TWM349553U - Improved structure of light emitting diode - Google Patents

Improved structure of light emitting diode Download PDF

Info

Publication number
TWM349553U
TWM349553U TW097207947U TW97207947U TWM349553U TW M349553 U TWM349553 U TW M349553U TW 097207947 U TW097207947 U TW 097207947U TW 97207947 U TW97207947 U TW 97207947U TW M349553 U TWM349553 U TW M349553U
Authority
TW
Taiwan
Prior art keywords
light
optical film
emitting diode
semiconductor layer
type semiconductor
Prior art date
Application number
TW097207947U
Other languages
Chinese (zh)
Inventor
Ming-Shing Wu
Chang-Fu Tsai
Original Assignee
Ming-Shing Wu
Chang-Fu Tsai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Shing Wu, Chang-Fu Tsai filed Critical Ming-Shing Wu
Priority to TW097207947U priority Critical patent/TWM349553U/en
Publication of TWM349553U publication Critical patent/TWM349553U/en
Priority to JP2009001744U priority patent/JP3150993U/en

Links

Description

M349553 八、新型說明: 【新型所屬之技術領域】 β^創作係有關發光二極體之結構改良,旨在提供一種 可提兩反射率,使整體發光二極體之發光效率提昇,且可 有效達到散熱效果之發光二極體之結構改良。 【先前技術】 知第種¥用之發光二極體1 (如第一圖所示),其 係由一透明基板u、一 Ν型半導體層12、一發光層丨3及 Ρ型半導體層14所構成,而其中該ν型半導體層a係 層豐於透明基板11上,而該發光層13係層疊於Ν型半導 體層12上,而該ρ型半導體層14係層疊於發光層以上, =該Ν型半導體層12及ρ型半導體層14上係分別具有一 電極,使該電極被定義為Ν型電極15及Ρ型電極16,如是 構成一發光二極體1。 而葛3亥習用之發光二極體1於發光時,該光源係有一 部分由該Ν型半導體層12及ρ型半導體層14之表面射出, 而另一部分之光源則由透明基板η之表面射出,而使該Ν 型半導體層12及Ρ型半導體層14之表面僅能射出一部分 光源,至於另一部分之光源則由透明基板11表面射出,而 使該光源形成散逸之現象,進而導致該發光二極體於使用 犄之發光效率降低、亮度減弱,故無法提供該發光二極體 於發光時所實際發出之光源亮度。 另有第二種習用之發光二極體,如第二圖(Α)所示, 其係由一散熱裝置17、反射層18 (或一金屬層)、一透明 5 M349553 基板11、一 N型半導體層丨2,一發光層13及一 p型半導 體層14所構成,而其中該N型半導體層12係層疊於透明 基板11,而該發光層13係層疊於N型半導體層12上,而 该P型半導體| Η係層疊於發光層13上,且該N型半 體層12及P型半導體層14上係分別具有—N型電極^及 一^型電極16’而於透明基板u底面則設有該反射層18, 如疋構成一發光二極體。而藉由設於透明基板丨丨底面之單 一反射層18,使得光源P1透過透明基板u時可再反射一 1 之光源P2,然而其雖可減少發光二極體之光源散逸, =二極體於使用上之亮度’但實際上之光源散逸 仍相虽厭重,㈣整體亮度之提昇上仍然有限;且該 層18之結構大多為金屬薄膜,例如㈣膜或銀薄膜等 為該金屬薄膜材質之反射層18與透明基板u間之 車:差’故須於該反射層18與透明基板11間另外再利用一 =-乳切層18卜如第二圖⑻所示,使該反射層18盘 透明基板11可藉由該二氧化石夕層181相互黏著固d 该二氧切層181之設置會使反射層18之反射率 Γ1之熱傳導係數不高無法將熱源傳導至下 時將1; Η' 7 ’且该金屬薄膜除可反射光源外,亦會同 =熱源m反射至上方結構層,反而會 门 集中料光層13,使其溫度上升效率下降。後之熱源Η2 第一種4有之發光一極體結構,如本 第Μ244587 #,糞剎么魈「目儿人t 个寻利公告號 體」,幻“ 騎具化合物反射結構之發光二極 體」其係由下至上係由疊設之反射 、一 一 N型半導體層12,-發光層13及_?型半^板^所 M349553 構成,其中,各反射層19係為分佈式布拉格反射層 (Distributed Bragg Reflector, DBR),藉以形成一反射 構了藉由上述之結構,用以提供發光二極體於發出光 源時,由各反射層19分別反射以各.種角度射入之光源,而 達到減少發光二極體之光源散逸,提昇該發光二極體於使 用上之亮度者;惟,使用該分佈式布拉格反射層(以下稱dbr) =材料的選擇及結構之設計非常麻煩,舉例來說:若希望 侍到適用於570nm黃綠光發光二極體的DBR,首先必需決定 構成DBR的兩種材料為何,由於活性層發射的光為57〇⑽, 因此在選擇DBR材料時要考慮晶格匹配,而且兩者能隙皆 大於2. 175eV者,否則DBR會吸收發光層發射的57〇⑽雷 射光,另外,由反射定律可知,當兩種材料的折射率相差 越大日^,介面的反射效果越好,故也要考慮兩種材料的折 射率,所以因應不同波長之光源,使用之DBR也須有不 之材料選擇,亦造成製程上之困難。 【新型内容】 有鑑於此’本創作即針對發光二極體加以改良,尤提 ,一種可提高反射率,使整體發光二極體之發光效率提 升,且可有效達到散熱效果之結構改良。 I為達上揭目的,本創作之發光二極體結構組成由上而 下至少包含有:—P型半導體層、一發光層、一N型半導體 層透明基板、至少—光學膜以及一散熱裝置,其中, ,子膜係為金屬氧化物光學膜、金屬氟化物光學膜或金 屬氮化物光學膜或其組合,該光學膜不僅可提高反射率, M349553 1 吏發光效率提昇,且不會將熱源反射至 上方之…構層,而可將熱源傳送至下方之散 利將熱源散去,有效達到散熱之效果。’,、、χ "、 【實施方式】 而獲可參閱本案圖式及實施例之詳細說明 -透明基板21,該透明基板;;::設有一 N型半導 體層…而該透明基板21底側係設有一光學有膜 透明基板21可以為藍寶石(sapphire)透明基板; 一光學膜23,設於該透明其^ 9 係為金屬氧化物光學膜、全屬‘HP ’ Μ學膜以 孟屬鼠化物光學膜或金屬氮化物 先子膜…、中§亥金屬氧化物光學臈 氧化鈦光學膜、氧化鈣弁庳膛.y 札化鋁先予膜 學膜,而該金屬氟化物D光;膜可學膜或氧化紐光 該金屬氮化物光鼠化鎮光學膜,另外 係具有黏著性強及反光=,而該等光學膜 其是紅外線之穿透性較| k點’且在不可見光部份尤M349553 VIII. New description: [New technical field] The β^ creation system is related to the structural improvement of the light-emitting diode, aiming to provide a two-reflection rate, which can improve the luminous efficiency of the overall light-emitting diode and can be effective. The structure of the light-emitting diode that achieves the heat dissipation effect is improved. [Prior Art] A light-emitting diode 1 (shown in the first figure) is known as a transparent substrate u, a germanium-type semiconductor layer 12, a light-emitting layer 3, and a germanium-type semiconductor layer 14. In the case where the ν-type semiconductor layer a is layered on the transparent substrate 11, the luminescent layer 13 is laminated on the 半导体-type semiconductor layer 12, and the p-type semiconductor layer 14 is laminated on the luminescent layer, The Ν-type semiconductor layer 12 and the p-type semiconductor layer 14 each have an electrode, and the electrode is defined as a Ν-type electrode 15 and a Ρ-type electrode 16, and constitutes a light-emitting diode 1. When the light-emitting diode 1 used by Ge 3H is illuminated, a part of the light source is emitted from the surface of the 半导体-type semiconductor layer 12 and the p-type semiconductor layer 14, and the other part of the light source is emitted from the surface of the transparent substrate η. The surface of the 半导体-type semiconductor layer 12 and the 半导体-type semiconductor layer 14 can only emit a part of the light source, and the other part of the light source is emitted from the surface of the transparent substrate 11 to cause the light source to form a dissipating phenomenon, thereby causing the illuminating In the polar body, the luminous efficiency is lowered and the brightness is weakened, so that the brightness of the light source actually emitted by the light-emitting diode when emitting light cannot be provided. Another second conventional light-emitting diode, as shown in the second figure (Α), is composed of a heat sink 17, a reflective layer 18 (or a metal layer), a transparent 5 M349553 substrate 11, and an N-type. The semiconductor layer 2 is composed of a light-emitting layer 13 and a p-type semiconductor layer 14, wherein the N-type semiconductor layer 12 is laminated on the transparent substrate 11, and the light-emitting layer 13 is laminated on the N-type semiconductor layer 12, and The P-type semiconductor is stacked on the light-emitting layer 13, and the N-type half layer 12 and the P-type semiconductor layer 14 have an -N type electrode and a type electrode 16', respectively, and the bottom surface of the transparent substrate u is The reflective layer 18 is provided, such as a germanium, to form a light emitting diode. By using the single reflective layer 18 disposed on the bottom surface of the transparent substrate, the light source P1 can reflect the light source P2 of the light source P1 through the transparent substrate u. However, although the light source of the light emitting diode can be reduced, the diode can be reduced. In the use of brightness 'but in fact, the light source is still dissipated, (4) the overall brightness is still limited; and the structure of the layer 18 is mostly a metal film, such as (four) film or silver film for the metal film material The car between the reflective layer 18 and the transparent substrate u: the difference is required to additionally reuse a =-milk layer 18 between the reflective layer 18 and the transparent substrate 11 as shown in the second figure (8), so that the reflective layer 18 The transparent substrate 11 can be adhered to each other by the SiO2 layer 181. The arrangement of the MOS layer 181 is such that the reflectance of the reflective layer 18 is not high, and the heat source is not able to conduct the heat source to the lower one; Η ' 7 ' and the metal film, in addition to the reflective light source, will also reflect the heat source m to the upper structural layer, and instead the gate will concentrate the light layer 13 to lower the temperature rise efficiency. After the heat source Η 2 The first type of 4 has a luminous body structure, such as this Dijon 244587 #, feces brakes 魈 魈 目 目 目 目 目 目 目 目 目 目 目 骑 骑 骑 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物 化合物The body is composed of a stacked reflection, an N-type semiconductor layer 12, an illuminating layer 13 and a _?-type half-plate M349553, wherein each reflective layer 19 is a distributed Bragg reflection. a layered (Distributed Bragg Reflector (DBR)) for forming a reflective structure by means of the above structure for providing a light source, which is reflected by each of the reflective layers 19 at each angle when the light emitting diode is emitted. To reduce the light source dissipation of the light-emitting diode and improve the brightness of the light-emitting diode in use; however, the use of the distributed Bragg reflection layer (hereinafter referred to as dbr) = material selection and structure design is very troublesome, for example For example: If you want to serve DBR for 570nm yellow-green light-emitting diodes, you must first determine the two materials that make up the DBR. Since the light emitted by the active layer is 57〇(10), consider the lattice when selecting DBR materials. match, Moreover, both energy gaps are greater than 2. 175eV, otherwise DBR will absorb 57 〇 (10) of the laser light emitted by the luminescent layer. In addition, it can be known from the law of reflection that when the refractive indices of the two materials are different, the reflection effect of the interface The better, the reason why the refractive index of the two materials should also be considered. Therefore, in order to use the light source of different wavelengths, the DBR used must also have a material selection, which also causes difficulty in the process. [New content] In view of the fact that this creation is to improve the light-emitting diode, it is a structural improvement that can improve the reflectance, improve the luminous efficiency of the overall light-emitting diode, and effectively achieve the heat-dissipating effect. In order to achieve the above objective, the light-emitting diode structure of the present invention comprises at least: a P-type semiconductor layer, a light-emitting layer, an N-type semiconductor layer transparent substrate, at least an optical film, and a heat sink. Wherein, the sub-membrane is a metal oxide optical film, a metal fluoride optical film or a metal nitride optical film or a combination thereof, the optical film not only improves the reflectance, but also improves the luminous efficiency of the M349553 1 ,, and does not heat the source Reflected to the top of the ... layer, and the heat source can be transmitted to the bottom of the scatter to dissipate the heat source, effectively achieving the effect of heat dissipation. ',, χ ", [Embodiment] Reference is made to the drawings and detailed description of the embodiment - a transparent substrate 21, the transparent substrate;:: an N-type semiconductor layer is provided... and the transparent substrate 21 is provided The side is provided with an optical film transparent substrate 21 which may be a sapphire transparent substrate; an optical film 23 disposed on the transparent metal film of the metal oxide film, all of which belongs to the 'HP ' drop film Mouse compound optical film or metal nitride precursor film..., zhonghai metal oxide optical 臈 titanium oxide optical film, calcium oxide 弁庳膛.y 扎化铝 first pre-membrane film, and the metal fluoride D light; Membrane film or oxidized luminescence The metal nitride photo-make optical film, in addition, has strong adhesion and reflective =, and these optical films are infrared penetrating than | k point ' and invisible Partial

侧,^=該散熱裝置24係設於該光學膜23底 側 w亥光冬膜2 3與散敎妒菩W 為導熱勝);上、、、衣置24間可設有黏合層241(可以 一 N型半導體層22,号於姑% ^ 半導體層22表面係設有N型電極Λ22^板21上’該Μ 8 M349553 一發光層26,係設於該N型半導體層22上. 一 P型半導體層27,係設於該發光層%上,該p 半導體層27表面係設有p型電極271。 本創作之光二極體由發光層26發出光源時,該一 之光源P3係由該p型半導體層27之表 二/刀 巧』囬,而另一部 分之光源P4則由透明基板21之表面穿透至該透明芙板u 之底面,此時’該穿透至透明基板21底面之光源即;射至 光學膜23之表面’可將照射至光學膜23表面之光源均勻 反射,而使該反射後之光源P5先由該透明基板Μ之底 穿透過該基板2之表面之後再透過該N型半導體層 P型半導體層27之底面而由該”半導體層22及?型 體層27之表面射出,如此,可大幅減少發光二極體光源气 逸之現象,使整體發光二極體之發光效率提昇;另外,^亥 光學膜23冑紅外線之熱輻射全部穿透,而該熱源不會反= 至上方之結構層,且該光學膜23可挑選其熱傳導係二大於 或等於透明基板2卜而可將熱源H2傳送至該光學膜㈡下 方之散熱裝置24,以順利將熱源散去,有效達到散熱之效 該發光二極體2之光學膜23亦可疊設有複數層,如第 五圖之第二實施例所示’該光學膜23係為金屬氧化物光學 膜、金屬敗化物光學膜或金屬氮化物光學膜或其組合,以 ,由各光學膜23分別反射由各種角度射人之光源,進而大 幅減少發光二極體之光源散逸’提昇該發光二極體整體之 :度’而該光學膜23係可依所需分別為不同之化合物(金 氧化物、金屬氟化物或金屬氮化物)之材料所製成,而各 M349553 光學膜23之厚度亦可搭配調整 極體得刭承极ml* 置而使本創作之發光二 本.更好射效率且更能符合實際使用狀況之需 求,且可視所欲反射不同波長光線 瞄今© — 70 ^ 來汁异相對應#舉 、予又,當然該厚度可以為單一光學膜之厚产 到不1 創作光學膜之厚度,即可得 到不同波長且廣波域之高反射區域。 』行 ㈣-提的是’本創作相較於習有係具有下列優點: 、卜湘本創作之金屬氧化物光學臈、金屬氟化與 膜或金屬氮化物光學膜,可提昇光 予 效之現象’使整體發光二極體之發光 可將:二會將發光二極體之熱源反射至上方之結構層,而 =熱至該光學膜下方之散熱裝置,以順利將熱源 月文去’有效達到散熱之效果。 3、本創作之光學膜可反射之光源波長範圍較廣,且可 ^用調整該光學膜之厚度大小,以適用於不同波長之光源。 ,上所述,本射提供另—較何行之衫二極體結構改 f,爱依法提呈新型專利之中請;再者,本創作之技術内 容及技術特點已揭示如上’然而熟悉本項技術之人士仍可 能基於本劍作之揭示而作各種不背離本案創作精神之替換 及0飾□ it匕纟創作之保護範圍應不限於實施例所揭示 者’而應包括各種不背離本創作之替換及修飾,並為以下 之申請專利範圍所涵蓋。 10 M349553 【圖式簡單說明】 第一圖係為第一種習有發光二極體之結構示意圖。 弟二圖(A )、( B)係為第二種習有發光二極體之結構不意圖。 第三圖係為第三種習有發光二極體之結構示意圖。 第四圖係為本創作中發光二極體第一實施例之結構示意 圖。 . 第五圖係為本創作中發光二極體第二實施例之結構示意 圖。 【主要元件代表符號說明】 發光二極體1 透明基板11 N型半導體層12 發光層13 P型半導體層14 N型電極15 籲P型電極16 散熱裝置17 反射層18 二氧化矽層181 反射層19 發光二極體2 透明基板21 N型半導體層22 N型電極221 M349553 光學膜23 散熱裝置24 黏合層2 41 發光層26 P型半導體層27 P型電極271Side, ^= The heat sink 24 is disposed on the bottom side of the optical film 23, and the heat-resistant device is provided with an adhesive layer 241. An N-type semiconductor layer 22, on the surface of the semiconductor layer 22, is provided with an N-type electrode 22, a plate 21 is provided on the N-type semiconductor layer 22. The P-type semiconductor layer 27 is disposed on the light-emitting layer %, and the surface of the p-semiconductor layer 27 is provided with a p-type electrode 271. When the light-emitting diode of the present invention emits a light source from the light-emitting layer 26, the light source P3 is composed of The surface of the p-type semiconductor layer 27 is turned back, and the light source P4 of another portion penetrates from the surface of the transparent substrate 21 to the bottom surface of the transparent plate u. At this time, the surface penetrates to the bottom surface of the transparent substrate 21. The light source is the surface of the optical film 23, and the light source irradiated to the surface of the optical film 23 can be uniformly reflected, so that the reflected light source P5 is first penetrated from the bottom of the transparent substrate through the surface of the substrate 2 The surface of the N-type semiconductor layer P-type semiconductor layer 27 is emitted from the surface of the "semiconductor layer 22 and the ?-type body layer 27 In this way, the phenomenon of the light escape of the light-emitting diode light source can be greatly reduced, and the luminous efficiency of the overall light-emitting diode can be improved; in addition, the thermal radiation of the infrared light film 23 and the infrared light are all penetrated, and the heat source does not reverse The structural layer of the square, and the optical film 23 can select the heat conduction system 2 is greater than or equal to the transparent substrate 2, and can transfer the heat source H2 to the heat sink 24 below the optical film (2) to smoothly dissipate the heat source, effectively achieving heat dissipation. The optical film 23 of the light-emitting diode 2 may also be stacked with a plurality of layers, as shown in the second embodiment of the fifth figure. The optical film 23 is a metal oxide optical film, a metalized optical film or a metal nitride optical film or a combination thereof, wherein each of the optical films 23 reflects a light source that is incident on various angles, thereby greatly reducing the light source dissipation of the light-emitting diode and increasing the overall brightness of the light-emitting diode: The optical film 23 can be made of materials of different compounds (gold oxide, metal fluoride or metal nitride), and the thickness of each M349553 optical film 23 can also be matched with the adjustment body. Ml* makes the light of this creation two. It has better shooting efficiency and better meets the needs of actual use, and can reflect the different wavelengths of light as desired. © 70 ^ The corresponding juice is different. Of course, the thickness can be a thickness of a single optical film to a thickness of the optical film, and a high-reflection region of a wide wavelength range can be obtained at different wavelengths. "Well (4) - mentioning that 'this creation is better than Xi The system has the following advantages: The metal oxide optical enamel, the metal fluorination and the film or the metal nitride optical film created by Bu Xiangben can enhance the phenomenon of light effecting, so that the illumination of the overall light-emitting diode can be: The heat source of the light-emitting diode is reflected to the upper structural layer, and the heat-dissipating device that is heated to the lower of the optical film is used to smoothly heat the heat source to achieve the effect of heat dissipation. 3. The optical film of the present invention can reflect a wide range of wavelengths of light sources, and can adjust the thickness of the optical film to be suitable for light sources of different wavelengths. As mentioned above, this shot provides another-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The technology may still be based on the disclosure of this sword and do not deviate from the creative spirit of the case and the decoration of the decoration. The scope of protection should not be limited to those disclosed in the example', but should include all kinds of creations. Replacement and modification are covered by the scope of the following patent application. 10 M349553 [Simple description of the diagram] The first diagram is the schematic diagram of the first structure with a light-emitting diode. The second figure (A) and (B) are the second structure of the light-emitting diode. The third figure is a schematic diagram of the structure of the third conventional light-emitting diode. The fourth figure is a schematic structural view of the first embodiment of the light-emitting diode of the present invention. Fig. 5 is a schematic view showing the structure of the second embodiment of the light-emitting diode of the present invention. [Description of main component representative symbols] Light-emitting diode 1 Transparent substrate 11 N-type semiconductor layer 12 Light-emitting layer 13 P-type semiconductor layer 14 N-type electrode 15 P-type electrode 16 Heat sink 17 Reflective layer 18 Cerium oxide layer 181 Reflective layer 19 Light-emitting diode 2 Transparent substrate 21 N-type semiconductor layer 22 N-type electrode 221 M349553 Optical film 23 Heat sink 24 Adhesive layer 2 41 Light-emitting layer 26 P-type semiconductor layer 27 P-type electrode 271

Claims (1)

M349553 九、申請專利範圍: 八1、.一種發光二極體之結構改良,該發光二極體其至小 包含有· ^ 一透明基板,該透明基板上係設有一 N型半 而該透明基板底側係設有一光學膜; —曰’ -光學膜,設於該透明基板底側,該光學膜 乳化物光學膜、金屬氟化物光學膜或金屬氮化物光學^屬 月文熱裝置,該散熱裝置係設於該光學膜底側;、 一 N型半導體層,設於該透明基板上; 一發光層,係設於該N型半導體層上; 一 P型半導體層,係設於該發光層上。 ^ 2、如請求項1所述之發光二極體之結構改良,其中, 該透明基板可以為藍寶石(SAPPHIRE)透明基板。 ^ 3、如請求項1所述之發光二極體之結構改良,其中, 该金屬氧化物光學膜可以為氧化鈦光學膜、氧化锆光與 膜、氧化矽光學膜或氧化鈕光學膜。 予 ^ 4、如請求項1所述之發光二極體之結構改良,其中, δ亥金屬氟化物光學臈可以為氟化鎂光學膜。 5、 如請求項1所述之發光二極體之結構改良,其中, 該金屬氮化物光學膜可以為氮化矽光學膜。 、 6、 如請求項1所述之發光二極體之結構改良,其中, °亥Ν型半導體層及ρ型半導體層表面係設有電極。 7、 如請求項1所述之發光二極體之結構改良,其中, 該光學膜與散熱裝置間可設有黏合層。 13 M349553 24、 如請求項19所述之發光二極體之結構改良,其 中,該N型半導體層及P型半導體層表面係設有電極。 25、 如請求項19所述之發光二極體之結構改良,其 中,該光學膜之厚度調整,可得到不同波長範圍之高反射 區域。 16M349553 IX. Patent Application Range: 8.1. A structural improvement of a light-emitting diode, the light-emitting diode includes a transparent substrate, and an N-type half is disposed on the transparent substrate. The side is provided with an optical film; an optical film disposed on the bottom side of the transparent substrate, the optical film emulsion optical film, the metal fluoride optical film or the metal nitride optical device, the heat dissipation device The invention is disposed on the bottom side of the optical film; an N-type semiconductor layer is disposed on the transparent substrate; a light-emitting layer is disposed on the N-type semiconductor layer; and a P-type semiconductor layer is disposed on the light-emitting layer . 2. The structural improvement of the light-emitting diode according to claim 1, wherein the transparent substrate may be a sapphire (SAPPHIRE) transparent substrate. The structure improvement of the light-emitting diode according to claim 1, wherein the metal oxide optical film may be a titanium oxide optical film, a zirconia light film, a yttria optical film or a oxidized button optical film. 4. The structural improvement of the light-emitting diode according to claim 1, wherein the δ 金属 metal fluoride optical 臈 can be a magnesium fluoride optical film. 5. The structural improvement of the light-emitting diode according to claim 1, wherein the metal nitride optical film is a tantalum nitride optical film. 6. The structure improvement of the light-emitting diode according to claim 1, wherein the surface of the ?-type semiconductor layer and the p-type semiconductor layer are provided with electrodes. 7. The structural improvement of the light-emitting diode according to claim 1, wherein an adhesive layer is disposed between the optical film and the heat sink. 13 M349553 24. The structure improvement of the light-emitting diode according to claim 19, wherein the surface of the N-type semiconductor layer and the P-type semiconductor layer is provided with an electrode. The structure improvement of the light-emitting diode according to claim 19, wherein the thickness of the optical film is adjusted to obtain a highly reflective region of a different wavelength range. 16
TW097207947U 2008-05-08 2008-05-08 Improved structure of light emitting diode TWM349553U (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097207947U TWM349553U (en) 2008-05-08 2008-05-08 Improved structure of light emitting diode
JP2009001744U JP3150993U (en) 2008-05-08 2009-03-24 Light-emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097207947U TWM349553U (en) 2008-05-08 2008-05-08 Improved structure of light emitting diode

Publications (1)

Publication Number Publication Date
TWM349553U true TWM349553U (en) 2009-01-21

Family

ID=44372366

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097207947U TWM349553U (en) 2008-05-08 2008-05-08 Improved structure of light emitting diode

Country Status (2)

Country Link
JP (1) JP3150993U (en)
TW (1) TWM349553U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422069B (en) * 2009-01-23 2014-01-01 Nichia Corp Semiconductor device and production method therefor
TWI566444B (en) * 2014-07-10 2017-01-11 遠東科技大學 Radiant heat reflective substrate and light-emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI422069B (en) * 2009-01-23 2014-01-01 Nichia Corp Semiconductor device and production method therefor
US8642392B2 (en) 2009-01-23 2014-02-04 Nichia Corporation Semiconductor device and production method therefor
US9018664B2 (en) 2009-01-23 2015-04-28 Nichia Corporation Semiconductor device and production method therefor
TWI566444B (en) * 2014-07-10 2017-01-11 遠東科技大學 Radiant heat reflective substrate and light-emitting element

Also Published As

Publication number Publication date
JP3150993U (en) 2009-06-04

Similar Documents

Publication Publication Date Title
JP6371201B2 (en) Light emitting module and light emitting device using the same
US11480316B2 (en) Light conversion package
CN107017326B (en) Conversion device
US20080143242A1 (en) Light Emitting Device Comprising Inorganic Light Emitting Diode (S)
TWM531657U (en) Wavelength conversion device
TW200535369A (en) Led with an optical system to increase luminance by recycling emitted light
TW201018031A (en) Diode-pumped light source
TW200950159A (en) A luminous device
TWI696685B (en) Optical wavelength conversion device and optical composite device
US20150372198A1 (en) Light emitting module
US10347801B2 (en) Light emitting device
JP6365656B2 (en) Fluorescent light source device and manufacturing method thereof
TWM530969U (en) Wavelength conversion device, light source system and projection system
US11333806B2 (en) Reliable light conversion device for laser-based light sources
JP5401452B2 (en) Optoelectronic semiconductor chip
JP2021510234A (en) Light emitting diode
TWM349553U (en) Improved structure of light emitting diode
US11067242B2 (en) Phosphor module
CN113272687B (en) color conversion element
JP2018107064A (en) Fluorescent light source device and manufacturing method of the same
US10781987B2 (en) Light converting device
JP2018163828A (en) Phosphor element and illumination device
JP2018163816A (en) Phosphor element and illumination device
CN201332107Y (en) Structural improvement of light emitting diode
CN106471632B (en) Lighting device

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees