of the backlight module will be complicated. [New content] 'Understanding this, the present invention provides an optical film to improve the above disadvantages, which can reduce optical interference. 132315-971212.doc M352033 The object of the present invention is to provide an optical film comprising a substrate and a microstructure layer on a surface of the substrate, wherein the microstructure layer comprises a plurality of columnar structures and the columnar shape The structure comprises at least two linear columnar structures selected from a peak height along a direction of extension, a linear columnar structure in which the peak does not change in the direction of extension, a curved columnar structure in which the peak intensity changes along the extending direction, and a peak height not along a column-like structure composed of a curved columnar structure in which the direction of extension changes. [Embodiment] In the present text, "a multi-column columnar structure" means at least two columnar structures. The superposition structure formed by the overlap, and the height of the valley line between any two adjacent columnar structures is 30% to 95% of the height of the lower height of the two adjacent columnar nodes.杈 柱 柱 柱 ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” The line formed by the connection. In this paper, the "high-pitched rq of the columnar structure" is the vertical distance of the peak of the columnar structure relative to the bottom of the columnar structure. In this paper, the height of the valley line I is transmitted in 1 /, Μ 忒 忒 忒 相对 相对 相对 相对 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直Mirror columnar material belongs to the technical field of the art. It is known to those skilled in the art. The common structure is composed of two inclined surfaces 132315-971212.doc M352033, and the oblique surface of the weeping SW can be a curved surface or a plane, and the two inclined The surfaces intersect at the top of the prism to form peaks, and may each be adjacent to the columnar structure The other inclined surface intersects at the bottom to form a valley. The curved columnar structure used in the present invention is known to those skilled in the art of the art, and is composed of two inclined planes. The intersection of the tops of the two inclined planes is purified to form a curved surface, and the two planes can each form a valley with the other inclined surface of the adjacent columnar structure. In this paper, "the top surface of the curved columnar structure" The highest point is defined as the peak of the arcuate columnar structure. The vertical distance of the peak of the height of the curved columnar structure relative to the bottom. In this paper, 'the arcuate columnar structure has two oblique planes extending intersecting The angle is defined as the apex angle of the arcuate columnar structure. In the present context, the "linear columnar structure" is defined as a columnar structure in which the ridges of the columnar structure extend in a straight line. In the present context, the "curved columnar structure" is defined as a columnar structure in which the ridgeline of the columnar structure is extended in a curved shape. The curved extending ridge line forms an appropriate surface curvature change, and the surface curvature variation of the curved extended ridge line is G.2%J_1GG% based on the height of the 1-curved columnar structure is preferably 1% to 2〇0//〇 based on the height of the columnar structure of the curved line. The substrate to which the optical film of the present invention is applied may be known to those of ordinary skill in the art to which the present invention pertains, such as glass or plastic. The above plastic substrate may be composed of - or a plurality of polymer resin layers. The type of the resin used to form the above-mentioned polymer tree layer is not particularly limited, and it is, for example, not limited to 132315-971212.doc M352033 in a polyester resin such as polyethylene terephthalate ( Polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); polyacrylate resin, such as polymethyl methacrylate (PMMA); polyolefin resin (p〇 Ly〇iefin resin), such as polyethylene (PE) or polypropylene (PP); polystyrene resin; polycyclic olefin resin (p〇lyCyCl〇〇lefin resin); polyimine tree (polyimide resin), polycarbonate resin (p〇iyCarb〇nate resin); polyurethane resin; triacetate cellulose (TAC); polylactic acid (p〇iylactic acid) Or a mixture of them. Preferably, polyethylene terephthalate, polymethyl methacrylate, polycycloolefin resin, cellulose triacetate, polylactic acid or a mixture thereof is more preferably polyethylene terephthalate. The thickness of the substrate typically depends on the desired optical product requirements, preferably between about 5 microns and about 3 microns. The microstructure layer of the optical film of the present invention is used to provide the desired optical properties of the optical film. The microstructural layer of the present invention can be prepared together with the substrate in an integrally formed manner, for example, directly by imprinting (emb〇ss); or by adding X to the substrate in any conventional manner, for example: The micro-structure layer is formed directly on the substrate by coating or the resin layer is first coated on the substrate and the desired microstructure layer is engraved on the coating. The thick sound of the above microstructured layer is not particularly limited and is usually a thickness of from about 丨 micron to about 5 〇 micrometers: from 5 micrometers to 30 micrometers, preferably from 15 micrometers to micrometers. The microstructure layer of the present optical film may be composed of any resin having a refractive index greater than that of air refraction 132315-971212.doc -10- M352033. In general, the higher the refractive index of the microstructured layer, the better the concentrating effect. The optical film of the present invention has a refractive index of at least 1.50, preferably having a refractive index of 1.50 to 1.70. The resin used to form the microstructured layer is well known to those of ordinary skill in the art of the art, such as, but not limited to, acrylate resins, polyamide resins, epoxies, Isushu, 聚亚亚The group consisting of an amine resin, a polyamino phthalic acid g resin, an alkyd resin, a polyester resin, and a mixture thereof is preferably an acetoacetate resin. The monomer which can be used to constitute the above acrylate resin is, for example, but not limited to, an acrylate monomer. The types of the above acrylate monomers are, for example but not limited to, acrylates, urethane acrylates, urethane acrylates, polyester acrylates, and epoxies. Epoxy acrylate or a mixture thereof is preferably an acrylate or mercapto acrylate. Further, the above acrylate monomer may have one or more functional groups, preferably a polyfunctional group. Examples of acrylate monomers suitable for use in the present invention are, for example, selected from the group consisting of (meth) acrylates, bis, propylene, propylene, propylene, propylene, propylene, propylene, propylene ), 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate (l,6-) Hexanediol di(meth)acrylate), polyethyleneglycol di(meth)acrylate, allylated di(meth)acrylic acid cyclohexyl di(meth) Acrylate), isocyanurate di(meth)acrylate, 2-phenoxyl ethyl (meth)acrylate Ethoxylated trimethylmethyl 132315-971212.doc M352033 ethoxylated trimethylol propane tri(meth) acrylate, propoxylated glycerol tris(mercapto) acrylate ( Propoxylated glycerol tri(meth)acrylate), trimethylol propane tri(meth)acrylate The group consisting of acrylic acid-ethyl acetate mixture (cumyl phenoxyl ethyl acrylate, CPEA) and whose - 2- (p - cumyl - phenoxy). Examples of commercially available acrylic acid S-type monomers include those manufactured by Sartomer under the trade names SR454®, SR494®, SR9020®, SR9021® or SR9041®; manufactured by Eternal under the trade name 624-100® ' EM210® or EM2108®; and manufactured by UCB, trade name

Ebecryl 600®、Ebecryl 830®、Ebecryl 3605® 或 Ebecryl 6700®者等》 上述形成微結構層之樹脂可視需要添加任何習知添加 劑’例如光起始劑、交聯劑、無機微粒、流平劑、消泡劑 或抗靜電劑等’其種類係為本創作所屬技術領域中具有通 常知識者所熟知者。 可視需要在用以形成微結構層之樹脂令添加抗靜電劑, 以使所製得之光學膜具有抗靜電之效果,進而提高作業良 率。可使用於本創作之抗靜電劑係為本創作所屬技術領域 中具有通常知識者所熟知者,其例如但不限於乙氧美甘、由 脂肪酸酯類、四級胺化合物、脂肪胺類衍生物、環氧樹脂 (如聚環氧乙烷)、矽氧烷(sil〇xane)或其它醇類衍生物 聚乙醇酯或聚乙二醇醚)等。 可使用於本創作之光起始劑,係經光照射後會產生自由 132315-971212.doc -12- M352033 基’而透過自由基之傳遞引發聚合反應者。適用於本創作 之光起始劑係為本創作所屬技術領域中具有通常知識者所 A知者’其例如但不限於二苯甲_ (benz〇phenone)、二苯 乙醇酮(benzoin)、2_羥基-2-甲基-1-苯基丙-1-酮(2_ hydroxy-2-methyl-l-phenyl-propan-l-one)、2,2-二曱氧基_ 1,2- 一 本基乙 _1_ 晒 oj-dimethoxy-lj-diphenylethan-l- one)、 1-經基環己基 苯基嗣 (hydroxy cyclohexyl phenyl ketone)、2,4,6-三曱基苯曱醯基二苯基膦氧化物(2,4,6_ trimethylbenzoyl diphenyl phosphine oxide),或彼等之混 合物。較佳之光起始劑係二苯曱酮或丨_羥基環己基笨基 為增進微結構層之硬度,可視需要於樹脂中添加奈米級 無機微粒。可使用於本創作之無機微粒係為本創作所屬技 術領域中具有通常知識者所熟知者,其例如但不限於氧化 鋅、二氧化矽、鈦酸勰、氧化锆、氧化鋁、二氧化鈦、硫 酸鈣、硫酸鋇、碳酸鈣或其混合物,較佳為二氧化鈦、氧 化锆一氧化矽、氧化鋅或其混合物。上述無機微粒具有 約50奈米至約350奈米之粒徑大小。 本創作之微結構層包含複數個柱狀結構,該等柱狀結構 可為線性(linear)、曲線(serpentine)或折線(zigzag),且該 等柱狀結構之峰高度可不沿延伸方向變化或沿延伸方向: 化。上述柱狀結構之峰高度沿延伸方向變化係指該柱狀結 構中至少有部分位置之高度係隨機或規則性沿結構主轴位 置變化’其變化幅度至少為標稱高度(或平均高度)之百分 132315-971212.doc M352033 之=,較佳其變化鴨度為該標稱高度之百分之五 五十之間。 刀i 本創作之微結構声$ 处 構,本創作微結構至少一單峰柱狀結 β 心形柱狀結構、稜鏡 構或一合,較佳為稜鏡柱狀結構。上述柱狀社構 .方法且較易控制集::對稱柱狀結構不但可簡化加 等结構層之柱狀結構可等高或不等高、等寬或不 …Γ 至少二種選自由缘高度沿延伸方向變化 狀、、。構、峰南度不沿延伸方向變化之線性柱狀結 兩度沿延伸方向變化之曲線柱狀結構及夺高度不沿 延伸方向變化之曲線柱狀結構所組成之群組且具有相同寬 ,及頂角角度之柱狀結構。本創作所使用之柱狀結構之高 度取決於所欲得光學產品之需求,一般係介於5微米至_ 微米之範圍’較佳介於10微米至50微米之範圍更佳介於 20微米至40微米之範圍。 、 本創作所使用之柱狀結構可為稜鏡或弧形柱狀結構。當 柱狀結構為弧形時’弧形柱狀頂部曲面最高處之曲率半徑 二了微米至50微米之間,較佳介於3微米至35微米之 ㈣於5微米至2〇微米之間。本創作所使用之稜鏡 广構或弧形柱狀結構之頂角角度可彼此和同或不相 :^,於4〇。至12〇。,較佳介於6〇。至%。。為能兼顧抗 ❹两輝度特性’稜鏡柱狀結構之頂角角度較佳為8〇。至 95,弧形柱狀結構之頂角角度介於60。至 95° ° 132315-971212.doc -14- M352033 當本創作之微結構層包含兩種(例 種以上(例如〜2, X3,…表示)之不同的枉狀-等柱狀結構可以任何適當之順序排列,亦即,可為 結構,其排列方式例如但不限於:❿糾2Xl、 X灿XlX2等;亦可為-重複結#,其排列方式例如作不 ,於、X2XlX2XlX2、XlXlX2XiXiX2等,較佳為兩種不同柱 狀結構所構成之重複排列結構。 根據本創作另-較佳實施態樣’本創作之光學膜可視需 要以卷對卷式(roll to rQll)連續生產技術於基材上先塗佈且 擴散效果之擴散層,再於擴散層上塗佈上述具聚光效果: 微結構層作為聚光層。該擴散層包含透明微粒,且該擴散 層中透明微粒之折射率大於該聚光層之折射率,且該擴 層中透明微粒之折射率與該聚光層之折射率的差為〇〇5至 可用於本創作中的透明微粒種類並無特殊限制,可 =破璃珠粒(beads)、金屬氧化物顆粒、塑膠珠粒或其混 σ。上述塑膠珠粒並無特殊限制,其例如但不限於 丙烯酸酯樹脂、苯乙烯樹脂、胺基甲酸酯樹脂、矽 酮树知或彼等之混合物;而金屬氧化物顆粒並無特 殊限制’其例如但不限於二氧化鈦(Ti〇2)、二氧化 梦(Sl〇2)、氧化鋅(ZnO)、硫酸鋇(BaS04)、氧化鋁 (Al2〇3)、氧化鍅(Zr〇2)或彼等之混合物。該透明微粒 之形狀並無特殊限制,例如可為球形、菱形、橢圓形、雙 &透鑛1形等。該透明微粒之平均粒徑大小介於1至50微米 之間’較佳為3至3〇微米,最 佳為5至20微米,且該透明微 132315-9712l2.d〇c • 15- M352033 粒之折射率為15至2·5,最佳為 1·9 〇 為避免基材表面刮傷而影響膜片的光學性質,可視需要 在基材相對於微結構層之另一表面上形成一抗刮層。上述 抗刮層可為平滑狀或非平滑狀,可使用任何習知方法形成 本創作之抗刮層,其例如但不限於網版印刷、喷塗、壓花 加工或於基材表面塗覆含擴散顆粒之抗刮層等,其中塗覆 含擴散顆粒之抗刮層可使抗刮層具有某些程度的光擴散作 用。上述抗刮層之厚度較佳係介於〇 5〜3〇微米之間,更佳 介於1〜10微米之間。上述擴散顆粒可為球形、菱形、橢圓 球形或雙凸透鏡形(biconvex lenses)等,其粒徑大小較佳 介於1〜30微米,其種類亦無特殊限制,可為有機粒子或無 機粒子,較佳為有機粒子,例如聚丙稀酸醋樹脂、聚苯乙 烯樹脂、聚胺基曱酸酯樹脂、矽酮樹脂或其混合物,較佳 為聚丙烯酸酯樹脂。 光學產品的光學特性可由霧度值(Hz)、全光線透過率 (Tt)來表示’其中霧度值與光學產品的光散射性相關,全 光線透過率與光學產品的光線穿透率相關。在基材之一表 面上不存在微結構層之情況下,根據JIS K7 1 36標準方法 測量另一表面上之樹脂塗層之霧度,所得霧度為 1 /〇〜90%,較佳為5〇/〇〜40%,因此,本創作之抗刮層具有散 射光之能力。且根據JIS K7136標準方法,測量本創作光 學膜之全光線透過率’具有不低於60%之全光線透過率, 較佳為高於80%,更佳90%或90%以上。此外,本創作之 抗刮層根據JIS K5400標準方法量測,其具有可達3H或以 132315-971212.doc -16- M352033 上之鉛筆硬度。 ▲可使用任何習知之方法製備本創作光學膜之微結構層及 抗刮層,且製備微結構層及抗刮層之先後順序並無特殊限 制。 本創作光學膜之微結構層之製造方式,並無特殊限制, 例如,可經由包含以下步驟之方法製造: ⑷將樹脂及適當之添加劑混合以形成一膠態塗料組合 物; 〇>)在一圓柱形毛胚(或稱滾筒)上,以鑽石刀具在轉動之 滾筒上以與滾筒轴向之方向移動定格徑向進給,藉由 控制鑽石刀具之移動速度及/或滾筒之轉速使鑽石刀罝 在滾筒上雕刻出特定線性柱狀溝槽,再以改變b轴轉 速或改變鑽石刀具譜振模式達成高低起伏或左右連續 變化之結構; ⑷將㈣態塗料組合物塗佈於基材或滾輪上,然後利用 步驟(b)所雕刻完成之滾筒進行滚輪塵花、熱轉印或熱 擠壓方式使該塗層形成一結構化表面;及 ‘、、 ⑷對該塗層照射能量射線或加熱或兩者併用以使該塗層 固化。 上述方法的特徵為利用至少— 久加工方式製造本創作光 予膜之微、·、吉構層,戶斤含冒$ 上 5 , 所明至次加工方式係指在滾筒上雕 可利用最㈣/ 槽,此方法最大優點為 糊取簡单的加工方式,得到最大的良率。 以下兹配合㈣舉㈣日林_光學膜之微結構層之構 132315-971212.doc • 17. M352033 ' _用以限制本創作之範圍。任何熟悉此項技蓺之人 六。#達成之修飾及改變均包括於本案說明書揭示内 如圖4圣ms 1、 至圖13所示,本創作之光學膜係於基材(3〇〇)之上 成微結構層(31〇、41。、51〇、㈣及71〇),微結構層 壬方式可為:與基材一起以一體成形方式製備;或以 任何習知之加工方式製備,例如以塗佈方式及壓花方式於 土材上形成微結構層,或先塗佈再雕刻所需之結構。 在本創作之一實施例中,微結構層包含複數個柱狀結 構社該桎狀結構包含複數個線性柱狀結構及複數個曲線柱 狀-構。在-較佳實施例中,該等柱狀結構包含由峰高度 沿延伸方向變化之單峰曲線柱狀結構(32〇)(χι)及峰高度不 ;"延伸方向變化之單峰線性柱狀結構(330)(χ2)所構成,該 等柱狀結構以相互交替之重複結構排列(χιχ2χιχ2χιΧ。,如 圖4所示。圖4之實施態樣中微結構層之柱狀結構為等高、 等寬且具有相同之頂角角度之單蜂稜鏡柱狀結構。 在本創作之另—實施例中,微結構層包含複數個柱狀結 構’該等柱狀結構為線性柱狀結構,且部分柱狀結構之峰 高度沿延伸方向變化’如圖5至圖8所示。該微結構層之柱 狀結構為等高、等寬且具有相同之頂角角度之單峰稜鏡柱 狀結構。 在圖5至8本創作光學薄膜之實施態樣中,該等柱狀結構 包含由峰高度沿延伸方向變化之單峰線性柱狀結構 (340)(X3)及峰高度不沿延伸方向變化之單峰線性柱狀結構 132315-971212.doc M352033 (330)(X2)所構成,該等柱狀結構以相互交替之重複結構排 列(叩价父成父2)。圖5之實施態樣中,該基材相對於微結 構層之另-表面為平滑狀。圖6之實施態樣中,該基材相 對於微結構層之另—表面上包含—含有擴散顆粒之抗刮層 (1〇〇)。圖7之實施態樣中,基材上先塗佈擴散層(110),再 於擴散層(110)上塗佈該微結構層作為聚光層,該擴散層 (11〇)包含透明微粒且該基材相對於微結構層之另一表面上 包含一含擴散顆粒之抗刮層(100)。圖8之實施態樣中,該 微結構層係與基材一起以一體成型方式製備。 圖9及圖1〇例示本創作之微結構層所包含之柱狀結構可 為等高(如圖9b及圖10b)、不等高(如圖%及9〇)、等寬(如圖 9b及圖l〇b)或不等寬(如圖1〇a及圖1〇c)。 在本創作之另一實施例中,微結構層包含複數個柱狀結 構,該荨柱狀結構為線性弧形柱狀結構,且部分弧形柱狀 結構之峰兩度沿延伸方向變化,如圖丨丨所示。該微結構層 之柱狀結構為等高、等寬且具有相同之頂角角度之單峰弧 形柱狀結構。圖11之實施態樣中,該等柱狀結構包含由峰 南度沿延伸方向變化之單峰線性柱狀結構(35〇)(χ4)及峰高 度不沿延伸方向變化之單峰線性柱狀結構(360)(xs)所構成, 該等柱狀結構以相互交替之重複結構排列(X4X5X4XSX4X5)。 在本創作之另一實施例中,本創作之微結構層包含複數 個柱狀結構,圖12之實施態樣中,該等柱狀結構包含峰高 度沿延伸方向變化之單峰線性柱狀結構(340)(〜)、峰高度 132315.971212.doc -19- M352033 不沿延伸方向變化之單峰線性柱狀結構(330)(X2)、峰高度 不沿延伸方向變化之多峰線性柱狀結構(370)(X6)所構成 之重複結構(Χ6Χ2Χ3Χ6Χ2Χ3Χ6Χ2Χ3)。多峰柱狀結構(370),其 係由兩個等高之弧形柱狀結構(3 70a及370b)彼此重疊所形 成之聯集結構,其中弧形柱狀結構(370a及370b)間之谷線 之咼度hl為弧形柱狀結構(370a及370b)之高度屮之60〇/〇 ; 單峰稜鏡柱狀結構(33〇)為等高、等寬且峰高度*沿延伸方 向變化之單峰稜鏡柱狀結構(330),單峰稜鏡柱狀結構 (340)為等高、等寬且峰高度沿延伸方向變化之單峰稜鏡柱 狀結構(340)。 在本創作之另一實施例中,微結構層包含複數個柱狀結 構’如圖13所*。在圖13之實施騎巾,該等柱狀結構包 含峰高度沿延伸方向變化之單峰線性稜鏡柱狀結構 (340)(χ3)峰南度不沿延伸方向變化之單峰線性稜鏡柱狀 結構(330)(χ2)、峰高度不沿延伸方向變化之單峰線性弧形柱 狀結構(38〇)(X7)所構成之重複結構(x7x2x3x7x2X3X7X2X3)。 在本創作之另—實施例中,微結構層包含複數個柱狀結 構,該等柱狀結構包含由峰高度沿延伸方向變化之單峰線 性稜鏡柱狀結構(3 4 〇 )(χ 3)及峰高度不沿延伸方向變化之單 峰線性稜鏡柱狀結構(39G) (Χ8)所構成,該等柱狀結構以相 互父替之重複結構排列(Χ8Χ3Χ8Χ3χ8χ3),如圖Μ所示。該微 結構層之柱狀結構具有相同之頂角角度高度和寬度,單峰 線性稜鏡柱狀結構(390) (Χ8)係由兩個傾斜面所構成,上述 兩個傾斜面,—面為平面,另—面為曲面,其曲面之曲率 132315-971212.doc 20- M352033 變化係以該曲線柱狀結構高度為基準之〇 . 2 %至1 〇 〇 %,較 佳係以该曲線柱狀結構南度為基準之1 %至2 〇 %。 在本創作之另一實施例中,微結構層包含複數個柱狀結 構’ e亥等柱狀結構包含由峰高度沿延伸方向變化之單峰線 性稜鏡柱狀結構(340) (X3)及峰高度不沿延伸方向變化之單 峰線性稜鏡柱狀結構(330) (X2)所構成,該等柱狀結構以相 互交替之重複結構排列,如圖丨5所示。該微 結構層之柱狀結構具有相同之頂角角度,約為9〇。,但不 等高(X2>X3),高度約為16微米至26微米,高度差介於1微 米至7微米。在基材(300)相對於微結構層之另一表面上包 含一含有擴散顆粒之抗刮層(1〇〇),該抗刮層之厚度係介於 約1微米至約5微米之間,該擴散顆粒為聚丙烯酸酯樹脂, 其粒徑大小介於約2微米至約7微米之間,根據JIS K7136 標準方法測量,所得霧度為10%_30%。上述柱狀結構之峰 高度沿延伸方向變化係指該柱狀結才冓中之高度係規則性沿 長度位置變化’呈一波動曲線,其波長約介於〇 5微米至2 微米,其變化幅度為平均高度之百分之五至百分之三十之 間。 一 【圖式簡單說明】 圖1為背光模組所含各種光學膜之簡單示意圖。 圖2為習知聚光膜之示意圖。 圖3為先前技術中聚光膜之示意圖。 圖4至圖15係本創作之光學膜實施態樣之示意圖。 【主要元件符號說明】 132315-971212.doc -21 - M352033 2 3 4, 5 6 7 8 21 22 23 24 100 ' 200 110 300 310, 410, 510, 610, 710 320 330 、 340 、 390 350 ' 360 370, 370a, 370b 380 反射膜 導光板 擴散膜 聚光膜 保護性擴散膜 基材 棱鏡結構 基材 棱鏡結構 峰 谷 抗到層 擴散層 基材 微結構層 單峰曲線柱狀結構 單峰線性稜鏡柱狀結構 單峰線性弧形柱狀結構 多峰弧形柱狀結構 單峰弧形柱狀結構 132315-971212.doc -22-Ebecryl 600®, Ebecryl 830®, Ebecryl 3605® or Ebecryl 6700®, etc. The above-mentioned resin forming the microstructured layer may be added with any conventional additives such as photoinitiators, crosslinking agents, inorganic particles, leveling agents, The type of defoaming agent or antistatic agent, etc., is well known to those of ordinary skill in the art to which the present invention pertains. The antistatic agent may be added to the resin for forming the microstructure layer as needed, so that the obtained optical film has an antistatic effect, thereby improving the work yield. The antistatic agents useful in the present invention are well known to those of ordinary skill in the art to which the present invention pertains, such as, but not limited to, ethoxymethol, fatty acid esters, quaternary amine compounds, fatty amine derivatives, Epoxy resin (such as polyethylene oxide), siloxane or other alcohol derivative polyethanol ester or polyethylene glycol ether). The photoinitiator which can be used in the present invention is subjected to light irradiation to produce a free radical 132315-971212.doc -12- M352033 base, and the polymerization reaction is initiated by radical transfer. Light-initiating agents suitable for use in the present invention are those of ordinary skill in the art to which the present invention pertains, such as, but not limited to, benz〇phenone, benzoin, 2 2-hydroxy-2-methyl-l-phenyl-propan-l-one, 2,2-dimethoxyl-1,2- Benzoyl _1_ drying oj-dimethoxy-lj-diphenylethan-l- one), 1-hydroxycyclohexyl phenyl ketone, 2,4,6-trimercaptophenyl phenyl diphenyl Phosphine oxide (2,4,6-trimethylbenzoyl diphenyl phosphine oxide), or a mixture thereof. A preferred photoinitiator is diphenyl fluorenone or hydrazine-hydroxycyclohexyl phenyl. To enhance the hardness of the microstructured layer, it is possible to add nano-sized inorganic microparticles to the resin as needed. The inorganic microparticles used in the present invention are well known to those of ordinary skill in the art to which the present invention pertains, such as, but not limited to, zinc oxide, cerium oxide, barium titanate, zirconia, alumina, titania, calcium sulfate. And barium sulfate, calcium carbonate or a mixture thereof, preferably titanium dioxide, zirconium oxide tantalum oxide, zinc oxide or a mixture thereof. The above inorganic fine particles have a particle size of from about 50 nm to about 350 nm. The microstructure layer of the present invention comprises a plurality of columnar structures, which may be linear, serpentine or zigzag, and the peak height of the columnar structures may not change along the extending direction or Along the direction of extension: The variation of the peak height of the columnar structure along the extending direction means that the height of at least a part of the columnar structure is randomly or regularly changed along the position of the main axis of the structure, and the variation range is at least the nominal height (or average height). = 132315-971212.doc M352033 =, preferably the change duckiness is between fifty and fifty percent of the nominal height. Knife i The micro-structured sound structure of the creation, the creation microstructure has at least one single-peak columnar structure β-shaped columnar structure, 稜鏡 structure or a combination, preferably a columnar structure. The above-mentioned columnar structure method and easier control set:: The symmetrical columnar structure can not only simplify the columnar structure of the addition structure layer, but can be equal or not equal, equal width or not... 至少 at least two kinds are selected from the edge height Change along the direction of extension, . a linear columnar structure in which the south peak does not change in the extending direction, and a curved columnar structure in which the height changes in the extending direction and a curved columnar structure in which the height does not vary in the extending direction, and has the same width, and Columnar structure with apex angle. The height of the columnar structure used in this creation depends on the desired optical product requirements, typically ranging from 5 microns to _ microns, preferably between 10 microns and 50 microns, more preferably between 20 microns and 40 microns. The scope. The columnar structure used in the present creation may be a crucible or a curved columnar structure. When the columnar structure is curved, the radius of curvature of the highest portion of the curved columnar top surface is between two micrometers and 50 micrometers, preferably between three micrometers and 35 micrometers, and between four micrometers and two micrometers. The apex angles of the wide or curved columnar structures used in this creation may be the same or the same as each other: ^, at 4〇. To 12 baht. Preferably, it is between 6 inches. to%. . In order to achieve both the anti-❹ two-luminance characteristic, the apex angle of the columnar structure is preferably 8 〇. To 95, the apex angle of the curved columnar structure is between 60. To 95° ° 132315-971212.doc -14- M352033 When the microstructure layer of this creation contains two kinds of different or more columnar structures (for example, ~2, X3, ...), any suitable column structure can be used. Arranged in order, that is, may be a structure, such as, but not limited to, ❿ 2 2Xl, X X XlX2, etc.; may also be - repeat knot #, the arrangement is, for example, no, X2XlX2XlX2, XlXlX2XiXiX2, etc. Preferably, the repetitive arrangement of two different columnar structures is formed. According to the present invention, the optical film of the present invention may be subjected to a roll to rQll continuous production technique for the substrate. a diffusion layer coated first and diffused, and then coated with the above-mentioned light-concentrating effect on the diffusion layer: the microstructure layer is used as a light-concentrating layer. The diffusion layer comprises transparent particles, and the refractive index of the transparent particles in the diffusion layer is greater than The refractive index of the light-concentrating layer, and the difference between the refractive index of the transparent particles in the expanded layer and the refractive index of the light-concentrating layer is 〇〇5, and there is no particular limitation on the type of transparent particles that can be used in the present invention. Glass beads (beads), metal oxides a granule, a plastic bead or a mixture thereof. The above-mentioned plastic bead is not particularly limited, and is, for example, but not limited to, an acrylate resin, a styrene resin, a urethane resin, a fluorenone, or a mixture thereof; The metal oxide particles are not particularly limited, and are, for example but not limited to, titanium dioxide (Ti〇2), dioxide dioxide (Sl〇2), zinc oxide (ZnO), barium sulfate (BaS04), alumina (Al2〇3), Yttrium oxide (Zr〇2) or a mixture thereof. The shape of the transparent particles is not particularly limited, and may be, for example, a spherical shape, a rhombus shape, an elliptical shape, a double & a permeate shape, etc. The average particle size of the transparent particles Between 1 and 50 microns 'preferably 3 to 3 microns, preferably 5 to 20 microns, and the transparent micro 132315-9712l2.d〇c • 15- M352033 has a refractive index of 15 to 2· 5, preferably 1. 9 〇 In order to avoid scratching the surface of the substrate and affecting the optical properties of the film, a scratch-resistant layer may be formed on the other surface of the substrate relative to the microstructure layer as needed. For smooth or non-smooth, any conventional method can be used to form the scratch resistant layer of the present invention, For example, but not limited to, screen printing, spraying, embossing, or coating a surface of a substrate with a scratch-resistant layer containing diffusion particles, etc., wherein applying a scratch-resistant layer containing diffusion particles can have a certain degree of scratch-resistant layer Light diffusion. The thickness of the scratch-resistant layer is preferably between 〜5 and 3 〇 micrometers, more preferably between 1 and 10 micrometers. The diffusion particles may be spherical, diamond-shaped, ellipsoidal or lenticular ( The size of the particles is preferably from 1 to 30 μm, and the type thereof is not particularly limited, and may be organic particles or inorganic particles, preferably organic particles such as polyacrylic acid vinegar resin, polystyrene resin, or the like. The polyamino phthalate resin, the fluorenone resin or a mixture thereof is preferably a polyacrylate resin. The optical properties of an optical product can be expressed by haze value (Hz), total light transmittance (Tt), where the haze value is related to the light scattering property of the optical product, and the total light transmittance is related to the light transmittance of the optical product. In the case where there is no microstructure layer on one surface of the substrate, the haze of the resin coating on the other surface is measured according to the standard method of JIS K7 1 36, and the obtained haze is from 1 /〇 to 90%, preferably 5〇/〇~40%, therefore, the scratch-resistant layer of the present invention has the ability to scatter light. Further, according to the JIS K7136 standard method, the total light transmittance of the present optical film is measured to have a total light transmittance of not less than 60%, preferably more than 80%, more preferably 90% or more. In addition, the scratch-resistant layer of the present invention is measured according to the JIS K5400 standard method and has a pencil hardness of up to 3H or 132325-971212.doc -16-M352033. ▲ The microstructure layer and the scratch-resistant layer of the optical film of the present invention can be prepared by any conventional method, and the order of preparing the microstructure layer and the scratch-resistant layer is not particularly limited. The manufacturing method of the microstructure layer of the present optical film is not particularly limited, and for example, it can be produced by a method comprising the following steps: (4) mixing a resin and a suitable additive to form a colloidal coating composition; 〇 > On a cylindrical blank (or roller), the diamond cutter is used to move the fixed radial feed on the rotating drum in the direction of the axial direction of the drum, and the diamond is controlled by the moving speed of the diamond cutter and/or the rotation speed of the drum. The knives engrave a specific linear column groove on the drum, and then change the b-axis rotational speed or change the diamond tool spectral mode to achieve high and low undulation or continuous left and right changes; (4) coating the (four) state coating composition on the substrate or Rolling, then using the roller engraved in step (b) to perform roller dusting, thermal transfer or hot extrusion to form the structured surface; and, (4) irradiating the coating with energy rays or Heating or both are used to cure the coating. The above method is characterized in that at least the long-time processing method is used to manufacture the micro-, and ji-layers of the photo-preserving film, and the household has a charge of $5, and the processing method means that the carving on the drum can be utilized most (four). / Slot, the biggest advantage of this method is the simple processing method of paste, and get the maximum yield. The following is a combination of (4) and (4) Rilin _ optical film microstructure layer 132315-971212.doc • 17. M352033 ' _ to limit the scope of this creation. Anyone who is familiar with this technology. The modifications and changes that are achieved are included in the disclosure of the present specification as shown in Figure 4, St. 1 and Figure 13, and the optical film of the present invention is formed on the substrate (3〇〇) as a microstructure layer (31〇, 41, 51〇, (4) and 71〇), the microstructure layer can be prepared by integrally forming with the substrate; or by any conventional processing method, for example, by coating and embossing. A microstructure layer is formed on the material, or the structure required for re-engraving is applied first. In one embodiment of the present invention, the microstructured layer comprises a plurality of columnar structures comprising a plurality of linear columnar structures and a plurality of curved columnar structures. In a preferred embodiment, the columnar structures comprise a single-peak curved column structure (32 〇) (χι) and a peak height that are not changed by the peak height in the direction of extension; " a single-peak linear column with a change in the direction of extension The structure (330) (χ2) is arranged in a repeating structure alternating with each other (χιχ2χιχ2χιΧ, as shown in Fig. 4. In the embodiment of Fig. 4, the columnar structure of the microstructure layer is contoured. a single bee-like column structure having the same width and the same apex angle. In another embodiment of the present invention, the microstructure layer includes a plurality of columnar structures, and the columnar structures are linear columnar structures. And the peak height of the partial columnar structure changes along the extending direction as shown in FIG. 5 to FIG. 8. The columnar structure of the microstructure layer is a single-peak columnar column having the same height, equal width, and the same apex angle. In the embodiment of the present optical film of Figures 5 to 8, the columnar structures comprise a single-peak linear columnar structure (340) (X3) whose peak height varies along the extending direction and the peak height does not extend along the extending direction. The unimodal linear columnar structure of change 132315-971212.doc M352033 (3 30) (X2), wherein the columnar structures are arranged in alternating repeating structures (the valence is the parent 2). In the embodiment of Fig. 5, the other surface of the substrate relative to the microstructure layer is Smoothing. In the embodiment of Figure 6, the substrate comprises, on the other surface of the microstructure layer, a scratch-resistant layer (1〇〇) containing diffusing particles. In the embodiment of Figure 7, on the substrate First, a diffusion layer (110) is coated, and the microstructure layer is coated on the diffusion layer (110) as a concentrating layer, the diffusion layer (11 Å) contains transparent particles and the substrate is opposite to the microstructure layer. The surface comprises a scratch-resistant layer (100) containing diffusion particles. In the embodiment of Figure 8, the microstructure layer is prepared together with the substrate in an integrally formed manner. Figure 9 and Figure 1 show the microstructure of the present invention. The columnar structure contained in the layer may be of equal height (as shown in Fig. 9b and Fig. 10b), unequal height (as shown in Fig. 9 and Fig. 9), equal width (as shown in Fig. 9b and Fig. 〇b) or unequal width (e.g. 1A and 1c). In another embodiment of the present invention, the microstructure layer comprises a plurality of columnar structures, the columnar structures are linear arcuate columns, and The peak of the arc-shaped columnar structure changes along the extending direction twice, as shown in Fig. 。. The columnar structure of the microstructure layer is a single-peak curved column with equal height, equal width and the same apex angle. Structure. In the embodiment of Figure 11, the columnar structures comprise a unimodal linear columnar structure (35 〇) (χ4) which varies in the direction of extension of the peak south and a unimodal linearity in which the peak height does not vary in the direction of extension. A columnar structure (360) (xs) is arranged, and the columnar structures are arranged in alternating repeating structures (X4X5X4XSX4X5). In another embodiment of the present invention, the microstructure layer of the present invention comprises a plurality of columnar structures In the embodiment of FIG. 12, the columnar structures include a unimodal linear columnar structure (340) (~) whose peak height varies along the extending direction, and a peak height of 132315.971212.doc -19- M352033 does not change along the extending direction. The unimodal linear columnar structure (330) (X2) has a repeating structure composed of a multimodal linear columnar structure (370) (X6) whose peak height does not vary in the direction of extension (Χ6Χ2Χ3Χ6Χ2Χ3Χ6Χ2Χ3). a multi-peak columnar structure (370), which is a union structure formed by overlapping two arcuate columnar structures (3 70a and 370b) of equal height, wherein between the arcuate columnar structures (370a and 370b) The valley line hl is the height of the curved columnar structures (370a and 370b) 60〇/〇; the single-peak columnar structure (33〇) is the contour, the equal width and the peak height* along the extending direction The changed single-peak columnar structure (330), the single-peak columnar structure (340) is a single-peak columnar structure (340) of equal height, equal width, and peak height varying along the extending direction. In another embodiment of the present invention, the microstructure layer comprises a plurality of columnar structures &' as shown in Figure 13'. In the embodiment of Figure 13, the columnar structure comprises a single-peak linear columnar structure (340) whose peak height varies along the extending direction (χ3). The single-peak linear column whose peak south does not change along the extending direction A repeating structure (x7x2x3x7x2X3X7X2X3) composed of a single-peak linear curved columnar structure (38〇) (X7) whose peak height does not vary in the direction of extension. In another embodiment of the present invention, the microstructure layer includes a plurality of columnar structures including a single-peak linear columnar structure (3 4 〇) that varies in peak direction along the direction of extension (χ 3 And a single-peak linear 稜鏡 columnar structure (39G) (Χ8) whose peak height does not change along the extending direction, and the columnar structures are arranged in a repeating structure of the parental counterpart (Χ8Χ3Χ8Χ3χ8χ3), as shown in FIG. The columnar structure of the microstructure layer has the same apex angle height and width, and the unimodal linear columnar structure (390) (Χ8) is composed of two inclined surfaces, the two inclined surfaces, the surface is Plane, the other surface is a curved surface, and the curvature of the curved surface is 132315-971212.doc 20- M352033 The variation is based on the height of the curved columnar structure. 2% to 1%, preferably the column is curved. The structure south is 1% to 2% of the baseline. In another embodiment of the present invention, the microstructure layer includes a plurality of columnar structures, such as a columnar structure including a single-peak linear columnar structure (340) (X3) and a peak height along the extending direction. The peak height does not vary along the extension direction of the single-peak linear columnar structure (330) (X2), and the columnar structures are arranged in alternating repeating structures, as shown in FIG. The columnar structure of the microstructure layer has the same apex angle of about 9 Å. , but not equal (X2>X3), the height is about 16 microns to 26 microns, and the height difference is between 1 micron and 7 microns. On the other surface of the substrate (300) relative to the microstructure layer, comprising a scratch-resistant layer (1〇〇) containing diffusion particles, the scratch-resistant layer having a thickness of between about 1 micrometer and about 5 micrometers. The diffusing particles are polyacrylate resins having a particle size ranging from about 2 μm to about 7 μm and having a haze of 10% to 30% as measured according to the JIS K7136 standard method. The variation of the peak height of the columnar structure along the extending direction means that the height of the columnar junction is regularly changed along the length position, and the wavelength is about 微米5 μm to 2 μm, and the variation range thereof It is between 5% and 30% of the average height. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a simplified schematic diagram of various optical films contained in a backlight module. 2 is a schematic view of a conventional concentrating film. Figure 3 is a schematic illustration of a prior art concentrating film. 4 to 15 are schematic views of an embodiment of the optical film of the present invention. [Description of main component symbols] 132315-971212.doc -21 - M352033 2 3 4, 5 6 7 8 21 22 23 24 100 ' 200 110 300 310, 410, 510, 610, 710 320 330 , 340 , 390 350 ' 360 370, 370a, 370b 380 Reflective film light guide diffuser film concentrating film protective diffusion film substrate prism structure substrate prism structure peak-valley anti-diffusion layer substrate microstructure layer monomodal curve columnar structure single-peak linear 稜鏡Columnar structure unimodal linear arc columnar structure multimodal arc columnar structure unimodal arc columnar structure 132315-971212.doc -22-

Claims (1)

M352033 九、申請專利範圍: 1. 一種光學膜’包含一基材及位於該基材表面上之微結構 層,其中 該微結構層包含複數個柱狀結構且該柱狀結構包含至 少二種選自由峰高度沿延伸方向變化之線性柱狀結構、 峰高度不沿延伸方向變化之線性柱狀結構、峰高度沿延 伸方向變化之曲線柱狀結構及峰高度不沿延伸方向變化 之曲線柱狀結構所組成之群組。 2. 如請求項丨之光學膜,其中該柱狀結構係選自弧形柱狀 結構、稜鏡柱狀結構及其混合所組成之群組。 3. 如請求項1之光學膜,其中該等峰高度沿延伸方向變化 之線性柱狀結構或曲線柱狀結構具有一標稱高度,該等 柱狀結構中至少有部分位置之高度係隨機變化,其變化 幅度至少為該標稱高度之百分之三。 4. 如請求項3之光學膜,其中該變化幅度為該標稱高度之 百分之五至百分之五十之間。 5. 如請求項2之光學膜,其中該等稜鏡柱狀結構及/或弧形 柱狀結構之頂角係介於40。至120。之間。 6. 如明求項5之光學臈,其中該等稜鏡柱狀結構及/或弧形 柱狀結構之頂角角度係介於60〇至95。。 7_如哨求項2之光學膜,其中該等弧形柱狀頂部之曲率半 徑介於2微米至50微米之間。 8.如印求項1之光學膜,其中該等柱狀結構之高度係介於5 微米至1〇〇微米之範圍。 132315-971212.doc -23- M352033 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 如凊求項1之光學膜,其中該曲線柱狀結構之彎曲延伸 稜線表面曲率變化係以該曲線柱狀結構高度為基 0.2〇/〇至 1〇〇〇/〇。 =請求項9之光學膜,其中該曲線柱狀結構之彎曲延伸 棱線表面曲率變化係以該曲線柱狀結構高度為基準之1〇/ 至 20〇/〇。 〇 如請求項1之光學膜,其中該柱狀結構為對稱柱狀結 構。 如叫求項1之光學膜,其中該基材相對於微結構層之另 一表面上進一步包含抗刮層。 一種光學膜,包含一基材及位於該基材之一表面上之微 、’、。構層’其中該微結構層包含複數個柱狀結構且該等柱 狀結構包含由線性柱狀結構和曲線柱狀結構所構成之重 複結構。 如清求項13之光學膜,其中該等柱狀結構係選自弧形柱 狀結構、稜鏡柱狀結構及其混合所組成之群組。 如請求項13之光學膜,其中該等柱狀結構之高度係介於 5微米至1〇〇微米之範圍。 如請求項13之光學膜,其中該等線性柱狀結構之峰高度 不沿延伸方向變化。 如請求項13之光學膜’其中該等線性柱狀結構之峰高度 沿延伸方向變化。 如請求項17之光學膜,其中該等峰高度沿延伸方向變化 之線性桎狀結構具有一標稱高度,該等線性柱狀結構中 132315-971212.doc -24- M352033 至夕有部分位置之高度係隨機變化,其變化幅度至少為 該標稱高度之百分之五。 19_ 2請求項13之光學膜’其中該等曲線線性枉狀結構之峰 馬度不沿延伸方向變化。 2〇.如叫求項14之光學膜,其中該等稜鏡柱狀結構及/或弧形 柱狀結構之頂角角度係介於60。至95。。 21. 如明求項13之光學膜,其中該等柱狀結構之峰高度不沿 延伸方向變化且該重複結構係由線性柱狀結構和曲線柱 狀結構交錯排列而成。 22. 如叫求項13之光學膜’其中該等重複結構係由線性柱狀 結構和曲線柱狀結構交錯排列而成且該等線性柱狀結構 之峰尚度沿延伸方向變化。 23. —種光學膜,包含一基材及位於該基材之一表面上之微 結構層,其中該微結構層包含複數個柱狀結構且該等柱 狀結構包含由峰高度沿延伸方向變化之線性柱狀結構和 峰高度不沿延伸方向變化之線性柱狀結構所構成之重複 排列結構。 24_如請求項23之光學膜,其中該等峰高度沿延伸方向變化 之線性柱狀結構具有一標稱面度’该專柱狀結構中至少 有部分位置之高度係規則性變化,其變化幅度為該標稱 高度之百分之五至百分之五十之間。 25. 如請求項23之光學膜,其中該等柱狀結構係選自弧形柱 狀結構、稜鏡柱狀結構及其混合所組成之群組。 26. 如請求項23之光學膜,其中該等柱狀結構係為稜鏡柱狀 132315-971212.doc -25- M352033 結構。 27·如請求項26之光學膜’其中該等稜鏡柱狀結構之高度係 介於5微米至100微米之範圍。 28.如請求項26之光學膜,其中該等稜鏡柱狀結構及/或弧形 柱狀結構之頂角角度係介於80。至95。。 29如請求項23之光學膜,其中該等柱狀結構具有相同高 度、寬度及頂角角度。 30. 如請求項23之光學膜,其中峰高度沿延伸方向變化之線 性柱狀結構之南度大於峰高度不沿延伸方向變化之線性 柱狀結構所構成之重複結構之高度。 31. 如請求項23之光學膜,其中該等重複結構係由峰高度沿 延伸方向變化之線性柱狀結構和峰高度不沿延伸方向變 化之線性柱狀結構交錯排列而成。 32. 如請求項23之光學膜,其特徵為該微結構層利用雕刻至 少二種花紋之加工方式製得。 33. 如請求項23之光學膜,其中該等柱狀結構包含由峰高度 沿延伸方向變化之單峰線性柱狀結構及峰高度不沿延伸 方向變化之單峰線性柱狀結構所構成之重複結構。 34. 如請求項23之光學膜,其中該等柱狀結構包含由峰高度 沿延伸方向變化之單峰線性柱狀結構、峰高度不沿延伸 方向變化之單峰線性柱狀結構及峰高度不沿延伸方向變 化之多峰線性柱狀結構所構成之重複結構。 35·如請求項34之光學膜,其中該等柱狀結構包含由峰高度 石延伸方向變化之單峰線性稜鏡柱狀結構、峰高度不沿 132315-971212.doc •26- M352033 延伸方向變化之單峰線性稜鏡柱狀結構及峰高度不沿延 伸方向變化之多+線性弧形柱狀結構所構 構。 36. 如請求項23之光學膜,其中該等柱狀結構包含由峰高度 沿延伸方向變化之單峰線性棱鏡柱狀結構、峰高度不沿 延伸方向變化之單峰線性稜鏡柱狀結構及峰高度不卜延 伸方向變化之單峰線性弧形柱狀結構所構成之重複結 構。 〇 37. 如請求項23之光學膜,分丨欠 中該峰兩度不沿延伸方向變化 之線性柱狀結構係為稜鏡杜 、 硬鏡柱狀結構’其係由兩個傾斜面 ’一面為平面,另-面為曲面,纟曲面之曲率變 化係以該曲線柱狀結構高度為基準之1%至鳩。 132315-971212.doc -27. M352033 七、指定代表圖: (一) 本案指定代表圖為:第(15)圖 (二) 本代表圖之元件符號簡單說明: 300 基材 330 ' 340 單峰線性柱狀結構 100 抗刮層(100) 132315-971212.docM352033 IX. Patent Application Range: 1. An optical film 'comprising a substrate and a microstructure layer on the surface of the substrate, wherein the microstructure layer comprises a plurality of columnar structures and the columnar structure comprises at least two selected a linear columnar structure in which the height of the free peak changes along the extending direction, a linear columnar structure in which the peak height does not change in the extending direction, a curved columnar structure in which the peak height changes along the extending direction, and a curved columnar structure in which the peak height does not change in the extending direction The group formed. 2. The optical film of claim 1, wherein the columnar structure is selected from the group consisting of a curved columnar structure, a columnar structure, and a mixture thereof. 3. The optical film of claim 1, wherein the linear columnar structure or the curved columnar structure whose peak height varies along the extending direction has a nominal height, and the height of at least some of the columnar structures is randomly changed. , the magnitude of change is at least three percent of the nominal height. 4. The optical film of claim 3, wherein the variation is between five and fifty percent of the nominal height. 5. The optical film of claim 2, wherein the top angle of the columnar structure and/or the curved columnar structure is 40. To 120. between. 6. The optical enthalpy of claim 5, wherein the apex angle of the columnar structure and/or the curved columnar structure is between 60 〇 and 95. . 7_ The optical film of claim 2, wherein the curved columnar top has a radius of curvature between 2 microns and 50 microns. 8. The optical film of claim 1, wherein the height of the columnar structures is in the range of 5 microns to 1 micron. 132315-971212.doc -23- M352033 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. For the optical film of item 1, wherein the curvature of the curved columnar surface of the curved columnar surface curvature The variation is based on the height of the curved column structure from 0.2 〇/〇 to 1 〇〇〇/〇. = The optical film of claim 9, wherein the curvature of the curved columnar structure increases the curvature of the surface of the ridgeline by 1 〇 / to 20 〇 / 为 based on the height of the curved columnar structure. The optical film of claim 1, wherein the columnar structure is a symmetric columnar structure. An optical film according to claim 1, wherein the substrate further comprises a scratch-resistant layer on the other surface of the microstructure layer. An optical film comprising a substrate and a micro, on the surface of one of the substrates. The layer ' wherein the microstructure layer comprises a plurality of columnar structures and the columnar structures comprise a repeating structure composed of a linear columnar structure and a curved columnar structure. The optical film of claim 13, wherein the columnar structures are selected from the group consisting of a curved columnar structure, a columnar structure, and a mixture thereof. The optical film of claim 13, wherein the height of the columnar structures is in the range of 5 micrometers to 1 micrometer. The optical film of claim 13, wherein the peak heights of the linear columnar structures do not vary in the direction of extension. The optical film of claim 13 wherein the peak heights of the linear columnar structures vary in the direction of extension. The optical film of claim 17, wherein the linear dome-like structure whose peak height varies along the extending direction has a nominal height, and the linear columnar structure has a position of 132315-971212.doc -24-M352033 The height is randomly varying and varies by at least five percent of the nominal height. 19_ 2 The optical film of claim 13 wherein the peaks of the linear linear structures of the curves do not vary in the direction of extension. The optical film of claim 14, wherein the apex angle of the columnar structure and/or the curved columnar structure is 60. To 95. . 21. The optical film of claim 13, wherein the peak height of the columnar structures does not vary along the direction of extension and the repeating structure is staggered by a linear columnar structure and a curved columnar structure. 22. The optical film of claim 13, wherein the repeating structures are staggered by a linear columnar structure and a curved columnar structure and the peaks of the linear columnar structures vary in the direction of extension. 23. An optical film comprising a substrate and a microstructure layer on a surface of the substrate, wherein the microstructure layer comprises a plurality of columnar structures and the columnar structures comprise a peak height along a direction of extension A linear columnar structure and a repeating arrangement of linear columnar structures whose peak height does not vary in the direction of extension. The optical film of claim 23, wherein the linear columnar structure whose peak height varies along the extending direction has a nominal degree of 'the height of at least some of the positions of the specialized columnar structure is regular, the change The range is between 5% and 50% of the nominal height. 25. The optical film of claim 23, wherein the columnar structures are selected from the group consisting of a curved columnar structure, a columnar structure, and a mixture thereof. 26. The optical film of claim 23, wherein the columnar structures are columnar 132315-971212.doc-25-M352033 structures. 27. The optical film of claim 26, wherein the height of the columnar structures is in the range of 5 microns to 100 microns. 28. The optical film of claim 26, wherein the apex angle of the 稜鏡 columnar structure and/or the arcuate columnar structure is between 80. To 95. . The optical film of claim 23, wherein the columnar structures have the same height, width, and apex angle. 30. The optical film of claim 23, wherein the south of the linear columnar structure in which the peak height varies in the direction of extension is greater than the height of the repeating structure formed by the linear columnar structure in which the peak height does not vary in the direction of extension. 31. The optical film of claim 23, wherein the repeating structures are staggered by a linear columnar structure in which the peak height varies in the direction of extension and a linear columnar structure in which the peak height does not vary in the direction of extension. 32. The optical film of claim 23, wherein the microstructure layer is formed by engraving at least two patterns. 33. The optical film of claim 23, wherein the columnar structures comprise a unimodal linear columnar structure whose peak height varies along the direction of extension and a repeating unimodal linear columnar structure whose peak height does not vary in the direction of extension structure. 34. The optical film of claim 23, wherein the columnar structures comprise a single-peak linear columnar structure whose peak height varies along the direction of extension, a single-peak linear columnar structure whose peak height does not vary in the direction of extension, and a peak height not A repeating structure composed of a multimodal linear columnar structure that varies in the direction of extension. 35. The optical film of claim 34, wherein the columnar structures comprise a single-peak linear columnar structure that varies in direction of peak height stone extension, and the peak height does not vary along the direction of 132315-971212.doc •26-M352033 The single-peak linear 稜鏡 columnar structure and the height of the peak do not change in the direction of extension + the structure of the linear arc columnar structure. 36. The optical film of claim 23, wherein the columnar structures comprise a unimodal linear prism columnar structure whose peak height varies along the direction of extension, a unimodal linear columnar structure in which the peak height does not vary in the direction of extension, and A repeating structure composed of a single-peak linear curved columnar structure in which the peak height is not changed in the direction of extension. 〇37. The optical column of claim 23, wherein the linear columnar structure of the peak which does not change in the direction of extension is a 稜鏡Du, hard-mirror columnar structure It is a plane, and the other surface is a curved surface. The curvature of the curved surface is 1% to 鸠 based on the height of the curved column structure. 132315-971212.doc -27. M352033 VII. Designation of representative drawings: (1) The representative representative of the case is: (15) (2) The symbol of the symbol of the representative figure is simple: 300 substrate 330 ' 340 single peak linear Columnar structure 100 scratch resistant layer (100) 132315-971212.doc
TW97211319U 2008-06-25 2008-06-25 Optical film TWM352033U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97211319U TWM352033U (en) 2008-06-25 2008-06-25 Optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97211319U TWM352033U (en) 2008-06-25 2008-06-25 Optical film

Publications (1)

Publication Number Publication Date
TWM352033U true TWM352033U (en) 2009-03-01

Family

ID=44374686

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97211319U TWM352033U (en) 2008-06-25 2008-06-25 Optical film

Country Status (1)

Country Link
TW (1) TWM352033U (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8200060B2 (en) 2010-01-21 2012-06-12 Coretronic Corporation Brightness enhancement sheet
US8432628B2 (en) 2010-04-30 2013-04-30 Coretronic Corporation Optical film
TWI408405B (en) * 2009-10-27 2013-09-11 Eternal Chemical Co Ltd Optical film composite
US8786951B2 (en) 2010-07-09 2014-07-22 Eternal Chemical Co., Ltd. Composite optical film
TWI450001B (en) * 2010-09-03 2014-08-21 Lg Innotek Co Ltd Backlight unit and method for manufacturing the same
TWI460499B (en) * 2009-09-04 2014-11-11 Eternal Materials Co Ltd An optical element
CN106033278A (en) * 2015-03-18 2016-10-19 南京瀚宇彩欣科技有限责任公司 Touch control display module and display

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460499B (en) * 2009-09-04 2014-11-11 Eternal Materials Co Ltd An optical element
TWI408405B (en) * 2009-10-27 2013-09-11 Eternal Chemical Co Ltd Optical film composite
US8200060B2 (en) 2010-01-21 2012-06-12 Coretronic Corporation Brightness enhancement sheet
US8432628B2 (en) 2010-04-30 2013-04-30 Coretronic Corporation Optical film
US8786951B2 (en) 2010-07-09 2014-07-22 Eternal Chemical Co., Ltd. Composite optical film
TWI450001B (en) * 2010-09-03 2014-08-21 Lg Innotek Co Ltd Backlight unit and method for manufacturing the same
CN106033278A (en) * 2015-03-18 2016-10-19 南京瀚宇彩欣科技有限责任公司 Touch control display module and display
TWI575415B (en) * 2015-03-18 2017-03-21 南京瀚宇彩欣科技有限責任公司 Touch display module and display

Similar Documents

Publication Publication Date Title
TWI470314B (en) Optical film
TWI417609B (en) Optical film
TWI322281B (en) Thin and flexible light guide element
TWI382239B (en) Optical film
TWM352033U (en) Optical film
TWI406014B (en) Composite optical film
CN105612438B (en) Micro-structural diffuser, optical stack and method including the first microstructured layer and coating
CN101295047A (en) Optical film
JP2008102473A (en) Brightness enhancement film having curved prism including mat
TW200811482A (en) Optical film
TW201024866A (en) Backlight module
TWI435120B (en) Composite optical film
EP1884709A2 (en) Light-redirecting film containing optical modification layer
CN102830449A (en) Optical element
TWI352827B (en) Integrated optical film
WO2015046047A1 (en) Hard coat film and display element with surface member
CN101393274B (en) Composite blooming
TW202229935A (en) Light diffusion sheet, backlight unit, liquid crystal display device, information apparatus, and method for manufacturing light diffusion sheet
CN101429258A (en) Polymerisable composition and uses thereof
CN101630031B (en) Optical film
CN201307167Y (en) Optical film with microstructure
CN101661123A (en) Optical element
TWI339279B (en) Optical concentrator without protective film
CN101414019B (en) Protection film-free optical light-collecting component
TWM296993U (en) Anti-scraping condenser sheet

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model